dp_rx_defrag.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105
  1. /*
  2. * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. #include "dp_rx_buffer_pool.h"
  31. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  32. "AES-CCM",
  33. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  34. IEEE80211_WEP_MICLEN,
  35. 0,
  36. };
  37. const struct dp_rx_defrag_cipher dp_f_tkip = {
  38. "TKIP",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_CRCLEN,
  41. IEEE80211_WEP_MICLEN,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_wep = {
  44. "WEP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. 0,
  48. };
  49. /*
  50. * dp_rx_defrag_frames_free(): Free fragment chain
  51. * @frames: Fragment chain
  52. *
  53. * Iterates through the fragment chain and frees them
  54. * Returns: None
  55. */
  56. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  57. {
  58. qdf_nbuf_t next, frag = frames;
  59. while (frag) {
  60. next = qdf_nbuf_next(frag);
  61. qdf_nbuf_free(frag);
  62. frag = next;
  63. }
  64. }
  65. /*
  66. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  67. * @peer: Pointer to the peer data structure
  68. * @tid: Transmit ID (TID)
  69. *
  70. * Saves MPDU descriptor info and MSDU link pointer from REO
  71. * ring descriptor. The cache is created per peer, per TID
  72. *
  73. * Returns: None
  74. */
  75. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  76. {
  77. if (peer->rx_tid[tid].dst_ring_desc)
  78. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  79. peer->rx_tid[tid].dst_ring_desc = NULL;
  80. peer->rx_tid[tid].head_frag_desc = NULL;
  81. }
  82. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  83. unsigned int tid)
  84. {
  85. struct dp_soc *soc;
  86. struct dp_pdev *pdev;
  87. struct dp_srng *dp_rxdma_srng;
  88. struct rx_desc_pool *rx_desc_pool;
  89. union dp_rx_desc_list_elem_t *head = NULL;
  90. union dp_rx_desc_list_elem_t *tail = NULL;
  91. uint8_t pool_id;
  92. pdev = peer->vdev->pdev;
  93. soc = pdev->soc;
  94. if (peer->rx_tid[tid].head_frag_desc) {
  95. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  96. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  97. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  98. dp_rx_add_to_free_desc_list(&head, &tail,
  99. peer->rx_tid[tid].head_frag_desc);
  100. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  101. 1, &head, &tail);
  102. }
  103. if (peer->rx_tid[tid].dst_ring_desc) {
  104. if (dp_rx_link_desc_return(soc,
  105. peer->rx_tid[tid].dst_ring_desc,
  106. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  107. QDF_STATUS_SUCCESS)
  108. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  109. "%s: Failed to return link desc", __func__);
  110. }
  111. }
  112. /*
  113. * dp_rx_reorder_flush_frag(): Flush the frag list
  114. * @peer: Pointer to the peer data structure
  115. * @tid: Transmit ID (TID)
  116. *
  117. * Flush the per-TID frag list
  118. *
  119. * Returns: None
  120. */
  121. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  122. unsigned int tid)
  123. {
  124. dp_info_rl("Flushing TID %d", tid);
  125. if (!peer) {
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: NULL peer", __func__);
  128. return;
  129. }
  130. dp_rx_return_head_frag_desc(peer, tid);
  131. dp_rx_defrag_cleanup(peer, tid);
  132. }
  133. /*
  134. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  135. * @soc: DP SOC
  136. *
  137. * Flush fragments of all waitlisted TID's
  138. *
  139. * Returns: None
  140. */
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid *rx_reorder = NULL;
  144. struct dp_rx_tid *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid) temp_list;
  147. TAILQ_INIT(&temp_list);
  148. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  149. FL("Current time %u"), now_ms);
  150. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  151. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  152. defrag_waitlist_elem, tmp) {
  153. uint32_t tid;
  154. if (rx_reorder->defrag_timeout_ms > now_ms)
  155. break;
  156. tid = rx_reorder->tid;
  157. if (tid >= DP_MAX_TIDS) {
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  162. defrag_waitlist_elem);
  163. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  164. /* Move to temp list and clean-up later */
  165. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  166. defrag_waitlist_elem);
  167. }
  168. if (rx_reorder) {
  169. soc->rx.defrag.next_flush_ms =
  170. rx_reorder->defrag_timeout_ms;
  171. } else {
  172. soc->rx.defrag.next_flush_ms =
  173. now_ms + soc->rx.defrag.timeout_ms;
  174. }
  175. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  176. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  177. defrag_waitlist_elem, tmp) {
  178. struct dp_peer *peer, *temp_peer = NULL;
  179. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  180. TAILQ_REMOVE(&temp_list, rx_reorder,
  181. defrag_waitlist_elem);
  182. /* get address of current peer */
  183. peer =
  184. container_of(rx_reorder, struct dp_peer,
  185. rx_tid[rx_reorder->tid]);
  186. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  187. temp_peer = dp_peer_get_ref_by_id(soc, peer->peer_id,
  188. DP_MOD_ID_RX_ERR);
  189. if (temp_peer == peer) {
  190. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  191. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  192. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  193. }
  194. if (temp_peer)
  195. dp_peer_unref_delete(temp_peer, DP_MOD_ID_RX_ERR);
  196. }
  197. }
  198. /*
  199. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  200. * @peer: Pointer to the peer data structure
  201. * @tid: Transmit ID (TID)
  202. *
  203. * Appends per-tid fragments to global fragment wait list
  204. *
  205. * Returns: None
  206. */
  207. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  208. {
  209. struct dp_soc *psoc = peer->vdev->pdev->soc;
  210. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  211. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  212. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  213. /* TODO: use LIST macros instead of TAIL macros */
  214. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  215. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  216. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  217. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  218. defrag_waitlist_elem);
  219. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  220. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  221. }
  222. /*
  223. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  224. * @peer: Pointer to the peer data structure
  225. * @tid: Transmit ID (TID)
  226. *
  227. * Remove fragments from waitlist
  228. *
  229. * Returns: None
  230. */
  231. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  232. {
  233. struct dp_pdev *pdev = peer->vdev->pdev;
  234. struct dp_soc *soc = pdev->soc;
  235. struct dp_rx_tid *rx_reorder;
  236. struct dp_rx_tid *tmp;
  237. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  238. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  239. if (tid >= DP_MAX_TIDS) {
  240. dp_err("TID out of bounds: %d", tid);
  241. qdf_assert_always(0);
  242. }
  243. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  244. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  245. defrag_waitlist_elem, tmp) {
  246. struct dp_peer *peer_on_waitlist;
  247. /* get address of current peer */
  248. peer_on_waitlist =
  249. container_of(rx_reorder, struct dp_peer,
  250. rx_tid[rx_reorder->tid]);
  251. /* Ensure it is TID for same peer */
  252. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  253. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  254. rx_reorder, defrag_waitlist_elem);
  255. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  256. }
  257. }
  258. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  259. }
  260. /*
  261. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  262. * @peer: Pointer to the peer data structure
  263. * @tid: Transmit ID (TID)
  264. * @head_addr: Pointer to head list
  265. * @tail_addr: Pointer to tail list
  266. * @frag: Incoming fragment
  267. * @all_frag_present: Flag to indicate whether all fragments are received
  268. *
  269. * Build a per-tid, per-sequence fragment list.
  270. *
  271. * Returns: Success, if inserted
  272. */
  273. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  274. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  275. uint8_t *all_frag_present)
  276. {
  277. qdf_nbuf_t next;
  278. qdf_nbuf_t prev = NULL;
  279. qdf_nbuf_t cur;
  280. uint16_t head_fragno, cur_fragno, next_fragno;
  281. uint8_t last_morefrag = 1, count = 0;
  282. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  283. uint8_t *rx_desc_info;
  284. qdf_assert(frag);
  285. qdf_assert(head_addr);
  286. qdf_assert(tail_addr);
  287. *all_frag_present = 0;
  288. rx_desc_info = qdf_nbuf_data(frag);
  289. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  290. dp_debug("cur_fragno %d\n", cur_fragno);
  291. /* If this is the first fragment */
  292. if (!(*head_addr)) {
  293. *head_addr = *tail_addr = frag;
  294. qdf_nbuf_set_next(*tail_addr, NULL);
  295. rx_tid->curr_frag_num = cur_fragno;
  296. goto insert_done;
  297. }
  298. /* In sequence fragment */
  299. if (cur_fragno > rx_tid->curr_frag_num) {
  300. qdf_nbuf_set_next(*tail_addr, frag);
  301. *tail_addr = frag;
  302. qdf_nbuf_set_next(*tail_addr, NULL);
  303. rx_tid->curr_frag_num = cur_fragno;
  304. } else {
  305. /* Out of sequence fragment */
  306. cur = *head_addr;
  307. rx_desc_info = qdf_nbuf_data(cur);
  308. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  309. if (cur_fragno == head_fragno) {
  310. qdf_nbuf_free(frag);
  311. goto insert_fail;
  312. } else if (head_fragno > cur_fragno) {
  313. qdf_nbuf_set_next(frag, cur);
  314. cur = frag;
  315. *head_addr = frag; /* head pointer to be updated */
  316. } else {
  317. while ((cur_fragno > head_fragno) && cur) {
  318. prev = cur;
  319. cur = qdf_nbuf_next(cur);
  320. if (cur) {
  321. rx_desc_info = qdf_nbuf_data(cur);
  322. head_fragno =
  323. dp_rx_frag_get_mpdu_frag_number(
  324. rx_desc_info);
  325. }
  326. }
  327. if (cur_fragno == head_fragno) {
  328. qdf_nbuf_free(frag);
  329. goto insert_fail;
  330. }
  331. qdf_nbuf_set_next(prev, frag);
  332. qdf_nbuf_set_next(frag, cur);
  333. }
  334. }
  335. next = qdf_nbuf_next(*head_addr);
  336. rx_desc_info = qdf_nbuf_data(*tail_addr);
  337. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  338. /* TODO: optimize the loop */
  339. if (!last_morefrag) {
  340. /* Check if all fragments are present */
  341. do {
  342. rx_desc_info = qdf_nbuf_data(next);
  343. next_fragno =
  344. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  345. count++;
  346. if (next_fragno != count)
  347. break;
  348. next = qdf_nbuf_next(next);
  349. } while (next);
  350. if (!next) {
  351. *all_frag_present = 1;
  352. return QDF_STATUS_SUCCESS;
  353. } else {
  354. /* revisit */
  355. }
  356. }
  357. insert_done:
  358. return QDF_STATUS_SUCCESS;
  359. insert_fail:
  360. return QDF_STATUS_E_FAILURE;
  361. }
  362. /*
  363. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  364. * @msdu: Pointer to the fragment
  365. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  366. *
  367. * decap tkip encrypted fragment
  368. *
  369. * Returns: QDF_STATUS
  370. */
  371. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  372. {
  373. uint8_t *ivp, *orig_hdr;
  374. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  375. /* start of 802.11 header info */
  376. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  377. /* TKIP header is located post 802.11 header */
  378. ivp = orig_hdr + hdrlen;
  379. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  380. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  381. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  382. return QDF_STATUS_E_DEFRAG_ERROR;
  383. }
  384. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  385. return QDF_STATUS_SUCCESS;
  386. }
  387. /*
  388. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  389. * @nbuf: Pointer to the fragment buffer
  390. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  391. *
  392. * Remove MIC information from CCMP fragment
  393. *
  394. * Returns: QDF_STATUS
  395. */
  396. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  397. {
  398. uint8_t *ivp, *orig_hdr;
  399. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  400. /* start of the 802.11 header */
  401. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  402. /* CCMP header is located after 802.11 header */
  403. ivp = orig_hdr + hdrlen;
  404. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  405. return QDF_STATUS_E_DEFRAG_ERROR;
  406. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  407. return QDF_STATUS_SUCCESS;
  408. }
  409. /*
  410. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  411. * @nbuf: Pointer to the fragment
  412. * @hdrlen: length of the header information
  413. *
  414. * decap CCMP encrypted fragment
  415. *
  416. * Returns: QDF_STATUS
  417. */
  418. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  419. {
  420. uint8_t *ivp, *origHdr;
  421. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  422. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  423. ivp = origHdr + hdrlen;
  424. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  425. return QDF_STATUS_E_DEFRAG_ERROR;
  426. /* Let's pull the header later */
  427. return QDF_STATUS_SUCCESS;
  428. }
  429. /*
  430. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  431. * @msdu: Pointer to the fragment
  432. * @hdrlen: length of the header information
  433. *
  434. * decap WEP encrypted fragment
  435. *
  436. * Returns: QDF_STATUS
  437. */
  438. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  439. {
  440. uint8_t *origHdr;
  441. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  442. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  443. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  444. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  445. return QDF_STATUS_SUCCESS;
  446. }
  447. /*
  448. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  449. * @soc: soc handle
  450. * @nbuf: Pointer to the fragment
  451. *
  452. * Calculate the header size of the received fragment
  453. *
  454. * Returns: header size (uint16_t)
  455. */
  456. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  457. {
  458. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  459. uint16_t size = sizeof(struct ieee80211_frame);
  460. uint16_t fc = 0;
  461. uint32_t to_ds, fr_ds;
  462. uint8_t frm_ctrl_valid;
  463. uint16_t frm_ctrl_field;
  464. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  465. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  466. frm_ctrl_valid =
  467. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  468. rx_tlv_hdr);
  469. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  470. if (to_ds && fr_ds)
  471. size += QDF_MAC_ADDR_SIZE;
  472. if (frm_ctrl_valid) {
  473. fc = frm_ctrl_field;
  474. /* use 1-st byte for validation */
  475. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  476. size += sizeof(uint16_t);
  477. /* use 2-nd byte for validation */
  478. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  479. size += sizeof(struct ieee80211_htc);
  480. }
  481. }
  482. return size;
  483. }
  484. /*
  485. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  486. * @wh0: Pointer to the wireless header of the fragment
  487. * @hdr: Array to hold the pseudo header
  488. *
  489. * Calculate a pseudo MIC header
  490. *
  491. * Returns: None
  492. */
  493. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  494. uint8_t hdr[])
  495. {
  496. const struct ieee80211_frame_addr4 *wh =
  497. (const struct ieee80211_frame_addr4 *)wh0;
  498. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  499. case IEEE80211_FC1_DIR_NODS:
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  501. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  502. wh->i_addr2);
  503. break;
  504. case IEEE80211_FC1_DIR_TODS:
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  506. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  507. wh->i_addr2);
  508. break;
  509. case IEEE80211_FC1_DIR_FROMDS:
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  511. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  512. wh->i_addr3);
  513. break;
  514. case IEEE80211_FC1_DIR_DSTODS:
  515. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  516. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  517. wh->i_addr4);
  518. break;
  519. }
  520. /*
  521. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  522. * it could also be set for deauth, disassoc, action, etc. for
  523. * a mgt type frame. It comes into picture for MFP.
  524. */
  525. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  526. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  527. IEEE80211_FC1_DIR_DSTODS) {
  528. const struct ieee80211_qosframe_addr4 *qwh =
  529. (const struct ieee80211_qosframe_addr4 *)wh;
  530. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  531. } else {
  532. const struct ieee80211_qosframe *qwh =
  533. (const struct ieee80211_qosframe *)wh;
  534. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  535. }
  536. } else {
  537. hdr[12] = 0;
  538. }
  539. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  540. }
  541. /*
  542. * dp_rx_defrag_mic(): Calculate MIC header
  543. * @key: Pointer to the key
  544. * @wbuf: fragment buffer
  545. * @off: Offset
  546. * @data_len: Data length
  547. * @mic: Array to hold MIC
  548. *
  549. * Calculate a pseudo MIC header
  550. *
  551. * Returns: QDF_STATUS
  552. */
  553. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  554. uint16_t off, uint16_t data_len, uint8_t mic[])
  555. {
  556. uint8_t hdr[16] = { 0, };
  557. uint32_t l, r;
  558. const uint8_t *data;
  559. uint32_t space;
  560. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  561. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  562. + rx_desc_len), hdr);
  563. l = dp_rx_get_le32(key);
  564. r = dp_rx_get_le32(key + 4);
  565. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  566. l ^= dp_rx_get_le32(hdr);
  567. dp_rx_michael_block(l, r);
  568. l ^= dp_rx_get_le32(&hdr[4]);
  569. dp_rx_michael_block(l, r);
  570. l ^= dp_rx_get_le32(&hdr[8]);
  571. dp_rx_michael_block(l, r);
  572. l ^= dp_rx_get_le32(&hdr[12]);
  573. dp_rx_michael_block(l, r);
  574. /* first buffer has special handling */
  575. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  576. space = qdf_nbuf_len(wbuf) - off;
  577. for (;; ) {
  578. if (space > data_len)
  579. space = data_len;
  580. /* collect 32-bit blocks from current buffer */
  581. while (space >= sizeof(uint32_t)) {
  582. l ^= dp_rx_get_le32(data);
  583. dp_rx_michael_block(l, r);
  584. data += sizeof(uint32_t);
  585. space -= sizeof(uint32_t);
  586. data_len -= sizeof(uint32_t);
  587. }
  588. if (data_len < sizeof(uint32_t))
  589. break;
  590. wbuf = qdf_nbuf_next(wbuf);
  591. if (!wbuf)
  592. return QDF_STATUS_E_DEFRAG_ERROR;
  593. if (space != 0) {
  594. const uint8_t *data_next;
  595. /*
  596. * Block straddles buffers, split references.
  597. */
  598. data_next =
  599. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  600. if ((qdf_nbuf_len(wbuf)) <
  601. sizeof(uint32_t) - space) {
  602. return QDF_STATUS_E_DEFRAG_ERROR;
  603. }
  604. switch (space) {
  605. case 1:
  606. l ^= dp_rx_get_le32_split(data[0],
  607. data_next[0], data_next[1],
  608. data_next[2]);
  609. data = data_next + 3;
  610. space = (qdf_nbuf_len(wbuf) - off) - 3;
  611. break;
  612. case 2:
  613. l ^= dp_rx_get_le32_split(data[0], data[1],
  614. data_next[0], data_next[1]);
  615. data = data_next + 2;
  616. space = (qdf_nbuf_len(wbuf) - off) - 2;
  617. break;
  618. case 3:
  619. l ^= dp_rx_get_le32_split(data[0], data[1],
  620. data[2], data_next[0]);
  621. data = data_next + 1;
  622. space = (qdf_nbuf_len(wbuf) - off) - 1;
  623. break;
  624. }
  625. dp_rx_michael_block(l, r);
  626. data_len -= sizeof(uint32_t);
  627. } else {
  628. /*
  629. * Setup for next buffer.
  630. */
  631. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  632. space = qdf_nbuf_len(wbuf) - off;
  633. }
  634. }
  635. /* Last block and padding (0x5a, 4..7 x 0) */
  636. switch (data_len) {
  637. case 0:
  638. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  639. break;
  640. case 1:
  641. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  642. break;
  643. case 2:
  644. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  645. break;
  646. case 3:
  647. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  648. break;
  649. }
  650. dp_rx_michael_block(l, r);
  651. dp_rx_michael_block(l, r);
  652. dp_rx_put_le32(mic, l);
  653. dp_rx_put_le32(mic + 4, r);
  654. return QDF_STATUS_SUCCESS;
  655. }
  656. /*
  657. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  658. * @key: Pointer to the key
  659. * @msdu: fragment buffer
  660. * @hdrlen: Length of the header information
  661. *
  662. * Remove MIC information from the TKIP frame
  663. *
  664. * Returns: QDF_STATUS
  665. */
  666. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  667. qdf_nbuf_t msdu, uint16_t hdrlen)
  668. {
  669. QDF_STATUS status;
  670. uint32_t pktlen = 0, prev_data_len;
  671. uint8_t mic[IEEE80211_WEP_MICLEN];
  672. uint8_t mic0[IEEE80211_WEP_MICLEN];
  673. qdf_nbuf_t prev = NULL, prev0, next;
  674. uint8_t len0 = 0;
  675. next = msdu;
  676. prev0 = msdu;
  677. while (next) {
  678. pktlen += (qdf_nbuf_len(next) - hdrlen);
  679. prev = next;
  680. dp_debug("pktlen %u",
  681. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  682. next = qdf_nbuf_next(next);
  683. if (next && !qdf_nbuf_next(next))
  684. prev0 = prev;
  685. }
  686. if (!prev) {
  687. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  688. "%s Defrag chaining failed !\n", __func__);
  689. return QDF_STATUS_E_DEFRAG_ERROR;
  690. }
  691. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  692. if (prev_data_len < dp_f_tkip.ic_miclen) {
  693. if (prev0 == prev) {
  694. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  695. "%s Fragments don't have MIC header !\n", __func__);
  696. return QDF_STATUS_E_DEFRAG_ERROR;
  697. }
  698. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  699. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  700. (caddr_t)mic0);
  701. qdf_nbuf_trim_tail(prev0, len0);
  702. }
  703. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  704. (dp_f_tkip.ic_miclen - len0)),
  705. (dp_f_tkip.ic_miclen - len0),
  706. (caddr_t)(&mic0[len0]));
  707. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  708. pktlen -= dp_f_tkip.ic_miclen;
  709. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  710. qdf_nbuf_free(prev);
  711. qdf_nbuf_set_next(prev0, NULL);
  712. }
  713. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  714. pktlen, mic);
  715. if (QDF_IS_STATUS_ERROR(status))
  716. return status;
  717. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  718. return QDF_STATUS_E_DEFRAG_ERROR;
  719. return QDF_STATUS_SUCCESS;
  720. }
  721. /*
  722. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  723. * @nbuf: buffer pointer
  724. * @hdrsize: size of the header to be pulled
  725. *
  726. * Pull the RXTLV & the 802.11 headers
  727. *
  728. * Returns: None
  729. */
  730. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  731. {
  732. struct rx_pkt_tlvs *rx_pkt_tlv =
  733. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  734. struct rx_mpdu_info *rx_mpdu_info_details =
  735. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  736. dp_debug("pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  737. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  738. rx_mpdu_info_details->pn_95_64,
  739. rx_mpdu_info_details->pn_127_96);
  740. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + hdrsize);
  741. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  742. "%s: final pktlen %d .11len %d",
  743. __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  744. }
  745. /*
  746. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  747. * @msdu: msdu to get the current PN
  748. * @cur_pn128: PN extracted from current msdu
  749. * @prev_pn128: Prev PN
  750. *
  751. * Returns: 0 on success, non zero on failure
  752. */
  753. static int dp_rx_defrag_pn_check(qdf_nbuf_t msdu,
  754. uint64_t *cur_pn128, uint64_t *prev_pn128)
  755. {
  756. struct rx_pkt_tlvs *rx_pkt_tlv =
  757. (struct rx_pkt_tlvs *)qdf_nbuf_data(msdu);
  758. struct rx_mpdu_info *rx_mpdu_info_details =
  759. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  760. int out_of_order = 0;
  761. cur_pn128[0] = rx_mpdu_info_details->pn_31_0;
  762. cur_pn128[0] |=
  763. ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  764. cur_pn128[1] = rx_mpdu_info_details->pn_95_64;
  765. cur_pn128[1] |=
  766. ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  767. if (cur_pn128[1] == prev_pn128[1])
  768. out_of_order = (cur_pn128[0] <= prev_pn128[0]);
  769. else
  770. out_of_order = (cur_pn128[1] < prev_pn128[1]);
  771. return out_of_order;
  772. }
  773. /*
  774. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  775. * @peer: Pointer to the peer
  776. * @head: Pointer to list of fragments
  777. * @hdrsize: Size of the header to be pulled
  778. *
  779. * Construct a nbuf fraglist
  780. *
  781. * Returns: None
  782. */
  783. static int
  784. dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
  785. uint16_t hdrsize)
  786. {
  787. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  788. qdf_nbuf_t rx_nbuf = msdu;
  789. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  790. uint32_t len = 0;
  791. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  792. int out_of_order = 0;
  793. int index;
  794. int needs_pn_check = 0;
  795. prev_pn128[0] = rx_tid->pn128[0];
  796. prev_pn128[1] = rx_tid->pn128[1];
  797. index = hal_rx_msdu_is_wlan_mcast(msdu) ? dp_sec_mcast : dp_sec_ucast;
  798. if (qdf_likely(peer->security[index].sec_type != cdp_sec_type_none))
  799. needs_pn_check = 1;
  800. while (msdu) {
  801. if (qdf_likely(needs_pn_check))
  802. out_of_order = dp_rx_defrag_pn_check(msdu,
  803. &cur_pn128[0],
  804. &prev_pn128[0]);
  805. if (qdf_unlikely(out_of_order)) {
  806. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  807. cur_pn128[0], cur_pn128[1],
  808. prev_pn128[0], prev_pn128[1]);
  809. return QDF_STATUS_E_FAILURE;
  810. }
  811. prev_pn128[0] = cur_pn128[0];
  812. prev_pn128[1] = cur_pn128[1];
  813. dp_rx_frag_pull_hdr(msdu, hdrsize);
  814. len += qdf_nbuf_len(msdu);
  815. msdu = qdf_nbuf_next(msdu);
  816. }
  817. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  818. qdf_nbuf_set_next(head, NULL);
  819. qdf_nbuf_set_is_frag(head, 1);
  820. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  821. "%s: head len %d ext len %d data len %d ",
  822. __func__,
  823. (uint32_t)qdf_nbuf_len(head),
  824. (uint32_t)qdf_nbuf_len(rx_nbuf),
  825. (uint32_t)(head->data_len));
  826. return QDF_STATUS_SUCCESS;
  827. }
  828. /**
  829. * dp_rx_defrag_err() - rx err handler
  830. * @pdev: handle to pdev object
  831. * @vdev_id: vdev id
  832. * @peer_mac_addr: peer mac address
  833. * @tid: TID
  834. * @tsf32: TSF
  835. * @err_type: error type
  836. * @rx_frame: rx frame
  837. * @pn: PN Number
  838. * @key_id: key id
  839. *
  840. * This function handles rx error and send MIC error notification
  841. *
  842. * Return: None
  843. */
  844. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  845. {
  846. struct ol_if_ops *tops = NULL;
  847. struct dp_pdev *pdev = vdev->pdev;
  848. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  849. uint8_t *orig_hdr;
  850. struct ieee80211_frame *wh;
  851. struct cdp_rx_mic_err_info mic_failure_info;
  852. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  853. wh = (struct ieee80211_frame *)orig_hdr;
  854. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  855. (struct qdf_mac_addr *)&wh->i_addr1);
  856. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  857. (struct qdf_mac_addr *)&wh->i_addr2);
  858. mic_failure_info.key_id = 0;
  859. mic_failure_info.multicast =
  860. IEEE80211_IS_MULTICAST(wh->i_addr1);
  861. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  862. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  863. mic_failure_info.data = (uint8_t *)wh;
  864. mic_failure_info.vdev_id = vdev->vdev_id;
  865. tops = pdev->soc->cdp_soc.ol_ops;
  866. if (tops->rx_mic_error)
  867. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  868. &mic_failure_info);
  869. }
  870. /*
  871. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  872. * @soc: dp soc handle
  873. * @nbuf: Pointer to the fragment buffer
  874. * @hdrsize: Size of headers
  875. *
  876. * Transcap the fragment from 802.11 to 802.3
  877. *
  878. * Returns: None
  879. */
  880. static void
  881. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
  882. qdf_nbuf_t nbuf, uint16_t hdrsize)
  883. {
  884. struct llc_snap_hdr_t *llchdr;
  885. struct ethernet_hdr_t *eth_hdr;
  886. uint8_t ether_type[2];
  887. uint16_t fc = 0;
  888. union dp_align_mac_addr mac_addr;
  889. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  890. struct rx_pkt_tlvs *rx_pkt_tlv =
  891. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  892. struct rx_mpdu_info *rx_mpdu_info_details =
  893. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  894. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  895. dp_debug("head_nbuf pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  896. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  897. rx_mpdu_info_details->pn_95_64,
  898. rx_mpdu_info_details->pn_127_96);
  899. rx_tid->pn128[0] = rx_mpdu_info_details->pn_31_0;
  900. rx_tid->pn128[0] |= ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  901. rx_tid->pn128[1] = rx_mpdu_info_details->pn_95_64;
  902. rx_tid->pn128[1] |= ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  903. if (!rx_desc_info) {
  904. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  905. "%s: Memory alloc failed ! ", __func__);
  906. QDF_ASSERT(0);
  907. return;
  908. }
  909. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  910. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  911. RX_PKT_TLVS_LEN + hdrsize);
  912. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  913. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  914. sizeof(struct llc_snap_hdr_t) -
  915. sizeof(struct ethernet_hdr_t)));
  916. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  917. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  918. rx_desc_info))
  919. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  920. dp_debug("Frame control type: 0x%x", fc);
  921. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  922. case IEEE80211_FC1_DIR_NODS:
  923. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  924. &mac_addr.raw[0]);
  925. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  926. QDF_MAC_ADDR_SIZE);
  927. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  928. &mac_addr.raw[0]);
  929. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  930. QDF_MAC_ADDR_SIZE);
  931. break;
  932. case IEEE80211_FC1_DIR_TODS:
  933. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  934. &mac_addr.raw[0]);
  935. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  936. QDF_MAC_ADDR_SIZE);
  937. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  938. &mac_addr.raw[0]);
  939. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  940. QDF_MAC_ADDR_SIZE);
  941. break;
  942. case IEEE80211_FC1_DIR_FROMDS:
  943. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  944. &mac_addr.raw[0]);
  945. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  946. QDF_MAC_ADDR_SIZE);
  947. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  948. &mac_addr.raw[0]);
  949. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  950. QDF_MAC_ADDR_SIZE);
  951. break;
  952. case IEEE80211_FC1_DIR_DSTODS:
  953. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  954. &mac_addr.raw[0]);
  955. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  956. QDF_MAC_ADDR_SIZE);
  957. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  958. &mac_addr.raw[0]);
  959. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  960. QDF_MAC_ADDR_SIZE);
  961. break;
  962. default:
  963. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  964. "%s: Unknown frame control type: 0x%x", __func__, fc);
  965. }
  966. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  967. sizeof(ether_type));
  968. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  969. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  970. qdf_mem_free(rx_desc_info);
  971. }
  972. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  973. /*
  974. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  975. * @peer: Pointer to the peer
  976. * @tid: Transmit Identifier
  977. * @head: Nbuf to be delivered
  978. *
  979. * Returns: None
  980. */
  981. static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
  982. unsigned int tid,
  983. qdf_nbuf_t head)
  984. {
  985. struct dp_vdev *vdev = peer->vdev;
  986. struct dp_soc *soc = vdev->pdev->soc;
  987. qdf_nbuf_t deliver_list_head = NULL;
  988. qdf_nbuf_t deliver_list_tail = NULL;
  989. uint8_t *rx_tlv_hdr;
  990. rx_tlv_hdr = qdf_nbuf_data(head);
  991. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  992. qdf_nbuf_set_tid_val(head, tid);
  993. qdf_nbuf_pull_head(head, RX_PKT_TLVS_LEN);
  994. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  995. head);
  996. dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
  997. deliver_list_tail);
  998. }
  999. /*
  1000. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1001. * @peer: Pointer to the peer
  1002. * @tid: Transmit Identifier
  1003. * @head: Buffer to be reinjected back
  1004. *
  1005. * Reinject the fragment chain back into REO
  1006. *
  1007. * Returns: QDF_STATUS
  1008. */
  1009. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1010. unsigned int tid, qdf_nbuf_t head)
  1011. {
  1012. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1013. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1014. dp_rx_defrag_deliver(peer, tid, head);
  1015. rx_reorder_array_elem->head = NULL;
  1016. rx_reorder_array_elem->tail = NULL;
  1017. dp_rx_return_head_frag_desc(peer, tid);
  1018. return QDF_STATUS_SUCCESS;
  1019. }
  1020. #else
  1021. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1022. /**
  1023. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1024. * @soc: Datapath soc structure
  1025. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1026. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1027. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1028. *
  1029. * Returns: None
  1030. */
  1031. static inline void
  1032. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1033. uint32_t sw_cookie, uint8_t rbm)
  1034. {
  1035. struct dp_buf_info_record *record;
  1036. uint32_t idx;
  1037. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1038. return;
  1039. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1040. DP_RX_REINJECT_HIST_MAX);
  1041. /* No NULL check needed for record since its an array */
  1042. record = &soc->rx_reinject_ring_history->entry[idx];
  1043. record->timestamp = qdf_get_log_timestamp();
  1044. record->hbi.paddr = paddr;
  1045. record->hbi.sw_cookie = sw_cookie;
  1046. record->hbi.rbm = rbm;
  1047. }
  1048. #else
  1049. static inline void
  1050. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1051. uint32_t sw_cookie, uint8_t rbm)
  1052. {
  1053. }
  1054. #endif
  1055. /*
  1056. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1057. * @peer: Pointer to the peer
  1058. * @tid: Transmit Identifier
  1059. * @head: Buffer to be reinjected back
  1060. *
  1061. * Reinject the fragment chain back into REO
  1062. *
  1063. * Returns: QDF_STATUS
  1064. */
  1065. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1066. unsigned int tid, qdf_nbuf_t head)
  1067. {
  1068. struct dp_pdev *pdev = peer->vdev->pdev;
  1069. struct dp_soc *soc = pdev->soc;
  1070. struct hal_buf_info buf_info;
  1071. void *link_desc_va;
  1072. void *msdu0, *msdu_desc_info;
  1073. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1074. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  1075. qdf_dma_addr_t paddr;
  1076. uint32_t nbuf_len, seq_no, dst_ind;
  1077. uint32_t *mpdu_wrd;
  1078. uint32_t ret, cookie;
  1079. hal_ring_desc_t dst_ring_desc =
  1080. peer->rx_tid[tid].dst_ring_desc;
  1081. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1082. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  1083. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1084. peer->rx_tid[tid].array;
  1085. qdf_nbuf_t nbuf_head;
  1086. struct rx_desc_pool *rx_desc_pool = NULL;
  1087. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1088. /* do duplicate link desc address check */
  1089. dp_rx_link_desc_refill_duplicate_check(
  1090. soc,
  1091. &soc->last_op_info.reo_reinject_link_desc,
  1092. buf_addr_info);
  1093. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1094. if (qdf_unlikely(!nbuf_head)) {
  1095. dp_err_rl("IPA RX REO reinject failed");
  1096. return QDF_STATUS_E_FAILURE;
  1097. }
  1098. /* update new allocated skb in case IPA is enabled */
  1099. if (nbuf_head != head) {
  1100. head = nbuf_head;
  1101. rx_desc->nbuf = head;
  1102. rx_reorder_array_elem->head = head;
  1103. }
  1104. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1105. if (!ent_ring_desc) {
  1106. dp_err_rl("HAL src ring next entry NULL");
  1107. return QDF_STATUS_E_FAILURE;
  1108. }
  1109. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  1110. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1111. qdf_assert_always(link_desc_va);
  1112. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1113. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  1114. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1115. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1116. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1117. /* msdu reconfig */
  1118. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1119. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1120. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1121. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1122. FIRST_MSDU_IN_MPDU_FLAG, 1);
  1123. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1124. LAST_MSDU_IN_MPDU_FLAG, 1);
  1125. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1126. MSDU_CONTINUATION, 0x0);
  1127. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1128. REO_DESTINATION_INDICATION, dst_ind);
  1129. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1130. MSDU_LENGTH, nbuf_len);
  1131. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1132. SA_IS_VALID, 1);
  1133. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1134. DA_IS_VALID, 1);
  1135. /* change RX TLV's */
  1136. hal_rx_msdu_start_msdu_len_set(
  1137. qdf_nbuf_data(head), nbuf_len);
  1138. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  1139. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1140. /* map the nbuf before reinject it into HW */
  1141. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1142. QDF_DMA_FROM_DEVICE,
  1143. rx_desc_pool->buf_size);
  1144. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1145. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1146. "%s: nbuf map failed !", __func__);
  1147. return QDF_STATUS_E_FAILURE;
  1148. }
  1149. /*
  1150. * As part of rx frag handler bufffer was unmapped and rx desc
  1151. * unmapped is set to 1. So again for defrag reinject frame reset
  1152. * it back to 0.
  1153. */
  1154. rx_desc->unmapped = 0;
  1155. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1156. rx_desc_pool->buf_size,
  1157. true);
  1158. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1159. ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
  1160. if (ret == QDF_STATUS_E_FAILURE) {
  1161. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1162. "%s: x86 check failed !", __func__);
  1163. return QDF_STATUS_E_FAILURE;
  1164. }
  1165. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
  1166. /* Lets fill entrance ring now !!! */
  1167. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1168. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1169. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1170. hal_srng);
  1171. return QDF_STATUS_E_FAILURE;
  1172. }
  1173. dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
  1174. paddr = (uint64_t)buf_info.paddr;
  1175. /* buf addr */
  1176. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  1177. buf_info.sw_cookie,
  1178. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  1179. /* mpdu desc info */
  1180. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1181. ent_ring_desc);
  1182. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1183. dst_ring_desc);
  1184. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1185. sizeof(struct rx_mpdu_desc_info));
  1186. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1187. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1188. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  1189. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1190. MSDU_COUNT, 0x1);
  1191. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1192. MPDU_SEQUENCE_NUMBER, seq_no);
  1193. /* unset frag bit */
  1194. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1195. FRAGMENT_FLAG, 0x0);
  1196. /* set sa/da valid bits */
  1197. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1198. SA_IS_VALID, 0x1);
  1199. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1200. DA_IS_VALID, 0x1);
  1201. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1202. RAW_MPDU, 0x0);
  1203. /* qdesc addr */
  1204. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1205. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1206. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1207. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1208. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1209. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1210. REO_DESTINATION_INDICATION, dst_ind);
  1211. hal_srng_access_end(soc->hal_soc, hal_srng);
  1212. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1213. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1214. "%s: reinjection done !", __func__);
  1215. return QDF_STATUS_SUCCESS;
  1216. }
  1217. #endif
  1218. /*
  1219. * dp_rx_defrag(): Defragment the fragment chain
  1220. * @peer: Pointer to the peer
  1221. * @tid: Transmit Identifier
  1222. * @frag_list_head: Pointer to head list
  1223. * @frag_list_tail: Pointer to tail list
  1224. *
  1225. * Defragment the fragment chain
  1226. *
  1227. * Returns: QDF_STATUS
  1228. */
  1229. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1230. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1231. {
  1232. qdf_nbuf_t tmp_next, prev;
  1233. qdf_nbuf_t cur = frag_list_head, msdu;
  1234. uint32_t index, tkip_demic = 0;
  1235. uint16_t hdr_space;
  1236. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1237. struct dp_vdev *vdev = peer->vdev;
  1238. struct dp_soc *soc = vdev->pdev->soc;
  1239. uint8_t status = 0;
  1240. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1241. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1242. dp_sec_mcast : dp_sec_ucast;
  1243. /* Remove FCS from all fragments */
  1244. while (cur) {
  1245. tmp_next = qdf_nbuf_next(cur);
  1246. qdf_nbuf_set_next(cur, NULL);
  1247. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1248. prev = cur;
  1249. qdf_nbuf_set_next(cur, tmp_next);
  1250. cur = tmp_next;
  1251. }
  1252. cur = frag_list_head;
  1253. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1254. "%s: index %d Security type: %d", __func__,
  1255. index, peer->security[index].sec_type);
  1256. switch (peer->security[index].sec_type) {
  1257. case cdp_sec_type_tkip:
  1258. tkip_demic = 1;
  1259. case cdp_sec_type_tkip_nomic:
  1260. while (cur) {
  1261. tmp_next = qdf_nbuf_next(cur);
  1262. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1263. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1264. QDF_TRACE_LEVEL_ERROR,
  1265. "dp_rx_defrag: TKIP decap failed");
  1266. return QDF_STATUS_E_DEFRAG_ERROR;
  1267. }
  1268. cur = tmp_next;
  1269. }
  1270. /* If success, increment header to be stripped later */
  1271. hdr_space += dp_f_tkip.ic_header;
  1272. break;
  1273. case cdp_sec_type_aes_ccmp:
  1274. while (cur) {
  1275. tmp_next = qdf_nbuf_next(cur);
  1276. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1277. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1278. QDF_TRACE_LEVEL_ERROR,
  1279. "dp_rx_defrag: CCMP demic failed");
  1280. return QDF_STATUS_E_DEFRAG_ERROR;
  1281. }
  1282. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1283. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1284. QDF_TRACE_LEVEL_ERROR,
  1285. "dp_rx_defrag: CCMP decap failed");
  1286. return QDF_STATUS_E_DEFRAG_ERROR;
  1287. }
  1288. cur = tmp_next;
  1289. }
  1290. /* If success, increment header to be stripped later */
  1291. hdr_space += dp_f_ccmp.ic_header;
  1292. break;
  1293. case cdp_sec_type_wep40:
  1294. case cdp_sec_type_wep104:
  1295. case cdp_sec_type_wep128:
  1296. while (cur) {
  1297. tmp_next = qdf_nbuf_next(cur);
  1298. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1299. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1300. QDF_TRACE_LEVEL_ERROR,
  1301. "dp_rx_defrag: WEP decap failed");
  1302. return QDF_STATUS_E_DEFRAG_ERROR;
  1303. }
  1304. cur = tmp_next;
  1305. }
  1306. /* If success, increment header to be stripped later */
  1307. hdr_space += dp_f_wep.ic_header;
  1308. break;
  1309. default:
  1310. break;
  1311. }
  1312. if (tkip_demic) {
  1313. msdu = frag_list_head;
  1314. qdf_mem_copy(key,
  1315. &peer->security[index].michael_key[0],
  1316. IEEE80211_WEP_MICLEN);
  1317. status = dp_rx_defrag_tkip_demic(key, msdu,
  1318. RX_PKT_TLVS_LEN +
  1319. hdr_space);
  1320. if (status) {
  1321. dp_rx_defrag_err(vdev, frag_list_head);
  1322. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1323. QDF_TRACE_LEVEL_ERROR,
  1324. "%s: TKIP demic failed status %d",
  1325. __func__, status);
  1326. return QDF_STATUS_E_DEFRAG_ERROR;
  1327. }
  1328. }
  1329. /* Convert the header to 802.3 header */
  1330. dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
  1331. if (qdf_nbuf_next(frag_list_head)) {
  1332. if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
  1333. return QDF_STATUS_E_DEFRAG_ERROR;
  1334. }
  1335. return QDF_STATUS_SUCCESS;
  1336. }
  1337. /*
  1338. * dp_rx_defrag_cleanup(): Clean up activities
  1339. * @peer: Pointer to the peer
  1340. * @tid: Transmit Identifier
  1341. *
  1342. * Returns: None
  1343. */
  1344. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1345. {
  1346. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1347. peer->rx_tid[tid].array;
  1348. if (rx_reorder_array_elem) {
  1349. /* Free up nbufs */
  1350. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1351. rx_reorder_array_elem->head = NULL;
  1352. rx_reorder_array_elem->tail = NULL;
  1353. } else {
  1354. dp_info("Cleanup self peer %pK and TID %u at MAC address "QDF_MAC_ADDR_FMT,
  1355. peer, tid, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1356. }
  1357. /* Free up saved ring descriptors */
  1358. dp_rx_clear_saved_desc_info(peer, tid);
  1359. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1360. peer->rx_tid[tid].curr_frag_num = 0;
  1361. peer->rx_tid[tid].curr_seq_num = 0;
  1362. }
  1363. /*
  1364. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1365. * @ring_desc: Pointer to the dst ring descriptor
  1366. * @peer: Pointer to the peer
  1367. * @tid: Transmit Identifier
  1368. *
  1369. * Returns: None
  1370. */
  1371. static QDF_STATUS
  1372. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1373. struct dp_rx_desc *rx_desc,
  1374. struct dp_peer *peer,
  1375. unsigned int tid)
  1376. {
  1377. void *dst_ring_desc = qdf_mem_malloc(
  1378. sizeof(struct reo_destination_ring));
  1379. if (!dst_ring_desc) {
  1380. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1381. "%s: Memory alloc failed !", __func__);
  1382. QDF_ASSERT(0);
  1383. return QDF_STATUS_E_NOMEM;
  1384. }
  1385. qdf_mem_copy(dst_ring_desc, ring_desc,
  1386. sizeof(struct reo_destination_ring));
  1387. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1388. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1389. return QDF_STATUS_SUCCESS;
  1390. }
  1391. /*
  1392. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1393. * @soc: Pointer to the SOC data structure
  1394. * @ring_desc: Pointer to the ring descriptor
  1395. * @mpdu_desc_info: MPDU descriptor info
  1396. * @tid: Traffic Identifier
  1397. * @rx_desc: Pointer to rx descriptor
  1398. * @rx_bfs: Number of bfs consumed
  1399. *
  1400. * Returns: QDF_STATUS
  1401. */
  1402. static QDF_STATUS
  1403. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1404. hal_ring_desc_t ring_desc,
  1405. union dp_rx_desc_list_elem_t **head,
  1406. union dp_rx_desc_list_elem_t **tail,
  1407. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1408. unsigned int tid, struct dp_rx_desc *rx_desc,
  1409. uint32_t *rx_bfs)
  1410. {
  1411. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1412. struct dp_pdev *pdev;
  1413. struct dp_peer *peer = NULL;
  1414. uint16_t peer_id;
  1415. uint8_t fragno, more_frag, all_frag_present = 0;
  1416. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1417. QDF_STATUS status;
  1418. struct dp_rx_tid *rx_tid;
  1419. uint8_t mpdu_sequence_control_valid;
  1420. uint8_t mpdu_frame_control_valid;
  1421. qdf_nbuf_t frag = rx_desc->nbuf;
  1422. uint32_t msdu_len;
  1423. if (qdf_nbuf_len(frag) > 0) {
  1424. dp_info("Dropping unexpected packet with skb_len: %d,"
  1425. "data len: %d, cookie: %d",
  1426. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1427. rx_desc->cookie);
  1428. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1429. goto discard_frag;
  1430. }
  1431. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1432. /* fragment queued back to the pool, free the link desc */
  1433. goto err_free_desc;
  1434. }
  1435. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1436. qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
  1437. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1438. /* Check if the packet is from a valid peer */
  1439. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1440. mpdu_desc_info->peer_meta_data);
  1441. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_RX_ERR);
  1442. if (!peer) {
  1443. /* We should not receive anything from unknown peer
  1444. * however, that might happen while we are in the monitor mode.
  1445. * We don't need to handle that here
  1446. */
  1447. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1448. peer_id);
  1449. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1450. goto discard_frag;
  1451. }
  1452. if (tid >= DP_MAX_TIDS) {
  1453. dp_info("TID out of bounds: %d", tid);
  1454. qdf_assert_always(0);
  1455. goto discard_frag;
  1456. }
  1457. pdev = peer->vdev->pdev;
  1458. rx_tid = &peer->rx_tid[tid];
  1459. mpdu_sequence_control_valid =
  1460. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1461. rx_desc->rx_buf_start);
  1462. /* Invalid MPDU sequence control field, MPDU is of no use */
  1463. if (!mpdu_sequence_control_valid) {
  1464. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1465. "Invalid MPDU seq control field, dropping MPDU");
  1466. qdf_assert(0);
  1467. goto discard_frag;
  1468. }
  1469. mpdu_frame_control_valid =
  1470. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1471. rx_desc->rx_buf_start);
  1472. /* Invalid frame control field */
  1473. if (!mpdu_frame_control_valid) {
  1474. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1475. "Invalid frame control field, dropping MPDU");
  1476. qdf_assert(0);
  1477. goto discard_frag;
  1478. }
  1479. /* Current mpdu sequence */
  1480. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1481. /* HW does not populate the fragment number as of now
  1482. * need to get from the 802.11 header
  1483. */
  1484. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1485. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1486. if (!rx_reorder_array_elem) {
  1487. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1488. "Rcvd Fragmented pkt before peer_tid is setup");
  1489. goto discard_frag;
  1490. }
  1491. /*
  1492. * !more_frag: no more fragments to be delivered
  1493. * !frag_no: packet is not fragmented
  1494. * !rx_reorder_array_elem->head: no saved fragments so far
  1495. */
  1496. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1497. /* We should not get into this situation here.
  1498. * It means an unfragmented packet with fragment flag
  1499. * is delivered over the REO exception ring.
  1500. * Typically it follows normal rx path.
  1501. */
  1502. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1503. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1504. qdf_assert(0);
  1505. goto discard_frag;
  1506. }
  1507. /* Check if the fragment is for the same sequence or a different one */
  1508. dp_debug("rx_tid %d", tid);
  1509. if (rx_reorder_array_elem->head) {
  1510. dp_debug("rxseq %d\n", rxseq);
  1511. if (rxseq != rx_tid->curr_seq_num) {
  1512. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1513. rx_tid->curr_seq_num, rxseq);
  1514. /* Drop stored fragments if out of sequence
  1515. * fragment is received
  1516. */
  1517. dp_rx_reorder_flush_frag(peer, tid);
  1518. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1519. dp_debug("cur rxseq %d\n", rxseq);
  1520. /*
  1521. * The sequence number for this fragment becomes the
  1522. * new sequence number to be processed
  1523. */
  1524. rx_tid->curr_seq_num = rxseq;
  1525. }
  1526. } else {
  1527. dp_debug("cur rxseq %d\n", rxseq);
  1528. /* Start of a new sequence */
  1529. dp_rx_defrag_cleanup(peer, tid);
  1530. rx_tid->curr_seq_num = rxseq;
  1531. /* store PN number also */
  1532. }
  1533. /*
  1534. * If the earlier sequence was dropped, this will be the fresh start.
  1535. * Else, continue with next fragment in a given sequence
  1536. */
  1537. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1538. &rx_reorder_array_elem->tail, frag,
  1539. &all_frag_present);
  1540. /*
  1541. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1542. * packet sequence has more than 6 MSDUs for some reason, we will
  1543. * have to use the next MSDU link descriptor and chain them together
  1544. * before reinjection.
  1545. * ring_desc is validated in dp_rx_err_process.
  1546. */
  1547. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1548. (rx_reorder_array_elem->head == frag)) {
  1549. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1550. rx_desc, peer, tid);
  1551. if (status != QDF_STATUS_SUCCESS) {
  1552. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1553. "%s: Unable to store ring desc !", __func__);
  1554. goto discard_frag;
  1555. }
  1556. } else {
  1557. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1558. (*rx_bfs)++;
  1559. /* Return the non-head link desc */
  1560. if (dp_rx_link_desc_return(soc, ring_desc,
  1561. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1562. QDF_STATUS_SUCCESS)
  1563. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1564. "%s: Failed to return link desc", __func__);
  1565. }
  1566. if (pdev->soc->rx.flags.defrag_timeout_check)
  1567. dp_rx_defrag_waitlist_remove(peer, tid);
  1568. /* Yet to receive more fragments for this sequence number */
  1569. if (!all_frag_present) {
  1570. uint32_t now_ms =
  1571. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1572. peer->rx_tid[tid].defrag_timeout_ms =
  1573. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1574. dp_rx_defrag_waitlist_add(peer, tid);
  1575. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1576. return QDF_STATUS_SUCCESS;
  1577. }
  1578. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1579. "All fragments received for sequence: %d", rxseq);
  1580. /* Process the fragments */
  1581. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1582. rx_reorder_array_elem->tail);
  1583. if (QDF_IS_STATUS_ERROR(status)) {
  1584. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1585. "Fragment processing failed");
  1586. dp_rx_add_to_free_desc_list(head, tail,
  1587. peer->rx_tid[tid].head_frag_desc);
  1588. (*rx_bfs)++;
  1589. if (dp_rx_link_desc_return(soc,
  1590. peer->rx_tid[tid].dst_ring_desc,
  1591. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1592. QDF_STATUS_SUCCESS)
  1593. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1594. "%s: Failed to return link desc",
  1595. __func__);
  1596. dp_rx_defrag_cleanup(peer, tid);
  1597. goto end;
  1598. }
  1599. /* Re-inject the fragments back to REO for further processing */
  1600. status = dp_rx_defrag_reo_reinject(peer, tid,
  1601. rx_reorder_array_elem->head);
  1602. if (QDF_IS_STATUS_SUCCESS(status)) {
  1603. rx_reorder_array_elem->head = NULL;
  1604. rx_reorder_array_elem->tail = NULL;
  1605. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1606. "Fragmented sequence successfully reinjected");
  1607. } else {
  1608. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1609. "Fragmented sequence reinjection failed");
  1610. dp_rx_return_head_frag_desc(peer, tid);
  1611. }
  1612. dp_rx_defrag_cleanup(peer, tid);
  1613. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1614. return QDF_STATUS_SUCCESS;
  1615. discard_frag:
  1616. qdf_nbuf_free(frag);
  1617. err_free_desc:
  1618. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1619. if (dp_rx_link_desc_return(soc, ring_desc,
  1620. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1621. QDF_STATUS_SUCCESS)
  1622. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1623. "%s: Failed to return link desc", __func__);
  1624. (*rx_bfs)++;
  1625. end:
  1626. if (peer)
  1627. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1628. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1629. return QDF_STATUS_E_DEFRAG_ERROR;
  1630. }
  1631. /**
  1632. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1633. *
  1634. * @soc: core txrx main context
  1635. * @ring_desc: opaque pointer to the REO error ring descriptor
  1636. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1637. * @head: head of the local descriptor free-list
  1638. * @tail: tail of the local descriptor free-list
  1639. * @quota: No. of units (packets) that can be serviced in one shot.
  1640. *
  1641. * This function implements RX 802.11 fragmentation handling
  1642. * The handling is mostly same as legacy fragmentation handling.
  1643. * If required, this function can re-inject the frames back to
  1644. * REO ring (with proper setting to by-pass fragmentation check
  1645. * but use duplicate detection / re-ordering and routing these frames
  1646. * to a different core.
  1647. *
  1648. * Return: uint32_t: No. of elements processed
  1649. */
  1650. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1651. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1652. struct dp_rx_desc *rx_desc,
  1653. uint8_t *mac_id,
  1654. uint32_t quota)
  1655. {
  1656. uint32_t rx_bufs_used = 0;
  1657. qdf_nbuf_t msdu = NULL;
  1658. uint32_t tid;
  1659. uint32_t rx_bfs = 0;
  1660. struct dp_pdev *pdev;
  1661. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1662. struct rx_desc_pool *rx_desc_pool;
  1663. qdf_assert(soc);
  1664. qdf_assert(mpdu_desc_info);
  1665. qdf_assert(rx_desc);
  1666. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1667. mpdu_desc_info->msdu_count);
  1668. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1669. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1670. "Not sufficient MSDUs to process");
  1671. return rx_bufs_used;
  1672. }
  1673. /* all buffers in MSDU link belong to same pdev */
  1674. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1675. if (!pdev) {
  1676. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1677. "pdev is null for pool_id = %d", rx_desc->pool_id);
  1678. return rx_bufs_used;
  1679. }
  1680. *mac_id = rx_desc->pool_id;
  1681. msdu = rx_desc->nbuf;
  1682. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1683. if (rx_desc->unmapped)
  1684. return rx_bufs_used;
  1685. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1686. rx_desc_pool->buf_size,
  1687. false);
  1688. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1689. QDF_DMA_FROM_DEVICE,
  1690. rx_desc_pool->buf_size);
  1691. rx_desc->unmapped = 1;
  1692. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1693. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1694. /* Process fragment-by-fragment */
  1695. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1696. &pdev->free_list_head,
  1697. &pdev->free_list_tail,
  1698. mpdu_desc_info,
  1699. tid, rx_desc, &rx_bfs);
  1700. if (rx_bfs)
  1701. rx_bufs_used += rx_bfs;
  1702. if (!QDF_IS_STATUS_SUCCESS(status))
  1703. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1704. mpdu_desc_info->mpdu_seq,
  1705. mpdu_desc_info->msdu_count,
  1706. mpdu_desc_info->mpdu_flags);
  1707. return rx_bufs_used;
  1708. }
  1709. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1710. struct dp_peer *peer, uint16_t tid,
  1711. uint16_t rxseq, qdf_nbuf_t nbuf)
  1712. {
  1713. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1714. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1715. uint8_t all_frag_present;
  1716. uint32_t msdu_len;
  1717. QDF_STATUS status;
  1718. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1719. /*
  1720. * HW may fill in unexpected peer_id in RX PKT TLV,
  1721. * if this peer_id related peer is valid by coincidence,
  1722. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1723. * self peer), then invalid access to rx_reorder_array_elem happened.
  1724. */
  1725. if (!rx_reorder_array_elem) {
  1726. dp_verbose_debug(
  1727. "peer id:%d mac: "QDF_MAC_ADDR_FMT" drop rx frame!",
  1728. peer->peer_id,
  1729. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1730. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1731. qdf_nbuf_free(nbuf);
  1732. goto fail;
  1733. }
  1734. if (rx_reorder_array_elem->head &&
  1735. rxseq != rx_tid->curr_seq_num) {
  1736. /* Drop stored fragments if out of sequence
  1737. * fragment is received
  1738. */
  1739. dp_rx_reorder_flush_frag(peer, tid);
  1740. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1741. "%s: No list found for TID %d Seq# %d",
  1742. __func__, tid, rxseq);
  1743. qdf_nbuf_free(nbuf);
  1744. goto fail;
  1745. }
  1746. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1747. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1748. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1749. &rx_reorder_array_elem->head,
  1750. &rx_reorder_array_elem->tail, nbuf,
  1751. &all_frag_present);
  1752. if (QDF_IS_STATUS_ERROR(status)) {
  1753. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1754. "%s Fragment insert failed", __func__);
  1755. goto fail;
  1756. }
  1757. if (soc->rx.flags.defrag_timeout_check)
  1758. dp_rx_defrag_waitlist_remove(peer, tid);
  1759. if (!all_frag_present) {
  1760. uint32_t now_ms =
  1761. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1762. peer->rx_tid[tid].defrag_timeout_ms =
  1763. now_ms + soc->rx.defrag.timeout_ms;
  1764. dp_rx_defrag_waitlist_add(peer, tid);
  1765. return QDF_STATUS_SUCCESS;
  1766. }
  1767. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1768. rx_reorder_array_elem->tail);
  1769. if (QDF_IS_STATUS_ERROR(status)) {
  1770. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1771. "%s Fragment processing failed", __func__);
  1772. dp_rx_return_head_frag_desc(peer, tid);
  1773. dp_rx_defrag_cleanup(peer, tid);
  1774. goto fail;
  1775. }
  1776. /* Re-inject the fragments back to REO for further processing */
  1777. status = dp_rx_defrag_reo_reinject(peer, tid,
  1778. rx_reorder_array_elem->head);
  1779. if (QDF_IS_STATUS_SUCCESS(status)) {
  1780. rx_reorder_array_elem->head = NULL;
  1781. rx_reorder_array_elem->tail = NULL;
  1782. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1783. "%s: Frag seq successfully reinjected",
  1784. __func__);
  1785. } else {
  1786. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1787. "%s: Frag seq reinjection failed", __func__);
  1788. dp_rx_return_head_frag_desc(peer, tid);
  1789. }
  1790. dp_rx_defrag_cleanup(peer, tid);
  1791. return QDF_STATUS_SUCCESS;
  1792. fail:
  1793. return QDF_STATUS_E_DEFRAG_ERROR;
  1794. }