dp_rx.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. #ifdef RX_DESC_SANITY_WAR
  86. static inline
  87. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  88. hal_ring_handle_t hal_ring_hdl,
  89. hal_ring_desc_t ring_desc,
  90. struct dp_rx_desc *rx_desc)
  91. {
  92. if (qdf_unlikely(!rx_desc)) {
  93. /*
  94. * This is an unlikely case where the cookie obtained
  95. * from the ring_desc is invalid and hence we are not
  96. * able to find the corresponding rx_desc
  97. */
  98. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  99. dp_err("Ring Desc:");
  100. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  101. ring_desc);
  102. qdf_assert(0);
  103. return QDF_STATUS_E_NULL_VALUE;
  104. }
  105. return QDF_STATUS_SUCCESS;
  106. }
  107. #else
  108. static inline
  109. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  110. hal_ring_handle_t hal_ring_hdl,
  111. hal_ring_desc_t ring_desc,
  112. struct dp_rx_desc *rx_desc)
  113. {
  114. return QDF_STATUS_SUCCESS;
  115. }
  116. #endif
  117. /*
  118. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  119. * called during dp rx initialization
  120. * and at the end of dp_rx_process.
  121. *
  122. * @soc: core txrx main context
  123. * @mac_id: mac_id which is one of 3 mac_ids
  124. * @dp_rxdma_srng: dp rxdma circular ring
  125. * @rx_desc_pool: Pointer to free Rx descriptor pool
  126. * @num_req_buffers: number of buffer to be replenished
  127. * @desc_list: list of descs if called from dp_rx_process
  128. * or NULL during dp rx initialization or out of buffer
  129. * interrupt.
  130. * @tail: tail of descs list
  131. * Return: return success or failure
  132. */
  133. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  134. struct dp_srng *dp_rxdma_srng,
  135. struct rx_desc_pool *rx_desc_pool,
  136. uint32_t num_req_buffers,
  137. union dp_rx_desc_list_elem_t **desc_list,
  138. union dp_rx_desc_list_elem_t **tail)
  139. {
  140. uint32_t num_alloc_desc;
  141. uint16_t num_desc_to_free = 0;
  142. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  143. uint32_t num_entries_avail;
  144. uint32_t count;
  145. int sync_hw_ptr = 1;
  146. qdf_dma_addr_t paddr;
  147. qdf_nbuf_t rx_netbuf;
  148. void *rxdma_ring_entry;
  149. union dp_rx_desc_list_elem_t *next;
  150. QDF_STATUS ret;
  151. uint16_t buf_size = rx_desc_pool->buf_size;
  152. uint8_t buf_alignment = rx_desc_pool->buf_alignment;
  153. void *rxdma_srng;
  154. rxdma_srng = dp_rxdma_srng->hal_srng;
  155. if (!rxdma_srng) {
  156. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  157. "rxdma srng not initialized");
  158. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  159. return QDF_STATUS_E_FAILURE;
  160. }
  161. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  162. "requested %d buffers for replenish", num_req_buffers);
  163. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  164. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  165. rxdma_srng,
  166. sync_hw_ptr);
  167. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  168. "no of available entries in rxdma ring: %d",
  169. num_entries_avail);
  170. if (!(*desc_list) && (num_entries_avail >
  171. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  172. num_req_buffers = num_entries_avail;
  173. } else if (num_entries_avail < num_req_buffers) {
  174. num_desc_to_free = num_req_buffers - num_entries_avail;
  175. num_req_buffers = num_entries_avail;
  176. }
  177. if (qdf_unlikely(!num_req_buffers)) {
  178. num_desc_to_free = num_req_buffers;
  179. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  180. goto free_descs;
  181. }
  182. /*
  183. * if desc_list is NULL, allocate the descs from freelist
  184. */
  185. if (!(*desc_list)) {
  186. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  187. rx_desc_pool,
  188. num_req_buffers,
  189. desc_list,
  190. tail);
  191. if (!num_alloc_desc) {
  192. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  193. "no free rx_descs in freelist");
  194. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  195. num_req_buffers);
  196. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  197. return QDF_STATUS_E_NOMEM;
  198. }
  199. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  200. "%d rx desc allocated", num_alloc_desc);
  201. num_req_buffers = num_alloc_desc;
  202. }
  203. count = 0;
  204. while (count < num_req_buffers) {
  205. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  206. buf_size,
  207. RX_BUFFER_RESERVATION,
  208. buf_alignment,
  209. FALSE);
  210. if (qdf_unlikely(!rx_netbuf)) {
  211. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  212. break;
  213. }
  214. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  215. QDF_DMA_FROM_DEVICE);
  216. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  217. qdf_nbuf_free(rx_netbuf);
  218. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  219. continue;
  220. }
  221. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  222. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  223. /*
  224. * check if the physical address of nbuf->data is
  225. * less then 0x50000000 then free the nbuf and try
  226. * allocating new nbuf. We can try for 100 times.
  227. * this is a temp WAR till we fix it properly.
  228. */
  229. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, rx_desc_pool);
  230. if (ret == QDF_STATUS_E_FAILURE) {
  231. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  232. break;
  233. }
  234. count++;
  235. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  236. rxdma_srng);
  237. qdf_assert_always(rxdma_ring_entry);
  238. next = (*desc_list)->next;
  239. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  240. /* rx_desc.in_use should be zero at this time*/
  241. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  242. (*desc_list)->rx_desc.in_use = 1;
  243. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  244. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  245. (unsigned long long)paddr,
  246. (*desc_list)->rx_desc.cookie);
  247. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  248. (*desc_list)->rx_desc.cookie,
  249. rx_desc_pool->owner);
  250. *desc_list = next;
  251. }
  252. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  253. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  254. count, num_desc_to_free);
  255. /* No need to count the number of bytes received during replenish.
  256. * Therefore set replenish.pkts.bytes as 0.
  257. */
  258. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  259. free_descs:
  260. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  261. /*
  262. * add any available free desc back to the free list
  263. */
  264. if (*desc_list)
  265. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  266. mac_id, rx_desc_pool);
  267. return QDF_STATUS_SUCCESS;
  268. }
  269. /*
  270. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  271. * pkts to RAW mode simulation to
  272. * decapsulate the pkt.
  273. *
  274. * @vdev: vdev on which RAW mode is enabled
  275. * @nbuf_list: list of RAW pkts to process
  276. * @peer: peer object from which the pkt is rx
  277. *
  278. * Return: void
  279. */
  280. void
  281. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  282. struct dp_peer *peer)
  283. {
  284. qdf_nbuf_t deliver_list_head = NULL;
  285. qdf_nbuf_t deliver_list_tail = NULL;
  286. qdf_nbuf_t nbuf;
  287. nbuf = nbuf_list;
  288. while (nbuf) {
  289. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  290. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  291. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  292. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  293. /*
  294. * reset the chfrag_start and chfrag_end bits in nbuf cb
  295. * as this is a non-amsdu pkt and RAW mode simulation expects
  296. * these bit s to be 0 for non-amsdu pkt.
  297. */
  298. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  299. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  300. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  301. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  302. }
  303. nbuf = next;
  304. }
  305. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  306. &deliver_list_tail, peer->mac_addr.raw);
  307. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  308. }
  309. #ifdef DP_LFR
  310. /*
  311. * In case of LFR, data of a new peer might be sent up
  312. * even before peer is added.
  313. */
  314. static inline struct dp_vdev *
  315. dp_get_vdev_from_peer(struct dp_soc *soc,
  316. uint16_t peer_id,
  317. struct dp_peer *peer,
  318. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  319. {
  320. struct dp_vdev *vdev;
  321. uint8_t vdev_id;
  322. if (unlikely(!peer)) {
  323. if (peer_id != HTT_INVALID_PEER) {
  324. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  325. mpdu_desc_info.peer_meta_data);
  326. QDF_TRACE(QDF_MODULE_ID_DP,
  327. QDF_TRACE_LEVEL_DEBUG,
  328. FL("PeerID %d not found use vdevID %d"),
  329. peer_id, vdev_id);
  330. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  331. vdev_id);
  332. } else {
  333. QDF_TRACE(QDF_MODULE_ID_DP,
  334. QDF_TRACE_LEVEL_DEBUG,
  335. FL("Invalid PeerID %d"),
  336. peer_id);
  337. return NULL;
  338. }
  339. } else {
  340. vdev = peer->vdev;
  341. }
  342. return vdev;
  343. }
  344. #else
  345. static inline struct dp_vdev *
  346. dp_get_vdev_from_peer(struct dp_soc *soc,
  347. uint16_t peer_id,
  348. struct dp_peer *peer,
  349. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  350. {
  351. if (unlikely(!peer)) {
  352. QDF_TRACE(QDF_MODULE_ID_DP,
  353. QDF_TRACE_LEVEL_DEBUG,
  354. FL("Peer not found for peerID %d"),
  355. peer_id);
  356. return NULL;
  357. } else {
  358. return peer->vdev;
  359. }
  360. }
  361. #endif
  362. #ifndef FEATURE_WDS
  363. static void
  364. dp_rx_da_learn(struct dp_soc *soc,
  365. uint8_t *rx_tlv_hdr,
  366. struct dp_peer *ta_peer,
  367. qdf_nbuf_t nbuf)
  368. {
  369. }
  370. #endif
  371. /*
  372. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  373. *
  374. * @soc: core txrx main context
  375. * @ta_peer : source peer entry
  376. * @rx_tlv_hdr : start address of rx tlvs
  377. * @nbuf : nbuf that has to be intrabss forwarded
  378. *
  379. * Return: bool: true if it is forwarded else false
  380. */
  381. static bool
  382. dp_rx_intrabss_fwd(struct dp_soc *soc,
  383. struct dp_peer *ta_peer,
  384. uint8_t *rx_tlv_hdr,
  385. qdf_nbuf_t nbuf,
  386. struct hal_rx_msdu_metadata msdu_metadata)
  387. {
  388. uint16_t len;
  389. uint8_t is_frag;
  390. struct dp_peer *da_peer;
  391. struct dp_ast_entry *ast_entry;
  392. qdf_nbuf_t nbuf_copy;
  393. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  394. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  395. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  396. tid_stats.tid_rx_stats[ring_id][tid];
  397. /* check if the destination peer is available in peer table
  398. * and also check if the source peer and destination peer
  399. * belong to the same vap and destination peer is not bss peer.
  400. */
  401. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  402. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  403. if (!ast_entry)
  404. return false;
  405. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  406. ast_entry->is_active = TRUE;
  407. return false;
  408. }
  409. da_peer = ast_entry->peer;
  410. if (!da_peer)
  411. return false;
  412. /* TA peer cannot be same as peer(DA) on which AST is present
  413. * this indicates a change in topology and that AST entries
  414. * are yet to be updated.
  415. */
  416. if (da_peer == ta_peer)
  417. return false;
  418. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  419. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  420. is_frag = qdf_nbuf_is_frag(nbuf);
  421. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  422. /* linearize the nbuf just before we send to
  423. * dp_tx_send()
  424. */
  425. if (qdf_unlikely(is_frag)) {
  426. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  427. return false;
  428. nbuf = qdf_nbuf_unshare(nbuf);
  429. if (!nbuf) {
  430. DP_STATS_INC_PKT(ta_peer,
  431. rx.intra_bss.fail,
  432. 1,
  433. len);
  434. /* return true even though the pkt is
  435. * not forwarded. Basically skb_unshare
  436. * failed and we want to continue with
  437. * next nbuf.
  438. */
  439. tid_stats->fail_cnt[INTRABSS_DROP]++;
  440. return true;
  441. }
  442. }
  443. if (!dp_tx_send((struct cdp_soc_t *)soc,
  444. ta_peer->vdev->vdev_id, nbuf)) {
  445. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  446. len);
  447. return true;
  448. } else {
  449. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  450. len);
  451. tid_stats->fail_cnt[INTRABSS_DROP]++;
  452. return false;
  453. }
  454. }
  455. }
  456. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  457. * source, then clone the pkt and send the cloned pkt for
  458. * intra BSS forwarding and original pkt up the network stack
  459. * Note: how do we handle multicast pkts. do we forward
  460. * all multicast pkts as is or let a higher layer module
  461. * like igmpsnoop decide whether to forward or not with
  462. * Mcast enhancement.
  463. */
  464. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  465. !ta_peer->bss_peer))) {
  466. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  467. goto end;
  468. nbuf_copy = qdf_nbuf_copy(nbuf);
  469. if (!nbuf_copy)
  470. goto end;
  471. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  472. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  473. /* Set cb->ftype to intrabss FWD */
  474. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  475. if (dp_tx_send((struct cdp_soc_t *)soc,
  476. ta_peer->vdev->vdev_id, nbuf_copy)) {
  477. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  478. tid_stats->fail_cnt[INTRABSS_DROP]++;
  479. qdf_nbuf_free(nbuf_copy);
  480. } else {
  481. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  482. tid_stats->intrabss_cnt++;
  483. }
  484. }
  485. end:
  486. /* return false as we have to still send the original pkt
  487. * up the stack
  488. */
  489. return false;
  490. }
  491. #ifdef MESH_MODE_SUPPORT
  492. /**
  493. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  494. *
  495. * @vdev: DP Virtual device handle
  496. * @nbuf: Buffer pointer
  497. * @rx_tlv_hdr: start of rx tlv header
  498. * @peer: pointer to peer
  499. *
  500. * This function allocated memory for mesh receive stats and fill the
  501. * required stats. Stores the memory address in skb cb.
  502. *
  503. * Return: void
  504. */
  505. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  506. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  507. {
  508. struct mesh_recv_hdr_s *rx_info = NULL;
  509. uint32_t pkt_type;
  510. uint32_t nss;
  511. uint32_t rate_mcs;
  512. uint32_t bw;
  513. uint8_t primary_chan_num;
  514. uint32_t center_chan_freq;
  515. struct dp_soc *soc;
  516. /* fill recv mesh stats */
  517. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  518. /* upper layers are resposible to free this memory */
  519. if (!rx_info) {
  520. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  521. "Memory allocation failed for mesh rx stats");
  522. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  523. return;
  524. }
  525. rx_info->rs_flags = MESH_RXHDR_VER1;
  526. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  527. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  528. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  529. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  530. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  531. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  532. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  533. if (vdev->osif_get_key)
  534. vdev->osif_get_key(vdev->osif_vdev,
  535. &rx_info->rs_decryptkey[0],
  536. &peer->mac_addr.raw[0],
  537. rx_info->rs_keyix);
  538. }
  539. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  540. soc = vdev->pdev->soc;
  541. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  542. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  543. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  544. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  545. soc->ctrl_psoc,
  546. vdev->pdev->pdev_id,
  547. center_chan_freq);
  548. }
  549. rx_info->rs_channel = primary_chan_num;
  550. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  551. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  552. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  553. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  554. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  555. (bw << 24);
  556. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  557. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  558. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  559. rx_info->rs_flags,
  560. rx_info->rs_rssi,
  561. rx_info->rs_channel,
  562. rx_info->rs_ratephy1,
  563. rx_info->rs_keyix);
  564. }
  565. /**
  566. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  567. *
  568. * @vdev: DP Virtual device handle
  569. * @nbuf: Buffer pointer
  570. * @rx_tlv_hdr: start of rx tlv header
  571. *
  572. * This checks if the received packet is matching any filter out
  573. * catogery and and drop the packet if it matches.
  574. *
  575. * Return: status(0 indicates drop, 1 indicate to no drop)
  576. */
  577. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  578. uint8_t *rx_tlv_hdr)
  579. {
  580. union dp_align_mac_addr mac_addr;
  581. struct dp_soc *soc = vdev->pdev->soc;
  582. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  583. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  584. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  585. rx_tlv_hdr))
  586. return QDF_STATUS_SUCCESS;
  587. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  588. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  589. rx_tlv_hdr))
  590. return QDF_STATUS_SUCCESS;
  591. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  592. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  593. rx_tlv_hdr) &&
  594. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  595. rx_tlv_hdr))
  596. return QDF_STATUS_SUCCESS;
  597. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  598. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  599. rx_tlv_hdr,
  600. &mac_addr.raw[0]))
  601. return QDF_STATUS_E_FAILURE;
  602. if (!qdf_mem_cmp(&mac_addr.raw[0],
  603. &vdev->mac_addr.raw[0],
  604. QDF_MAC_ADDR_SIZE))
  605. return QDF_STATUS_SUCCESS;
  606. }
  607. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  608. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  609. rx_tlv_hdr,
  610. &mac_addr.raw[0]))
  611. return QDF_STATUS_E_FAILURE;
  612. if (!qdf_mem_cmp(&mac_addr.raw[0],
  613. &vdev->mac_addr.raw[0],
  614. QDF_MAC_ADDR_SIZE))
  615. return QDF_STATUS_SUCCESS;
  616. }
  617. }
  618. return QDF_STATUS_E_FAILURE;
  619. }
  620. #else
  621. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  622. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  623. {
  624. }
  625. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  626. uint8_t *rx_tlv_hdr)
  627. {
  628. return QDF_STATUS_E_FAILURE;
  629. }
  630. #endif
  631. #ifdef FEATURE_NAC_RSSI
  632. /**
  633. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  634. * clients
  635. * @pdev: DP pdev handle
  636. * @rx_pkt_hdr: Rx packet Header
  637. *
  638. * return: dp_vdev*
  639. */
  640. static
  641. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  642. uint8_t *rx_pkt_hdr)
  643. {
  644. struct ieee80211_frame *wh;
  645. struct dp_neighbour_peer *peer = NULL;
  646. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  647. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  648. return NULL;
  649. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  650. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  651. neighbour_peer_list_elem) {
  652. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  653. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  654. QDF_TRACE(
  655. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  656. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  657. peer->neighbour_peers_macaddr.raw[0],
  658. peer->neighbour_peers_macaddr.raw[1],
  659. peer->neighbour_peers_macaddr.raw[2],
  660. peer->neighbour_peers_macaddr.raw[3],
  661. peer->neighbour_peers_macaddr.raw[4],
  662. peer->neighbour_peers_macaddr.raw[5]);
  663. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  664. return pdev->monitor_vdev;
  665. }
  666. }
  667. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  668. return NULL;
  669. }
  670. /**
  671. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  672. * @soc: DP SOC handle
  673. * @mpdu: mpdu for which peer is invalid
  674. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  675. * pool_id has same mapping)
  676. *
  677. * return: integer type
  678. */
  679. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  680. uint8_t mac_id)
  681. {
  682. struct dp_invalid_peer_msg msg;
  683. struct dp_vdev *vdev = NULL;
  684. struct dp_pdev *pdev = NULL;
  685. struct ieee80211_frame *wh;
  686. qdf_nbuf_t curr_nbuf, next_nbuf;
  687. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  688. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  689. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  690. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  691. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  692. "Drop decapped frames");
  693. goto free;
  694. }
  695. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  696. if (!DP_FRAME_IS_DATA(wh)) {
  697. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  698. "NAWDS valid only for data frames");
  699. goto free;
  700. }
  701. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  702. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  703. "Invalid nbuf length");
  704. goto free;
  705. }
  706. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  707. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  708. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  709. "PDEV %s", !pdev ? "not found" : "down");
  710. goto free;
  711. }
  712. if (pdev->filter_neighbour_peers) {
  713. /* Next Hop scenario not yet handle */
  714. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  715. if (vdev) {
  716. dp_rx_mon_deliver(soc, pdev->pdev_id,
  717. pdev->invalid_peer_head_msdu,
  718. pdev->invalid_peer_tail_msdu);
  719. pdev->invalid_peer_head_msdu = NULL;
  720. pdev->invalid_peer_tail_msdu = NULL;
  721. return 0;
  722. }
  723. }
  724. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  725. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  726. QDF_MAC_ADDR_SIZE) == 0) {
  727. goto out;
  728. }
  729. }
  730. if (!vdev) {
  731. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  732. "VDEV not found");
  733. goto free;
  734. }
  735. out:
  736. msg.wh = wh;
  737. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  738. msg.nbuf = mpdu;
  739. msg.vdev_id = vdev->vdev_id;
  740. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  741. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  742. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  743. pdev->pdev_id, &msg);
  744. free:
  745. /* Drop and free packet */
  746. curr_nbuf = mpdu;
  747. while (curr_nbuf) {
  748. next_nbuf = qdf_nbuf_next(curr_nbuf);
  749. qdf_nbuf_free(curr_nbuf);
  750. curr_nbuf = next_nbuf;
  751. }
  752. return 0;
  753. }
  754. /**
  755. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  756. * @soc: DP SOC handle
  757. * @mpdu: mpdu for which peer is invalid
  758. * @mpdu_done: if an mpdu is completed
  759. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  760. * pool_id has same mapping)
  761. *
  762. * return: integer type
  763. */
  764. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  765. qdf_nbuf_t mpdu, bool mpdu_done,
  766. uint8_t mac_id)
  767. {
  768. /* Only trigger the process when mpdu is completed */
  769. if (mpdu_done)
  770. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  771. }
  772. #else
  773. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  774. uint8_t mac_id)
  775. {
  776. qdf_nbuf_t curr_nbuf, next_nbuf;
  777. struct dp_pdev *pdev;
  778. struct dp_vdev *vdev = NULL;
  779. struct ieee80211_frame *wh;
  780. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  781. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  782. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  783. if (!DP_FRAME_IS_DATA(wh)) {
  784. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  785. "only for data frames");
  786. goto free;
  787. }
  788. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  789. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  790. "Invalid nbuf length");
  791. goto free;
  792. }
  793. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  794. if (!pdev) {
  795. QDF_TRACE(QDF_MODULE_ID_DP,
  796. QDF_TRACE_LEVEL_ERROR,
  797. "PDEV not found");
  798. goto free;
  799. }
  800. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  801. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  802. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  803. QDF_MAC_ADDR_SIZE) == 0) {
  804. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  805. goto out;
  806. }
  807. }
  808. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  809. if (!vdev) {
  810. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  811. "VDEV not found");
  812. goto free;
  813. }
  814. out:
  815. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  816. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  817. free:
  818. /* reset the head and tail pointers */
  819. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  820. if (pdev) {
  821. pdev->invalid_peer_head_msdu = NULL;
  822. pdev->invalid_peer_tail_msdu = NULL;
  823. }
  824. /* Drop and free packet */
  825. curr_nbuf = mpdu;
  826. while (curr_nbuf) {
  827. next_nbuf = qdf_nbuf_next(curr_nbuf);
  828. qdf_nbuf_free(curr_nbuf);
  829. curr_nbuf = next_nbuf;
  830. }
  831. /* Reset the head and tail pointers */
  832. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  833. if (pdev) {
  834. pdev->invalid_peer_head_msdu = NULL;
  835. pdev->invalid_peer_tail_msdu = NULL;
  836. }
  837. return 0;
  838. }
  839. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  840. qdf_nbuf_t mpdu, bool mpdu_done,
  841. uint8_t mac_id)
  842. {
  843. /* Process the nbuf */
  844. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  845. }
  846. #endif
  847. #ifdef RECEIVE_OFFLOAD
  848. /**
  849. * dp_rx_print_offload_info() - Print offload info from RX TLV
  850. * @soc: dp soc handle
  851. * @rx_tlv: RX TLV for which offload information is to be printed
  852. *
  853. * Return: None
  854. */
  855. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  856. {
  857. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  858. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  859. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  860. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  861. rx_tlv));
  862. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  863. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  864. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  865. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  866. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  867. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  868. dp_verbose_debug("---------------------------------------------------------");
  869. }
  870. /**
  871. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  872. * @soc: DP SOC handle
  873. * @rx_tlv: RX TLV received for the msdu
  874. * @msdu: msdu for which GRO info needs to be filled
  875. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  876. *
  877. * Return: None
  878. */
  879. static
  880. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  881. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  882. {
  883. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  884. return;
  885. /* Filling up RX offload info only for TCP packets */
  886. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  887. return;
  888. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  889. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  890. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  891. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  892. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  893. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  894. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  895. rx_tlv);
  896. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  897. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  898. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  899. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  900. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  901. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  902. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  903. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  904. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  905. HAL_RX_TLV_GET_IPV6(rx_tlv);
  906. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  907. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  908. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  909. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  910. dp_rx_print_offload_info(soc, rx_tlv);
  911. }
  912. #else
  913. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  914. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  915. {
  916. }
  917. #endif /* RECEIVE_OFFLOAD */
  918. /**
  919. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  920. *
  921. * @nbuf: pointer to msdu.
  922. * @mpdu_len: mpdu length
  923. *
  924. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  925. */
  926. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  927. {
  928. bool last_nbuf;
  929. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  930. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  931. last_nbuf = false;
  932. } else {
  933. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  934. last_nbuf = true;
  935. }
  936. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  937. return last_nbuf;
  938. }
  939. /**
  940. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  941. * multiple nbufs.
  942. * @nbuf: pointer to the first msdu of an amsdu.
  943. *
  944. * This function implements the creation of RX frag_list for cases
  945. * where an MSDU is spread across multiple nbufs.
  946. *
  947. * Return: returns the head nbuf which contains complete frag_list.
  948. */
  949. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  950. {
  951. qdf_nbuf_t parent, frag_list, next = NULL;
  952. uint16_t frag_list_len = 0;
  953. uint16_t mpdu_len;
  954. bool last_nbuf;
  955. /*
  956. * Use msdu len got from REO entry descriptor instead since
  957. * there is case the RX PKT TLV is corrupted while msdu_len
  958. * from REO descriptor is right for non-raw RX scatter msdu.
  959. */
  960. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  961. /*
  962. * this is a case where the complete msdu fits in one single nbuf.
  963. * in this case HW sets both start and end bit and we only need to
  964. * reset these bits for RAW mode simulator to decap the pkt
  965. */
  966. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  967. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  968. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  969. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  970. return nbuf;
  971. }
  972. /*
  973. * This is a case where we have multiple msdus (A-MSDU) spread across
  974. * multiple nbufs. here we create a fraglist out of these nbufs.
  975. *
  976. * the moment we encounter a nbuf with continuation bit set we
  977. * know for sure we have an MSDU which is spread across multiple
  978. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  979. */
  980. parent = nbuf;
  981. frag_list = nbuf->next;
  982. nbuf = nbuf->next;
  983. /*
  984. * set the start bit in the first nbuf we encounter with continuation
  985. * bit set. This has the proper mpdu length set as it is the first
  986. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  987. * nbufs will form the frag_list of the parent nbuf.
  988. */
  989. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  990. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  991. /*
  992. * this is where we set the length of the fragments which are
  993. * associated to the parent nbuf. We iterate through the frag_list
  994. * till we hit the last_nbuf of the list.
  995. */
  996. do {
  997. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  998. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  999. frag_list_len += qdf_nbuf_len(nbuf);
  1000. if (last_nbuf) {
  1001. next = nbuf->next;
  1002. nbuf->next = NULL;
  1003. break;
  1004. }
  1005. nbuf = nbuf->next;
  1006. } while (!last_nbuf);
  1007. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1008. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1009. parent->next = next;
  1010. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1011. return parent;
  1012. }
  1013. /**
  1014. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1015. * to pass in correct fields
  1016. *
  1017. * @vdev: pdev handle
  1018. * @tx_desc: tx descriptor
  1019. * @tid: tid value
  1020. * Return: none
  1021. */
  1022. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1023. {
  1024. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1025. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1026. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1027. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1028. uint32_t interframe_delay =
  1029. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1030. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1031. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1032. /*
  1033. * Update interframe delay stats calculated at deliver_data_ol point.
  1034. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1035. * interframe delay will not be calculate correctly for 1st frame.
  1036. * On the other side, this will help in avoiding extra per packet check
  1037. * of vdev->prev_rx_deliver_tstamp.
  1038. */
  1039. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1040. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1041. vdev->prev_rx_deliver_tstamp = current_ts;
  1042. }
  1043. /**
  1044. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1045. * @pdev: dp pdev reference
  1046. * @buf_list: buffer list to be dropepd
  1047. *
  1048. * Return: int (number of bufs dropped)
  1049. */
  1050. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1051. qdf_nbuf_t buf_list)
  1052. {
  1053. struct cdp_tid_rx_stats *stats = NULL;
  1054. uint8_t tid = 0, ring_id = 0;
  1055. int num_dropped = 0;
  1056. qdf_nbuf_t buf, next_buf;
  1057. buf = buf_list;
  1058. while (buf) {
  1059. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1060. next_buf = qdf_nbuf_queue_next(buf);
  1061. tid = qdf_nbuf_get_tid_val(buf);
  1062. if (qdf_likely(pdev)) {
  1063. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1064. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1065. stats->delivered_to_stack--;
  1066. }
  1067. qdf_nbuf_free(buf);
  1068. buf = next_buf;
  1069. num_dropped++;
  1070. }
  1071. return num_dropped;
  1072. }
  1073. #ifdef PEER_CACHE_RX_PKTS
  1074. /**
  1075. * dp_rx_flush_rx_cached() - flush cached rx frames
  1076. * @peer: peer
  1077. * @drop: flag to drop frames or forward to net stack
  1078. *
  1079. * Return: None
  1080. */
  1081. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1082. {
  1083. struct dp_peer_cached_bufq *bufqi;
  1084. struct dp_rx_cached_buf *cache_buf = NULL;
  1085. ol_txrx_rx_fp data_rx = NULL;
  1086. int num_buff_elem;
  1087. QDF_STATUS status;
  1088. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1089. qdf_atomic_dec(&peer->flush_in_progress);
  1090. return;
  1091. }
  1092. qdf_spin_lock_bh(&peer->peer_info_lock);
  1093. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1094. data_rx = peer->vdev->osif_rx;
  1095. else
  1096. drop = true;
  1097. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1098. bufqi = &peer->bufq_info;
  1099. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1100. qdf_list_remove_front(&bufqi->cached_bufq,
  1101. (qdf_list_node_t **)&cache_buf);
  1102. while (cache_buf) {
  1103. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1104. cache_buf->buf);
  1105. bufqi->entries -= num_buff_elem;
  1106. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1107. if (drop) {
  1108. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1109. cache_buf->buf);
  1110. } else {
  1111. /* Flush the cached frames to OSIF DEV */
  1112. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1113. if (status != QDF_STATUS_SUCCESS)
  1114. bufqi->dropped = dp_rx_drop_nbuf_list(
  1115. peer->vdev->pdev,
  1116. cache_buf->buf);
  1117. }
  1118. qdf_mem_free(cache_buf);
  1119. cache_buf = NULL;
  1120. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1121. qdf_list_remove_front(&bufqi->cached_bufq,
  1122. (qdf_list_node_t **)&cache_buf);
  1123. }
  1124. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1125. qdf_atomic_dec(&peer->flush_in_progress);
  1126. }
  1127. /**
  1128. * dp_rx_enqueue_rx() - cache rx frames
  1129. * @peer: peer
  1130. * @rx_buf_list: cache buffer list
  1131. *
  1132. * Return: None
  1133. */
  1134. static QDF_STATUS
  1135. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1136. {
  1137. struct dp_rx_cached_buf *cache_buf;
  1138. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1139. int num_buff_elem;
  1140. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1141. bufqi->dropped);
  1142. if (!peer->valid) {
  1143. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1144. rx_buf_list);
  1145. return QDF_STATUS_E_INVAL;
  1146. }
  1147. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1148. if (bufqi->entries >= bufqi->thresh) {
  1149. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1150. rx_buf_list);
  1151. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1152. return QDF_STATUS_E_RESOURCES;
  1153. }
  1154. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1155. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1156. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1157. if (!cache_buf) {
  1158. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1159. "Failed to allocate buf to cache rx frames");
  1160. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1161. rx_buf_list);
  1162. return QDF_STATUS_E_NOMEM;
  1163. }
  1164. cache_buf->buf = rx_buf_list;
  1165. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1166. qdf_list_insert_back(&bufqi->cached_bufq,
  1167. &cache_buf->node);
  1168. bufqi->entries += num_buff_elem;
  1169. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1170. return QDF_STATUS_SUCCESS;
  1171. }
  1172. static inline
  1173. bool dp_rx_is_peer_cache_bufq_supported(void)
  1174. {
  1175. return true;
  1176. }
  1177. #else
  1178. static inline
  1179. bool dp_rx_is_peer_cache_bufq_supported(void)
  1180. {
  1181. return false;
  1182. }
  1183. static inline QDF_STATUS
  1184. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1185. {
  1186. return QDF_STATUS_SUCCESS;
  1187. }
  1188. #endif
  1189. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1190. struct dp_vdev *vdev,
  1191. struct dp_peer *peer,
  1192. qdf_nbuf_t nbuf_head,
  1193. qdf_nbuf_t nbuf_tail)
  1194. {
  1195. int num_nbuf = 0;
  1196. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1197. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1198. /*
  1199. * This is a special case where vdev is invalid,
  1200. * so we cannot know the pdev to which this packet
  1201. * belonged. Hence we update the soc rx error stats.
  1202. */
  1203. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1204. return;
  1205. }
  1206. /*
  1207. * highly unlikely to have a vdev without a registered rx
  1208. * callback function. if so let us free the nbuf_list.
  1209. */
  1210. if (qdf_unlikely(!vdev->osif_rx)) {
  1211. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1212. dp_rx_enqueue_rx(peer, nbuf_head);
  1213. } else {
  1214. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1215. nbuf_head);
  1216. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1217. }
  1218. return;
  1219. }
  1220. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1221. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1222. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1223. &nbuf_tail, peer->mac_addr.raw);
  1224. }
  1225. /* Function pointer initialized only when FISA is enabled */
  1226. if (vdev->osif_fisa_rx)
  1227. /* on failure send it via regular path */
  1228. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1229. else
  1230. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1231. }
  1232. /**
  1233. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1234. * @nbuf: pointer to the first msdu of an amsdu.
  1235. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1236. *
  1237. * The ipsumed field of the skb is set based on whether HW validated the
  1238. * IP/TCP/UDP checksum.
  1239. *
  1240. * Return: void
  1241. */
  1242. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1243. qdf_nbuf_t nbuf,
  1244. uint8_t *rx_tlv_hdr)
  1245. {
  1246. qdf_nbuf_rx_cksum_t cksum = {0};
  1247. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1248. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1249. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1250. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1251. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1252. } else {
  1253. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1254. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1255. }
  1256. }
  1257. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1258. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1259. { \
  1260. qdf_nbuf_t nbuf_local; \
  1261. struct dp_peer *peer_local; \
  1262. struct dp_vdev *vdev_local = vdev_hdl; \
  1263. do { \
  1264. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1265. break; \
  1266. nbuf_local = nbuf; \
  1267. peer_local = peer; \
  1268. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1269. break; \
  1270. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1271. break; \
  1272. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1273. (nbuf_local), \
  1274. (peer_local), 0, 1); \
  1275. } while (0); \
  1276. }
  1277. #else
  1278. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1279. #endif
  1280. /**
  1281. * dp_rx_msdu_stats_update() - update per msdu stats.
  1282. * @soc: core txrx main context
  1283. * @nbuf: pointer to the first msdu of an amsdu.
  1284. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1285. * @peer: pointer to the peer object.
  1286. * @ring_id: reo dest ring number on which pkt is reaped.
  1287. * @tid_stats: per tid rx stats.
  1288. *
  1289. * update all the per msdu stats for that nbuf.
  1290. * Return: void
  1291. */
  1292. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1293. qdf_nbuf_t nbuf,
  1294. uint8_t *rx_tlv_hdr,
  1295. struct dp_peer *peer,
  1296. uint8_t ring_id,
  1297. struct cdp_tid_rx_stats *tid_stats)
  1298. {
  1299. bool is_ampdu, is_not_amsdu;
  1300. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1301. struct dp_vdev *vdev = peer->vdev;
  1302. qdf_ether_header_t *eh;
  1303. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1304. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1305. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1306. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1307. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1308. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1309. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1310. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1311. tid_stats->msdu_cnt++;
  1312. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1313. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1314. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1315. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1316. tid_stats->mcast_msdu_cnt++;
  1317. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1318. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1319. tid_stats->bcast_msdu_cnt++;
  1320. }
  1321. }
  1322. /*
  1323. * currently we can return from here as we have similar stats
  1324. * updated at per ppdu level instead of msdu level
  1325. */
  1326. if (!soc->process_rx_status)
  1327. return;
  1328. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1329. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1330. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1331. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1332. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1333. tid = qdf_nbuf_get_tid_val(nbuf);
  1334. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1335. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1336. rx_tlv_hdr);
  1337. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1338. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1339. DP_STATS_INC(peer, rx.bw[bw], 1);
  1340. /*
  1341. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1342. * then increase index [nss - 1] in array counter.
  1343. */
  1344. if (nss > 0 && (pkt_type == DOT11_N ||
  1345. pkt_type == DOT11_AC ||
  1346. pkt_type == DOT11_AX))
  1347. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1348. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1349. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1350. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1351. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1352. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1353. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1354. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1355. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1356. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1357. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1358. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1359. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1360. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1361. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1362. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1363. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1364. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1365. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1366. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1367. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1368. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1369. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1370. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1371. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1372. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1373. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1374. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1375. if ((soc->process_rx_status) &&
  1376. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1377. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1378. if (!vdev->pdev)
  1379. return;
  1380. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1381. &peer->stats, peer->peer_ids[0],
  1382. UPDATE_PEER_STATS,
  1383. vdev->pdev->pdev_id);
  1384. #endif
  1385. }
  1386. }
  1387. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1388. uint8_t *rx_tlv_hdr,
  1389. qdf_nbuf_t nbuf,
  1390. struct hal_rx_msdu_metadata msdu_info)
  1391. {
  1392. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1393. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1394. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1395. qdf_nbuf_is_da_valid(nbuf) &&
  1396. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1397. return false;
  1398. return true;
  1399. }
  1400. #ifndef WDS_VENDOR_EXTENSION
  1401. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1402. struct dp_vdev *vdev,
  1403. struct dp_peer *peer)
  1404. {
  1405. return 1;
  1406. }
  1407. #endif
  1408. #ifdef RX_DESC_DEBUG_CHECK
  1409. /**
  1410. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1411. * corruption
  1412. *
  1413. * @ring_desc: REO ring descriptor
  1414. * @rx_desc: Rx descriptor
  1415. *
  1416. * Return: NONE
  1417. */
  1418. static inline
  1419. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1420. struct dp_rx_desc *rx_desc)
  1421. {
  1422. struct hal_buf_info hbi;
  1423. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1424. /* Sanity check for possible buffer paddr corruption */
  1425. qdf_assert_always((&hbi)->paddr ==
  1426. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1427. }
  1428. #else
  1429. static inline
  1430. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1431. struct dp_rx_desc *rx_desc)
  1432. {
  1433. }
  1434. #endif
  1435. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1436. static inline
  1437. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1438. {
  1439. bool limit_hit = false;
  1440. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1441. limit_hit =
  1442. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1443. if (limit_hit)
  1444. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1445. return limit_hit;
  1446. }
  1447. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1448. {
  1449. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1450. }
  1451. #else
  1452. static inline
  1453. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1454. {
  1455. return false;
  1456. }
  1457. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1458. {
  1459. return false;
  1460. }
  1461. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1462. /**
  1463. * dp_is_special_data() - check is the pkt special like eapol, dhcp, etc
  1464. *
  1465. * @nbuf: pkt skb pointer
  1466. *
  1467. * Return: true if matched, false if not
  1468. */
  1469. static inline
  1470. bool dp_is_special_data(qdf_nbuf_t nbuf)
  1471. {
  1472. if (qdf_nbuf_is_ipv4_arp_pkt(nbuf) ||
  1473. qdf_nbuf_is_ipv4_dhcp_pkt(nbuf) ||
  1474. qdf_nbuf_is_ipv4_eapol_pkt(nbuf) ||
  1475. qdf_nbuf_is_ipv6_dhcp_pkt(nbuf))
  1476. return true;
  1477. else
  1478. return false;
  1479. }
  1480. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1481. /**
  1482. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1483. * no corresbonding peer found
  1484. * @soc: core txrx main context
  1485. * @nbuf: pkt skb pointer
  1486. *
  1487. * This function will try to deliver some RX special frames to stack
  1488. * even there is no peer matched found. for instance, LFR case, some
  1489. * eapol data will be sent to host before peer_map done.
  1490. *
  1491. * Return: None
  1492. */
  1493. static inline
  1494. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1495. {
  1496. uint16_t peer_id;
  1497. uint8_t vdev_id;
  1498. struct dp_vdev *vdev;
  1499. uint32_t l2_hdr_offset = 0;
  1500. uint16_t msdu_len = 0;
  1501. uint32_t pkt_len = 0;
  1502. uint8_t *rx_tlv_hdr;
  1503. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1504. if (peer_id > soc->max_peers)
  1505. goto deliver_fail;
  1506. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1507. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1508. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1509. goto deliver_fail;
  1510. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1511. l2_hdr_offset =
  1512. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1513. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1514. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1515. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1516. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1517. } else {
  1518. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1519. qdf_nbuf_pull_head(nbuf,
  1520. RX_PKT_TLVS_LEN +
  1521. l2_hdr_offset);
  1522. }
  1523. /* only allow special frames */
  1524. if (!dp_is_special_data(nbuf))
  1525. goto deliver_fail;
  1526. vdev->osif_rx(vdev->osif_vdev, nbuf);
  1527. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1528. return;
  1529. deliver_fail:
  1530. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1531. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1532. qdf_nbuf_free(nbuf);
  1533. }
  1534. #else
  1535. static inline
  1536. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1537. {
  1538. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1539. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1540. qdf_nbuf_free(nbuf);
  1541. }
  1542. #endif
  1543. /**
  1544. * dp_rx_srng_get_num_pending() - get number of pending entries
  1545. * @hal_soc: hal soc opaque pointer
  1546. * @hal_ring: opaque pointer to the HAL Rx Ring
  1547. * @num_entries: number of entries in the hal_ring.
  1548. * @near_full: pointer to a boolean. This is set if ring is near full.
  1549. *
  1550. * The function returns the number of entries in a destination ring which are
  1551. * yet to be reaped. The function also checks if the ring is near full.
  1552. * If more than half of the ring needs to be reaped, the ring is considered
  1553. * approaching full.
  1554. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1555. * entries. It should not be called within a SRNG lock. HW pointer value is
  1556. * synced into cached_hp.
  1557. *
  1558. * Return: Number of pending entries if any
  1559. */
  1560. static
  1561. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1562. hal_ring_handle_t hal_ring_hdl,
  1563. uint32_t num_entries,
  1564. bool *near_full)
  1565. {
  1566. uint32_t num_pending = 0;
  1567. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1568. hal_ring_hdl,
  1569. true);
  1570. if (num_entries && (num_pending >= num_entries >> 1))
  1571. *near_full = true;
  1572. else
  1573. *near_full = false;
  1574. return num_pending;
  1575. }
  1576. #ifdef WLAN_SUPPORT_RX_FISA
  1577. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1578. {
  1579. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1580. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1581. }
  1582. #else
  1583. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1584. {
  1585. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1586. }
  1587. #endif
  1588. /**
  1589. * dp_rx_process() - Brain of the Rx processing functionality
  1590. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1591. * @int_ctx: per interrupt context
  1592. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1593. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1594. * @quota: No. of units (packets) that can be serviced in one shot.
  1595. *
  1596. * This function implements the core of Rx functionality. This is
  1597. * expected to handle only non-error frames.
  1598. *
  1599. * Return: uint32_t: No. of elements processed
  1600. */
  1601. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1602. uint8_t reo_ring_num, uint32_t quota)
  1603. {
  1604. hal_ring_desc_t ring_desc;
  1605. hal_soc_handle_t hal_soc;
  1606. struct dp_rx_desc *rx_desc = NULL;
  1607. qdf_nbuf_t nbuf, next;
  1608. bool near_full;
  1609. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1610. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1611. uint32_t num_pending;
  1612. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1613. uint16_t msdu_len = 0;
  1614. uint16_t peer_id;
  1615. uint8_t vdev_id;
  1616. struct dp_peer *peer;
  1617. struct dp_vdev *vdev;
  1618. uint32_t pkt_len = 0;
  1619. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1620. struct hal_rx_msdu_desc_info msdu_desc_info;
  1621. enum hal_reo_error_status error;
  1622. uint32_t peer_mdata;
  1623. uint8_t *rx_tlv_hdr;
  1624. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1625. uint8_t mac_id = 0;
  1626. struct dp_pdev *rx_pdev;
  1627. struct dp_srng *dp_rxdma_srng;
  1628. struct rx_desc_pool *rx_desc_pool;
  1629. struct dp_soc *soc = int_ctx->soc;
  1630. uint8_t ring_id = 0;
  1631. uint8_t core_id = 0;
  1632. struct cdp_tid_rx_stats *tid_stats;
  1633. qdf_nbuf_t nbuf_head;
  1634. qdf_nbuf_t nbuf_tail;
  1635. qdf_nbuf_t deliver_list_head;
  1636. qdf_nbuf_t deliver_list_tail;
  1637. uint32_t num_rx_bufs_reaped = 0;
  1638. uint32_t intr_id;
  1639. struct hif_opaque_softc *scn;
  1640. int32_t tid = 0;
  1641. bool is_prev_msdu_last = true;
  1642. uint32_t num_entries_avail = 0;
  1643. uint32_t rx_ol_pkt_cnt = 0;
  1644. uint32_t num_entries = 0;
  1645. struct hal_rx_msdu_metadata msdu_metadata;
  1646. QDF_STATUS status;
  1647. DP_HIST_INIT();
  1648. qdf_assert_always(soc && hal_ring_hdl);
  1649. hal_soc = soc->hal_soc;
  1650. qdf_assert_always(hal_soc);
  1651. scn = soc->hif_handle;
  1652. hif_pm_runtime_mark_dp_rx_busy(scn);
  1653. intr_id = int_ctx->dp_intr_id;
  1654. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1655. more_data:
  1656. /* reset local variables here to be re-used in the function */
  1657. nbuf_head = NULL;
  1658. nbuf_tail = NULL;
  1659. deliver_list_head = NULL;
  1660. deliver_list_tail = NULL;
  1661. peer = NULL;
  1662. vdev = NULL;
  1663. num_rx_bufs_reaped = 0;
  1664. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1665. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1666. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1667. qdf_mem_zero(head, sizeof(head));
  1668. qdf_mem_zero(tail, sizeof(tail));
  1669. if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1670. /*
  1671. * Need API to convert from hal_ring pointer to
  1672. * Ring Type / Ring Id combo
  1673. */
  1674. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1675. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1676. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1677. goto done;
  1678. }
  1679. /*
  1680. * start reaping the buffers from reo ring and queue
  1681. * them in per vdev queue.
  1682. * Process the received pkts in a different per vdev loop.
  1683. */
  1684. while (qdf_likely(quota &&
  1685. (ring_desc = hal_srng_dst_peek(hal_soc,
  1686. hal_ring_hdl)))) {
  1687. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1688. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1689. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1690. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1691. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1692. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1693. /* Don't know how to deal with this -- assert */
  1694. qdf_assert(0);
  1695. }
  1696. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1697. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1698. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  1699. ring_desc, rx_desc);
  1700. if (QDF_IS_STATUS_ERROR(status)) {
  1701. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1702. continue;
  1703. }
  1704. /*
  1705. * this is a unlikely scenario where the host is reaping
  1706. * a descriptor which it already reaped just a while ago
  1707. * but is yet to replenish it back to HW.
  1708. * In this case host will dump the last 128 descriptors
  1709. * including the software descriptor rx_desc and assert.
  1710. */
  1711. if (qdf_unlikely(!rx_desc->in_use)) {
  1712. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1713. dp_info_rl("Reaping rx_desc not in use!");
  1714. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1715. ring_desc, rx_desc);
  1716. /* ignore duplicate RX desc and continue to process */
  1717. /* Pop out the descriptor */
  1718. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1719. continue;
  1720. }
  1721. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1722. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1723. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1724. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1725. ring_desc, rx_desc);
  1726. }
  1727. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1728. /* Get MPDU DESC info */
  1729. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1730. /* Get MSDU DESC info */
  1731. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1732. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  1733. HAL_MSDU_F_MSDU_CONTINUATION)) {
  1734. /* previous msdu has end bit set, so current one is
  1735. * the new MPDU
  1736. */
  1737. if (is_prev_msdu_last) {
  1738. /* Get number of entries available in HW ring */
  1739. num_entries_avail =
  1740. hal_srng_dst_num_valid(hal_soc,
  1741. hal_ring_hdl, 1);
  1742. /* For new MPDU check if we can read complete
  1743. * MPDU by comparing the number of buffers
  1744. * available and number of buffers needed to
  1745. * reap this MPDU
  1746. */
  1747. if (((msdu_desc_info.msdu_len /
  1748. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  1749. 1)) > num_entries_avail) {
  1750. DP_STATS_INC(
  1751. soc,
  1752. rx.msdu_scatter_wait_break,
  1753. 1);
  1754. break;
  1755. }
  1756. is_prev_msdu_last = false;
  1757. }
  1758. }
  1759. /*
  1760. * move unmap after scattered msdu waiting break logic
  1761. * in case double skb unmap happened.
  1762. */
  1763. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1764. QDF_DMA_FROM_DEVICE);
  1765. rx_desc->unmapped = 1;
  1766. core_id = smp_processor_id();
  1767. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1768. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1769. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1770. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1771. HAL_MPDU_F_RAW_AMPDU))
  1772. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1773. if (!is_prev_msdu_last &&
  1774. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1775. is_prev_msdu_last = true;
  1776. /* Pop out the descriptor*/
  1777. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1778. rx_bufs_reaped[rx_desc->pool_id]++;
  1779. peer_mdata = mpdu_desc_info.peer_meta_data;
  1780. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1781. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1782. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1783. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1784. /*
  1785. * save msdu flags first, last and continuation msdu in
  1786. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1787. * length to nbuf->cb. This ensures the info required for
  1788. * per pkt processing is always in the same cache line.
  1789. * This helps in improving throughput for smaller pkt
  1790. * sizes.
  1791. */
  1792. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1793. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1794. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1795. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1796. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1797. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1798. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1799. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1800. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1801. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1802. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1803. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1804. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1805. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1806. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1807. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1808. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1809. /*
  1810. * if continuation bit is set then we have MSDU spread
  1811. * across multiple buffers, let us not decrement quota
  1812. * till we reap all buffers of that MSDU.
  1813. */
  1814. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1815. quota -= 1;
  1816. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1817. &tail[rx_desc->pool_id],
  1818. rx_desc);
  1819. num_rx_bufs_reaped++;
  1820. /*
  1821. * only if complete msdu is received for scatter case,
  1822. * then allow break.
  1823. */
  1824. if (is_prev_msdu_last &&
  1825. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1826. break;
  1827. }
  1828. done:
  1829. dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1830. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1831. /*
  1832. * continue with next mac_id if no pkts were reaped
  1833. * from that pool
  1834. */
  1835. if (!rx_bufs_reaped[mac_id])
  1836. continue;
  1837. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  1838. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1839. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1840. rx_desc_pool, rx_bufs_reaped[mac_id],
  1841. &head[mac_id], &tail[mac_id]);
  1842. }
  1843. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1844. /* Peer can be NULL is case of LFR */
  1845. if (qdf_likely(peer))
  1846. vdev = NULL;
  1847. /*
  1848. * BIG loop where each nbuf is dequeued from global queue,
  1849. * processed and queued back on a per vdev basis. These nbufs
  1850. * are sent to stack as and when we run out of nbufs
  1851. * or a new nbuf dequeued from global queue has a different
  1852. * vdev when compared to previous nbuf.
  1853. */
  1854. nbuf = nbuf_head;
  1855. while (nbuf) {
  1856. next = nbuf->next;
  1857. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1858. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1859. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1860. dp_rx_deliver_to_stack(soc, vdev, peer,
  1861. deliver_list_head,
  1862. deliver_list_tail);
  1863. deliver_list_head = NULL;
  1864. deliver_list_tail = NULL;
  1865. }
  1866. /* Get TID from struct cb->tid_val, save to tid */
  1867. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1868. tid = qdf_nbuf_get_tid_val(nbuf);
  1869. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1870. peer = dp_peer_find_by_id(soc, peer_id);
  1871. if (peer) {
  1872. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1873. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1874. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1875. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1876. QDF_NBUF_RX_PKT_DATA_TRACK;
  1877. }
  1878. rx_bufs_used++;
  1879. if (qdf_likely(peer)) {
  1880. vdev = peer->vdev;
  1881. } else {
  1882. nbuf->next = NULL;
  1883. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1884. nbuf = next;
  1885. continue;
  1886. }
  1887. if (qdf_unlikely(!vdev)) {
  1888. qdf_nbuf_free(nbuf);
  1889. nbuf = next;
  1890. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1891. dp_peer_unref_del_find_by_id(peer);
  1892. continue;
  1893. }
  1894. rx_pdev = vdev->pdev;
  1895. DP_RX_TID_SAVE(nbuf, tid);
  1896. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1897. qdf_nbuf_set_timestamp(nbuf);
  1898. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1899. tid_stats =
  1900. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1901. /*
  1902. * Check if DMA completed -- msdu_done is the last bit
  1903. * to be written
  1904. */
  1905. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  1906. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1907. dp_err("MSDU DONE failure");
  1908. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1909. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1910. QDF_TRACE_LEVEL_INFO);
  1911. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1912. qdf_nbuf_free(nbuf);
  1913. qdf_assert(0);
  1914. nbuf = next;
  1915. continue;
  1916. }
  1917. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1918. /*
  1919. * First IF condition:
  1920. * 802.11 Fragmented pkts are reinjected to REO
  1921. * HW block as SG pkts and for these pkts we only
  1922. * need to pull the RX TLVS header length.
  1923. * Second IF condition:
  1924. * The below condition happens when an MSDU is spread
  1925. * across multiple buffers. This can happen in two cases
  1926. * 1. The nbuf size is smaller then the received msdu.
  1927. * ex: we have set the nbuf size to 2048 during
  1928. * nbuf_alloc. but we received an msdu which is
  1929. * 2304 bytes in size then this msdu is spread
  1930. * across 2 nbufs.
  1931. *
  1932. * 2. AMSDUs when RAW mode is enabled.
  1933. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1934. * across 1st nbuf and 2nd nbuf and last MSDU is
  1935. * spread across 2nd nbuf and 3rd nbuf.
  1936. *
  1937. * for these scenarios let us create a skb frag_list and
  1938. * append these buffers till the last MSDU of the AMSDU
  1939. * Third condition:
  1940. * This is the most likely case, we receive 802.3 pkts
  1941. * decapsulated by HW, here we need to set the pkt length.
  1942. */
  1943. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  1944. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1945. bool is_mcbc, is_sa_vld, is_da_vld;
  1946. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  1947. rx_tlv_hdr);
  1948. is_sa_vld =
  1949. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  1950. rx_tlv_hdr);
  1951. is_da_vld =
  1952. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  1953. rx_tlv_hdr);
  1954. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  1955. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  1956. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  1957. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1958. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1959. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1960. nbuf = dp_rx_sg_create(nbuf);
  1961. next = nbuf->next;
  1962. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1963. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1964. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  1965. } else {
  1966. qdf_nbuf_free(nbuf);
  1967. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  1968. dp_info_rl("scatter msdu len %d, dropped",
  1969. msdu_len);
  1970. nbuf = next;
  1971. dp_peer_unref_del_find_by_id(peer);
  1972. continue;
  1973. }
  1974. } else {
  1975. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1976. pkt_len = msdu_len +
  1977. msdu_metadata.l3_hdr_pad +
  1978. RX_PKT_TLVS_LEN;
  1979. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1980. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  1981. }
  1982. /*
  1983. * process frame for mulitpass phrase processing
  1984. */
  1985. if (qdf_unlikely(vdev->multipass_en)) {
  1986. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  1987. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  1988. qdf_nbuf_free(nbuf);
  1989. nbuf = next;
  1990. dp_peer_unref_del_find_by_id(peer);
  1991. continue;
  1992. }
  1993. }
  1994. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  1995. QDF_TRACE(QDF_MODULE_ID_DP,
  1996. QDF_TRACE_LEVEL_ERROR,
  1997. FL("Policy Check Drop pkt"));
  1998. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1999. /* Drop & free packet */
  2000. qdf_nbuf_free(nbuf);
  2001. /* Statistics */
  2002. nbuf = next;
  2003. dp_peer_unref_del_find_by_id(peer);
  2004. continue;
  2005. }
  2006. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2007. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2008. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2009. rx_tlv_hdr) ==
  2010. false))) {
  2011. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2012. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2013. qdf_nbuf_free(nbuf);
  2014. nbuf = next;
  2015. dp_peer_unref_del_find_by_id(peer);
  2016. continue;
  2017. }
  2018. if (soc->process_rx_status)
  2019. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2020. /* Update the protocol tag in SKB based on CCE metadata */
  2021. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2022. reo_ring_num, false, true);
  2023. /* Update the flow tag in SKB based on FSE metadata */
  2024. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2025. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2026. ring_id, tid_stats);
  2027. if (qdf_unlikely(vdev->mesh_vdev)) {
  2028. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2029. == QDF_STATUS_SUCCESS) {
  2030. QDF_TRACE(QDF_MODULE_ID_DP,
  2031. QDF_TRACE_LEVEL_INFO_MED,
  2032. FL("mesh pkt filtered"));
  2033. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2034. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2035. 1);
  2036. qdf_nbuf_free(nbuf);
  2037. nbuf = next;
  2038. dp_peer_unref_del_find_by_id(peer);
  2039. continue;
  2040. }
  2041. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2042. }
  2043. if (qdf_likely(vdev->rx_decap_type ==
  2044. htt_cmn_pkt_type_ethernet) &&
  2045. qdf_likely(!vdev->mesh_vdev)) {
  2046. /* WDS Destination Address Learning */
  2047. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2048. /* Due to HW issue, sometimes we see that the sa_idx
  2049. * and da_idx are invalid with sa_valid and da_valid
  2050. * bits set
  2051. *
  2052. * in this case we also see that value of
  2053. * sa_sw_peer_id is set as 0
  2054. *
  2055. * Drop the packet if sa_idx and da_idx OOB or
  2056. * sa_sw_peerid is 0
  2057. */
  2058. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2059. msdu_metadata)) {
  2060. qdf_nbuf_free(nbuf);
  2061. nbuf = next;
  2062. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2063. dp_peer_unref_del_find_by_id(peer);
  2064. continue;
  2065. }
  2066. /* WDS Source Port Learning */
  2067. if (qdf_likely(vdev->wds_enabled))
  2068. dp_rx_wds_srcport_learn(soc,
  2069. rx_tlv_hdr,
  2070. peer,
  2071. nbuf,
  2072. msdu_metadata);
  2073. /* Intrabss-fwd */
  2074. if (dp_rx_check_ap_bridge(vdev))
  2075. if (dp_rx_intrabss_fwd(soc,
  2076. peer,
  2077. rx_tlv_hdr,
  2078. nbuf,
  2079. msdu_metadata)) {
  2080. nbuf = next;
  2081. dp_peer_unref_del_find_by_id(peer);
  2082. tid_stats->intrabss_cnt++;
  2083. continue; /* Get next desc */
  2084. }
  2085. }
  2086. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2087. DP_RX_LIST_APPEND(deliver_list_head,
  2088. deliver_list_tail,
  2089. nbuf);
  2090. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2091. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2092. tid_stats->delivered_to_stack++;
  2093. nbuf = next;
  2094. dp_peer_unref_del_find_by_id(peer);
  2095. }
  2096. if (qdf_likely(deliver_list_head)) {
  2097. if (qdf_likely(peer))
  2098. dp_rx_deliver_to_stack(soc, vdev, peer,
  2099. deliver_list_head,
  2100. deliver_list_tail);
  2101. else {
  2102. nbuf = deliver_list_head;
  2103. while (nbuf) {
  2104. next = nbuf->next;
  2105. nbuf->next = NULL;
  2106. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2107. nbuf = next;
  2108. }
  2109. }
  2110. }
  2111. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2112. if (quota) {
  2113. num_pending =
  2114. dp_rx_srng_get_num_pending(hal_soc,
  2115. hal_ring_hdl,
  2116. num_entries,
  2117. &near_full);
  2118. if (num_pending) {
  2119. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2120. if (!hif_exec_should_yield(scn, intr_id))
  2121. goto more_data;
  2122. if (qdf_unlikely(near_full)) {
  2123. DP_STATS_INC(soc, rx.near_full, 1);
  2124. goto more_data;
  2125. }
  2126. }
  2127. }
  2128. if (vdev && vdev->osif_fisa_flush)
  2129. vdev->osif_fisa_flush(soc, reo_ring_num);
  2130. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2131. vdev->osif_gro_flush(vdev->osif_vdev,
  2132. reo_ring_num);
  2133. }
  2134. }
  2135. /* Update histogram statistics by looping through pdev's */
  2136. DP_RX_HIST_STATS_PER_PDEV();
  2137. return rx_bufs_used; /* Assume no scale factor for now */
  2138. }
  2139. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2140. {
  2141. QDF_STATUS ret;
  2142. if (vdev->osif_rx_flush) {
  2143. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2144. if (!ret) {
  2145. dp_err("Failed to flush rx pkts for vdev %d\n",
  2146. vdev->vdev_id);
  2147. return ret;
  2148. }
  2149. }
  2150. return QDF_STATUS_SUCCESS;
  2151. }
  2152. /**
  2153. * dp_rx_pdev_detach() - detach dp rx
  2154. * @pdev: core txrx pdev context
  2155. *
  2156. * This function will detach DP RX into main device context
  2157. * will free DP Rx resources.
  2158. *
  2159. * Return: void
  2160. */
  2161. void
  2162. dp_rx_pdev_detach(struct dp_pdev *pdev)
  2163. {
  2164. uint8_t mac_for_pdev = pdev->lmac_id;
  2165. struct dp_soc *soc = pdev->soc;
  2166. struct rx_desc_pool *rx_desc_pool;
  2167. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2168. if (rx_desc_pool->pool_size != 0) {
  2169. if (!dp_is_soc_reinit(soc))
  2170. dp_rx_desc_nbuf_and_pool_free(soc, mac_for_pdev,
  2171. rx_desc_pool);
  2172. else
  2173. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2174. }
  2175. return;
  2176. }
  2177. static QDF_STATUS
  2178. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2179. struct dp_pdev *dp_pdev,
  2180. struct rx_desc_pool *rx_desc_pool)
  2181. {
  2182. qdf_dma_addr_t paddr;
  2183. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2184. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2185. RX_BUFFER_RESERVATION,
  2186. rx_desc_pool->buf_alignment, FALSE);
  2187. if (!(*nbuf)) {
  2188. dp_err("nbuf alloc failed");
  2189. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2190. return ret;
  2191. }
  2192. ret = qdf_nbuf_map_single(dp_soc->osdev, *nbuf,
  2193. QDF_DMA_FROM_DEVICE);
  2194. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2195. qdf_nbuf_free(*nbuf);
  2196. dp_err("nbuf map failed");
  2197. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2198. return ret;
  2199. }
  2200. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2201. ret = check_x86_paddr(dp_soc, nbuf, &paddr, rx_desc_pool);
  2202. if (ret == QDF_STATUS_E_FAILURE) {
  2203. qdf_nbuf_unmap_single(dp_soc->osdev, *nbuf,
  2204. QDF_DMA_FROM_DEVICE);
  2205. qdf_nbuf_free(*nbuf);
  2206. dp_err("nbuf check x86 failed");
  2207. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2208. return ret;
  2209. }
  2210. return QDF_STATUS_SUCCESS;
  2211. }
  2212. QDF_STATUS
  2213. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2214. struct dp_srng *dp_rxdma_srng,
  2215. struct rx_desc_pool *rx_desc_pool,
  2216. uint32_t num_req_buffers)
  2217. {
  2218. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2219. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2220. union dp_rx_desc_list_elem_t *next;
  2221. void *rxdma_ring_entry;
  2222. qdf_dma_addr_t paddr;
  2223. qdf_nbuf_t *rx_nbuf_arr;
  2224. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2225. uint32_t buffer_index, nbuf_ptrs_per_page;
  2226. qdf_nbuf_t nbuf;
  2227. QDF_STATUS ret;
  2228. int page_idx, total_pages;
  2229. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2230. union dp_rx_desc_list_elem_t *tail = NULL;
  2231. if (qdf_unlikely(!rxdma_srng)) {
  2232. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2233. return QDF_STATUS_E_FAILURE;
  2234. }
  2235. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2236. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2237. num_req_buffers, &desc_list, &tail);
  2238. if (!nr_descs) {
  2239. dp_err("no free rx_descs in freelist");
  2240. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2241. return QDF_STATUS_E_NOMEM;
  2242. }
  2243. dp_debug("got %u RX descs for driver attach", nr_descs);
  2244. /*
  2245. * Try to allocate pointers to the nbuf one page at a time.
  2246. * Take pointers that can fit in one page of memory and
  2247. * iterate through the total descriptors that need to be
  2248. * allocated in order of pages. Reuse the pointers that
  2249. * have been allocated to fit in one page across each
  2250. * iteration to index into the nbuf.
  2251. */
  2252. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2253. /*
  2254. * Add an extra page to store the remainder if any
  2255. */
  2256. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2257. total_pages++;
  2258. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2259. if (!rx_nbuf_arr) {
  2260. dp_err("failed to allocate nbuf array");
  2261. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2262. QDF_BUG(0);
  2263. return QDF_STATUS_E_NOMEM;
  2264. }
  2265. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2266. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2267. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2268. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2269. /*
  2270. * The last page of buffer pointers may not be required
  2271. * completely based on the number of descriptors. Below
  2272. * check will ensure we are allocating only the
  2273. * required number of descriptors.
  2274. */
  2275. if (nr_nbuf_total >= nr_descs)
  2276. break;
  2277. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2278. &rx_nbuf_arr[nr_nbuf],
  2279. dp_pdev, rx_desc_pool);
  2280. if (QDF_IS_STATUS_ERROR(ret))
  2281. break;
  2282. nr_nbuf_total++;
  2283. }
  2284. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2285. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2286. rxdma_ring_entry =
  2287. hal_srng_src_get_next(dp_soc->hal_soc,
  2288. rxdma_srng);
  2289. qdf_assert_always(rxdma_ring_entry);
  2290. next = desc_list->next;
  2291. nbuf = rx_nbuf_arr[buffer_index];
  2292. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2293. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2294. desc_list->rx_desc.in_use = 1;
  2295. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2296. desc_list->rx_desc.cookie,
  2297. rx_desc_pool->owner);
  2298. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2299. desc_list = next;
  2300. }
  2301. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2302. }
  2303. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2304. qdf_mem_free(rx_nbuf_arr);
  2305. if (!nr_nbuf_total) {
  2306. dp_err("No nbuf's allocated");
  2307. QDF_BUG(0);
  2308. return QDF_STATUS_E_RESOURCES;
  2309. }
  2310. /* No need to count the number of bytes received during replenish.
  2311. * Therefore set replenish.pkts.bytes as 0.
  2312. */
  2313. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2314. return QDF_STATUS_SUCCESS;
  2315. }
  2316. /**
  2317. * dp_rx_attach() - attach DP RX
  2318. * @pdev: core txrx pdev context
  2319. *
  2320. * This function will attach a DP RX instance into the main
  2321. * device (SOC) context. Will allocate dp rx resource and
  2322. * initialize resources.
  2323. *
  2324. * Return: QDF_STATUS_SUCCESS: success
  2325. * QDF_STATUS_E_RESOURCES: Error return
  2326. */
  2327. QDF_STATUS
  2328. dp_rx_pdev_attach(struct dp_pdev *pdev)
  2329. {
  2330. uint8_t pdev_id = pdev->pdev_id;
  2331. struct dp_soc *soc = pdev->soc;
  2332. uint32_t rxdma_entries;
  2333. uint32_t rx_sw_desc_weight;
  2334. struct dp_srng *dp_rxdma_srng;
  2335. struct rx_desc_pool *rx_desc_pool;
  2336. QDF_STATUS ret_val;
  2337. int mac_for_pdev;
  2338. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2339. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2340. "nss-wifi<4> skip Rx refil %d", pdev_id);
  2341. return QDF_STATUS_SUCCESS;
  2342. }
  2343. pdev = soc->pdev_list[pdev_id];
  2344. mac_for_pdev = pdev->lmac_id;
  2345. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2346. rxdma_entries = dp_rxdma_srng->num_entries;
  2347. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2348. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2349. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2350. dp_rx_desc_pool_alloc(soc, mac_for_pdev,
  2351. rx_sw_desc_weight * rxdma_entries,
  2352. rx_desc_pool);
  2353. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2354. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2355. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2356. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  2357. ret_val = dp_rx_fst_attach(soc, pdev);
  2358. if ((ret_val != QDF_STATUS_SUCCESS) &&
  2359. (ret_val != QDF_STATUS_E_NOSUPPORT)) {
  2360. QDF_TRACE(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_ERROR,
  2361. "RX Flow Search Table attach failed: pdev %d err %d",
  2362. pdev_id, ret_val);
  2363. return ret_val;
  2364. }
  2365. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2366. rx_desc_pool, rxdma_entries - 1);
  2367. }
  2368. /*
  2369. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2370. * @soc: core txrx main context
  2371. * @pdev: core txrx pdev context
  2372. *
  2373. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2374. * until retry times reaches max threshold or succeeded.
  2375. *
  2376. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2377. */
  2378. qdf_nbuf_t
  2379. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2380. {
  2381. uint8_t *buf;
  2382. int32_t nbuf_retry_count;
  2383. QDF_STATUS ret;
  2384. qdf_nbuf_t nbuf = NULL;
  2385. for (nbuf_retry_count = 0; nbuf_retry_count <
  2386. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2387. nbuf_retry_count++) {
  2388. /* Allocate a new skb */
  2389. nbuf = qdf_nbuf_alloc(soc->osdev,
  2390. RX_DATA_BUFFER_SIZE,
  2391. RX_BUFFER_RESERVATION,
  2392. RX_DATA_BUFFER_ALIGNMENT,
  2393. FALSE);
  2394. if (!nbuf) {
  2395. DP_STATS_INC(pdev,
  2396. replenish.nbuf_alloc_fail, 1);
  2397. continue;
  2398. }
  2399. buf = qdf_nbuf_data(nbuf);
  2400. memset(buf, 0, RX_DATA_BUFFER_SIZE);
  2401. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  2402. QDF_DMA_FROM_DEVICE);
  2403. /* nbuf map failed */
  2404. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2405. qdf_nbuf_free(nbuf);
  2406. DP_STATS_INC(pdev, replenish.map_err, 1);
  2407. continue;
  2408. }
  2409. /* qdf_nbuf alloc and map succeeded */
  2410. break;
  2411. }
  2412. /* qdf_nbuf still alloc or map failed */
  2413. if (qdf_unlikely(nbuf_retry_count >=
  2414. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2415. return NULL;
  2416. return nbuf;
  2417. }