dp_rx_defrag.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  21. #ifndef DP_BE_WAR
  22. #include "li/hal_li_rx.h"
  23. #endif
  24. #endif
  25. #include "dp_types.h"
  26. #include "dp_rx.h"
  27. #include "dp_peer.h"
  28. #include "hal_api.h"
  29. #include "qdf_trace.h"
  30. #include "qdf_nbuf.h"
  31. #include "dp_internal.h"
  32. #include "dp_rx_defrag.h"
  33. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  34. #include "dp_rx_defrag.h"
  35. #include "dp_ipa.h"
  36. #include "dp_rx_buffer_pool.h"
  37. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  38. "AES-CCM",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_MICLEN,
  41. 0,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_tkip = {
  44. "TKIP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. IEEE80211_WEP_MICLEN,
  48. };
  49. const struct dp_rx_defrag_cipher dp_f_wep = {
  50. "WEP",
  51. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  52. IEEE80211_WEP_CRCLEN,
  53. 0,
  54. };
  55. /*
  56. * The header and mic length are same for both
  57. * GCMP-128 and GCMP-256.
  58. */
  59. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  60. "AES-GCMP",
  61. WLAN_IEEE80211_GCMP_HEADERLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. WLAN_IEEE80211_GCMP_MICLEN,
  64. };
  65. /**
  66. * dp_rx_defrag_frames_free() - Free fragment chain
  67. * @frames: Fragment chain
  68. *
  69. * Iterates through the fragment chain and frees them
  70. * Return: None
  71. */
  72. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  73. {
  74. qdf_nbuf_t next, frag = frames;
  75. while (frag) {
  76. next = qdf_nbuf_next(frag);
  77. dp_rx_nbuf_free(frag);
  78. frag = next;
  79. }
  80. }
  81. /**
  82. * dp_rx_clear_saved_desc_info() - Clears descriptor info
  83. * @txrx_peer: Pointer to the peer data structure
  84. * @tid: Transmit ID (TID)
  85. *
  86. * Saves MPDU descriptor info and MSDU link pointer from REO
  87. * ring descriptor. The cache is created per peer, per TID
  88. *
  89. * Return: None
  90. */
  91. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  92. unsigned int tid)
  93. {
  94. if (txrx_peer->rx_tid[tid].dst_ring_desc)
  95. qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc);
  96. txrx_peer->rx_tid[tid].dst_ring_desc = NULL;
  97. txrx_peer->rx_tid[tid].head_frag_desc = NULL;
  98. }
  99. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  100. unsigned int tid)
  101. {
  102. struct dp_soc *soc;
  103. struct dp_pdev *pdev;
  104. struct dp_srng *dp_rxdma_srng;
  105. struct rx_desc_pool *rx_desc_pool;
  106. union dp_rx_desc_list_elem_t *head = NULL;
  107. union dp_rx_desc_list_elem_t *tail = NULL;
  108. uint8_t pool_id;
  109. pdev = txrx_peer->vdev->pdev;
  110. soc = pdev->soc;
  111. if (txrx_peer->rx_tid[tid].head_frag_desc) {
  112. pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id;
  113. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  114. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  115. dp_rx_add_to_free_desc_list(&head, &tail,
  116. txrx_peer->rx_tid[tid].head_frag_desc);
  117. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  118. 1, &head, &tail, false);
  119. }
  120. if (txrx_peer->rx_tid[tid].dst_ring_desc) {
  121. if (dp_rx_link_desc_return(soc,
  122. txrx_peer->rx_tid[tid].dst_ring_desc,
  123. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  124. QDF_STATUS_SUCCESS)
  125. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  126. "%s: Failed to return link desc", __func__);
  127. }
  128. }
  129. void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer,
  130. unsigned int tid)
  131. {
  132. dp_info_rl("Flushing TID %d", tid);
  133. if (!txrx_peer) {
  134. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  135. "%s: NULL peer", __func__);
  136. return;
  137. }
  138. dp_rx_return_head_frag_desc(txrx_peer, tid);
  139. dp_rx_defrag_cleanup(txrx_peer, tid);
  140. }
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid_defrag *waitlist_elem = NULL;
  144. struct dp_rx_tid_defrag *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid_defrag) temp_list;
  147. dp_txrx_ref_handle txrx_ref_handle = NULL;
  148. TAILQ_INIT(&temp_list);
  149. dp_debug("Current time %u", now_ms);
  150. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  151. TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist,
  152. defrag_waitlist_elem, tmp) {
  153. uint32_t tid;
  154. if (waitlist_elem->defrag_timeout_ms > now_ms)
  155. break;
  156. tid = waitlist_elem->tid;
  157. if (tid >= DP_MAX_TIDS) {
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem,
  162. defrag_waitlist_elem);
  163. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  164. /* Move to temp list and clean-up later */
  165. TAILQ_INSERT_TAIL(&temp_list, waitlist_elem,
  166. defrag_waitlist_elem);
  167. }
  168. if (waitlist_elem) {
  169. soc->rx.defrag.next_flush_ms =
  170. waitlist_elem->defrag_timeout_ms;
  171. } else {
  172. soc->rx.defrag.next_flush_ms =
  173. now_ms + soc->rx.defrag.timeout_ms;
  174. }
  175. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  176. TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list,
  177. defrag_waitlist_elem, tmp) {
  178. struct dp_txrx_peer *txrx_peer, *temp_peer = NULL;
  179. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  180. TAILQ_REMOVE(&temp_list, waitlist_elem,
  181. defrag_waitlist_elem);
  182. /* get address of current peer */
  183. txrx_peer = waitlist_elem->defrag_peer;
  184. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  185. temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  186. &txrx_ref_handle,
  187. DP_MOD_ID_RX_ERR);
  188. if (temp_peer == txrx_peer) {
  189. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  190. dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid);
  191. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  192. }
  193. if (temp_peer)
  194. dp_txrx_peer_unref_delete(txrx_ref_handle,
  195. DP_MOD_ID_RX_ERR);
  196. }
  197. }
  198. /**
  199. * dp_rx_defrag_waitlist_add() - Update per-PDEV defrag wait list
  200. * @txrx_peer: Pointer to the peer data structure
  201. * @tid: Transmit ID (TID)
  202. *
  203. * Appends per-tid fragments to global fragment wait list
  204. *
  205. * Return: None
  206. */
  207. static void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer,
  208. unsigned int tid)
  209. {
  210. struct dp_soc *psoc = txrx_peer->vdev->pdev->soc;
  211. struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid];
  212. dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ",
  213. tid, txrx_peer, txrx_peer->peer_id);
  214. /* TODO: use LIST macros instead of TAIL macros */
  215. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  216. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  217. psoc->rx.defrag.next_flush_ms =
  218. waitlist_elem->defrag_timeout_ms;
  219. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem,
  220. defrag_waitlist_elem);
  221. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  222. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  223. }
  224. void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer,
  225. unsigned int tid)
  226. {
  227. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  228. struct dp_soc *soc = pdev->soc;
  229. struct dp_rx_tid_defrag *waitlist_elm;
  230. struct dp_rx_tid_defrag *tmp;
  231. dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ",
  232. tid, txrx_peer, txrx_peer->peer_id);
  233. if (tid >= DP_MAX_TIDS) {
  234. dp_err("TID out of bounds: %d", tid);
  235. qdf_assert_always(0);
  236. }
  237. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  238. TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist,
  239. defrag_waitlist_elem, tmp) {
  240. struct dp_txrx_peer *peer_on_waitlist;
  241. /* get address of current peer */
  242. peer_on_waitlist = waitlist_elm->defrag_peer;
  243. /* Ensure it is TID for same peer */
  244. if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) {
  245. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  246. waitlist_elm, defrag_waitlist_elem);
  247. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  248. }
  249. }
  250. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  251. }
  252. /**
  253. * dp_rx_defrag_fraglist_insert() - Create a per-sequence fragment list
  254. * @txrx_peer: Pointer to the peer data structure
  255. * @tid: Transmit ID (TID)
  256. * @head_addr: Pointer to head list
  257. * @tail_addr: Pointer to tail list
  258. * @frag: Incoming fragment
  259. * @all_frag_present: Flag to indicate whether all fragments are received
  260. *
  261. * Build a per-tid, per-sequence fragment list.
  262. *
  263. * Return: Success, if inserted
  264. */
  265. static QDF_STATUS
  266. dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  267. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr,
  268. qdf_nbuf_t frag, uint8_t *all_frag_present)
  269. {
  270. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  271. qdf_nbuf_t next;
  272. qdf_nbuf_t prev = NULL;
  273. qdf_nbuf_t cur;
  274. uint16_t head_fragno, cur_fragno, next_fragno;
  275. uint8_t last_morefrag = 1, count = 0;
  276. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  277. uint8_t *rx_desc_info;
  278. qdf_assert(frag);
  279. qdf_assert(head_addr);
  280. qdf_assert(tail_addr);
  281. *all_frag_present = 0;
  282. rx_desc_info = qdf_nbuf_data(frag);
  283. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  284. dp_debug("cur_fragno %d\n", cur_fragno);
  285. /* If this is the first fragment */
  286. if (!(*head_addr)) {
  287. *head_addr = *tail_addr = frag;
  288. qdf_nbuf_set_next(*tail_addr, NULL);
  289. rx_tid->curr_frag_num = cur_fragno;
  290. goto insert_done;
  291. }
  292. /* In sequence fragment */
  293. if (cur_fragno > rx_tid->curr_frag_num) {
  294. qdf_nbuf_set_next(*tail_addr, frag);
  295. *tail_addr = frag;
  296. qdf_nbuf_set_next(*tail_addr, NULL);
  297. rx_tid->curr_frag_num = cur_fragno;
  298. } else {
  299. /* Out of sequence fragment */
  300. cur = *head_addr;
  301. rx_desc_info = qdf_nbuf_data(cur);
  302. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  303. rx_desc_info);
  304. if (cur_fragno == head_fragno) {
  305. dp_rx_nbuf_free(frag);
  306. goto insert_fail;
  307. } else if (head_fragno > cur_fragno) {
  308. qdf_nbuf_set_next(frag, cur);
  309. cur = frag;
  310. *head_addr = frag; /* head pointer to be updated */
  311. } else {
  312. while ((cur_fragno > head_fragno) && cur) {
  313. prev = cur;
  314. cur = qdf_nbuf_next(cur);
  315. if (cur) {
  316. rx_desc_info = qdf_nbuf_data(cur);
  317. head_fragno =
  318. dp_rx_frag_get_mpdu_frag_number(
  319. soc,
  320. rx_desc_info);
  321. }
  322. }
  323. if (cur_fragno == head_fragno) {
  324. dp_rx_nbuf_free(frag);
  325. goto insert_fail;
  326. }
  327. qdf_nbuf_set_next(prev, frag);
  328. qdf_nbuf_set_next(frag, cur);
  329. }
  330. }
  331. next = qdf_nbuf_next(*head_addr);
  332. rx_desc_info = qdf_nbuf_data(*tail_addr);
  333. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  334. /* TODO: optimize the loop */
  335. if (!last_morefrag) {
  336. /* Check if all fragments are present */
  337. do {
  338. rx_desc_info = qdf_nbuf_data(next);
  339. next_fragno =
  340. dp_rx_frag_get_mpdu_frag_number(soc,
  341. rx_desc_info);
  342. count++;
  343. if (next_fragno != count)
  344. break;
  345. next = qdf_nbuf_next(next);
  346. } while (next);
  347. if (!next) {
  348. *all_frag_present = 1;
  349. return QDF_STATUS_SUCCESS;
  350. } else {
  351. /* revisit */
  352. }
  353. }
  354. insert_done:
  355. return QDF_STATUS_SUCCESS;
  356. insert_fail:
  357. return QDF_STATUS_E_FAILURE;
  358. }
  359. /**
  360. * dp_rx_defrag_tkip_decap() - decap tkip encrypted fragment
  361. * @soc: DP SOC
  362. * @msdu: Pointer to the fragment
  363. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  364. *
  365. * decap tkip encrypted fragment
  366. *
  367. * Return: QDF_STATUS
  368. */
  369. static QDF_STATUS
  370. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  371. qdf_nbuf_t msdu, uint16_t hdrlen)
  372. {
  373. uint8_t *ivp, *orig_hdr;
  374. int rx_desc_len = soc->rx_pkt_tlv_size;
  375. /* start of 802.11 header info */
  376. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  377. /* TKIP header is located post 802.11 header */
  378. ivp = orig_hdr + hdrlen;
  379. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  380. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  381. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  382. return QDF_STATUS_E_DEFRAG_ERROR;
  383. }
  384. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  385. return QDF_STATUS_SUCCESS;
  386. }
  387. /**
  388. * dp_rx_defrag_ccmp_demic() - Remove MIC information from CCMP fragment
  389. * @soc: DP SOC
  390. * @nbuf: Pointer to the fragment buffer
  391. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  392. *
  393. * Remove MIC information from CCMP fragment
  394. *
  395. * Return: QDF_STATUS
  396. */
  397. static QDF_STATUS
  398. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  399. {
  400. uint8_t *ivp, *orig_hdr;
  401. int rx_desc_len = soc->rx_pkt_tlv_size;
  402. /* start of the 802.11 header */
  403. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  404. /* CCMP header is located after 802.11 header */
  405. ivp = orig_hdr + hdrlen;
  406. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  407. return QDF_STATUS_E_DEFRAG_ERROR;
  408. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  409. return QDF_STATUS_SUCCESS;
  410. }
  411. /**
  412. * dp_rx_defrag_ccmp_decap() - decap CCMP encrypted fragment
  413. * @soc: DP SOC
  414. * @nbuf: Pointer to the fragment
  415. * @hdrlen: length of the header information
  416. *
  417. * decap CCMP encrypted fragment
  418. *
  419. * Return: QDF_STATUS
  420. */
  421. static QDF_STATUS
  422. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  423. {
  424. uint8_t *ivp, *origHdr;
  425. int rx_desc_len = soc->rx_pkt_tlv_size;
  426. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  427. ivp = origHdr + hdrlen;
  428. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  429. return QDF_STATUS_E_DEFRAG_ERROR;
  430. return QDF_STATUS_SUCCESS;
  431. }
  432. /**
  433. * dp_rx_defrag_wep_decap() - decap WEP encrypted fragment
  434. * @soc: DP SOC
  435. * @msdu: Pointer to the fragment
  436. * @hdrlen: length of the header information
  437. *
  438. * decap WEP encrypted fragment
  439. *
  440. * Return: QDF_STATUS
  441. */
  442. static QDF_STATUS
  443. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  444. {
  445. uint8_t *origHdr;
  446. int rx_desc_len = soc->rx_pkt_tlv_size;
  447. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  448. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  449. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  450. return QDF_STATUS_SUCCESS;
  451. }
  452. /**
  453. * dp_rx_defrag_hdrsize() - Calculate the header size of the received fragment
  454. * @soc: soc handle
  455. * @nbuf: Pointer to the fragment
  456. *
  457. * Calculate the header size of the received fragment
  458. *
  459. * Return: header size (uint16_t)
  460. */
  461. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  462. {
  463. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  464. uint16_t size = sizeof(struct ieee80211_frame);
  465. uint16_t fc = 0;
  466. uint32_t to_ds, fr_ds;
  467. uint8_t frm_ctrl_valid;
  468. uint16_t frm_ctrl_field;
  469. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  470. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  471. frm_ctrl_valid =
  472. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  473. rx_tlv_hdr);
  474. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  475. if (to_ds && fr_ds)
  476. size += QDF_MAC_ADDR_SIZE;
  477. if (frm_ctrl_valid) {
  478. fc = frm_ctrl_field;
  479. /* use 1-st byte for validation */
  480. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  481. size += sizeof(uint16_t);
  482. /* use 2-nd byte for validation */
  483. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  484. size += sizeof(struct ieee80211_htc);
  485. }
  486. }
  487. return size;
  488. }
  489. /**
  490. * dp_rx_defrag_michdr() - Calculate a pseudo MIC header
  491. * @wh0: Pointer to the wireless header of the fragment
  492. * @hdr: Array to hold the pseudo header
  493. *
  494. * Calculate a pseudo MIC header
  495. *
  496. * Return: None
  497. */
  498. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  499. uint8_t hdr[])
  500. {
  501. const struct ieee80211_frame_addr4 *wh =
  502. (const struct ieee80211_frame_addr4 *)wh0;
  503. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  504. case IEEE80211_FC1_DIR_NODS:
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  506. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  507. wh->i_addr2);
  508. break;
  509. case IEEE80211_FC1_DIR_TODS:
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  511. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  512. wh->i_addr2);
  513. break;
  514. case IEEE80211_FC1_DIR_FROMDS:
  515. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  516. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  517. wh->i_addr3);
  518. break;
  519. case IEEE80211_FC1_DIR_DSTODS:
  520. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  521. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  522. wh->i_addr4);
  523. break;
  524. }
  525. /*
  526. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  527. * it could also be set for deauth, disassoc, action, etc. for
  528. * a mgt type frame. It comes into picture for MFP.
  529. */
  530. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  531. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  532. IEEE80211_FC1_DIR_DSTODS) {
  533. const struct ieee80211_qosframe_addr4 *qwh =
  534. (const struct ieee80211_qosframe_addr4 *)wh;
  535. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  536. } else {
  537. const struct ieee80211_qosframe *qwh =
  538. (const struct ieee80211_qosframe *)wh;
  539. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  540. }
  541. } else {
  542. hdr[12] = 0;
  543. }
  544. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  545. }
  546. /**
  547. * dp_rx_defrag_mic() - Calculate MIC header
  548. * @soc: DP SOC
  549. * @key: Pointer to the key
  550. * @wbuf: fragment buffer
  551. * @off: Offset
  552. * @data_len: Data length
  553. * @mic: Array to hold MIC
  554. *
  555. * Calculate a pseudo MIC header
  556. *
  557. * Return: QDF_STATUS
  558. */
  559. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  560. qdf_nbuf_t wbuf, uint16_t off,
  561. uint16_t data_len, uint8_t mic[])
  562. {
  563. uint8_t hdr[16] = { 0, };
  564. uint32_t l, r;
  565. const uint8_t *data;
  566. uint32_t space;
  567. int rx_desc_len = soc->rx_pkt_tlv_size;
  568. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  569. + rx_desc_len), hdr);
  570. l = dp_rx_get_le32(key);
  571. r = dp_rx_get_le32(key + 4);
  572. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  573. l ^= dp_rx_get_le32(hdr);
  574. dp_rx_michael_block(l, r);
  575. l ^= dp_rx_get_le32(&hdr[4]);
  576. dp_rx_michael_block(l, r);
  577. l ^= dp_rx_get_le32(&hdr[8]);
  578. dp_rx_michael_block(l, r);
  579. l ^= dp_rx_get_le32(&hdr[12]);
  580. dp_rx_michael_block(l, r);
  581. /* first buffer has special handling */
  582. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  583. space = qdf_nbuf_len(wbuf) - off;
  584. for (;; ) {
  585. if (space > data_len)
  586. space = data_len;
  587. /* collect 32-bit blocks from current buffer */
  588. while (space >= sizeof(uint32_t)) {
  589. l ^= dp_rx_get_le32(data);
  590. dp_rx_michael_block(l, r);
  591. data += sizeof(uint32_t);
  592. space -= sizeof(uint32_t);
  593. data_len -= sizeof(uint32_t);
  594. }
  595. if (data_len < sizeof(uint32_t))
  596. break;
  597. wbuf = qdf_nbuf_next(wbuf);
  598. if (!wbuf)
  599. return QDF_STATUS_E_DEFRAG_ERROR;
  600. if (space != 0) {
  601. const uint8_t *data_next;
  602. /*
  603. * Block straddles buffers, split references.
  604. */
  605. data_next =
  606. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  607. if ((qdf_nbuf_len(wbuf)) <
  608. sizeof(uint32_t) - space) {
  609. return QDF_STATUS_E_DEFRAG_ERROR;
  610. }
  611. switch (space) {
  612. case 1:
  613. l ^= dp_rx_get_le32_split(data[0],
  614. data_next[0], data_next[1],
  615. data_next[2]);
  616. data = data_next + 3;
  617. space = (qdf_nbuf_len(wbuf) - off) - 3;
  618. break;
  619. case 2:
  620. l ^= dp_rx_get_le32_split(data[0], data[1],
  621. data_next[0], data_next[1]);
  622. data = data_next + 2;
  623. space = (qdf_nbuf_len(wbuf) - off) - 2;
  624. break;
  625. case 3:
  626. l ^= dp_rx_get_le32_split(data[0], data[1],
  627. data[2], data_next[0]);
  628. data = data_next + 1;
  629. space = (qdf_nbuf_len(wbuf) - off) - 1;
  630. break;
  631. }
  632. dp_rx_michael_block(l, r);
  633. data_len -= sizeof(uint32_t);
  634. } else {
  635. /*
  636. * Setup for next buffer.
  637. */
  638. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  639. space = qdf_nbuf_len(wbuf) - off;
  640. }
  641. }
  642. /* Last block and padding (0x5a, 4..7 x 0) */
  643. switch (data_len) {
  644. case 0:
  645. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  646. break;
  647. case 1:
  648. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  649. break;
  650. case 2:
  651. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  652. break;
  653. case 3:
  654. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  655. break;
  656. }
  657. dp_rx_michael_block(l, r);
  658. dp_rx_michael_block(l, r);
  659. dp_rx_put_le32(mic, l);
  660. dp_rx_put_le32(mic + 4, r);
  661. return QDF_STATUS_SUCCESS;
  662. }
  663. /**
  664. * dp_rx_defrag_tkip_demic() - Remove MIC header from the TKIP frame
  665. * @soc: DP SOC
  666. * @key: Pointer to the key
  667. * @msdu: fragment buffer
  668. * @hdrlen: Length of the header information
  669. *
  670. * Remove MIC information from the TKIP frame
  671. *
  672. * Return: QDF_STATUS
  673. */
  674. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  675. const uint8_t *key,
  676. qdf_nbuf_t msdu, uint16_t hdrlen)
  677. {
  678. QDF_STATUS status;
  679. uint32_t pktlen = 0, prev_data_len;
  680. uint8_t mic[IEEE80211_WEP_MICLEN];
  681. uint8_t mic0[IEEE80211_WEP_MICLEN];
  682. qdf_nbuf_t prev = NULL, prev0, next;
  683. uint8_t len0 = 0;
  684. next = msdu;
  685. prev0 = msdu;
  686. while (next) {
  687. pktlen += (qdf_nbuf_len(next) - hdrlen);
  688. prev = next;
  689. dp_debug("pktlen %u",
  690. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  691. next = qdf_nbuf_next(next);
  692. if (next && !qdf_nbuf_next(next))
  693. prev0 = prev;
  694. }
  695. if (!prev) {
  696. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  697. "%s Defrag chaining failed !\n", __func__);
  698. return QDF_STATUS_E_DEFRAG_ERROR;
  699. }
  700. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  701. if (prev_data_len < dp_f_tkip.ic_miclen) {
  702. if (prev0 == prev) {
  703. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  704. "%s Fragments don't have MIC header !\n", __func__);
  705. return QDF_STATUS_E_DEFRAG_ERROR;
  706. }
  707. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  708. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  709. (caddr_t)mic0);
  710. qdf_nbuf_trim_tail(prev0, len0);
  711. }
  712. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  713. (dp_f_tkip.ic_miclen - len0)),
  714. (dp_f_tkip.ic_miclen - len0),
  715. (caddr_t)(&mic0[len0]));
  716. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  717. pktlen -= dp_f_tkip.ic_miclen;
  718. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  719. dp_rx_nbuf_free(prev);
  720. qdf_nbuf_set_next(prev0, NULL);
  721. }
  722. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  723. pktlen, mic);
  724. if (QDF_IS_STATUS_ERROR(status))
  725. return status;
  726. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  727. return QDF_STATUS_E_DEFRAG_ERROR;
  728. return QDF_STATUS_SUCCESS;
  729. }
  730. /**
  731. * dp_rx_frag_pull_hdr() - Pulls the RXTLV & the 802.11 headers
  732. * @soc: DP SOC
  733. * @nbuf: buffer pointer
  734. * @hdrsize: size of the header to be pulled
  735. *
  736. * Pull the RXTLV & the 802.11 headers
  737. *
  738. * Return: None
  739. */
  740. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  741. qdf_nbuf_t nbuf, uint16_t hdrsize)
  742. {
  743. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  744. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  745. dp_debug("final pktlen %d .11len %d",
  746. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  747. }
  748. /**
  749. * dp_rx_defrag_pn_check() - Check the PN of current fragmented with prev PN
  750. * @soc: DP SOC
  751. * @msdu: msdu to get the current PN
  752. * @cur_pn128: PN extracted from current msdu
  753. * @prev_pn128: Prev PN
  754. *
  755. * Return: 0 on success, non zero on failure
  756. */
  757. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  758. uint64_t *cur_pn128, uint64_t *prev_pn128)
  759. {
  760. int out_of_order = 0;
  761. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  762. if (cur_pn128[1] == prev_pn128[1])
  763. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  764. else
  765. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  766. return out_of_order;
  767. }
  768. /**
  769. * dp_rx_construct_fraglist() - Construct a nbuf fraglist
  770. * @txrx_peer: Pointer to the txrx peer
  771. * @tid: Transmit ID (TID)
  772. * @head: Pointer to list of fragments
  773. * @hdrsize: Size of the header to be pulled
  774. *
  775. * Construct a nbuf fraglist
  776. *
  777. * Return: None
  778. */
  779. static int
  780. dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid,
  781. qdf_nbuf_t head,
  782. uint16_t hdrsize)
  783. {
  784. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  785. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  786. qdf_nbuf_t rx_nbuf = msdu;
  787. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  788. uint32_t len = 0;
  789. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  790. int out_of_order = 0;
  791. int index;
  792. int needs_pn_check = 0;
  793. enum cdp_sec_type sec_type;
  794. prev_pn128[0] = rx_tid->pn128[0];
  795. prev_pn128[1] = rx_tid->pn128[1];
  796. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  797. dp_sec_ucast;
  798. sec_type = txrx_peer->security[index].sec_type;
  799. if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
  800. sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
  801. needs_pn_check = 1;
  802. while (msdu) {
  803. if (qdf_likely(needs_pn_check))
  804. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  805. &cur_pn128[0],
  806. &prev_pn128[0]);
  807. if (qdf_unlikely(out_of_order)) {
  808. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  809. cur_pn128[0], cur_pn128[1],
  810. prev_pn128[0], prev_pn128[1]);
  811. return QDF_STATUS_E_FAILURE;
  812. }
  813. prev_pn128[0] = cur_pn128[0];
  814. prev_pn128[1] = cur_pn128[1];
  815. /*
  816. * Broadcast and multicast frames should never be fragmented.
  817. * Iterating through all msdus and dropping fragments if even
  818. * one of them has mcast/bcast destination address.
  819. */
  820. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  821. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  822. "Dropping multicast/broadcast fragments");
  823. return QDF_STATUS_E_FAILURE;
  824. }
  825. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  826. len += qdf_nbuf_len(msdu);
  827. msdu = qdf_nbuf_next(msdu);
  828. }
  829. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  830. qdf_nbuf_set_next(head, NULL);
  831. qdf_nbuf_set_is_frag(head, 1);
  832. dp_debug("head len %d ext len %d data len %d ",
  833. (uint32_t)qdf_nbuf_len(head),
  834. (uint32_t)qdf_nbuf_len(rx_nbuf),
  835. (uint32_t)(head->data_len));
  836. return QDF_STATUS_SUCCESS;
  837. }
  838. /**
  839. * dp_rx_defrag_err() - rx defragmentation error handler
  840. * @vdev: handle to vdev object
  841. * @nbuf: packet buffer
  842. *
  843. * This function handles rx error and send MIC error notification
  844. *
  845. * Return: None
  846. */
  847. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  848. {
  849. struct ol_if_ops *tops = NULL;
  850. struct dp_pdev *pdev = vdev->pdev;
  851. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  852. uint8_t *orig_hdr;
  853. struct ieee80211_frame *wh;
  854. struct cdp_rx_mic_err_info mic_failure_info;
  855. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  856. wh = (struct ieee80211_frame *)orig_hdr;
  857. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  858. (struct qdf_mac_addr *)&wh->i_addr1);
  859. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  860. (struct qdf_mac_addr *)&wh->i_addr2);
  861. mic_failure_info.key_id = 0;
  862. mic_failure_info.multicast =
  863. IEEE80211_IS_MULTICAST(wh->i_addr1);
  864. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  865. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  866. mic_failure_info.data = (uint8_t *)wh;
  867. mic_failure_info.vdev_id = vdev->vdev_id;
  868. tops = pdev->soc->cdp_soc.ol_ops;
  869. if (tops->rx_mic_error)
  870. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  871. &mic_failure_info);
  872. }
  873. /**
  874. * dp_rx_defrag_nwifi_to_8023() - Transcap 802.11 to 802.3
  875. * @soc: dp soc handle
  876. * @txrx_peer: txrx_peer handle
  877. * @tid: Transmit ID (TID)
  878. * @nbuf: Pointer to the fragment buffer
  879. * @hdrsize: Size of headers
  880. *
  881. * Transcap the fragment from 802.11 to 802.3
  882. *
  883. * Return: None
  884. */
  885. static void
  886. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer,
  887. int tid, qdf_nbuf_t nbuf, uint16_t hdrsize)
  888. {
  889. struct llc_snap_hdr_t *llchdr;
  890. struct ethernet_hdr_t *eth_hdr;
  891. uint8_t ether_type[2];
  892. uint16_t fc = 0;
  893. union dp_align_mac_addr mac_addr;
  894. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  895. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  896. struct ieee80211_frame_addr4 wh = {0};
  897. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  898. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  899. if (!rx_desc_info) {
  900. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  901. "%s: Memory alloc failed ! ", __func__);
  902. QDF_ASSERT(0);
  903. return;
  904. }
  905. qdf_mem_zero(&wh, sizeof(struct ieee80211_frame_addr4));
  906. if (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc, qdf_nbuf_data(nbuf)))
  907. qdf_mem_copy(&wh, qdf_nbuf_data(nbuf) + soc->rx_pkt_tlv_size,
  908. hdrsize);
  909. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  910. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  911. soc->rx_pkt_tlv_size + hdrsize);
  912. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  913. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  914. sizeof(struct llc_snap_hdr_t) -
  915. sizeof(struct ethernet_hdr_t)));
  916. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  917. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  918. rx_desc_info))
  919. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  920. dp_debug("Frame control type: 0x%x", fc);
  921. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  922. case IEEE80211_FC1_DIR_NODS:
  923. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  924. &mac_addr.raw[0]);
  925. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  926. QDF_MAC_ADDR_SIZE);
  927. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  928. &mac_addr.raw[0]);
  929. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  930. QDF_MAC_ADDR_SIZE);
  931. break;
  932. case IEEE80211_FC1_DIR_TODS:
  933. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  934. &mac_addr.raw[0]);
  935. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  936. QDF_MAC_ADDR_SIZE);
  937. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  938. &mac_addr.raw[0]);
  939. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  940. QDF_MAC_ADDR_SIZE);
  941. break;
  942. case IEEE80211_FC1_DIR_FROMDS:
  943. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  944. &mac_addr.raw[0]);
  945. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  946. QDF_MAC_ADDR_SIZE);
  947. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  948. &mac_addr.raw[0]);
  949. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  950. QDF_MAC_ADDR_SIZE);
  951. break;
  952. case IEEE80211_FC1_DIR_DSTODS:
  953. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  954. &mac_addr.raw[0]);
  955. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  956. QDF_MAC_ADDR_SIZE);
  957. qdf_mem_copy(eth_hdr->src_addr, &wh.i_addr4[0],
  958. QDF_MAC_ADDR_SIZE);
  959. break;
  960. default:
  961. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  962. "%s: Unknown frame control type: 0x%x", __func__, fc);
  963. }
  964. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  965. sizeof(ether_type));
  966. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  967. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  968. qdf_mem_free(rx_desc_info);
  969. }
  970. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  971. /**
  972. * dp_rx_defrag_deliver() - Deliver defrag packet to stack
  973. * @txrx_peer: Pointer to the peer
  974. * @tid: Transmit Identifier
  975. * @head: Nbuf to be delivered
  976. *
  977. * Return: None
  978. */
  979. static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer,
  980. unsigned int tid,
  981. qdf_nbuf_t head)
  982. {
  983. struct dp_vdev *vdev = txrx_peer->vdev;
  984. struct dp_soc *soc = vdev->pdev->soc;
  985. qdf_nbuf_t deliver_list_head = NULL;
  986. qdf_nbuf_t deliver_list_tail = NULL;
  987. uint8_t *rx_tlv_hdr;
  988. rx_tlv_hdr = qdf_nbuf_data(head);
  989. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  990. qdf_nbuf_set_tid_val(head, tid);
  991. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  992. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  993. head);
  994. dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head,
  995. deliver_list_tail);
  996. }
  997. /**
  998. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  999. * @txrx_peer: Pointer to the peer
  1000. * @tid: Transmit Identifier
  1001. * @head: Buffer to be reinjected back
  1002. *
  1003. * Reinject the fragment chain back into REO
  1004. *
  1005. * Return: QDF_STATUS
  1006. */
  1007. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1008. unsigned int tid, qdf_nbuf_t head)
  1009. {
  1010. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1011. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1012. dp_rx_defrag_deliver(txrx_peer, tid, head);
  1013. rx_reorder_array_elem->head = NULL;
  1014. rx_reorder_array_elem->tail = NULL;
  1015. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1016. return QDF_STATUS_SUCCESS;
  1017. }
  1018. #else
  1019. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1020. /**
  1021. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1022. * @soc: Datapath soc structure
  1023. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1024. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1025. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1026. *
  1027. * Return: None
  1028. */
  1029. static inline void
  1030. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1031. uint32_t sw_cookie, uint8_t rbm)
  1032. {
  1033. struct dp_buf_info_record *record;
  1034. uint32_t idx;
  1035. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1036. return;
  1037. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1038. DP_RX_REINJECT_HIST_MAX);
  1039. /* No NULL check needed for record since its an array */
  1040. record = &soc->rx_reinject_ring_history->entry[idx];
  1041. record->timestamp = qdf_get_log_timestamp();
  1042. record->hbi.paddr = paddr;
  1043. record->hbi.sw_cookie = sw_cookie;
  1044. record->hbi.rbm = rbm;
  1045. }
  1046. #else
  1047. static inline void
  1048. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1049. uint32_t sw_cookie, uint8_t rbm)
  1050. {
  1051. }
  1052. #endif
  1053. /**
  1054. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  1055. * @txrx_peer: Pointer to the txrx_peer
  1056. * @tid: Transmit Identifier
  1057. * @head: Buffer to be reinjected back
  1058. *
  1059. * Reinject the fragment chain back into REO
  1060. *
  1061. * Return: QDF_STATUS
  1062. */
  1063. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1064. unsigned int tid, qdf_nbuf_t head)
  1065. {
  1066. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  1067. struct dp_soc *soc = pdev->soc;
  1068. struct hal_buf_info buf_info;
  1069. struct hal_buf_info temp_buf_info;
  1070. void *link_desc_va;
  1071. void *msdu0, *msdu_desc_info;
  1072. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1073. void *dst_mpdu_desc_info;
  1074. uint64_t dst_qdesc_addr;
  1075. qdf_dma_addr_t paddr;
  1076. uint32_t nbuf_len, seq_no, dst_ind;
  1077. uint32_t ret, cookie;
  1078. hal_ring_desc_t dst_ring_desc =
  1079. txrx_peer->rx_tid[tid].dst_ring_desc;
  1080. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1081. struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc;
  1082. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1083. txrx_peer->rx_tid[tid].array;
  1084. qdf_nbuf_t nbuf_head;
  1085. struct rx_desc_pool *rx_desc_pool = NULL;
  1086. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1087. uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
  1088. /* do duplicate link desc address check */
  1089. dp_rx_link_desc_refill_duplicate_check(
  1090. soc,
  1091. &soc->last_op_info.reo_reinject_link_desc,
  1092. buf_addr_info);
  1093. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1094. if (qdf_unlikely(!nbuf_head)) {
  1095. dp_err_rl("IPA RX REO reinject failed");
  1096. return QDF_STATUS_E_FAILURE;
  1097. }
  1098. /* update new allocated skb in case IPA is enabled */
  1099. if (nbuf_head != head) {
  1100. head = nbuf_head;
  1101. rx_desc->nbuf = head;
  1102. rx_reorder_array_elem->head = head;
  1103. }
  1104. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1105. if (!ent_ring_desc) {
  1106. dp_err_rl("HAL src ring next entry NULL");
  1107. return QDF_STATUS_E_FAILURE;
  1108. }
  1109. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1110. /* buffer_addr_info is the first element of ring_desc */
  1111. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1112. &buf_info);
  1113. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1114. qdf_assert_always(link_desc_va);
  1115. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1116. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1117. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1118. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1119. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1120. /* msdu reconfig */
  1121. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1122. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1123. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1124. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1125. /* change RX TLV's */
  1126. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1127. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1128. &temp_buf_info);
  1129. cookie = temp_buf_info.sw_cookie;
  1130. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1131. /* map the nbuf before reinject it into HW */
  1132. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1133. QDF_DMA_FROM_DEVICE,
  1134. rx_desc_pool->buf_size);
  1135. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1136. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1137. "%s: nbuf map failed !", __func__);
  1138. return QDF_STATUS_E_FAILURE;
  1139. }
  1140. dp_ipa_handle_rx_buf_smmu_mapping(soc, head, rx_desc_pool->buf_size,
  1141. true, __func__, __LINE__);
  1142. dp_audio_smmu_map(soc->osdev,
  1143. qdf_mem_paddr_from_dmaaddr(soc->osdev,
  1144. QDF_NBUF_CB_PADDR(head)),
  1145. QDF_NBUF_CB_PADDR(head), rx_desc_pool->buf_size);
  1146. /*
  1147. * As part of rx frag handler buffer was unmapped and rx desc
  1148. * unmapped is set to 1. So again for defrag reinject frame reset
  1149. * it back to 0.
  1150. */
  1151. rx_desc->unmapped = 0;
  1152. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1153. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1154. if (ret == QDF_STATUS_E_FAILURE) {
  1155. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1156. "%s: x86 check failed !", __func__);
  1157. return QDF_STATUS_E_FAILURE;
  1158. }
  1159. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1160. rx_defrag_rbm_id);
  1161. /* Lets fill entrance ring now !!! */
  1162. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1163. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1164. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1165. hal_srng);
  1166. return QDF_STATUS_E_FAILURE;
  1167. }
  1168. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1169. rx_defrag_rbm_id);
  1170. paddr = (uint64_t)buf_info.paddr;
  1171. /* buf addr */
  1172. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1173. buf_info.sw_cookie,
  1174. soc->idle_link_bm_id);
  1175. /* mpdu desc info */
  1176. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1177. ent_ring_desc);
  1178. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1179. dst_ring_desc);
  1180. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1181. sizeof(struct rx_mpdu_desc_info));
  1182. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1183. seq_no = hal_rx_get_rx_sequence(soc->hal_soc, rx_desc->rx_buf_start);
  1184. hal_mpdu_desc_info_set(soc->hal_soc, ent_ring_desc, ent_mpdu_desc_info,
  1185. seq_no);
  1186. /* qdesc addr */
  1187. ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
  1188. (uint8_t *)ent_ring_desc);
  1189. dst_qdesc_addr = soc->arch_ops.get_reo_qdesc_addr(
  1190. soc->hal_soc,
  1191. (uint8_t *)dst_ring_desc,
  1192. qdf_nbuf_data(head),
  1193. txrx_peer, tid);
  1194. qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5);
  1195. hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
  1196. (uint8_t *)ent_ring_desc, dst_ind);
  1197. hal_srng_access_end(soc->hal_soc, hal_srng);
  1198. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1199. dp_debug("reinjection done !");
  1200. return QDF_STATUS_SUCCESS;
  1201. }
  1202. #endif
  1203. /**
  1204. * dp_rx_defrag_gcmp_demic() - Remove MIC information from GCMP fragment
  1205. * @soc: Datapath soc structure
  1206. * @nbuf: Pointer to the fragment buffer
  1207. * @hdrlen: 802.11 header length
  1208. *
  1209. * Remove MIC information from GCMP fragment
  1210. *
  1211. * Return: QDF_STATUS
  1212. */
  1213. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1214. uint16_t hdrlen)
  1215. {
  1216. uint8_t *ivp, *orig_hdr;
  1217. int rx_desc_len = soc->rx_pkt_tlv_size;
  1218. /* start of the 802.11 header */
  1219. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1220. /*
  1221. * GCMP header is located after 802.11 header and EXTIV
  1222. * field should always be set to 1 for GCMP protocol.
  1223. */
  1224. ivp = orig_hdr + hdrlen;
  1225. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1226. return QDF_STATUS_E_DEFRAG_ERROR;
  1227. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1228. return QDF_STATUS_SUCCESS;
  1229. }
  1230. /**
  1231. * dp_rx_defrag() - Defragment the fragment chain
  1232. * @txrx_peer: Pointer to the peer
  1233. * @tid: Transmit Identifier
  1234. * @frag_list_head: Pointer to head list
  1235. * @frag_list_tail: Pointer to tail list
  1236. *
  1237. * Defragment the fragment chain
  1238. *
  1239. * Return: QDF_STATUS
  1240. */
  1241. static QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  1242. qdf_nbuf_t frag_list_head,
  1243. qdf_nbuf_t frag_list_tail)
  1244. {
  1245. qdf_nbuf_t tmp_next;
  1246. qdf_nbuf_t cur = frag_list_head, msdu;
  1247. uint32_t index, tkip_demic = 0;
  1248. uint16_t hdr_space;
  1249. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1250. struct dp_vdev *vdev = txrx_peer->vdev;
  1251. struct dp_soc *soc = vdev->pdev->soc;
  1252. uint8_t status = 0;
  1253. if (!cur)
  1254. return QDF_STATUS_E_DEFRAG_ERROR;
  1255. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1256. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1257. dp_sec_mcast : dp_sec_ucast;
  1258. /* Remove FCS from all fragments */
  1259. while (cur) {
  1260. tmp_next = qdf_nbuf_next(cur);
  1261. qdf_nbuf_set_next(cur, NULL);
  1262. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1263. qdf_nbuf_set_next(cur, tmp_next);
  1264. cur = tmp_next;
  1265. }
  1266. cur = frag_list_head;
  1267. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1268. "%s: index %d Security type: %d", __func__,
  1269. index, txrx_peer->security[index].sec_type);
  1270. switch (txrx_peer->security[index].sec_type) {
  1271. case cdp_sec_type_tkip:
  1272. tkip_demic = 1;
  1273. fallthrough;
  1274. case cdp_sec_type_tkip_nomic:
  1275. while (cur) {
  1276. tmp_next = qdf_nbuf_next(cur);
  1277. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1278. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1279. QDF_TRACE_LEVEL_ERROR,
  1280. "dp_rx_defrag: TKIP decap failed");
  1281. return QDF_STATUS_E_DEFRAG_ERROR;
  1282. }
  1283. cur = tmp_next;
  1284. }
  1285. /* If success, increment header to be stripped later */
  1286. hdr_space += dp_f_tkip.ic_header;
  1287. break;
  1288. case cdp_sec_type_aes_ccmp:
  1289. while (cur) {
  1290. tmp_next = qdf_nbuf_next(cur);
  1291. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1292. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1293. QDF_TRACE_LEVEL_ERROR,
  1294. "dp_rx_defrag: CCMP demic failed");
  1295. return QDF_STATUS_E_DEFRAG_ERROR;
  1296. }
  1297. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1298. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1299. QDF_TRACE_LEVEL_ERROR,
  1300. "dp_rx_defrag: CCMP decap failed");
  1301. return QDF_STATUS_E_DEFRAG_ERROR;
  1302. }
  1303. cur = tmp_next;
  1304. }
  1305. /* If success, increment header to be stripped later */
  1306. hdr_space += dp_f_ccmp.ic_header;
  1307. break;
  1308. case cdp_sec_type_wep40:
  1309. case cdp_sec_type_wep104:
  1310. case cdp_sec_type_wep128:
  1311. while (cur) {
  1312. tmp_next = qdf_nbuf_next(cur);
  1313. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1314. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1315. QDF_TRACE_LEVEL_ERROR,
  1316. "dp_rx_defrag: WEP decap failed");
  1317. return QDF_STATUS_E_DEFRAG_ERROR;
  1318. }
  1319. cur = tmp_next;
  1320. }
  1321. /* If success, increment header to be stripped later */
  1322. hdr_space += dp_f_wep.ic_header;
  1323. break;
  1324. case cdp_sec_type_aes_gcmp:
  1325. case cdp_sec_type_aes_gcmp_256:
  1326. while (cur) {
  1327. tmp_next = qdf_nbuf_next(cur);
  1328. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1329. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1330. QDF_TRACE_LEVEL_ERROR,
  1331. "dp_rx_defrag: GCMP demic failed");
  1332. return QDF_STATUS_E_DEFRAG_ERROR;
  1333. }
  1334. cur = tmp_next;
  1335. }
  1336. hdr_space += dp_f_gcmp.ic_header;
  1337. break;
  1338. default:
  1339. break;
  1340. }
  1341. if (tkip_demic) {
  1342. msdu = frag_list_head;
  1343. qdf_mem_copy(key,
  1344. &txrx_peer->security[index].michael_key[0],
  1345. IEEE80211_WEP_MICLEN);
  1346. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1347. soc->rx_pkt_tlv_size +
  1348. hdr_space);
  1349. if (status) {
  1350. dp_rx_defrag_err(vdev, frag_list_head);
  1351. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1352. QDF_TRACE_LEVEL_ERROR,
  1353. "%s: TKIP demic failed status %d",
  1354. __func__, status);
  1355. return QDF_STATUS_E_DEFRAG_ERROR;
  1356. }
  1357. }
  1358. /* Convert the header to 802.3 header */
  1359. dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head,
  1360. hdr_space);
  1361. if (qdf_nbuf_next(frag_list_head)) {
  1362. if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head,
  1363. hdr_space))
  1364. return QDF_STATUS_E_DEFRAG_ERROR;
  1365. }
  1366. return QDF_STATUS_SUCCESS;
  1367. }
  1368. void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid)
  1369. {
  1370. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1371. txrx_peer->rx_tid[tid].array;
  1372. if (rx_reorder_array_elem) {
  1373. /* Free up nbufs */
  1374. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1375. rx_reorder_array_elem->head = NULL;
  1376. rx_reorder_array_elem->tail = NULL;
  1377. } else {
  1378. dp_info("Cleanup self peer %pK and TID %u",
  1379. txrx_peer, tid);
  1380. }
  1381. /* Free up saved ring descriptors */
  1382. dp_rx_clear_saved_desc_info(txrx_peer, tid);
  1383. txrx_peer->rx_tid[tid].defrag_timeout_ms = 0;
  1384. txrx_peer->rx_tid[tid].curr_frag_num = 0;
  1385. txrx_peer->rx_tid[tid].curr_seq_num = 0;
  1386. }
  1387. /**
  1388. * dp_rx_defrag_save_info_from_ring_desc() - Save info from REO ring descriptor
  1389. * @soc: Pointer to the SOC data structure
  1390. * @ring_desc: Pointer to the dst ring descriptor
  1391. * @rx_desc: Pointer to rx descriptor
  1392. * @txrx_peer: Pointer to the peer
  1393. * @tid: Transmit Identifier
  1394. *
  1395. * Return: None
  1396. */
  1397. static QDF_STATUS
  1398. dp_rx_defrag_save_info_from_ring_desc(struct dp_soc *soc,
  1399. hal_ring_desc_t ring_desc,
  1400. struct dp_rx_desc *rx_desc,
  1401. struct dp_txrx_peer *txrx_peer,
  1402. unsigned int tid)
  1403. {
  1404. void *dst_ring_desc;
  1405. dst_ring_desc = qdf_mem_malloc(hal_srng_get_entrysize(soc->hal_soc,
  1406. REO_DST));
  1407. if (!dst_ring_desc) {
  1408. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1409. "%s: Memory alloc failed !", __func__);
  1410. QDF_ASSERT(0);
  1411. return QDF_STATUS_E_NOMEM;
  1412. }
  1413. qdf_mem_copy(dst_ring_desc, ring_desc,
  1414. hal_srng_get_entrysize(soc->hal_soc, REO_DST));
  1415. txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1416. txrx_peer->rx_tid[tid].head_frag_desc = rx_desc;
  1417. return QDF_STATUS_SUCCESS;
  1418. }
  1419. #ifdef DP_RX_DEFRAG_ADDR1_CHECK_WAR
  1420. #ifdef WLAN_FEATURE_11BE_MLO
  1421. /**
  1422. * dp_rx_defrag_vdev_mac_addr_cmp() - function to check whether mac address
  1423. * matches VDEV mac
  1424. * @vdev: dp_vdev object of the VDEV on which this data packet is received
  1425. * @mac_addr: Address to compare
  1426. *
  1427. * Return: 1 if the mac matching,
  1428. * 0 if this frame is not correctly destined to this VDEV/MLD
  1429. */
  1430. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1431. uint8_t *mac_addr)
  1432. {
  1433. return ((qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1434. QDF_MAC_ADDR_SIZE) == 0) ||
  1435. (qdf_mem_cmp(mac_addr, &vdev->mld_mac_addr.raw[0],
  1436. QDF_MAC_ADDR_SIZE) == 0));
  1437. }
  1438. #else
  1439. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1440. uint8_t *mac_addr)
  1441. {
  1442. return (qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1443. QDF_MAC_ADDR_SIZE) == 0);
  1444. }
  1445. #endif
  1446. static bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1447. struct dp_vdev *vdev,
  1448. uint8_t *rx_tlv_hdr)
  1449. {
  1450. union dp_align_mac_addr mac_addr;
  1451. /* If address1 is not valid discard the fragment */
  1452. if (hal_rx_mpdu_get_addr1(soc->hal_soc, rx_tlv_hdr,
  1453. &mac_addr.raw[0]) != QDF_STATUS_SUCCESS) {
  1454. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1455. return false;
  1456. }
  1457. /* WAR suggested by HW team to avoid crashing incase of packet
  1458. * corruption issue
  1459. *
  1460. * recipe is to compare VDEV mac or MLD mac address with ADDR1
  1461. * in case of mismatch consider it as corrupted packet and do
  1462. * not process further
  1463. */
  1464. if (!dp_rx_defrag_vdev_mac_addr_cmp(vdev,
  1465. &mac_addr.raw[0])) {
  1466. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1467. return false;
  1468. }
  1469. return true;
  1470. }
  1471. #else
  1472. static inline bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1473. struct dp_vdev *vdev,
  1474. uint8_t *rx_tlv_hdr)
  1475. {
  1476. return true;
  1477. }
  1478. #endif
  1479. /**
  1480. * dp_rx_defrag_store_fragment() - Store incoming fragments
  1481. * @soc: Pointer to the SOC data structure
  1482. * @ring_desc: Pointer to the ring descriptor
  1483. * @head:
  1484. * @tail:
  1485. * @mpdu_desc_info: MPDU descriptor info
  1486. * @tid: Traffic Identifier
  1487. * @rx_desc: Pointer to rx descriptor
  1488. * @rx_bfs: Number of bfs consumed
  1489. *
  1490. * Return: QDF_STATUS
  1491. */
  1492. static QDF_STATUS
  1493. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1494. hal_ring_desc_t ring_desc,
  1495. union dp_rx_desc_list_elem_t **head,
  1496. union dp_rx_desc_list_elem_t **tail,
  1497. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1498. unsigned int tid, struct dp_rx_desc *rx_desc,
  1499. uint32_t *rx_bfs)
  1500. {
  1501. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1502. struct dp_pdev *pdev;
  1503. struct dp_txrx_peer *txrx_peer = NULL;
  1504. dp_txrx_ref_handle txrx_ref_handle = NULL;
  1505. uint16_t peer_id;
  1506. uint8_t fragno, more_frag, all_frag_present = 0;
  1507. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1508. QDF_STATUS status;
  1509. struct dp_rx_tid_defrag *rx_tid;
  1510. uint8_t mpdu_sequence_control_valid;
  1511. uint8_t mpdu_frame_control_valid;
  1512. qdf_nbuf_t frag = rx_desc->nbuf;
  1513. uint32_t msdu_len;
  1514. if (qdf_nbuf_len(frag) > 0) {
  1515. dp_info("Dropping unexpected packet with skb_len: %d,"
  1516. "data len: %d, cookie: %d",
  1517. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1518. rx_desc->cookie);
  1519. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1520. goto discard_frag;
  1521. }
  1522. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1523. /* fragment queued back to the pool, free the link desc */
  1524. goto err_free_desc;
  1525. }
  1526. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1527. rx_desc->rx_buf_start);
  1528. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1529. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1530. /* Check if the packet is from a valid peer */
  1531. peer_id = dp_rx_peer_metadata_peer_id_get(soc,
  1532. mpdu_desc_info->peer_meta_data);
  1533. txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle,
  1534. DP_MOD_ID_RX_ERR);
  1535. if (!txrx_peer) {
  1536. /* We should not receive anything from unknown peer
  1537. * however, that might happen while we are in the monitor mode.
  1538. * We don't need to handle that here
  1539. */
  1540. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1541. peer_id);
  1542. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1543. goto discard_frag;
  1544. }
  1545. if (tid >= DP_MAX_TIDS) {
  1546. dp_info("TID out of bounds: %d", tid);
  1547. qdf_assert_always(0);
  1548. goto discard_frag;
  1549. }
  1550. if (!dp_rx_defrag_addr1_check(soc, txrx_peer->vdev,
  1551. rx_desc->rx_buf_start)) {
  1552. dp_info("Invalid address 1");
  1553. goto discard_frag;
  1554. }
  1555. mpdu_sequence_control_valid =
  1556. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1557. rx_desc->rx_buf_start);
  1558. /* Invalid MPDU sequence control field, MPDU is of no use */
  1559. if (!mpdu_sequence_control_valid) {
  1560. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1561. "Invalid MPDU seq control field, dropping MPDU");
  1562. qdf_assert(0);
  1563. goto discard_frag;
  1564. }
  1565. mpdu_frame_control_valid =
  1566. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1567. rx_desc->rx_buf_start);
  1568. /* Invalid frame control field */
  1569. if (!mpdu_frame_control_valid) {
  1570. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1571. "Invalid frame control field, dropping MPDU");
  1572. qdf_assert(0);
  1573. goto discard_frag;
  1574. }
  1575. /* Current mpdu sequence */
  1576. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1577. /* HW does not populate the fragment number as of now
  1578. * need to get from the 802.11 header
  1579. */
  1580. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1581. pdev = txrx_peer->vdev->pdev;
  1582. rx_tid = &txrx_peer->rx_tid[tid];
  1583. dp_rx_err_send_pktlog(soc, pdev, mpdu_desc_info, frag,
  1584. QDF_TX_RX_STATUS_OK, false);
  1585. qdf_spin_lock_bh(&rx_tid->defrag_tid_lock);
  1586. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1587. if (!rx_reorder_array_elem) {
  1588. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1589. txrx_peer);
  1590. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1591. goto discard_frag;
  1592. }
  1593. /*
  1594. * !more_frag: no more fragments to be delivered
  1595. * !frag_no: packet is not fragmented
  1596. * !rx_reorder_array_elem->head: no saved fragments so far
  1597. */
  1598. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1599. /* We should not get into this situation here.
  1600. * It means an unfragmented packet with fragment flag
  1601. * is delivered over the REO exception ring.
  1602. * Typically it follows normal rx path.
  1603. */
  1604. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1605. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1606. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1607. qdf_assert(0);
  1608. goto discard_frag;
  1609. }
  1610. /* Check if the fragment is for the same sequence or a different one */
  1611. dp_debug("rx_tid %d", tid);
  1612. if (rx_reorder_array_elem->head) {
  1613. dp_debug("rxseq %d\n", rxseq);
  1614. if (rxseq != rx_tid->curr_seq_num) {
  1615. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1616. rx_tid->curr_seq_num, rxseq);
  1617. /* Drop stored fragments if out of sequence
  1618. * fragment is received
  1619. */
  1620. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1621. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1622. dp_debug("cur rxseq %d\n", rxseq);
  1623. /*
  1624. * The sequence number for this fragment becomes the
  1625. * new sequence number to be processed
  1626. */
  1627. rx_tid->curr_seq_num = rxseq;
  1628. }
  1629. } else {
  1630. /* Check if we are processing first fragment if it is
  1631. * not first fragment discard fragment.
  1632. */
  1633. if (fragno) {
  1634. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1635. goto discard_frag;
  1636. }
  1637. dp_debug("cur rxseq %d\n", rxseq);
  1638. /* Start of a new sequence */
  1639. dp_rx_defrag_cleanup(txrx_peer, tid);
  1640. rx_tid->curr_seq_num = rxseq;
  1641. /* store PN number also */
  1642. }
  1643. /*
  1644. * If the earlier sequence was dropped, this will be the fresh start.
  1645. * Else, continue with next fragment in a given sequence
  1646. */
  1647. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1648. &rx_reorder_array_elem->head,
  1649. &rx_reorder_array_elem->tail,
  1650. frag, &all_frag_present);
  1651. /*
  1652. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1653. * packet sequence has more than 6 MSDUs for some reason, we will
  1654. * have to use the next MSDU link descriptor and chain them together
  1655. * before reinjection.
  1656. * ring_desc is validated in dp_rx_err_process.
  1657. */
  1658. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1659. (rx_reorder_array_elem->head == frag)) {
  1660. status = dp_rx_defrag_save_info_from_ring_desc(soc, ring_desc,
  1661. rx_desc,
  1662. txrx_peer, tid);
  1663. if (status != QDF_STATUS_SUCCESS) {
  1664. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1665. "%s: Unable to store ring desc !", __func__);
  1666. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1667. goto discard_frag;
  1668. }
  1669. } else {
  1670. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1671. (*rx_bfs)++;
  1672. /* Return the non-head link desc */
  1673. if (dp_rx_link_desc_return(soc, ring_desc,
  1674. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1675. QDF_STATUS_SUCCESS)
  1676. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1677. "%s: Failed to return link desc", __func__);
  1678. }
  1679. if (pdev->soc->rx.flags.defrag_timeout_check)
  1680. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1681. /* Yet to receive more fragments for this sequence number */
  1682. if (!all_frag_present) {
  1683. uint32_t now_ms =
  1684. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1685. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1686. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1687. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1688. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1689. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1690. return QDF_STATUS_SUCCESS;
  1691. }
  1692. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1693. "All fragments received for sequence: %d", rxseq);
  1694. /* Process the fragments */
  1695. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1696. rx_reorder_array_elem->tail);
  1697. if (QDF_IS_STATUS_ERROR(status)) {
  1698. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1699. "Fragment processing failed");
  1700. dp_rx_add_to_free_desc_list(head, tail,
  1701. txrx_peer->rx_tid[tid].head_frag_desc);
  1702. (*rx_bfs)++;
  1703. if (dp_rx_link_desc_return(soc,
  1704. txrx_peer->rx_tid[tid].dst_ring_desc,
  1705. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1706. QDF_STATUS_SUCCESS)
  1707. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1708. "%s: Failed to return link desc",
  1709. __func__);
  1710. dp_rx_defrag_cleanup(txrx_peer, tid);
  1711. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1712. goto end;
  1713. }
  1714. /* Re-inject the fragments back to REO for further processing */
  1715. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1716. rx_reorder_array_elem->head);
  1717. if (QDF_IS_STATUS_SUCCESS(status)) {
  1718. rx_reorder_array_elem->head = NULL;
  1719. rx_reorder_array_elem->tail = NULL;
  1720. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1721. "Fragmented sequence successfully reinjected");
  1722. } else {
  1723. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1724. "Fragmented sequence reinjection failed");
  1725. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1726. }
  1727. dp_rx_defrag_cleanup(txrx_peer, tid);
  1728. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1729. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1730. return QDF_STATUS_SUCCESS;
  1731. discard_frag:
  1732. dp_rx_nbuf_free(frag);
  1733. err_free_desc:
  1734. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1735. if (dp_rx_link_desc_return(soc, ring_desc,
  1736. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1737. QDF_STATUS_SUCCESS)
  1738. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1739. "%s: Failed to return link desc", __func__);
  1740. (*rx_bfs)++;
  1741. end:
  1742. if (txrx_peer)
  1743. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1744. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1745. return QDF_STATUS_E_DEFRAG_ERROR;
  1746. }
  1747. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1748. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1749. struct dp_rx_desc *rx_desc,
  1750. uint8_t *mac_id,
  1751. uint32_t quota)
  1752. {
  1753. uint32_t rx_bufs_used = 0;
  1754. qdf_nbuf_t msdu = NULL;
  1755. uint32_t tid;
  1756. uint32_t rx_bfs = 0;
  1757. struct dp_pdev *pdev;
  1758. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1759. struct rx_desc_pool *rx_desc_pool;
  1760. qdf_assert(soc);
  1761. qdf_assert(mpdu_desc_info);
  1762. qdf_assert(rx_desc);
  1763. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1764. mpdu_desc_info->msdu_count);
  1765. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1766. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1767. "Not sufficient MSDUs to process");
  1768. return rx_bufs_used;
  1769. }
  1770. /* all buffers in MSDU link belong to same pdev */
  1771. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1772. if (!pdev) {
  1773. dp_nofl_debug("pdev is null for pool_id = %d",
  1774. rx_desc->pool_id);
  1775. return rx_bufs_used;
  1776. }
  1777. *mac_id = rx_desc->pool_id;
  1778. msdu = rx_desc->nbuf;
  1779. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1780. if (rx_desc->unmapped)
  1781. return rx_bufs_used;
  1782. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1783. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf);
  1784. rx_desc->unmapped = 1;
  1785. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1786. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1787. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1788. /* Process fragment-by-fragment */
  1789. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1790. &pdev->free_list_head,
  1791. &pdev->free_list_tail,
  1792. mpdu_desc_info,
  1793. tid, rx_desc, &rx_bfs);
  1794. if (rx_bfs)
  1795. rx_bufs_used += rx_bfs;
  1796. if (!QDF_IS_STATUS_SUCCESS(status))
  1797. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1798. mpdu_desc_info->mpdu_seq,
  1799. mpdu_desc_info->msdu_count,
  1800. mpdu_desc_info->mpdu_flags);
  1801. return rx_bufs_used;
  1802. }
  1803. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1804. struct dp_txrx_peer *txrx_peer,
  1805. uint16_t tid,
  1806. uint16_t rxseq, qdf_nbuf_t nbuf)
  1807. {
  1808. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  1809. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1810. uint8_t all_frag_present;
  1811. uint32_t msdu_len;
  1812. QDF_STATUS status;
  1813. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1814. /*
  1815. * HW may fill in unexpected peer_id in RX PKT TLV,
  1816. * if this peer_id related peer is valid by coincidence,
  1817. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1818. * self peer), then invalid access to rx_reorder_array_elem happened.
  1819. */
  1820. if (!rx_reorder_array_elem) {
  1821. dp_verbose_debug(
  1822. "peer id:%d drop rx frame!",
  1823. txrx_peer->peer_id);
  1824. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1825. dp_rx_nbuf_free(nbuf);
  1826. goto fail;
  1827. }
  1828. if (rx_reorder_array_elem->head &&
  1829. rxseq != rx_tid->curr_seq_num) {
  1830. /* Drop stored fragments if out of sequence
  1831. * fragment is received
  1832. */
  1833. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1834. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1835. "%s: No list found for TID %d Seq# %d",
  1836. __func__, tid, rxseq);
  1837. dp_rx_nbuf_free(nbuf);
  1838. goto fail;
  1839. }
  1840. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1841. qdf_nbuf_data(nbuf));
  1842. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1843. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1844. &rx_reorder_array_elem->head,
  1845. &rx_reorder_array_elem->tail, nbuf,
  1846. &all_frag_present);
  1847. if (QDF_IS_STATUS_ERROR(status)) {
  1848. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1849. "%s Fragment insert failed", __func__);
  1850. goto fail;
  1851. }
  1852. if (soc->rx.flags.defrag_timeout_check)
  1853. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1854. if (!all_frag_present) {
  1855. uint32_t now_ms =
  1856. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1857. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1858. now_ms + soc->rx.defrag.timeout_ms;
  1859. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1860. return QDF_STATUS_SUCCESS;
  1861. }
  1862. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1863. rx_reorder_array_elem->tail);
  1864. if (QDF_IS_STATUS_ERROR(status)) {
  1865. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1866. "%s Fragment processing failed", __func__);
  1867. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1868. dp_rx_defrag_cleanup(txrx_peer, tid);
  1869. goto fail;
  1870. }
  1871. /* Re-inject the fragments back to REO for further processing */
  1872. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1873. rx_reorder_array_elem->head);
  1874. if (QDF_IS_STATUS_SUCCESS(status)) {
  1875. rx_reorder_array_elem->head = NULL;
  1876. rx_reorder_array_elem->tail = NULL;
  1877. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1878. "%s: Frag seq successfully reinjected",
  1879. __func__);
  1880. } else {
  1881. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1882. "%s: Frag seq reinjection failed", __func__);
  1883. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1884. }
  1885. dp_rx_defrag_cleanup(txrx_peer, tid);
  1886. return QDF_STATUS_SUCCESS;
  1887. fail:
  1888. return QDF_STATUS_E_DEFRAG_ERROR;
  1889. }