msm_cvp_buf.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  18. #define eva_buf_map dma_buf_map
  19. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  20. #else
  21. #define eva_buf_map iosys_map
  22. #define _buf_map_set_vaddr iosys_map_set_vaddr
  23. #endif
  24. #define CLEAR_USE_BITMAP(idx, inst) \
  25. do { \
  26. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), smem->bitmap_index, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. #define SET_USE_BITMAP(idx, inst) \
  32. do { \
  33. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  34. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  35. hash32_ptr(inst->session), idx, \
  36. inst->dma_cache.usage_bitmap); \
  37. } while (0)
  38. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  39. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  40. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
  41. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  42. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  43. struct msm_cvp_smem *smem)
  44. {
  45. int i;
  46. char name[PKT_NAME_LEN] = "Unknown";
  47. if (!(tag & msm_cvp_debug))
  48. return 0;
  49. if (!inst || !smem) {
  50. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  51. inst, smem);
  52. return -EINVAL;
  53. }
  54. if (smem->dma_buf) {
  55. i = get_pkt_index_from_type(smem->pkt_type);
  56. if (i > 0)
  57. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  58. if (!atomic_read(&smem->refcount))
  59. dprintk(tag,
  60. " UNUSED mapping %s: 0x%llx %s size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  61. str, smem->dma_buf, smem->dma_buf->name,
  62. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  63. else
  64. dprintk(tag,
  65. "%s: %x : 0x%llx %s size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  66. str, hash32_ptr(inst->session), smem->dma_buf, smem->dma_buf->name,
  67. smem->size, smem->flags, smem->device_addr,
  68. smem->bitmap_index, atomic_read(&smem->refcount),
  69. name, smem->buf_idx, smem->fd);
  70. }
  71. return 0;
  72. }
  73. static void print_internal_buffer(u32 tag, const char *str,
  74. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  75. {
  76. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  77. return;
  78. if (cbuf->smem->dma_buf) {
  79. dprintk(tag,
  80. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  81. str, hash32_ptr(inst->session), cbuf->fd,
  82. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  83. cbuf->size, cbuf->smem->device_addr);
  84. } else {
  85. dprintk(tag,
  86. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  87. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  88. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  89. }
  90. }
  91. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  92. struct cvp_internal_buf *cbuf)
  93. {
  94. if (!inst || !cbuf) {
  95. dprintk(CVP_ERR,
  96. "%s Invalid params inst %pK, cbuf %pK\n",
  97. str, inst, cbuf);
  98. return;
  99. }
  100. print_smem(tag, str, inst, cbuf->smem);
  101. }
  102. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  103. struct msm_cvp_smem *smem, bool logging)
  104. {
  105. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  106. return;
  107. if (!logging || !snapshot)
  108. return;
  109. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  110. struct smem_data *s;
  111. s = &snapshot->smem_log[snapshot->smem_index];
  112. snapshot->smem_index++;
  113. s->size = smem->size;
  114. s->flags = smem->flags;
  115. s->device_addr = smem->device_addr;
  116. s->bitmap_index = smem->bitmap_index;
  117. s->refcount = atomic_read(&smem->refcount);
  118. s->pkt_type = smem->pkt_type;
  119. s->buf_idx = smem->buf_idx;
  120. }
  121. }
  122. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  123. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  124. bool logging)
  125. {
  126. struct cvp_buf_data *buf = NULL;
  127. u32 index;
  128. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  129. if (!logging)
  130. return;
  131. if (snapshot) {
  132. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  133. index = snapshot->dsp_index;
  134. buf = &snapshot->dsp_buf_log[index];
  135. snapshot->dsp_index++;
  136. } else if (prop == SMEM_PERSIST &&
  137. snapshot->persist_index < MAX_ENTRIES) {
  138. index = snapshot->persist_index;
  139. buf = &snapshot->persist_buf_log[index];
  140. snapshot->persist_index++;
  141. }
  142. if (buf) {
  143. buf->device_addr = cbuf->smem->device_addr;
  144. buf->size = cbuf->size;
  145. }
  146. }
  147. }
  148. void print_client_buffer(u32 tag, const char *str,
  149. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  150. {
  151. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  152. return;
  153. dprintk(tag,
  154. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  155. " reserved[0] %u\n",
  156. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  157. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  158. cbuf->reserved[0]);
  159. }
  160. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  161. struct eva_kmd_buffer *buf)
  162. {
  163. struct cvp_hal_session *session;
  164. struct cvp_internal_buf *cbuf = NULL;
  165. bool found = false;
  166. if (!inst || !inst->core || !buf) {
  167. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  168. return false;
  169. }
  170. if (buf->fd < 0) {
  171. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  172. return false;
  173. }
  174. if (buf->offset) {
  175. dprintk(CVP_ERR,
  176. "%s: offset is deprecated, set to 0.\n",
  177. __func__);
  178. return false;
  179. }
  180. session = (struct cvp_hal_session *)inst->session;
  181. mutex_lock(&inst->cvpdspbufs.lock);
  182. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  183. if (cbuf->fd == buf->fd) {
  184. if (cbuf->size != buf->size) {
  185. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  186. __func__);
  187. mutex_unlock(&inst->cvpdspbufs.lock);
  188. return false;
  189. }
  190. found = true;
  191. break;
  192. }
  193. }
  194. mutex_unlock(&inst->cvpdspbufs.lock);
  195. if (found) {
  196. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  197. return false;
  198. }
  199. return true;
  200. }
  201. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  202. fmode_t mask, unsigned int refs)
  203. {
  204. struct files_struct *files = task->files;
  205. struct file *file;
  206. if (!files)
  207. return NULL;
  208. rcu_read_lock();
  209. loop:
  210. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  211. file = fcheck_files(files, fd);
  212. #else
  213. file = files_lookup_fd_rcu(files, fd);
  214. #endif
  215. if (file) {
  216. /* File object ref couldn't be taken.
  217. * dup2() atomicity guarantee is the reason
  218. * we loop to catch the new file (or NULL pointer)
  219. */
  220. if (file->f_mode & mask)
  221. file = NULL;
  222. else if (!get_file_rcu(file))
  223. goto loop;
  224. }
  225. rcu_read_unlock();
  226. return file;
  227. }
  228. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  229. struct task_struct *task)
  230. {
  231. if (file->f_op != gfa_cv.dmabuf_f_op) {
  232. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  233. return ERR_PTR(-EINVAL);
  234. }
  235. return file->private_data;
  236. }
  237. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  238. {
  239. int rc = 0;
  240. struct cvp_internal_buf *cbuf = NULL;
  241. struct msm_cvp_smem *smem = NULL;
  242. struct dma_buf *dma_buf = NULL;
  243. struct file *file;
  244. if (!__is_buf_valid(inst, buf))
  245. return -EINVAL;
  246. if (!inst->task)
  247. return -EINVAL;
  248. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  249. if (file == NULL) {
  250. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  251. return -EINVAL;
  252. }
  253. dma_buf = cvp_dma_buf_get(
  254. file,
  255. buf->fd,
  256. inst->task);
  257. if (dma_buf == ERR_PTR(-EINVAL)) {
  258. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  259. rc = -EINVAL;
  260. goto exit;
  261. }
  262. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  263. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  264. if (!cbuf) {
  265. rc = -ENOMEM;
  266. goto exit;
  267. }
  268. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  269. if (!smem) {
  270. rc = -ENOMEM;
  271. goto exit;
  272. }
  273. smem->dma_buf = dma_buf;
  274. smem->bitmap_index = MAX_DMABUF_NUMS;
  275. smem->pkt_type = 0;
  276. smem->buf_idx = 0;
  277. smem->fd = buf->fd;
  278. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  279. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  280. if (rc) {
  281. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  282. goto exit;
  283. }
  284. cbuf->smem = smem;
  285. cbuf->fd = buf->fd;
  286. cbuf->size = buf->size;
  287. cbuf->offset = buf->offset;
  288. cbuf->ownership = CLIENT;
  289. cbuf->index = buf->index;
  290. buf->reserved[0] = (uint32_t)smem->device_addr;
  291. mutex_lock(&inst->cvpdspbufs.lock);
  292. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  293. mutex_unlock(&inst->cvpdspbufs.lock);
  294. return rc;
  295. exit:
  296. fput(file);
  297. if (smem) {
  298. if (smem->device_addr)
  299. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  300. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  301. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  302. }
  303. if (cbuf)
  304. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  305. return rc;
  306. }
  307. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  308. {
  309. int rc = 0;
  310. bool found;
  311. struct cvp_internal_buf *cbuf;
  312. struct cvp_hal_session *session;
  313. if (!inst || !inst->core || !buf) {
  314. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  315. return -EINVAL;
  316. }
  317. session = (struct cvp_hal_session *)inst->session;
  318. if (!session) {
  319. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  320. return -EINVAL;
  321. }
  322. mutex_lock(&inst->cvpdspbufs.lock);
  323. found = false;
  324. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  325. if (cbuf->fd == buf->fd) {
  326. found = true;
  327. break;
  328. }
  329. }
  330. mutex_unlock(&inst->cvpdspbufs.lock);
  331. if (!found) {
  332. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  333. return -EINVAL;
  334. }
  335. if (cbuf->smem->device_addr) {
  336. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  337. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  338. }
  339. mutex_lock(&inst->cvpdspbufs.lock);
  340. list_del(&cbuf->list);
  341. mutex_unlock(&inst->cvpdspbufs.lock);
  342. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  343. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  344. return rc;
  345. }
  346. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  347. struct eva_kmd_buffer *buf)
  348. {
  349. int rc = 0, i;
  350. bool found = false;
  351. struct cvp_internal_buf* cbuf;
  352. struct msm_cvp_smem* smem = NULL;
  353. struct dma_buf* dma_buf = NULL;
  354. if (!inst || !inst->core || !buf) {
  355. dprintk(CVP_ERR, "%s: invalid params", __func__);
  356. return -EINVAL;
  357. }
  358. if (!inst->session) {
  359. dprintk(CVP_ERR, "%s: invalid session", __func__);
  360. return -EINVAL;
  361. }
  362. if (buf->index) {
  363. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  364. __func__, buf->fd);
  365. return -EINVAL;
  366. }
  367. if (buf->fd < 0) {
  368. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  369. return -EINVAL;
  370. }
  371. if (buf->offset) {
  372. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  373. __func__);
  374. return -EINVAL;
  375. }
  376. mutex_lock(&inst->cvpwnccbufs.lock);
  377. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  378. if (cbuf->fd == buf->fd) {
  379. if (cbuf->size != buf->size) {
  380. dprintk(CVP_ERR, "%s: buf size mismatch",
  381. __func__);
  382. mutex_unlock(&inst->cvpwnccbufs.lock);
  383. return -EINVAL;
  384. }
  385. found = true;
  386. break;
  387. }
  388. }
  389. mutex_unlock(&inst->cvpwnccbufs.lock);
  390. if (found) {
  391. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  392. return -EINVAL;
  393. }
  394. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  395. if (!dma_buf) {
  396. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  397. return -EINVAL;
  398. }
  399. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  400. if (!cbuf) {
  401. msm_cvp_smem_put_dma_buf(dma_buf);
  402. return -ENOMEM;
  403. }
  404. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  405. if (!smem) {
  406. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  407. msm_cvp_smem_put_dma_buf(dma_buf);
  408. return -ENOMEM;
  409. }
  410. smem->dma_buf = dma_buf;
  411. smem->bitmap_index = MAX_DMABUF_NUMS;
  412. smem->pkt_type = 0;
  413. smem->buf_idx = 0;
  414. smem->fd = buf->fd;
  415. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  416. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  417. if (rc) {
  418. dprintk(CVP_ERR, "%s: map failed", __func__);
  419. print_client_buffer(CVP_ERR, __func__, inst, buf);
  420. goto exit;
  421. }
  422. cbuf->smem = smem;
  423. cbuf->fd = buf->fd;
  424. cbuf->size = buf->size;
  425. cbuf->offset = buf->offset;
  426. cbuf->ownership = CLIENT;
  427. cbuf->index = buf->index;
  428. /* Added for PreSil/RUMI testing */
  429. #ifdef USE_PRESIL
  430. dprintk(CVP_DBG,
  431. "wncc buffer is %x for cam_presil_send_buffer"
  432. " with MAP_ADDR_OFFSET %x",
  433. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  434. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  435. (u32)cbuf->offset, (u32)cbuf->size,
  436. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  437. #endif
  438. mutex_lock(&inst->cvpwnccbufs.lock);
  439. if (inst->cvpwnccbufs_table == NULL) {
  440. inst->cvpwnccbufs_table =
  441. (struct msm_cvp_wncc_buffer*) kzalloc(
  442. sizeof(struct msm_cvp_wncc_buffer) *
  443. EVA_KMD_WNCC_MAX_SRC_BUFS,
  444. GFP_KERNEL);
  445. if (!inst->cvpwnccbufs_table) {
  446. mutex_unlock(&inst->cvpwnccbufs.lock);
  447. goto exit;
  448. }
  449. }
  450. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  451. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  452. {
  453. if (inst->cvpwnccbufs_table[i].iova == 0)
  454. {
  455. inst->cvpwnccbufs_num++;
  456. inst->cvpwnccbufs_table[i].fd = buf->fd;
  457. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  458. inst->cvpwnccbufs_table[i].size = smem->size;
  459. /* buf reserved[0] used to store wncc src buf id */
  460. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  461. /* cbuf ktid used to store wncc src buf id */
  462. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  463. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  464. __func__, inst->cvpwnccbufs_table[i].iova);
  465. break;
  466. }
  467. }
  468. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  469. dprintk(CVP_ERR,
  470. "%s: wncc buf table full - max (%u) already registered",
  471. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  472. /* _wncc_print_cvpwnccbufs_table(inst); */
  473. mutex_unlock(&inst->cvpwnccbufs.lock);
  474. rc = -EDQUOT;
  475. goto exit;
  476. }
  477. mutex_unlock(&inst->cvpwnccbufs.lock);
  478. return rc;
  479. exit:
  480. if (smem->device_addr)
  481. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  482. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  483. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  484. cbuf = NULL;
  485. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  486. smem = NULL;
  487. return rc;
  488. }
  489. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  490. struct eva_kmd_buffer *buf)
  491. {
  492. int rc = 0;
  493. bool found;
  494. struct cvp_internal_buf *cbuf;
  495. uint32_t buf_id, buf_idx;
  496. if (!inst || !inst->core || !buf) {
  497. dprintk(CVP_ERR, "%s: invalid params", __func__);
  498. return -EINVAL;
  499. }
  500. if (!inst->session) {
  501. dprintk(CVP_ERR, "%s: invalid session", __func__);
  502. return -EINVAL;
  503. }
  504. if (buf->index) {
  505. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  506. __func__, buf->fd);
  507. return -EINVAL;
  508. }
  509. buf_id = buf->reserved[0];
  510. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  511. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  512. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  513. __func__, buf->reserved[0]);
  514. return -EINVAL;
  515. }
  516. mutex_lock(&inst->cvpwnccbufs.lock);
  517. if (inst->cvpwnccbufs_num == 0) {
  518. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  519. mutex_unlock(&inst->cvpwnccbufs.lock);
  520. return -EINVAL;
  521. }
  522. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  523. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  524. dprintk(CVP_ERR, "%s: buffer id %d not found",
  525. __func__, buf_id);
  526. mutex_unlock(&inst->cvpwnccbufs.lock);
  527. return -EINVAL;
  528. }
  529. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  530. found = false;
  531. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  532. if (cbuf->fd == buf->fd) {
  533. found = true;
  534. break;
  535. }
  536. }
  537. if (!found) {
  538. dprintk(CVP_ERR, "%s: buffer id %d not found",
  539. __func__, buf_id);
  540. print_client_buffer(CVP_ERR, __func__, inst, buf);
  541. _wncc_print_cvpwnccbufs_table(inst);
  542. mutex_unlock(&inst->cvpwnccbufs.lock);
  543. return -EINVAL;
  544. }
  545. mutex_unlock(&inst->cvpwnccbufs.lock);
  546. if (cbuf->smem->device_addr) {
  547. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  548. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  549. }
  550. mutex_lock(&inst->cvpwnccbufs.lock);
  551. list_del(&cbuf->list);
  552. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  553. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  554. inst->cvpwnccbufs_table[buf_idx].size = 0;
  555. inst->cvpwnccbufs_num--;
  556. if (inst->cvpwnccbufs_num == 0) {
  557. kfree(inst->cvpwnccbufs_table);
  558. inst->cvpwnccbufs_table = NULL;
  559. }
  560. mutex_unlock(&inst->cvpwnccbufs.lock);
  561. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  562. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  563. return rc;
  564. }
  565. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  566. {
  567. u32 i, j;
  568. if (!wncc_oob) {
  569. dprintk(CVP_ERR, "%s: invalid params", __func__);
  570. return;
  571. }
  572. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  573. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  574. for (i = 0; i < wncc_oob->num_layers; i++) {
  575. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  576. __func__, i, wncc_oob->layers[i].num_addrs);
  577. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  578. dprintk(CVP_DBG,
  579. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  580. __func__, i, j,
  581. wncc_oob->layers[i].addrs[j].buffer_id,
  582. wncc_oob->layers[i].addrs[j].offset);
  583. }
  584. }
  585. }
  586. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  587. {
  588. u32 i, entries = 0;
  589. if (!inst) {
  590. dprintk(CVP_ERR, "%s: invalid params", __func__);
  591. return;
  592. }
  593. if (inst->cvpwnccbufs_num == 0) {
  594. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  595. __func__);
  596. return;
  597. }
  598. if (!inst->cvpwnccbufs_table) {
  599. dprintk(CVP_ERR, "%s: invalid params", __func__);
  600. return;
  601. }
  602. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  603. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  604. entries < inst->cvpwnccbufs_num; i++) {
  605. if (inst->cvpwnccbufs_table[i].iova != 0) {
  606. dprintk(CVP_DBG,
  607. "%s: buf_idx=%04d --> "
  608. "fd=%03d, iova=0x%08x, size=%d",
  609. __func__, i,
  610. inst->cvpwnccbufs_table[i].fd,
  611. inst->cvpwnccbufs_table[i].iova,
  612. inst->cvpwnccbufs_table[i].size);
  613. entries++;
  614. }
  615. }
  616. }
  617. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  618. struct eva_kmd_wncc_metadata** wncc_metadata)
  619. {
  620. u32 i, j, iova;
  621. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  622. !wncc_metadata) {
  623. dprintk(CVP_ERR, "%s: invalid params", __func__);
  624. return;
  625. }
  626. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  627. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  628. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  629. for (i = 0; i < num_layers; i++) {
  630. for (j = 0; j < num_addrs; j++) {
  631. iova = (wncc_metadata[i][j].iova_msb << 22) |
  632. wncc_metadata[i][j].iova_lsb;
  633. dprintk(CVP_DBG,
  634. "%s: wncc_metadata[%u][%u]: "
  635. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  636. __func__, i, j,
  637. wncc_metadata[i][j].loc_x_dec,
  638. wncc_metadata[i][j].loc_x_frac,
  639. wncc_metadata[i][j].loc_y_dec,
  640. wncc_metadata[i][j].loc_y_frac,
  641. iova,
  642. wncc_metadata[i][j].scale_idx,
  643. wncc_metadata[i][j].aff_coeff_3,
  644. wncc_metadata[i][j].aff_coeff_2,
  645. wncc_metadata[i][j].aff_coeff_1,
  646. wncc_metadata[i][j].aff_coeff_0);
  647. }
  648. }
  649. }
  650. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  651. struct eva_kmd_oob_wncc* wncc_oob)
  652. {
  653. int rc = 0;
  654. u32 oob_type;
  655. struct eva_kmd_oob_wncc* wncc_oob_u;
  656. struct eva_kmd_oob_wncc* wncc_oob_k;
  657. unsigned int i;
  658. u32 num_addrs;
  659. if (!in_pkt || !wncc_oob) {
  660. dprintk(CVP_ERR, "%s: invalid params", __func__);
  661. return -EINVAL;
  662. }
  663. if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
  664. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  665. return -EINVAL;
  666. }
  667. rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
  668. if (rc)
  669. return rc;
  670. if (oob_type != EVA_KMD_OOB_WNCC) {
  671. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  672. __func__, oob_type);
  673. return -EINVAL;
  674. }
  675. wncc_oob_u = &in_pkt->oob_buf->wncc;
  676. wncc_oob_k = wncc_oob;
  677. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  678. if (rc)
  679. return rc;
  680. if (wncc_oob_k->num_layers < 1 ||
  681. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  682. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  683. return -EINVAL;
  684. }
  685. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  686. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  687. &wncc_oob_u->layers[i].num_addrs);
  688. if (rc)
  689. break;
  690. num_addrs = wncc_oob_k->layers[i].num_addrs;
  691. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  692. dprintk(CVP_ERR,
  693. "%s: invalid wncc num addrs for layer %u",
  694. __func__, i);
  695. rc = -EINVAL;
  696. break;
  697. }
  698. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  699. wncc_oob_u->layers[i].addrs,
  700. wncc_oob_k->layers[i].num_addrs *
  701. sizeof(struct eva_kmd_wncc_addr));
  702. if (rc)
  703. break;
  704. }
  705. if (false)
  706. _wncc_print_oob(wncc_oob);
  707. return rc;
  708. }
  709. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  710. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  711. {
  712. int rc = 0, i;
  713. struct cvp_buf_type* wncc_metadata_bufs;
  714. struct dma_buf* dmabuf;
  715. struct eva_buf_map map;
  716. if (!in_pkt || !wncc_metadata ||
  717. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  718. dprintk(CVP_ERR, "%s: invalid params", __func__);
  719. return -EINVAL;
  720. }
  721. wncc_metadata_bufs = (struct cvp_buf_type*)
  722. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  723. for (i = 0; i < num_layers; i++) {
  724. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  725. if (IS_ERR(dmabuf)) {
  726. rc = PTR_ERR(dmabuf);
  727. dprintk(CVP_ERR,
  728. "%s: dma_buf_get() failed for "
  729. "wncc_metadata_bufs[%d], rc %d",
  730. __func__, i, rc);
  731. break;
  732. }
  733. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  734. if (rc) {
  735. dprintk(CVP_ERR,
  736. "%s: dma_buf_begin_cpu_access() failed "
  737. "for wncc_metadata_bufs[%d], rc %d",
  738. __func__, i, rc);
  739. dma_buf_put(dmabuf);
  740. break;
  741. }
  742. rc = dma_buf_vmap(dmabuf, &map);
  743. if (rc) {
  744. dprintk(CVP_ERR,
  745. "%s: dma_buf_vmap() failed for "
  746. "wncc_metadata_bufs[%d]",
  747. __func__, i);
  748. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  749. dma_buf_put(dmabuf);
  750. break;
  751. }
  752. dprintk(CVP_DBG,
  753. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  754. __func__, i, map.is_iomem);
  755. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  756. dma_buf_put(dmabuf);
  757. }
  758. if (rc)
  759. _wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
  760. return rc;
  761. }
  762. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  763. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  764. {
  765. int rc = 0, i;
  766. struct cvp_buf_type* wncc_metadata_bufs;
  767. struct dma_buf* dmabuf;
  768. struct eva_buf_map map;
  769. if (!in_pkt || !wncc_metadata ||
  770. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  771. dprintk(CVP_ERR, "%s: invalid params", __func__);
  772. return -EINVAL;
  773. }
  774. wncc_metadata_bufs = (struct cvp_buf_type*)
  775. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  776. for (i = 0; i < num_layers; i++) {
  777. if (!wncc_metadata[i]) {
  778. rc = -EINVAL;
  779. break;
  780. }
  781. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  782. if (IS_ERR(dmabuf)) {
  783. rc = -PTR_ERR(dmabuf);
  784. dprintk(CVP_ERR,
  785. "%s: dma_buf_get() failed for "
  786. "wncc_metadata_bufs[%d], rc %d",
  787. __func__, i, rc);
  788. break;
  789. }
  790. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  791. dma_buf_vunmap(dmabuf, &map);
  792. wncc_metadata[i] = NULL;
  793. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  794. dma_buf_put(dmabuf);
  795. if (rc) {
  796. dprintk(CVP_ERR,
  797. "%s: dma_buf_end_cpu_access() failed "
  798. "for wncc_metadata_bufs[%d], rc %d",
  799. __func__, i, rc);
  800. break;
  801. }
  802. }
  803. return rc;
  804. }
  805. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  806. struct eva_kmd_hfi_packet* in_pkt)
  807. {
  808. int rc = 0;
  809. struct eva_kmd_oob_wncc* wncc_oob;
  810. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  811. unsigned int i, j;
  812. bool empty = false;
  813. u32 buf_id, buf_idx, buf_offset, iova;
  814. if (!inst || !inst->core || !in_pkt) {
  815. dprintk(CVP_ERR, "%s: invalid params", __func__);
  816. return -EINVAL;
  817. }
  818. wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
  819. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  820. if (!wncc_oob)
  821. return -ENOMEM;
  822. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  823. if (rc) {
  824. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  825. goto exit;
  826. }
  827. rc = _wncc_map_metadata_bufs(in_pkt,
  828. wncc_oob->num_layers, wncc_metadata);
  829. if (rc) {
  830. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  831. __func__);
  832. goto exit;
  833. }
  834. mutex_lock(&inst->cvpwnccbufs.lock);
  835. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  836. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  837. empty = true;
  838. rc = -EINVAL;
  839. }
  840. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  841. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  842. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  843. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  844. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  845. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  846. dprintk(CVP_ERR,
  847. "%s: invalid wncc buf id %u "
  848. "in layer #%u address #%u",
  849. __func__, buf_id, i, j);
  850. rc = -EINVAL;
  851. break;
  852. }
  853. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  854. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  855. dprintk(CVP_ERR,
  856. "%s: unmapped wncc buf id %u "
  857. "in layer #%u address #%u",
  858. __func__, buf_id, i, j);
  859. /* _wncc_print_cvpwnccbufs_table(inst); */
  860. rc = -EINVAL;
  861. break;
  862. }
  863. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  864. if (buf_offset >=
  865. inst->cvpwnccbufs_table[buf_idx].size) {
  866. /* NOTE: This buffer offset validation is
  867. * not comprehensive since wncc src image
  868. * resolution information is not known to
  869. * KMD. UMD is responsible for comprehensive
  870. * validation.
  871. */
  872. dprintk(CVP_ERR,
  873. "%s: invalid wncc buf offset %u "
  874. "in layer #%u address #%u",
  875. __func__, buf_offset, i, j);
  876. rc = -EINVAL;
  877. break;
  878. }
  879. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  880. buf_offset;
  881. wncc_metadata[i][j].iova_lsb = iova;
  882. wncc_metadata[i][j].iova_msb = iova >> 22;
  883. }
  884. }
  885. mutex_unlock(&inst->cvpwnccbufs.lock);
  886. if (false)
  887. _wncc_print_metadata_buf(wncc_oob->num_layers,
  888. wncc_oob->layers[0].num_addrs, wncc_metadata);
  889. if (_wncc_unmap_metadata_bufs(in_pkt,
  890. wncc_oob->num_layers, wncc_metadata)) {
  891. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  892. __func__);
  893. }
  894. exit:
  895. kfree(wncc_oob);
  896. return rc;
  897. }
  898. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  899. struct eva_kmd_hfi_packet* in_pkt)
  900. {
  901. int rc = 0;
  902. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  903. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  904. if (!inst || !inst->core || !in_pkt) {
  905. dprintk(CVP_ERR, "%s: invalid params", __func__);
  906. return -EINVAL;
  907. }
  908. switch (cmd_hdr->packet_type) {
  909. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  910. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  911. break;
  912. default:
  913. break;
  914. }
  915. return rc;
  916. }
  917. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  918. u32 offset, u32 size)
  919. {
  920. enum smem_cache_ops cache_op;
  921. if (msm_cvp_cacheop_disabled)
  922. return;
  923. if (!smem) {
  924. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  925. return;
  926. }
  927. switch (type) {
  928. case EVA_KMD_BUFTYPE_INPUT:
  929. cache_op = SMEM_CACHE_CLEAN;
  930. break;
  931. case EVA_KMD_BUFTYPE_OUTPUT:
  932. cache_op = SMEM_CACHE_INVALIDATE;
  933. break;
  934. default:
  935. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  936. }
  937. dprintk(CVP_MEM,
  938. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  939. __func__, smem->dma_buf, cache_op, offset, size);
  940. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  941. }
  942. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  943. struct dma_buf *dma_buf,
  944. u32 pkt_type)
  945. {
  946. struct msm_cvp_smem *smem;
  947. struct msm_cvp_frame *frame;
  948. struct cvp_internal_buf *buf;
  949. int i;
  950. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  951. return NULL;
  952. mutex_lock(&inst->dma_cache.lock);
  953. for (i = 0; i < inst->dma_cache.nr; i++)
  954. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  955. SET_USE_BITMAP(i, inst);
  956. smem = inst->dma_cache.entries[i];
  957. smem->bitmap_index = i;
  958. smem->pkt_type = pkt_type;
  959. atomic_inc(&smem->refcount);
  960. /*
  961. * If we find it, it means we already increased
  962. * refcount before, so we put it to avoid double
  963. * incremental.
  964. */
  965. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  966. mutex_unlock(&inst->dma_cache.lock);
  967. print_smem(CVP_MEM, "found in cache", inst, smem);
  968. return smem;
  969. }
  970. mutex_unlock(&inst->dma_cache.lock);
  971. /* earch persist list */
  972. mutex_lock(&inst->persistbufs.lock);
  973. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  974. smem = buf->smem;
  975. if (smem && smem->dma_buf == dma_buf) {
  976. atomic_inc(&smem->refcount);
  977. mutex_unlock(&inst->persistbufs.lock);
  978. print_smem(CVP_MEM, "found in persist", inst, smem);
  979. return smem;
  980. }
  981. }
  982. mutex_unlock(&inst->persistbufs.lock);
  983. /* Search frame list */
  984. mutex_lock(&inst->frames.lock);
  985. list_for_each_entry(frame, &inst->frames.list, list) {
  986. for (i = 0; i < frame->nr; i++) {
  987. smem = frame->bufs[i].smem;
  988. if (smem && smem->dma_buf == dma_buf) {
  989. atomic_inc(&smem->refcount);
  990. mutex_unlock(&inst->frames.lock);
  991. print_smem(CVP_MEM, "found in frame",
  992. inst, smem);
  993. return smem;
  994. }
  995. }
  996. }
  997. mutex_unlock(&inst->frames.lock);
  998. return NULL;
  999. }
  1000. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1001. struct msm_cvp_smem *smem)
  1002. {
  1003. unsigned int i;
  1004. struct msm_cvp_smem *smem2;
  1005. mutex_lock(&inst->dma_cache.lock);
  1006. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1007. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1008. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1009. smem->bitmap_index = inst->dma_cache.nr;
  1010. inst->dma_cache.nr++;
  1011. i = smem->bitmap_index;
  1012. } else {
  1013. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1014. MAX_DMABUF_NUMS);
  1015. if (i < MAX_DMABUF_NUMS) {
  1016. smem2 = inst->dma_cache.entries[i];
  1017. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1018. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1019. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1020. inst->dma_cache.entries[i] = smem;
  1021. smem->bitmap_index = i;
  1022. SET_USE_BITMAP(i, inst);
  1023. } else {
  1024. dprintk(CVP_WARN,
  1025. "%s: reached limit, fallback to buf mapping list\n"
  1026. , __func__);
  1027. atomic_inc(&smem->refcount);
  1028. mutex_unlock(&inst->dma_cache.lock);
  1029. return -ENOMEM;
  1030. }
  1031. }
  1032. atomic_inc(&smem->refcount);
  1033. mutex_unlock(&inst->dma_cache.lock);
  1034. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1035. return 0;
  1036. }
  1037. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1038. struct cvp_buf_type *buf,
  1039. bool is_persist,
  1040. u32 pkt_type)
  1041. {
  1042. int rc = 0, found = 1;
  1043. struct msm_cvp_smem *smem = NULL;
  1044. struct dma_buf *dma_buf = NULL;
  1045. if (buf->fd < 0) {
  1046. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1047. return NULL;
  1048. }
  1049. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1050. if (!dma_buf) {
  1051. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1052. return NULL;
  1053. }
  1054. if (is_persist) {
  1055. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1056. if (!smem)
  1057. return NULL;
  1058. smem->dma_buf = dma_buf;
  1059. smem->bitmap_index = MAX_DMABUF_NUMS;
  1060. smem->pkt_type = pkt_type;
  1061. smem->flags |= SMEM_PERSIST;
  1062. smem->fd = buf->fd;
  1063. atomic_inc(&smem->refcount);
  1064. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1065. if (rc)
  1066. goto exit;
  1067. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1068. dprintk(CVP_ERR,
  1069. "%s: invalid offset %d or size %d persist\n",
  1070. __func__, buf->offset, buf->size);
  1071. goto exit2;
  1072. }
  1073. return smem;
  1074. }
  1075. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1076. if (!smem) {
  1077. found = 0;
  1078. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1079. if (!smem)
  1080. return NULL;
  1081. smem->dma_buf = dma_buf;
  1082. smem->bitmap_index = MAX_DMABUF_NUMS;
  1083. smem->pkt_type = pkt_type;
  1084. smem->fd = buf->fd;
  1085. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1086. if (rc)
  1087. goto exit;
  1088. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1089. dprintk(CVP_ERR,
  1090. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1091. __func__, buf->offset, buf->size, buf->fd,
  1092. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1093. goto exit2;
  1094. }
  1095. rc = msm_cvp_session_add_smem(inst, smem);
  1096. if (rc && rc != -ENOMEM)
  1097. goto exit2;
  1098. return smem;
  1099. }
  1100. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1101. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1102. __func__, buf->offset, buf->size);
  1103. if (found) {
  1104. mutex_lock(&inst->dma_cache.lock);
  1105. atomic_dec(&smem->refcount);
  1106. mutex_unlock(&inst->dma_cache.lock);
  1107. return NULL;
  1108. }
  1109. goto exit2;
  1110. }
  1111. return smem;
  1112. exit2:
  1113. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1114. exit:
  1115. msm_cvp_smem_put_dma_buf(dma_buf);
  1116. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1117. smem = NULL;
  1118. return smem;
  1119. }
  1120. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1121. struct cvp_buf_type *buf,
  1122. u32 pkt_type, u32 buf_idx)
  1123. {
  1124. u32 iova = 0;
  1125. struct msm_cvp_smem *smem = NULL;
  1126. struct list_head *ptr, *next;
  1127. struct cvp_internal_buf *pbuf;
  1128. struct dma_buf *dma_buf;
  1129. if (!inst) {
  1130. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1131. return -EINVAL;
  1132. }
  1133. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1134. if (!dma_buf)
  1135. return -EINVAL;
  1136. mutex_lock(&inst->persistbufs.lock);
  1137. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1138. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1139. if (dma_buf == pbuf->smem->dma_buf) {
  1140. pbuf->size =
  1141. (pbuf->size >= buf->size) ?
  1142. pbuf->size : buf->size;
  1143. iova = pbuf->smem->device_addr + buf->offset;
  1144. mutex_unlock(&inst->persistbufs.lock);
  1145. atomic_inc(&pbuf->smem->refcount);
  1146. dma_buf_put(dma_buf);
  1147. dprintk(CVP_MEM,
  1148. "map persist Reuse fd %d, dma_buf %#llx\n",
  1149. pbuf->fd, pbuf->smem->dma_buf);
  1150. return iova;
  1151. }
  1152. }
  1153. mutex_unlock(&inst->persistbufs.lock);
  1154. dma_buf_put(dma_buf);
  1155. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1156. if (!pbuf) {
  1157. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1158. __func__);
  1159. return 0;
  1160. }
  1161. if (is_params_pkt(pkt_type))
  1162. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1163. else
  1164. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1165. if (!smem)
  1166. goto exit;
  1167. smem->pkt_type = pkt_type;
  1168. smem->buf_idx = buf_idx;
  1169. smem->fd = buf->fd;
  1170. pbuf->smem = smem;
  1171. pbuf->fd = buf->fd;
  1172. pbuf->size = buf->size;
  1173. pbuf->offset = buf->offset;
  1174. pbuf->ownership = CLIENT;
  1175. mutex_lock(&inst->persistbufs.lock);
  1176. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1177. mutex_unlock(&inst->persistbufs.lock);
  1178. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1179. iova = smem->device_addr + buf->offset;
  1180. return iova;
  1181. exit:
  1182. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1183. return 0;
  1184. }
  1185. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1186. struct cvp_buf_type *buf,
  1187. struct msm_cvp_frame *frame,
  1188. u32 pkt_type, u32 buf_idx)
  1189. {
  1190. u32 iova = 0;
  1191. struct msm_cvp_smem *smem = NULL;
  1192. u32 nr;
  1193. u32 type;
  1194. if (!inst || !frame) {
  1195. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1196. return 0;
  1197. }
  1198. nr = frame->nr;
  1199. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1200. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1201. return 0;
  1202. }
  1203. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1204. if (!smem)
  1205. return 0;
  1206. smem->buf_idx = buf_idx;
  1207. frame->bufs[nr].fd = buf->fd;
  1208. frame->bufs[nr].smem = smem;
  1209. frame->bufs[nr].size = buf->size;
  1210. frame->bufs[nr].offset = buf->offset;
  1211. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1212. frame->nr++;
  1213. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1214. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1215. iova = smem->device_addr + buf->offset;
  1216. return iova;
  1217. }
  1218. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1219. struct msm_cvp_frame *frame)
  1220. {
  1221. u32 i;
  1222. u32 type;
  1223. struct msm_cvp_smem *smem = NULL;
  1224. struct cvp_internal_buf *buf;
  1225. type = EVA_KMD_BUFTYPE_OUTPUT;
  1226. for (i = 0; i < frame->nr; ++i) {
  1227. buf = &frame->bufs[i];
  1228. smem = buf->smem;
  1229. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1230. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1231. /* smem not in dmamap cache */
  1232. if (atomic_dec_and_test(&smem->refcount)) {
  1233. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1234. dma_heap_buffer_free(smem->dma_buf);
  1235. smem->buf_idx |= 0xdead0000;
  1236. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1237. buf->smem = NULL;
  1238. }
  1239. } else {
  1240. mutex_lock(&inst->dma_cache.lock);
  1241. if (atomic_dec_and_test(&smem->refcount)) {
  1242. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1243. print_smem(CVP_MEM, "Map dereference",
  1244. inst, smem);
  1245. smem->buf_idx |= 0x10000000;
  1246. }
  1247. mutex_unlock(&inst->dma_cache.lock);
  1248. }
  1249. }
  1250. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1251. }
  1252. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1253. {
  1254. struct msm_cvp_frame *frame, *dummy1;
  1255. bool found;
  1256. if (!inst) {
  1257. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1258. return;
  1259. }
  1260. ktid &= (FENCE_BIT - 1);
  1261. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1262. __func__, hash32_ptr(inst->session), ktid);
  1263. found = false;
  1264. mutex_lock(&inst->frames.lock);
  1265. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1266. if (frame->ktid == ktid) {
  1267. found = true;
  1268. list_del(&frame->list);
  1269. break;
  1270. }
  1271. }
  1272. mutex_unlock(&inst->frames.lock);
  1273. if (found)
  1274. msm_cvp_unmap_frame_buf(inst, frame);
  1275. else
  1276. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1277. }
  1278. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1279. struct eva_kmd_hfi_packet *in_pkt,
  1280. unsigned int offset, unsigned int buf_num)
  1281. {
  1282. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1283. return 0;
  1284. }
  1285. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1286. struct eva_kmd_hfi_packet *in_pkt,
  1287. unsigned int offset, unsigned int buf_num)
  1288. {
  1289. struct cvp_buf_type *buf;
  1290. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1291. int i;
  1292. u32 iova;
  1293. if (!offset || !buf_num)
  1294. return 0;
  1295. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1296. for (i = 0; i < buf_num; i++) {
  1297. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1298. offset += sizeof(*buf) >> 2;
  1299. if (buf->fd < 0 || !buf->size)
  1300. continue;
  1301. iova = msm_cvp_map_user_persist_buf(inst, buf,
  1302. cmd_hdr->packet_type, i);
  1303. if (!iova) {
  1304. dprintk(CVP_ERR,
  1305. "%s: buf %d register failed.\n",
  1306. __func__, i);
  1307. return -EINVAL;
  1308. }
  1309. buf->fd = iova;
  1310. }
  1311. return 0;
  1312. }
  1313. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1314. struct eva_kmd_hfi_packet *in_pkt,
  1315. unsigned int offset, unsigned int buf_num)
  1316. {
  1317. struct cvp_buf_type *buf;
  1318. int i;
  1319. u32 iova;
  1320. u64 ktid;
  1321. struct msm_cvp_frame *frame;
  1322. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1323. struct msm_cvp_inst *instance;
  1324. struct msm_cvp_core *core = NULL;
  1325. core = get_cvp_core(MSM_CORE_CVP);
  1326. if (!core)
  1327. return -EINVAL;
  1328. if (!offset || !buf_num)
  1329. return 0;
  1330. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1331. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1332. ktid &= (FENCE_BIT - 1);
  1333. cmd_hdr->client_data.kdata = ktid;
  1334. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1335. if (!frame)
  1336. return -ENOMEM;
  1337. frame->ktid = ktid;
  1338. frame->nr = 0;
  1339. frame->pkt_type = cmd_hdr->packet_type;
  1340. for (i = 0; i < buf_num; i++) {
  1341. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1342. offset += sizeof(*buf) >> 2;
  1343. if (buf->fd < 0 || !buf->size) {
  1344. buf->fd = 0;
  1345. buf->size = 0;
  1346. continue;
  1347. }
  1348. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1349. if (!iova) {
  1350. dprintk(CVP_ERR,
  1351. "%s: buf %d register failed.\n",
  1352. __func__, i);
  1353. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1354. mutex_lock(&core->lock);
  1355. list_for_each_entry(instance, &core->instances, list) {
  1356. msm_cvp_print_inst_bufs(instance, false);
  1357. }
  1358. mutex_unlock(&core->lock);
  1359. msm_cvp_unmap_frame_buf(inst, frame);
  1360. return -EINVAL;
  1361. }
  1362. buf->fd = iova;
  1363. }
  1364. mutex_lock(&inst->frames.lock);
  1365. list_add_tail(&frame->list, &inst->frames.list);
  1366. mutex_unlock(&inst->frames.lock);
  1367. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1368. return 0;
  1369. }
  1370. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1371. {
  1372. int rc = 0, i;
  1373. struct cvp_internal_buf *cbuf, *dummy;
  1374. struct msm_cvp_frame *frame, *dummy1;
  1375. struct msm_cvp_smem *smem;
  1376. struct cvp_hal_session *session;
  1377. struct eva_kmd_buffer buf;
  1378. struct list_head *ptr, *next;
  1379. session = (struct cvp_hal_session *)inst->session;
  1380. mutex_lock(&inst->frames.lock);
  1381. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1382. list_del(&frame->list);
  1383. msm_cvp_unmap_frame_buf(inst, frame);
  1384. }
  1385. mutex_unlock(&inst->frames.lock);
  1386. mutex_lock(&inst->persistbufs.lock);
  1387. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1388. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1389. smem = cbuf->smem;
  1390. if (!smem) {
  1391. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1392. mutex_unlock(&inst->persistbufs.lock);
  1393. return -EINVAL;
  1394. }
  1395. if (cbuf->ownership != DRIVER) {
  1396. dprintk(CVP_MEM,
  1397. "%s: %x : fd %d %pK size %d",
  1398. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1399. smem->dma_buf, cbuf->size);
  1400. list_del(&cbuf->list);
  1401. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1402. /*
  1403. * don't care refcount, has to remove mapping
  1404. * this is user persistent buffer
  1405. */
  1406. if (smem->device_addr) {
  1407. msm_cvp_unmap_smem(inst, smem,
  1408. "unmap persist");
  1409. msm_cvp_smem_put_dma_buf(
  1410. cbuf->smem->dma_buf);
  1411. smem->device_addr = 0;
  1412. }
  1413. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1414. cbuf->smem = NULL;
  1415. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1416. } else {
  1417. /*
  1418. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1419. * Leave dma_cache cleanup to unmap
  1420. */
  1421. cbuf->smem = NULL;
  1422. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1423. }
  1424. }
  1425. }
  1426. mutex_unlock(&inst->persistbufs.lock);
  1427. mutex_lock(&inst->dma_cache.lock);
  1428. for (i = 0; i < inst->dma_cache.nr; i++) {
  1429. smem = inst->dma_cache.entries[i];
  1430. if (atomic_read(&smem->refcount) == 0) {
  1431. print_smem(CVP_MEM, "free", inst, smem);
  1432. } else if (!(smem->flags & SMEM_PERSIST)) {
  1433. print_smem(CVP_WARN, "in use", inst, smem);
  1434. }
  1435. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1436. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1437. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1438. inst->dma_cache.entries[i] = NULL;
  1439. }
  1440. mutex_unlock(&inst->dma_cache.lock);
  1441. mutex_lock(&inst->cvpdspbufs.lock);
  1442. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1443. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1444. if (cbuf->ownership == CLIENT) {
  1445. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1446. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1447. cbuf->offset, cbuf->index,
  1448. (uint32_t)cbuf->smem->device_addr);
  1449. if (rc)
  1450. dprintk(CVP_ERR,
  1451. "%s: failed dsp deregistration fd=%d rc=%d",
  1452. __func__, cbuf->fd, rc);
  1453. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1454. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1455. } else if (cbuf->ownership == DSP) {
  1456. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1457. if (rc)
  1458. dprintk(CVP_ERR,
  1459. "%s: failed to unmap buf from DSP\n",
  1460. __func__);
  1461. rc = cvp_release_dsp_buffers(inst, cbuf);
  1462. if (rc)
  1463. dprintk(CVP_ERR,
  1464. "%s Fail to free buffer 0x%x\n",
  1465. __func__, rc);
  1466. }
  1467. list_del(&cbuf->list);
  1468. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1469. }
  1470. mutex_unlock(&inst->cvpdspbufs.lock);
  1471. mutex_lock(&inst->cvpwnccbufs.lock);
  1472. if (inst->cvpwnccbufs_num != 0)
  1473. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1474. __func__, inst->cvpwnccbufs_num);
  1475. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1476. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1477. buf.fd = cbuf->fd;
  1478. buf.reserved[0] = cbuf->ktid;
  1479. mutex_unlock(&inst->cvpwnccbufs.lock);
  1480. msm_cvp_unmap_buf_wncc(inst, &buf);
  1481. mutex_lock(&inst->cvpwnccbufs.lock);
  1482. }
  1483. mutex_unlock(&inst->cvpwnccbufs.lock);
  1484. return rc;
  1485. }
  1486. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1487. {
  1488. struct cvp_internal_buf *buf;
  1489. struct msm_cvp_frame *frame;
  1490. struct msm_cvp_core *core;
  1491. struct inst_snapshot *snap = NULL;
  1492. int i = 0, c = 0;
  1493. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1494. if (log && core->log.snapshot_index < 16) {
  1495. snap = &core->log.snapshot[core->log.snapshot_index];
  1496. snap->session = inst->session;
  1497. core->log.snapshot_index++;
  1498. }
  1499. if (!inst) {
  1500. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1501. __func__, inst);
  1502. return;
  1503. }
  1504. dprintk(CVP_ERR,
  1505. "---Buffer details for inst: %pK %s of type: %d---\n",
  1506. inst, inst->proc_name, inst->session_type);
  1507. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1508. mutex_lock(&inst->dma_cache.lock);
  1509. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1510. for (i = 0; i < inst->dma_cache.nr; i++)
  1511. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1512. mutex_unlock(&inst->dma_cache.lock);
  1513. i = 0;
  1514. dprintk(CVP_ERR, "frame buffer list\n");
  1515. mutex_lock(&inst->frames.lock);
  1516. list_for_each_entry(frame, &inst->frames.list, list) {
  1517. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n", i++, frame->ktid);
  1518. for (c = 0; c < frame->nr; c++)
  1519. _log_smem(snap, inst, frame->bufs[c].smem, log);
  1520. }
  1521. mutex_unlock(&inst->frames.lock);
  1522. mutex_lock(&inst->cvpdspbufs.lock);
  1523. dprintk(CVP_ERR, "dsp buffer list:\n");
  1524. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1525. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1526. mutex_unlock(&inst->cvpdspbufs.lock);
  1527. mutex_lock(&inst->cvpwnccbufs.lock);
  1528. dprintk(CVP_ERR, "wncc buffer list:\n");
  1529. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1530. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1531. mutex_unlock(&inst->cvpwnccbufs.lock);
  1532. mutex_lock(&inst->persistbufs.lock);
  1533. dprintk(CVP_ERR, "persist buffer list:\n");
  1534. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1535. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1536. mutex_unlock(&inst->persistbufs.lock);
  1537. }
  1538. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1539. u32 buffer_size)
  1540. {
  1541. struct cvp_internal_buf *buf;
  1542. struct msm_cvp_list *buf_list;
  1543. u32 smem_flags = SMEM_UNCACHED;
  1544. int rc = 0;
  1545. if (!inst) {
  1546. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1547. return NULL;
  1548. }
  1549. buf_list = &inst->persistbufs;
  1550. if (!buffer_size)
  1551. return NULL;
  1552. /* PERSIST buffer requires secure mapping
  1553. * Disable and wait for hyp_assign available
  1554. */
  1555. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1556. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1557. if (!buf) {
  1558. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1559. goto fail_kzalloc;
  1560. }
  1561. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1562. if (!buf->smem) {
  1563. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1564. goto fail_kzalloc;
  1565. }
  1566. buf->smem->flags = smem_flags;
  1567. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1568. &(inst->core->resources), buf->smem);
  1569. if (rc) {
  1570. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1571. goto err_no_mem;
  1572. }
  1573. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1574. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1575. atomic_inc(&buf->smem->refcount);
  1576. buf->size = buf->smem->size;
  1577. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1578. buf->ownership = DRIVER;
  1579. mutex_lock(&buf_list->lock);
  1580. list_add_tail(&buf->list, &buf_list->list);
  1581. mutex_unlock(&buf_list->lock);
  1582. return buf;
  1583. err_no_mem:
  1584. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1585. fail_kzalloc:
  1586. return NULL;
  1587. }
  1588. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1589. {
  1590. struct msm_cvp_smem *smem;
  1591. struct list_head *ptr, *next;
  1592. struct cvp_internal_buf *buf;
  1593. int rc = 0;
  1594. struct msm_cvp_core *core;
  1595. struct cvp_hfi_device *hdev;
  1596. if (!inst) {
  1597. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1598. return -EINVAL;
  1599. }
  1600. core = inst->core;
  1601. if (!core) {
  1602. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1603. return -EINVAL;
  1604. }
  1605. hdev = core->device;
  1606. if (!hdev) {
  1607. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1608. return -EINVAL;
  1609. }
  1610. dprintk(CVP_MEM, "release persist buffer!\n");
  1611. mutex_lock(&inst->persistbufs.lock);
  1612. /* Workaround for FW: release buffer means release all */
  1613. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1614. rc = call_hfi_op(hdev, session_release_buffers,
  1615. (void *)inst->session);
  1616. if (!rc) {
  1617. mutex_unlock(&inst->persistbufs.lock);
  1618. rc = wait_for_sess_signal_receipt(inst,
  1619. HAL_SESSION_RELEASE_BUFFER_DONE);
  1620. if (rc)
  1621. dprintk(CVP_WARN,
  1622. "%s: wait for signal failed, rc %d\n",
  1623. __func__, rc);
  1624. mutex_lock(&inst->persistbufs.lock);
  1625. } else {
  1626. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  1627. }
  1628. }
  1629. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1630. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1631. smem = buf->smem;
  1632. if (!smem) {
  1633. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1634. mutex_unlock(&inst->persistbufs.lock);
  1635. return -EINVAL;
  1636. }
  1637. if (buf->ownership == DRIVER) {
  1638. dprintk(CVP_MEM,
  1639. "%s: %x : fd %d %pK size %d",
  1640. "free arp", hash32_ptr(inst->session), buf->fd,
  1641. smem->dma_buf, buf->size);
  1642. list_del(&buf->list);
  1643. atomic_dec(&smem->refcount);
  1644. msm_cvp_smem_free(smem);
  1645. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1646. buf->smem = NULL;
  1647. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1648. }
  1649. }
  1650. mutex_unlock(&inst->persistbufs.lock);
  1651. return rc;
  1652. }
  1653. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1654. struct cvp_internal_buf *buf,
  1655. u32 buffer_size,
  1656. u32 secure_type)
  1657. {
  1658. u32 smem_flags = SMEM_UNCACHED;
  1659. int rc = 0;
  1660. if (!inst) {
  1661. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1662. return -EINVAL;
  1663. }
  1664. if (!buf)
  1665. return -EINVAL;
  1666. if (!buffer_size)
  1667. return -EINVAL;
  1668. switch (secure_type) {
  1669. case 0:
  1670. break;
  1671. case 1:
  1672. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1673. break;
  1674. case 2:
  1675. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1676. break;
  1677. default:
  1678. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1679. __func__, secure_type);
  1680. return -EINVAL;
  1681. }
  1682. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1683. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1684. if (!buf->smem) {
  1685. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1686. goto fail_kzalloc_smem_cache;
  1687. }
  1688. buf->smem->flags = smem_flags;
  1689. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1690. &(inst->core->resources), buf->smem);
  1691. if (rc) {
  1692. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1693. goto err_no_mem;
  1694. }
  1695. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1696. atomic_inc(&buf->smem->refcount);
  1697. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1698. buf->size = buf->smem->size;
  1699. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1700. buf->ownership = DSP;
  1701. return rc;
  1702. err_no_mem:
  1703. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1704. fail_kzalloc_smem_cache:
  1705. return rc;
  1706. }
  1707. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1708. struct cvp_internal_buf *buf)
  1709. {
  1710. struct msm_cvp_smem *smem;
  1711. int rc = 0;
  1712. if (!inst) {
  1713. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1714. return -EINVAL;
  1715. }
  1716. if (!buf) {
  1717. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1718. return -EINVAL;
  1719. }
  1720. smem = buf->smem;
  1721. if (!smem) {
  1722. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1723. return -EINVAL;
  1724. }
  1725. if (buf->ownership == DSP) {
  1726. dprintk(CVP_MEM,
  1727. "%s: %x : fd %x %s size %d",
  1728. __func__, hash32_ptr(inst->session), buf->fd,
  1729. smem->dma_buf->name, buf->size);
  1730. atomic_dec(&smem->refcount);
  1731. msm_cvp_smem_free(smem);
  1732. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1733. } else {
  1734. dprintk(CVP_ERR,
  1735. "%s: wrong owner %d %x : fd %x %s size %d",
  1736. __func__, buf->ownership, hash32_ptr(inst->session),
  1737. buf->fd, smem->dma_buf->name, buf->size);
  1738. }
  1739. return rc;
  1740. }
  1741. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1742. struct eva_kmd_buffer *buf)
  1743. {
  1744. struct cvp_hfi_device *hdev;
  1745. struct cvp_hal_session *session;
  1746. struct msm_cvp_inst *s;
  1747. int rc = 0;
  1748. if (!inst || !inst->core || !buf) {
  1749. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1750. return -EINVAL;
  1751. }
  1752. s = cvp_get_inst_validate(inst->core, inst);
  1753. if (!s)
  1754. return -ECONNRESET;
  1755. session = (struct cvp_hal_session *)inst->session;
  1756. if (!session) {
  1757. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1758. rc = -EINVAL;
  1759. goto exit;
  1760. }
  1761. hdev = inst->core->device;
  1762. print_client_buffer(CVP_HFI, "register", inst, buf);
  1763. if (buf->index)
  1764. rc = msm_cvp_map_buf_dsp(inst, buf);
  1765. else
  1766. rc = msm_cvp_map_buf_wncc(inst, buf);
  1767. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1768. buf->fd, buf->reserved[0]);
  1769. exit:
  1770. cvp_put_inst(s);
  1771. return rc;
  1772. }
  1773. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1774. struct eva_kmd_buffer *buf)
  1775. {
  1776. struct msm_cvp_inst *s;
  1777. int rc = 0;
  1778. if (!inst || !inst->core || !buf) {
  1779. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1780. return -EINVAL;
  1781. }
  1782. s = cvp_get_inst_validate(inst->core, inst);
  1783. if (!s)
  1784. return -ECONNRESET;
  1785. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1786. if (buf->index)
  1787. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1788. else
  1789. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1790. cvp_put_inst(s);
  1791. return rc;
  1792. }