adreno_gen8_hwsched_hfi.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <dt-bindings/soc/qcom,ipcc.h>
  7. #include <linux/dma-fence-array.h>
  8. #include <linux/iommu.h>
  9. #include <linux/sched/clock.h>
  10. #include <soc/qcom/msm_performance.h>
  11. #include "adreno.h"
  12. #include "adreno_gen8.h"
  13. #include "adreno_gen8_hwsched.h"
  14. #include "adreno_hfi.h"
  15. #include "adreno_pm4types.h"
  16. #include "adreno_trace.h"
  17. #include "kgsl_device.h"
  18. #include "kgsl_eventlog.h"
  19. #include "kgsl_pwrctrl.h"
  20. #include "kgsl_trace.h"
  21. #include "kgsl_util.h"
  22. #if (KERNEL_VERSION(6, 3, 0) <= LINUX_VERSION_CODE)
  23. #include <msm_hw_fence.h>
  24. #else
  25. #include <linux/soc/qcom/msm_hw_fence.h>
  26. #endif
  27. #define HFI_QUEUE_MAX (HFI_QUEUE_DEFAULT_CNT + HFI_QUEUE_DISPATCH_MAX_CNT)
  28. #define DEFINE_QHDR(gmuaddr, id, prio) \
  29. {\
  30. .status = 1, \
  31. .start_addr = GMU_QUEUE_START_ADDR(gmuaddr, id), \
  32. .type = QUEUE_HDR_TYPE(id, prio, 0, 0), \
  33. .queue_size = SZ_4K >> 2, \
  34. .msg_size = 0, \
  35. .unused0 = 0, \
  36. .unused1 = 0, \
  37. .unused2 = 0, \
  38. .unused3 = 0, \
  39. .unused4 = 0, \
  40. .read_index = 0, \
  41. .write_index = 0, \
  42. }
  43. static struct dq_info {
  44. /** @max_dq: Maximum number of dispatch queues per RB level */
  45. u32 max_dq;
  46. /** @base_dq_id: Base dqid for level */
  47. u32 base_dq_id;
  48. /** @offset: Next dqid to use for roundrobin context assignment */
  49. u32 offset;
  50. } gen8_hfi_dqs[KGSL_PRIORITY_MAX_RB_LEVELS] = {
  51. { 4, 0, }, /* RB0 */
  52. { 4, 4, }, /* RB1 */
  53. { 3, 8, }, /* RB2 */
  54. { 3, 11, }, /* RB3 */
  55. }, gen8_hfi_dqs_lpac[KGSL_PRIORITY_MAX_RB_LEVELS + 1] = {
  56. { 4, 0, }, /* RB0 */
  57. { 4, 4, }, /* RB1 */
  58. { 3, 8, }, /* RB2 */
  59. { 2, 11, }, /* RB3 */
  60. { 1, 13, }, /* RB LPAC */
  61. };
  62. struct pending_cmd gen8_hw_fence_ack;
  63. struct gen8_hwsched_hfi *to_gen8_hwsched_hfi(
  64. struct adreno_device *adreno_dev)
  65. {
  66. struct gen8_device *gen8_dev = container_of(adreno_dev,
  67. struct gen8_device, adreno_dev);
  68. struct gen8_hwsched_device *gen8_hwsched = container_of(gen8_dev,
  69. struct gen8_hwsched_device, gen8_dev);
  70. return &gen8_hwsched->hwsched_hfi;
  71. }
  72. int gen8_hfi_send_lpac_feature_ctrl(struct adreno_device *adreno_dev)
  73. {
  74. if (!adreno_dev->lpac_enabled)
  75. return 0;
  76. return gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_LPAC, 1, 0);
  77. }
  78. static void add_waiter(struct gen8_hwsched_hfi *hfi, u32 hdr,
  79. struct pending_cmd *ack)
  80. {
  81. memset(ack, 0x0, sizeof(*ack));
  82. init_completion(&ack->complete);
  83. write_lock_irq(&hfi->msglock);
  84. list_add_tail(&ack->node, &hfi->msglist);
  85. write_unlock_irq(&hfi->msglock);
  86. ack->sent_hdr = hdr;
  87. }
  88. static void del_waiter(struct gen8_hwsched_hfi *hfi, struct pending_cmd *ack)
  89. {
  90. write_lock_irq(&hfi->msglock);
  91. list_del(&ack->node);
  92. write_unlock_irq(&hfi->msglock);
  93. }
  94. static void gen8_receive_ack_async(struct adreno_device *adreno_dev, void *rcvd)
  95. {
  96. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  97. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  98. struct pending_cmd *cmd = NULL;
  99. u32 waiters[64], num_waiters = 0, i;
  100. u32 *ack = rcvd;
  101. u32 hdr = ack[0];
  102. u32 req_hdr = ack[1];
  103. u32 size_bytes = MSG_HDR_GET_SIZE(hdr) << 2;
  104. if (size_bytes > sizeof(cmd->results))
  105. dev_err_ratelimited(&gmu->pdev->dev,
  106. "Ack result too big: %d Truncating to: %ld\n",
  107. size_bytes, sizeof(cmd->results));
  108. read_lock(&hfi->msglock);
  109. list_for_each_entry(cmd, &hfi->msglist, node) {
  110. if (CMP_HFI_ACK_HDR(cmd->sent_hdr, req_hdr)) {
  111. memcpy(cmd->results, ack,
  112. min_t(u32, size_bytes,
  113. sizeof(cmd->results)));
  114. complete(&cmd->complete);
  115. read_unlock(&hfi->msglock);
  116. return;
  117. }
  118. if (num_waiters < ARRAY_SIZE(waiters))
  119. waiters[num_waiters++] = cmd->sent_hdr;
  120. }
  121. read_unlock(&hfi->msglock);
  122. /* Didn't find the sender, list the waiter */
  123. dev_err_ratelimited(&gmu->pdev->dev,
  124. "Unexpectedly got id %d seqnum %d. Total waiters: %d Top %d Waiters:\n",
  125. MSG_HDR_GET_ID(req_hdr), MSG_HDR_GET_SEQNUM(req_hdr),
  126. num_waiters, min_t(u32, num_waiters, 5));
  127. for (i = 0; i < num_waiters && i < 5; i++)
  128. dev_err_ratelimited(&gmu->pdev->dev,
  129. " id %d seqnum %d\n",
  130. MSG_HDR_GET_ID(waiters[i]),
  131. MSG_HDR_GET_SEQNUM(waiters[i]));
  132. }
  133. /* This function is called while holding the drawctxt spinlock */
  134. void gen8_remove_hw_fence_entry(struct adreno_device *adreno_dev,
  135. struct adreno_hw_fence_entry *entry)
  136. {
  137. struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
  138. struct adreno_context *drawctxt = entry->drawctxt;
  139. atomic_dec(&hwsched->hw_fence_count);
  140. drawctxt->hw_fence_count--;
  141. dma_fence_put(&entry->kfence->fence);
  142. list_del_init(&entry->node);
  143. kmem_cache_free(hwsched->hw_fence_cache, entry);
  144. }
  145. static void _retire_inflight_hw_fences(struct adreno_device *adreno_dev,
  146. struct kgsl_context *context)
  147. {
  148. struct adreno_context *drawctxt = ADRENO_CONTEXT(context);
  149. struct adreno_hw_fence_entry *entry, *tmp;
  150. if (!test_bit(ADRENO_HWSCHED_HW_FENCE, &adreno_dev->hwsched.flags))
  151. return;
  152. spin_lock(&drawctxt->lock);
  153. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_inflight_list, node) {
  154. struct gmu_context_queue_header *hdr = drawctxt->gmu_context_queue.hostptr;
  155. /*
  156. * Since this list is sorted by timestamp, abort on the first fence that hasn't
  157. * yet been sent to TxQueue
  158. */
  159. if (timestamp_cmp((u32)entry->cmd.ts, hdr->out_fence_ts) > 0)
  160. break;
  161. gen8_remove_hw_fence_entry(adreno_dev, entry);
  162. }
  163. spin_unlock(&drawctxt->lock);
  164. }
  165. static void log_profiling_info(struct adreno_device *adreno_dev, u32 *rcvd)
  166. {
  167. struct hfi_ts_retire_cmd *cmd = (struct hfi_ts_retire_cmd *)rcvd;
  168. struct kgsl_context *context;
  169. struct retire_info info = {0};
  170. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  171. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  172. context = kgsl_context_get(device, cmd->ctxt_id);
  173. if (context == NULL)
  174. return;
  175. info.timestamp = cmd->ts;
  176. info.rb_id = adreno_get_level(context);
  177. info.gmu_dispatch_queue = context->gmu_dispatch_queue;
  178. info.submitted_to_rb = cmd->submitted_to_rb;
  179. info.sop = cmd->sop;
  180. info.eop = cmd->eop;
  181. if (GMU_VER_MINOR(gmu->ver.hfi) < 4)
  182. info.active = cmd->eop - cmd->sop;
  183. else
  184. info.active = cmd->active;
  185. info.retired_on_gmu = cmd->retired_on_gmu;
  186. /* protected GPU work must not be reported */
  187. if (!(context->flags & KGSL_CONTEXT_SECURE))
  188. kgsl_work_period_update(device, context->proc_priv->period,
  189. info.active);
  190. trace_adreno_cmdbatch_retired(context, &info, 0, 0, 0);
  191. log_kgsl_cmdbatch_retired_event(context->id, cmd->ts,
  192. context->priority, 0, cmd->sop, cmd->eop);
  193. _retire_inflight_hw_fences(adreno_dev, context);
  194. kgsl_context_put(context);
  195. }
  196. u32 gen8_hwsched_parse_payload(struct payload_section *payload, u32 key)
  197. {
  198. u32 i;
  199. /* Each key-value pair is 2 dwords */
  200. for (i = 0; i < payload->dwords; i += 2) {
  201. if (payload->data[i] == key)
  202. return payload->data[i + 1];
  203. }
  204. return 0;
  205. }
  206. struct syncobj_flags {
  207. unsigned long mask;
  208. const char *name;
  209. };
  210. static void _get_syncobj_string(char *str, u32 max_size, struct hfi_syncobj *syncobj, u32 index)
  211. {
  212. u32 count = scnprintf(str, max_size, "syncobj[%d] ctxt_id:%llu seqno:%llu flags:", index,
  213. syncobj->ctxt_id, syncobj->seq_no);
  214. u32 i;
  215. bool first = true;
  216. static const struct syncobj_flags _flags[] = {
  217. GMU_SYNCOBJ_FLAGS, { -1, NULL }};
  218. for (i = 0; _flags[i].name; i++) {
  219. if (!(syncobj->flags & _flags[i].mask))
  220. continue;
  221. if (first) {
  222. count += scnprintf(str + count, max_size - count, "%s", _flags[i].name);
  223. first = false;
  224. } else {
  225. count += scnprintf(str + count, max_size - count, "|%s", _flags[i].name);
  226. }
  227. }
  228. }
  229. static void log_syncobj(struct gen8_gmu_device *gmu, struct hfi_submit_syncobj *cmd)
  230. {
  231. struct hfi_syncobj *syncobj = (struct hfi_syncobj *)&cmd[1];
  232. char str[128];
  233. u32 i = 0;
  234. for (i = 0; i < cmd->num_syncobj; i++) {
  235. _get_syncobj_string(str, sizeof(str), syncobj, i);
  236. dev_err(&gmu->pdev->dev, "%s\n", str);
  237. syncobj++;
  238. }
  239. }
  240. static void find_timeout_syncobj(struct adreno_device *adreno_dev, u32 ctxt_id, u32 ts)
  241. {
  242. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  243. struct kgsl_context *context = NULL;
  244. struct adreno_context *drawctxt;
  245. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  246. struct gmu_context_queue_header *hdr;
  247. struct hfi_submit_syncobj *cmd;
  248. u32 *queue, i;
  249. int ret;
  250. /* We want to get the context even if it is detached */
  251. read_lock(&device->context_lock);
  252. context = idr_find(&device->context_idr, ctxt_id);
  253. ret = _kgsl_context_get(context);
  254. read_unlock(&device->context_lock);
  255. if (!ret)
  256. return;
  257. drawctxt = ADRENO_CONTEXT(context);
  258. hdr = drawctxt->gmu_context_queue.hostptr;
  259. queue = (u32 *)(drawctxt->gmu_context_queue.hostptr + sizeof(*hdr));
  260. for (i = hdr->read_index; i != hdr->write_index;) {
  261. if (MSG_HDR_GET_ID(queue[i]) != H2F_MSG_ISSUE_SYNCOBJ) {
  262. i = (i + MSG_HDR_GET_SIZE(queue[i])) % hdr->queue_size;
  263. continue;
  264. }
  265. cmd = (struct hfi_submit_syncobj *)&queue[i];
  266. if (cmd->timestamp == ts) {
  267. log_syncobj(gmu, cmd);
  268. break;
  269. }
  270. i = (i + MSG_HDR_GET_SIZE(queue[i])) % hdr->queue_size;
  271. }
  272. if (i == hdr->write_index)
  273. dev_err(&gmu->pdev->dev, "Couldn't find unsignaled syncobj ctx:%d ts:%d\n",
  274. ctxt_id, ts);
  275. kgsl_context_put(context);
  276. }
  277. /* Look up a particular key's value for a given type of payload */
  278. static u32 gen8_hwsched_lookup_key_value(struct adreno_device *adreno_dev,
  279. u32 type, u32 key)
  280. {
  281. struct hfi_context_bad_cmd *cmd = adreno_dev->hwsched.ctxt_bad;
  282. u32 i = 0, payload_bytes;
  283. void *start;
  284. if (!cmd->hdr)
  285. return 0;
  286. payload_bytes = (MSG_HDR_GET_SIZE(cmd->hdr) << 2) -
  287. offsetof(struct hfi_context_bad_cmd, payload);
  288. start = &cmd->payload[0];
  289. while (i < payload_bytes) {
  290. struct payload_section *payload = start + i;
  291. if (payload->type == type)
  292. return gen8_hwsched_parse_payload(payload, key);
  293. i += struct_size(payload, data, payload->dwords);
  294. }
  295. return 0;
  296. }
  297. static u32 get_payload_rb_key(struct adreno_device *adreno_dev,
  298. u32 rb_id, u32 key)
  299. {
  300. struct hfi_context_bad_cmd *cmd = adreno_dev->hwsched.ctxt_bad;
  301. u32 i = 0, payload_bytes;
  302. void *start;
  303. if (!cmd->hdr)
  304. return 0;
  305. payload_bytes = (MSG_HDR_GET_SIZE(cmd->hdr) << 2) -
  306. offsetof(struct hfi_context_bad_cmd, payload);
  307. start = &cmd->payload[0];
  308. while (i < payload_bytes) {
  309. struct payload_section *payload = start + i;
  310. if (payload->type == PAYLOAD_RB) {
  311. u32 id = gen8_hwsched_parse_payload(payload, KEY_RB_ID);
  312. if (id == rb_id)
  313. return gen8_hwsched_parse_payload(payload, key);
  314. }
  315. i += struct_size(payload, data, payload->dwords);
  316. }
  317. return 0;
  318. }
  319. static bool log_gpu_fault(struct adreno_device *adreno_dev)
  320. {
  321. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  322. struct device *dev = &gmu->pdev->dev;
  323. struct hfi_context_bad_cmd *cmd = adreno_dev->hwsched.ctxt_bad;
  324. /* Return false for non fatal errors */
  325. if (adreno_hwsched_log_nonfatal_gpu_fault(adreno_dev, dev, cmd->error))
  326. return false;
  327. switch (cmd->error) {
  328. case GMU_GPU_HW_HANG:
  329. dev_crit_ratelimited(dev, "MISC: GPU hang detected\n");
  330. break;
  331. case GMU_GPU_SW_HANG:
  332. dev_crit_ratelimited(dev, "gpu timeout ctx %d ts %d\n",
  333. cmd->gc.ctxt_id, cmd->gc.ts);
  334. break;
  335. case GMU_CP_OPCODE_ERROR:
  336. dev_crit_ratelimited(dev,
  337. "CP opcode error interrupt | opcode=0x%8.8x\n",
  338. gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  339. KEY_CP_OPCODE_ERROR));
  340. break;
  341. case GMU_CP_PROTECTED_ERROR: {
  342. u32 status = gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  343. KEY_CP_PROTECTED_ERROR);
  344. dev_crit_ratelimited(dev,
  345. "CP | Protected mode error | %s | addr=0x%5.5x | status=0x%8.8x\n",
  346. status & (1 << 20) ? "READ" : "WRITE",
  347. status & 0x3FFFF, status);
  348. }
  349. break;
  350. case GMU_CP_ILLEGAL_INST_ERROR:
  351. dev_crit_ratelimited(dev, "CP Illegal instruction error\n");
  352. break;
  353. case GMU_CP_UCODE_ERROR:
  354. dev_crit_ratelimited(dev, "CP ucode error interrupt\n");
  355. break;
  356. case GMU_CP_HW_FAULT_ERROR:
  357. dev_crit_ratelimited(dev,
  358. "CP | Ringbuffer HW fault | status=0x%8.8x\n",
  359. gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  360. KEY_CP_HW_FAULT));
  361. break;
  362. case GMU_GPU_PREEMPT_TIMEOUT: {
  363. u32 cur, next, cur_rptr, cur_wptr, next_rptr, next_wptr;
  364. cur = gen8_hwsched_lookup_key_value(adreno_dev,
  365. PAYLOAD_PREEMPT_TIMEOUT, KEY_PREEMPT_TIMEOUT_CUR_RB_ID);
  366. next = gen8_hwsched_lookup_key_value(adreno_dev,
  367. PAYLOAD_PREEMPT_TIMEOUT,
  368. KEY_PREEMPT_TIMEOUT_NEXT_RB_ID);
  369. cur_rptr = get_payload_rb_key(adreno_dev, cur, KEY_RB_RPTR);
  370. cur_wptr = get_payload_rb_key(adreno_dev, cur, KEY_RB_WPTR);
  371. next_rptr = get_payload_rb_key(adreno_dev, next, KEY_RB_RPTR);
  372. next_wptr = get_payload_rb_key(adreno_dev, next, KEY_RB_WPTR);
  373. dev_crit_ratelimited(dev,
  374. "Preemption Fault: cur=%d R/W=0x%x/0x%x, next=%d R/W=0x%x/0x%x\n",
  375. cur, cur_rptr, cur_wptr, next, next_rptr, next_wptr);
  376. }
  377. break;
  378. case GMU_CP_GPC_ERROR:
  379. dev_crit_ratelimited(dev, "RBBM: GPC error\n");
  380. break;
  381. case GMU_CP_BV_OPCODE_ERROR:
  382. dev_crit_ratelimited(dev,
  383. "CP BV opcode error | opcode=0x%8.8x\n",
  384. gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  385. KEY_CP_BV_OPCODE_ERROR));
  386. break;
  387. case GMU_CP_BV_PROTECTED_ERROR: {
  388. u32 status = gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  389. KEY_CP_BV_PROTECTED_ERROR);
  390. dev_crit_ratelimited(dev,
  391. "CP BV | Protected mode error | %s | addr=0x%5.5x | status=0x%8.8x\n",
  392. status & (1 << 20) ? "READ" : "WRITE",
  393. status & 0x3FFFF, status);
  394. }
  395. break;
  396. case GMU_CP_BV_HW_FAULT_ERROR:
  397. dev_crit_ratelimited(dev,
  398. "CP BV | Ringbuffer HW fault | status=0x%8.8x\n",
  399. gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  400. KEY_CP_HW_FAULT));
  401. break;
  402. case GMU_CP_BV_ILLEGAL_INST_ERROR:
  403. dev_crit_ratelimited(dev, "CP BV Illegal instruction error\n");
  404. break;
  405. case GMU_CP_BV_UCODE_ERROR:
  406. dev_crit_ratelimited(dev, "CP BV ucode error interrupt\n");
  407. break;
  408. case GMU_CP_LPAC_OPCODE_ERROR:
  409. dev_crit_ratelimited(dev,
  410. "CP LPAC opcode error | opcode=0x%8.8x\n",
  411. gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  412. KEY_CP_LPAC_OPCODE_ERROR));
  413. break;
  414. case GMU_CP_LPAC_PROTECTED_ERROR: {
  415. u32 status = gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  416. KEY_CP_LPAC_PROTECTED_ERROR);
  417. dev_crit_ratelimited(dev,
  418. "CP LPAC | Protected mode error | %s | addr=0x%5.5x | status=0x%8.8x\n",
  419. status & (1 << 20) ? "READ" : "WRITE",
  420. status & 0x3FFFF, status);
  421. }
  422. break;
  423. case GMU_CP_LPAC_HW_FAULT_ERROR:
  424. dev_crit_ratelimited(dev,
  425. "CP LPAC | Ringbuffer HW fault | status=0x%8.8x\n",
  426. gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  427. KEY_CP_LPAC_HW_FAULT));
  428. break;
  429. case GMU_CP_LPAC_ILLEGAL_INST_ERROR:
  430. dev_crit_ratelimited(dev, "CP LPAC Illegal instruction error\n");
  431. break;
  432. case GMU_CP_LPAC_UCODE_ERROR:
  433. dev_crit_ratelimited(dev, "CP LPAC ucode error interrupt\n");
  434. break;
  435. case GMU_GPU_LPAC_SW_HANG:
  436. dev_crit_ratelimited(dev, "LPAC: gpu timeout ctx %d ts %d\n",
  437. cmd->lpac.ctxt_id, cmd->lpac.ts);
  438. break;
  439. case GMU_GPU_SW_FUSE_VIOLATION:
  440. dev_crit_ratelimited(dev, "RBBM: SW Feature Fuse violation status=0x%8.8x\n",
  441. gen8_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS,
  442. KEY_SWFUSE_VIOLATION_FAULT));
  443. break;
  444. case GMU_GPU_AQE0_OPCODE_ERRROR:
  445. dev_crit_ratelimited(dev, "AQE0 opcode error | opcode=0x%8.8x\n",
  446. gen8_hwsched_lookup_key_value(adreno_dev,
  447. PAYLOAD_FAULT_REGS, KEY_AQE0_OPCODE_ERROR));
  448. break;
  449. case GMU_GPU_AQE0_UCODE_ERROR:
  450. dev_crit_ratelimited(dev, "AQE0 ucode error interrupt\n");
  451. break;
  452. case GMU_GPU_AQE0_HW_FAULT_ERROR:
  453. dev_crit_ratelimited(dev, "AQE0 HW fault | status=0x%8.8x\n",
  454. gen8_hwsched_lookup_key_value(adreno_dev,
  455. PAYLOAD_FAULT_REGS, KEY_AQE0_HW_FAULT));
  456. break;
  457. case GMU_GPU_AQE0_ILLEGAL_INST_ERROR:
  458. dev_crit_ratelimited(dev, "AQE0 Illegal instruction error\n");
  459. break;
  460. case GMU_GPU_AQE1_OPCODE_ERRROR:
  461. dev_crit_ratelimited(dev, "AQE1 opcode error | opcode=0x%8.8x\n",
  462. gen8_hwsched_lookup_key_value(adreno_dev,
  463. PAYLOAD_FAULT_REGS, KEY_AQE1_OPCODE_ERROR));
  464. break;
  465. case GMU_GPU_AQE1_UCODE_ERROR:
  466. dev_crit_ratelimited(dev, "AQE1 ucode error interrupt\n");
  467. break;
  468. case GMU_GPU_AQE1_HW_FAULT_ERROR:
  469. dev_crit_ratelimited(dev, "AQE1 HW fault | status=0x%8.8x\n",
  470. gen8_hwsched_lookup_key_value(adreno_dev,
  471. PAYLOAD_FAULT_REGS, KEY_AQE1_HW_FAULT));
  472. break;
  473. case GMU_GPU_AQE1_ILLEGAL_INST_ERROR:
  474. dev_crit_ratelimited(dev, "AQE1 Illegal instruction error\n");
  475. break;
  476. case GMU_SYNCOBJ_TIMEOUT_ERROR:
  477. dev_crit_ratelimited(dev, "syncobj timeout ctx %d ts %u\n",
  478. cmd->gc.ctxt_id, cmd->gc.ts);
  479. find_timeout_syncobj(adreno_dev, cmd->gc.ctxt_id, cmd->gc.ts);
  480. break;
  481. case GMU_CP_UNKNOWN_ERROR:
  482. fallthrough;
  483. default:
  484. dev_crit_ratelimited(dev, "Unknown GPU fault: %u\n",
  485. cmd->error);
  486. break;
  487. }
  488. /* Return true for fatal errors to perform recovery sequence */
  489. return true;
  490. }
  491. static u32 peek_next_header(struct gen8_gmu_device *gmu, uint32_t queue_idx)
  492. {
  493. struct kgsl_memdesc *mem_addr = gmu->hfi.hfi_mem;
  494. struct hfi_queue_table *tbl = mem_addr->hostptr;
  495. struct hfi_queue_header *hdr = &tbl->qhdr[queue_idx];
  496. u32 *queue;
  497. if (hdr->status == HFI_QUEUE_STATUS_DISABLED)
  498. return 0;
  499. if (hdr->read_index == hdr->write_index)
  500. return 0;
  501. queue = HOST_QUEUE_START_ADDR(mem_addr, queue_idx);
  502. return queue[hdr->read_index];
  503. }
  504. static void process_ctx_bad(struct adreno_device *adreno_dev)
  505. {
  506. /* Non fatal RBBM error interrupts don't go through reset and recovery */
  507. if (!log_gpu_fault(adreno_dev)) {
  508. memset(adreno_dev->hwsched.ctxt_bad, 0x0, HFI_MAX_MSG_SIZE);
  509. return;
  510. }
  511. gen8_hwsched_fault(adreno_dev, ADRENO_HARD_FAULT);
  512. }
  513. #define GET_QUERIED_FENCE_INDEX(x) (x / BITS_PER_SYNCOBJ_QUERY)
  514. #define GET_QUERIED_FENCE_BIT(x) (x % BITS_PER_SYNCOBJ_QUERY)
  515. static bool fence_is_queried(struct hfi_syncobj_query_cmd *cmd, u32 fence_index)
  516. {
  517. u32 index = GET_QUERIED_FENCE_INDEX(fence_index);
  518. u32 bit = GET_QUERIED_FENCE_BIT(fence_index);
  519. return (cmd->queries[index].query_bitmask & BIT(bit));
  520. }
  521. static void set_fence_signal_bit(struct adreno_device *adreno_dev,
  522. struct hfi_syncobj_query_cmd *reply, struct dma_fence *fence, u32 fence_index,
  523. char *name)
  524. {
  525. u32 index = GET_QUERIED_FENCE_INDEX(fence_index);
  526. u32 bit = GET_QUERIED_FENCE_BIT(fence_index);
  527. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  528. u64 flags = ADRENO_HW_FENCE_SW_STATUS_PENDING;
  529. char value[32] = "unknown";
  530. if (fence->ops->timeline_value_str)
  531. fence->ops->timeline_value_str(fence, value, sizeof(value));
  532. if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
  533. dev_err(&gmu->pdev->dev,
  534. "GMU is waiting for signaled fence(ctx:%llu seqno:%llu value:%s)\n",
  535. fence->context, fence->seqno, value);
  536. reply->queries[index].query_bitmask |= BIT(bit);
  537. flags = ADRENO_HW_FENCE_SW_STATUS_SIGNALED;
  538. }
  539. trace_adreno_hw_fence_query(fence->context, fence->seqno, flags, name, value);
  540. }
  541. static void gen8_syncobj_query_reply(struct adreno_device *adreno_dev,
  542. struct kgsl_drawobj *drawobj, struct hfi_syncobj_query_cmd *cmd)
  543. {
  544. struct hfi_syncobj_query_cmd reply = {0};
  545. int i, j, fence_index = 0;
  546. struct kgsl_drawobj_sync *syncobj = SYNCOBJ(drawobj);
  547. const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
  548. for (i = 0; i < syncobj->numsyncs; i++) {
  549. struct kgsl_drawobj_sync_event *event = &syncobj->synclist[i];
  550. struct kgsl_sync_fence_cb *kcb = event->handle;
  551. struct dma_fence **fences;
  552. struct dma_fence_array *array;
  553. struct event_fence_info *info = event->priv;
  554. u32 num_fences;
  555. array = to_dma_fence_array(kcb->fence);
  556. if (array != NULL) {
  557. num_fences = array->num_fences;
  558. fences = array->fences;
  559. } else {
  560. num_fences = 1;
  561. fences = &kcb->fence;
  562. }
  563. for (j = 0; j < num_fences; j++, fence_index++) {
  564. if (!fence_is_queried(cmd, fence_index))
  565. continue;
  566. set_fence_signal_bit(adreno_dev, &reply, fences[j], fence_index,
  567. info ? info->fences[j].name : "unknown");
  568. }
  569. }
  570. reply.hdr = CREATE_MSG_HDR(F2H_MSG_SYNCOBJ_QUERY, HFI_MSG_CMD);
  571. reply.gmu_ctxt_id = cmd->gmu_ctxt_id;
  572. reply.sync_obj_ts = cmd->sync_obj_ts;
  573. trace_adreno_syncobj_query_reply(reply.gmu_ctxt_id, reply.sync_obj_ts,
  574. gpudev->read_alwayson(adreno_dev));
  575. gen8_hfi_send_cmd_async(adreno_dev, &reply, sizeof(reply));
  576. }
  577. struct syncobj_query_work {
  578. /** @cmd: The query command to be processed */
  579. struct hfi_syncobj_query_cmd cmd;
  580. /** @context: kgsl context that is waiting for this sync object */
  581. struct kgsl_context *context;
  582. /** @work: The work structure to execute syncobj query reply */
  583. struct kthread_work work;
  584. };
  585. static void gen8_process_syncobj_query_work(struct kthread_work *work)
  586. {
  587. struct syncobj_query_work *query_work = container_of(work,
  588. struct syncobj_query_work, work);
  589. struct hfi_syncobj_query_cmd *cmd = (struct hfi_syncobj_query_cmd *)&query_work->cmd;
  590. struct kgsl_context *context = query_work->context;
  591. struct kgsl_device *device = context->device;
  592. struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
  593. struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
  594. struct cmd_list_obj *obj;
  595. bool missing = true;
  596. mutex_lock(&hwsched->mutex);
  597. mutex_lock(&device->mutex);
  598. list_for_each_entry(obj, &hwsched->cmd_list, node) {
  599. struct kgsl_drawobj *drawobj = obj->drawobj;
  600. if ((drawobj->type & SYNCOBJ_TYPE) == 0)
  601. continue;
  602. if ((drawobj->context->id == cmd->gmu_ctxt_id) &&
  603. (drawobj->timestamp == cmd->sync_obj_ts)) {
  604. gen8_syncobj_query_reply(adreno_dev, drawobj, cmd);
  605. missing = false;
  606. break;
  607. }
  608. }
  609. if (missing) {
  610. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  611. struct adreno_context *drawctxt = ADRENO_CONTEXT(context);
  612. struct gmu_context_queue_header *hdr = drawctxt->gmu_context_queue.hostptr;
  613. /*
  614. * If the sync object is not found, it can only mean that the sync object was
  615. * retired by the GMU in the meanwhile. However, if that is not the case, then
  616. * we have a problem.
  617. */
  618. if (timestamp_cmp(cmd->sync_obj_ts, hdr->sync_obj_ts) > 0) {
  619. dev_err(&gmu->pdev->dev, "Missing sync object ctx:%d ts:%d retired:%d\n",
  620. context->id, cmd->sync_obj_ts, hdr->sync_obj_ts);
  621. gmu_core_fault_snapshot(device);
  622. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  623. }
  624. }
  625. mutex_unlock(&device->mutex);
  626. mutex_unlock(&hwsched->mutex);
  627. kgsl_context_put(context);
  628. kfree(query_work);
  629. }
  630. static void gen8_trigger_syncobj_query(struct adreno_device *adreno_dev,
  631. u32 *rcvd)
  632. {
  633. struct syncobj_query_work *query_work;
  634. struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
  635. struct hfi_syncobj_query_cmd *cmd = (struct hfi_syncobj_query_cmd *)rcvd;
  636. struct kgsl_context *context = NULL;
  637. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  638. const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
  639. int ret;
  640. trace_adreno_syncobj_query(cmd->gmu_ctxt_id, cmd->sync_obj_ts,
  641. gpudev->read_alwayson(adreno_dev));
  642. /*
  643. * We need the context even if it is detached. Hence, we can't use kgsl_context_get here.
  644. * We must make sure that this context id doesn't get destroyed (to avoid re-use) until GMU
  645. * has ack'd the query reply.
  646. */
  647. read_lock(&device->context_lock);
  648. context = idr_find(&device->context_idr, cmd->gmu_ctxt_id);
  649. ret = _kgsl_context_get(context);
  650. read_unlock(&device->context_lock);
  651. if (!ret)
  652. return;
  653. query_work = kzalloc(sizeof(*query_work), GFP_KERNEL);
  654. if (!query_work) {
  655. kgsl_context_put(context);
  656. return;
  657. }
  658. kthread_init_work(&query_work->work, gen8_process_syncobj_query_work);
  659. memcpy(&query_work->cmd, cmd, sizeof(*cmd));
  660. query_work->context = context;
  661. kthread_queue_work(hwsched->worker, &query_work->work);
  662. }
  663. /*
  664. * This defines the maximum unack'd hardware fences that we allow. When this limit is reached, we
  665. * will put all threads (that want to create a hardware fence) to sleep until the maximum unack'd
  666. * hardware fence count drops to MIN_HW_FENCE_UNACK_COUNT
  667. */
  668. #define MAX_HW_FENCE_UNACK_COUNT 20
  669. /*
  670. * Once the maximum unack'd hardware fences drops to this value, wake up all the threads (that want
  671. * to create hardware fences)
  672. */
  673. #define MIN_HW_FENCE_UNACK_COUNT 10
  674. /*
  675. * This is the maximum duration (in milliseconds) a thread (that wants to create a hardware fence)
  676. * is put to sleep while we wait for the maximum number of unack'd hardware fences to drop from
  677. * MAX_HW_FENCE_UNACK_COUNT to MIN_HW_FENCE_UNACK_COUNT. If the count doesn't drop to the desired
  678. * value, then log an error and trigger snapshot and recovery.
  679. */
  680. #define HW_FENCE_SLEEP_MS 200
  681. static void _enable_hw_fence_throttle(struct adreno_device *adreno_dev)
  682. {
  683. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  684. set_bit(GEN8_HWSCHED_HW_FENCE_SLEEP_BIT, &hfi->hw_fence.flags);
  685. set_bit(GEN8_HWSCHED_HW_FENCE_MAX_BIT, &hfi->hw_fence.flags);
  686. /* Avoid submitting new work to gpu until the unack count drops to a desired threshold */
  687. adreno_get_gpu_halt(adreno_dev);
  688. mod_timer(&hfi->hw_fence_timer, jiffies + msecs_to_jiffies(HW_FENCE_SLEEP_MS));
  689. }
  690. static void _increment_hw_fence_unack_count(struct adreno_device *adreno_dev)
  691. {
  692. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  693. if ((++hfi->hw_fence.unack_count) == MAX_HW_FENCE_UNACK_COUNT)
  694. _enable_hw_fence_throttle(adreno_dev);
  695. }
  696. /**
  697. * _send_hw_fence_no_ack - Send a hardware fence hfi packet to GMU without waiting for its ack.
  698. * Increment the unack count on success
  699. *
  700. * Return: 0 on success or negative error on failure
  701. */
  702. static int _send_hw_fence_no_ack(struct adreno_device *adreno_dev,
  703. struct adreno_hw_fence_entry *entry)
  704. {
  705. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  706. u32 seqnum;
  707. int ret;
  708. seqnum = atomic_inc_return(&hfi->hw_fence.seqnum);
  709. entry->cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(entry->cmd.hdr, seqnum, sizeof(entry->cmd) >> 2);
  710. ret = gen8_hfi_cmdq_write(adreno_dev, (u32 *)&entry->cmd, sizeof(entry->cmd));
  711. if (!ret)
  712. _increment_hw_fence_unack_count(adreno_dev);
  713. return ret;
  714. }
  715. static struct adreno_hw_fence_entry *_get_deferred_hw_fence(struct adreno_context *drawctxt, u32 ts)
  716. {
  717. struct adreno_hw_fence_entry *entry = NULL, *next, *deferred_hw_fence_entry = NULL;
  718. spin_lock(&drawctxt->lock);
  719. list_for_each_entry_safe(entry, next, &drawctxt->hw_fence_list, node) {
  720. if (timestamp_cmp((u32)entry->cmd.ts, ts) > 0)
  721. break;
  722. /* We found a deferred hardware fence */
  723. deferred_hw_fence_entry = entry;
  724. break;
  725. }
  726. spin_unlock(&drawctxt->lock);
  727. /*
  728. * This path executes in isolation from any paths that may release this entry. So, it is
  729. * safe to handle this entry outside of the drawctxt spinlock
  730. */
  731. return deferred_hw_fence_entry;
  732. }
  733. static int _send_deferred_hw_fence(struct adreno_device *adreno_dev,
  734. struct adreno_context *drawctxt, struct adreno_hw_fence_entry *entry, u32 ts)
  735. {
  736. bool retired = kgsl_check_timestamp(KGSL_DEVICE(adreno_dev), &drawctxt->base, ts) ||
  737. kgsl_context_is_bad(&drawctxt->base);
  738. int ret = 0;
  739. u32 flags = 0;
  740. if (retired)
  741. flags |= HW_FENCE_FLAG_SKIP_MEMSTORE;
  742. ret = gen8_send_hw_fence_hfi_wait_ack(adreno_dev, entry, flags);
  743. if (ret)
  744. return ret;
  745. spin_lock(&drawctxt->lock);
  746. if (!retired)
  747. list_move_tail(&entry->node, &drawctxt->hw_fence_inflight_list);
  748. else
  749. gen8_remove_hw_fence_entry(adreno_dev, entry);
  750. spin_unlock(&drawctxt->lock);
  751. return 0;
  752. }
  753. /**
  754. * process_hw_fence_deferred_ctxt - This function sends hardware fences to GMU (from the
  755. * deferred drawctxt) which couldn't be sent earlier
  756. */
  757. static int process_hw_fence_deferred_ctxt(struct adreno_device *adreno_dev,
  758. struct adreno_context *drawctxt, u32 ts)
  759. {
  760. struct adreno_hw_fence_entry *deferred_hw_fence_entry = NULL;
  761. int ret = 0;
  762. do {
  763. deferred_hw_fence_entry = _get_deferred_hw_fence(drawctxt, ts);
  764. if (!deferred_hw_fence_entry)
  765. break;
  766. ret = _send_deferred_hw_fence(adreno_dev, drawctxt, deferred_hw_fence_entry, ts);
  767. if (ret)
  768. break;
  769. } while (deferred_hw_fence_entry != NULL);
  770. return ret;
  771. }
  772. static void _disable_hw_fence_throttle(struct adreno_device *adreno_dev, bool clear_abort_bit)
  773. {
  774. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  775. bool max;
  776. spin_lock(&hfi->hw_fence.lock);
  777. hfi->hw_fence.defer_drawctxt = NULL;
  778. hfi->hw_fence.defer_ts = 0;
  779. max = test_bit(GEN8_HWSCHED_HW_FENCE_MAX_BIT, &hfi->hw_fence.flags);
  780. if (max) {
  781. clear_bit(GEN8_HWSCHED_HW_FENCE_SLEEP_BIT, &hfi->hw_fence.flags);
  782. clear_bit(GEN8_HWSCHED_HW_FENCE_MAX_BIT, &hfi->hw_fence.flags);
  783. }
  784. if (clear_abort_bit)
  785. clear_bit(GEN8_HWSCHED_HW_FENCE_ABORT_BIT, &hfi->hw_fence.flags);
  786. spin_unlock(&hfi->hw_fence.lock);
  787. /* Wake up dispatcher and any sleeping threads that want to create hardware fences */
  788. if (max) {
  789. adreno_put_gpu_halt(adreno_dev);
  790. adreno_hwsched_trigger(adreno_dev);
  791. wake_up_all(&hfi->hw_fence.unack_wq);
  792. }
  793. }
  794. static void gen8_defer_hw_fence_work(struct kthread_work *work)
  795. {
  796. struct gen8_hwsched_hfi *hfi = container_of(work,
  797. struct gen8_hwsched_hfi, defer_hw_fence_work);
  798. struct adreno_context *drawctxt = NULL;
  799. struct kgsl_device *device;
  800. struct adreno_device *adreno_dev;
  801. u32 ts;
  802. int ret;
  803. spin_lock(&hfi->hw_fence.lock);
  804. drawctxt = hfi->hw_fence.defer_drawctxt;
  805. ts = hfi->hw_fence.defer_ts;
  806. spin_unlock(&hfi->hw_fence.lock);
  807. device = drawctxt->base.device;
  808. adreno_dev = ADRENO_DEVICE(device);
  809. /*
  810. * Grab the dispatcher and device mutex as we don't want to race with concurrent fault
  811. * recovery
  812. */
  813. mutex_lock(&adreno_dev->hwsched.mutex);
  814. mutex_lock(&device->mutex);
  815. ret = process_hw_fence_deferred_ctxt(adreno_dev, drawctxt, ts);
  816. if (ret) {
  817. /* the deferred drawctxt will be handled post fault recovery */
  818. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  819. goto unlock;
  820. }
  821. /*
  822. * Put back the context reference which was incremented when hw_fence.defer_drawctxt was set
  823. */
  824. kgsl_context_put(&drawctxt->base);
  825. gen8_hwsched_active_count_put(adreno_dev);
  826. _disable_hw_fence_throttle(adreno_dev, false);
  827. unlock:
  828. mutex_unlock(&device->mutex);
  829. mutex_unlock(&adreno_dev->hwsched.mutex);
  830. }
  831. static void process_hw_fence_ack(struct adreno_device *adreno_dev, u32 received_hdr)
  832. {
  833. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  834. struct adreno_context *drawctxt = NULL;
  835. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  836. spin_lock(&hfi->hw_fence.lock);
  837. /* If this ack is being waited on, we don't need to touch the unack count */
  838. if (gen8_hw_fence_ack.sent_hdr &&
  839. CMP_HFI_ACK_HDR(gen8_hw_fence_ack.sent_hdr, received_hdr)) {
  840. spin_unlock(&hfi->hw_fence.lock);
  841. complete(&gen8_hw_fence_ack.complete);
  842. return;
  843. }
  844. hfi->hw_fence.unack_count--;
  845. /* The unack count should never be greater than MAX_HW_FENCE_UNACK_COUNT */
  846. if (hfi->hw_fence.unack_count > MAX_HW_FENCE_UNACK_COUNT)
  847. dev_err(&gmu->pdev->dev, "unexpected hardware fence unack count:%d\n",
  848. hfi->hw_fence.unack_count);
  849. if (!test_bit(GEN8_HWSCHED_HW_FENCE_MAX_BIT, &hfi->hw_fence.flags) ||
  850. (hfi->hw_fence.unack_count != MIN_HW_FENCE_UNACK_COUNT)) {
  851. spin_unlock(&hfi->hw_fence.lock);
  852. return;
  853. }
  854. drawctxt = hfi->hw_fence.defer_drawctxt;
  855. spin_unlock(&hfi->hw_fence.lock);
  856. del_timer_sync(&hfi->hw_fence_timer);
  857. /*
  858. * We need to handle the deferred context in another thread so that we can unblock the f2h
  859. * daemon here as it will need to process the acks for the hardware fences belonging to the
  860. * deferred context
  861. */
  862. if (drawctxt) {
  863. kthread_init_work(&hfi->defer_hw_fence_work, gen8_defer_hw_fence_work);
  864. kthread_queue_work(adreno_dev->hwsched.worker, &hfi->defer_hw_fence_work);
  865. return;
  866. }
  867. _disable_hw_fence_throttle(adreno_dev, false);
  868. }
  869. void gen8_hwsched_process_msgq(struct adreno_device *adreno_dev)
  870. {
  871. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  872. struct gen8_hwsched_hfi *hw_hfi = to_gen8_hwsched_hfi(adreno_dev);
  873. u32 rcvd[MAX_RCVD_SIZE], next_hdr, type;
  874. mutex_lock(&hw_hfi->msgq_mutex);
  875. for (;;) {
  876. next_hdr = peek_next_header(gmu, HFI_MSG_ID);
  877. if (!next_hdr)
  878. break;
  879. if (MSG_HDR_GET_TYPE(next_hdr) == HFI_MSG_ACK)
  880. type = HFI_MSG_ACK;
  881. else
  882. type = MSG_HDR_GET_ID(next_hdr);
  883. if (type != F2H_MSG_CONTEXT_BAD)
  884. gen8_hfi_queue_read(gmu, HFI_MSG_ID, rcvd, sizeof(rcvd));
  885. switch (type) {
  886. case HFI_MSG_ACK:
  887. /*
  888. * We are assuming that there is only one outstanding ack because hfi
  889. * sending thread waits for completion while holding the device mutex
  890. * (except when we send H2F_MSG_HW_FENCE_INFO packets)
  891. */
  892. if (MSG_HDR_GET_ID(rcvd[1]) == H2F_MSG_HW_FENCE_INFO)
  893. process_hw_fence_ack(adreno_dev, rcvd[1]);
  894. else
  895. gen8_receive_ack_async(adreno_dev, rcvd);
  896. break;
  897. case F2H_MSG_CONTEXT_BAD:
  898. gen8_hfi_queue_read(gmu, HFI_MSG_ID, (u32 *)adreno_dev->hwsched.ctxt_bad,
  899. HFI_MAX_MSG_SIZE);
  900. process_ctx_bad(adreno_dev);
  901. break;
  902. case F2H_MSG_TS_RETIRE:
  903. log_profiling_info(adreno_dev, rcvd);
  904. adreno_hwsched_trigger(adreno_dev);
  905. break;
  906. case F2H_MSG_SYNCOBJ_QUERY:
  907. gen8_trigger_syncobj_query(adreno_dev, rcvd);
  908. break;
  909. case F2H_MSG_GMU_CNTR_RELEASE: {
  910. struct hfi_gmu_cntr_release_cmd *cmd =
  911. (struct hfi_gmu_cntr_release_cmd *) rcvd;
  912. adreno_perfcounter_put(adreno_dev,
  913. cmd->group_id, cmd->countable, PERFCOUNTER_FLAG_KERNEL);
  914. adreno_mark_for_coldboot(adreno_dev);
  915. }
  916. break;
  917. }
  918. }
  919. mutex_unlock(&hw_hfi->msgq_mutex);
  920. }
  921. static void process_log_block(struct adreno_device *adreno_dev, void *data)
  922. {
  923. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  924. struct hfi_log_block *cmd = data;
  925. u32 *log_event = gmu->gmu_log->hostptr;
  926. u32 start, end;
  927. start = cmd->start_index;
  928. end = cmd->stop_index;
  929. log_event += start * 4;
  930. while (start != end) {
  931. trace_gmu_event(log_event);
  932. log_event += 4;
  933. start++;
  934. }
  935. }
  936. static void gen8_hwsched_process_dbgq(struct adreno_device *adreno_dev, bool limited)
  937. {
  938. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  939. u32 rcvd[MAX_RCVD_SIZE];
  940. bool recovery = false;
  941. while (gen8_hfi_queue_read(gmu, HFI_DBG_ID, rcvd, sizeof(rcvd)) > 0) {
  942. if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_ERR) {
  943. adreno_gen8_receive_err_req(gmu, rcvd);
  944. recovery = true;
  945. break;
  946. }
  947. if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_DEBUG)
  948. adreno_gen8_receive_debug_req(gmu, rcvd);
  949. if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_LOG_BLOCK)
  950. process_log_block(adreno_dev, rcvd);
  951. /* Process one debug queue message and return to not delay msgq processing */
  952. if (limited)
  953. break;
  954. }
  955. if (!recovery)
  956. return;
  957. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  958. }
  959. /* HFI interrupt handler */
  960. static irqreturn_t gen8_hwsched_hfi_handler(int irq, void *data)
  961. {
  962. struct adreno_device *adreno_dev = data;
  963. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  964. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  965. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  966. u32 status = 0;
  967. /*
  968. * GEN8_GMUCX_GMU2HOST_INTR_INFO may have bits set not specified in hfi->irq_mask.
  969. * Read and clear only those irq bits that we are processing here.
  970. */
  971. gmu_core_regread(device, GEN8_GMUCX_GMU2HOST_INTR_INFO, &status);
  972. gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_CLR, status & hfi->irq_mask);
  973. /*
  974. * If interrupts are not enabled on the HFI message queue,
  975. * the inline message processing loop will process it,
  976. * else, process it here.
  977. */
  978. if (!(hfi->irq_mask & HFI_IRQ_MSGQ_MASK))
  979. status &= ~HFI_IRQ_MSGQ_MASK;
  980. if (status & (HFI_IRQ_MSGQ_MASK | HFI_IRQ_DBGQ_MASK)) {
  981. wake_up_interruptible(&hfi->f2h_wq);
  982. adreno_hwsched_trigger(adreno_dev);
  983. }
  984. if (status & HFI_IRQ_CM3_FAULT_MASK) {
  985. atomic_set(&gmu->cm3_fault, 1);
  986. /* make sure other CPUs see the update */
  987. smp_wmb();
  988. dev_err_ratelimited(&gmu->pdev->dev,
  989. "GMU CM3 fault interrupt received\n");
  990. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  991. }
  992. /* Ignore OOB bits */
  993. status &= GENMASK(31 - (oob_max - 1), 0);
  994. if (status & ~hfi->irq_mask)
  995. dev_err_ratelimited(&gmu->pdev->dev,
  996. "Unhandled HFI interrupts 0x%x\n",
  997. status & ~hfi->irq_mask);
  998. return IRQ_HANDLED;
  999. }
  1000. #define HFI_IRQ_MSGQ_MASK BIT(0)
  1001. static int check_ack_failure(struct adreno_device *adreno_dev,
  1002. struct pending_cmd *ack)
  1003. {
  1004. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1005. if (ack->results[2] != 0xffffffff)
  1006. return 0;
  1007. dev_err(&gmu->pdev->dev,
  1008. "ACK error: sender id %d seqnum %d\n",
  1009. MSG_HDR_GET_ID(ack->sent_hdr),
  1010. MSG_HDR_GET_SEQNUM(ack->sent_hdr));
  1011. return -EINVAL;
  1012. }
  1013. int gen8_hfi_send_cmd_async(struct adreno_device *adreno_dev, void *data, u32 size_bytes)
  1014. {
  1015. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1016. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  1017. u32 *cmd = data;
  1018. u32 seqnum;
  1019. int rc;
  1020. struct pending_cmd pending_ack;
  1021. seqnum = atomic_inc_return(&gmu->hfi.seqnum);
  1022. *cmd = MSG_HDR_SET_SEQNUM_SIZE(*cmd, seqnum, size_bytes >> 2);
  1023. add_waiter(hfi, *cmd, &pending_ack);
  1024. rc = gen8_hfi_cmdq_write(adreno_dev, cmd, size_bytes);
  1025. if (rc)
  1026. goto done;
  1027. rc = adreno_hwsched_wait_ack_completion(adreno_dev, &gmu->pdev->dev, &pending_ack,
  1028. gen8_hwsched_process_msgq);
  1029. if (rc)
  1030. goto done;
  1031. rc = check_ack_failure(adreno_dev, &pending_ack);
  1032. done:
  1033. del_waiter(hfi, &pending_ack);
  1034. return rc;
  1035. }
  1036. static void init_queues(struct gen8_hfi *hfi)
  1037. {
  1038. u32 gmuaddr = hfi->hfi_mem->gmuaddr;
  1039. struct hfi_queue_table hfi_table = {
  1040. .qtbl_hdr = {
  1041. .version = 0,
  1042. .size = sizeof(struct hfi_queue_table) >> 2,
  1043. .qhdr0_offset =
  1044. sizeof(struct hfi_queue_table_header) >> 2,
  1045. .qhdr_size = sizeof(struct hfi_queue_header) >> 2,
  1046. .num_q = HFI_QUEUE_MAX,
  1047. .num_active_q = HFI_QUEUE_MAX,
  1048. },
  1049. .qhdr = {
  1050. DEFINE_QHDR(gmuaddr, HFI_CMD_ID, 0),
  1051. DEFINE_QHDR(gmuaddr, HFI_MSG_ID, 0),
  1052. DEFINE_QHDR(gmuaddr, HFI_DBG_ID, 0),
  1053. /* 4 DQs for RB priority 0 */
  1054. DEFINE_QHDR(gmuaddr, 3, 0),
  1055. DEFINE_QHDR(gmuaddr, 4, 0),
  1056. DEFINE_QHDR(gmuaddr, 5, 0),
  1057. DEFINE_QHDR(gmuaddr, 6, 0),
  1058. /* 4 DQs for RB priority 1 */
  1059. DEFINE_QHDR(gmuaddr, 7, 1),
  1060. DEFINE_QHDR(gmuaddr, 8, 1),
  1061. DEFINE_QHDR(gmuaddr, 9, 1),
  1062. DEFINE_QHDR(gmuaddr, 10, 1),
  1063. /* 3 DQs for RB priority 2 */
  1064. DEFINE_QHDR(gmuaddr, 11, 2),
  1065. DEFINE_QHDR(gmuaddr, 12, 2),
  1066. DEFINE_QHDR(gmuaddr, 13, 2),
  1067. /* 2 DQs for RB priority 3 */
  1068. DEFINE_QHDR(gmuaddr, 14, 3),
  1069. DEFINE_QHDR(gmuaddr, 15, 3),
  1070. /* 1 DQ for LPAC RB priority 4 */
  1071. DEFINE_QHDR(gmuaddr, 16, 4),
  1072. },
  1073. };
  1074. memcpy(hfi->hfi_mem->hostptr, &hfi_table, sizeof(hfi_table));
  1075. }
  1076. /* Total header sizes + queue sizes + 16 for alignment */
  1077. #define HFIMEM_SIZE (sizeof(struct hfi_queue_table) + 16 + \
  1078. (SZ_4K * HFI_QUEUE_MAX))
  1079. static int hfi_f2h_main(void *arg);
  1080. int gen8_hwsched_hfi_init(struct adreno_device *adreno_dev)
  1081. {
  1082. struct gen8_hwsched_hfi *hw_hfi = to_gen8_hwsched_hfi(adreno_dev);
  1083. struct gen8_hfi *hfi = to_gen8_hfi(adreno_dev);
  1084. if (IS_ERR_OR_NULL(hw_hfi->big_ib)) {
  1085. hw_hfi->big_ib = gen8_reserve_gmu_kernel_block(
  1086. to_gen8_gmu(adreno_dev), 0,
  1087. HWSCHED_MAX_IBS * sizeof(struct hfi_issue_ib),
  1088. GMU_NONCACHED_KERNEL, 0);
  1089. if (IS_ERR(hw_hfi->big_ib))
  1090. return PTR_ERR(hw_hfi->big_ib);
  1091. }
  1092. if (ADRENO_FEATURE(adreno_dev, ADRENO_LSR) &&
  1093. IS_ERR_OR_NULL(hw_hfi->big_ib_recurring)) {
  1094. hw_hfi->big_ib_recurring = gen8_reserve_gmu_kernel_block(
  1095. to_gen8_gmu(adreno_dev), 0,
  1096. HWSCHED_MAX_IBS * sizeof(struct hfi_issue_ib),
  1097. GMU_NONCACHED_KERNEL, 0);
  1098. if (IS_ERR(hw_hfi->big_ib_recurring))
  1099. return PTR_ERR(hw_hfi->big_ib_recurring);
  1100. }
  1101. if (IS_ERR_OR_NULL(hfi->hfi_mem)) {
  1102. hfi->hfi_mem = gen8_reserve_gmu_kernel_block(
  1103. to_gen8_gmu(adreno_dev),
  1104. 0, HFIMEM_SIZE, GMU_NONCACHED_KERNEL, 0);
  1105. if (IS_ERR(hfi->hfi_mem))
  1106. return PTR_ERR(hfi->hfi_mem);
  1107. init_queues(hfi);
  1108. }
  1109. if (IS_ERR_OR_NULL(hw_hfi->f2h_task)) {
  1110. hw_hfi->f2h_task = kthread_run(hfi_f2h_main, adreno_dev, "gmu_f2h");
  1111. if (!IS_ERR(hw_hfi->f2h_task))
  1112. sched_set_fifo(hw_hfi->f2h_task);
  1113. }
  1114. return PTR_ERR_OR_ZERO(hw_hfi->f2h_task);
  1115. }
  1116. static int get_attrs(u32 flags)
  1117. {
  1118. int attrs = IOMMU_READ;
  1119. if (flags & HFI_MEMFLAG_GMU_PRIV)
  1120. attrs |= IOMMU_PRIV;
  1121. if (flags & HFI_MEMFLAG_GMU_WRITEABLE)
  1122. attrs |= IOMMU_WRITE;
  1123. return attrs;
  1124. }
  1125. static int gmu_import_buffer(struct adreno_device *adreno_dev,
  1126. struct hfi_mem_alloc_entry *entry)
  1127. {
  1128. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1129. struct hfi_mem_alloc_desc *desc = &entry->desc;
  1130. u32 vma_id = (desc->flags & HFI_MEMFLAG_GMU_CACHEABLE) ? GMU_CACHE : GMU_NONCACHED_KERNEL;
  1131. return gen8_gmu_import_buffer(gmu, vma_id, entry->md, get_attrs(desc->flags), desc->align);
  1132. }
  1133. static struct hfi_mem_alloc_entry *lookup_mem_alloc_table(
  1134. struct adreno_device *adreno_dev, struct hfi_mem_alloc_desc *desc)
  1135. {
  1136. struct gen8_hwsched_hfi *hw_hfi = to_gen8_hwsched_hfi(adreno_dev);
  1137. int i;
  1138. for (i = 0; i < hw_hfi->mem_alloc_entries; i++) {
  1139. struct hfi_mem_alloc_entry *entry = &hw_hfi->mem_alloc_table[i];
  1140. if ((entry->desc.mem_kind == desc->mem_kind) &&
  1141. (entry->desc.gmu_mem_handle == desc->gmu_mem_handle))
  1142. return entry;
  1143. }
  1144. return NULL;
  1145. }
  1146. static struct hfi_mem_alloc_entry *get_mem_alloc_entry(
  1147. struct adreno_device *adreno_dev, struct hfi_mem_alloc_desc *desc)
  1148. {
  1149. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  1150. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  1151. struct hfi_mem_alloc_entry *entry =
  1152. lookup_mem_alloc_table(adreno_dev, desc);
  1153. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1154. u64 flags = 0;
  1155. u32 priv = 0;
  1156. int ret;
  1157. const char *memkind_string = desc->mem_kind < HFI_MEMKIND_MAX ?
  1158. hfi_memkind_strings[desc->mem_kind] : "UNKNOWN";
  1159. if (entry)
  1160. return entry;
  1161. if (desc->mem_kind >= HFI_MEMKIND_MAX) {
  1162. dev_err(&gmu->pdev->dev, "Invalid mem kind: %d\n",
  1163. desc->mem_kind);
  1164. return ERR_PTR(-EINVAL);
  1165. }
  1166. if (hfi->mem_alloc_entries == ARRAY_SIZE(hfi->mem_alloc_table)) {
  1167. dev_err(&gmu->pdev->dev,
  1168. "Reached max mem alloc entries\n");
  1169. return ERR_PTR(-ENOMEM);
  1170. }
  1171. entry = &hfi->mem_alloc_table[hfi->mem_alloc_entries];
  1172. memcpy(&entry->desc, desc, sizeof(*desc));
  1173. entry->desc.host_mem_handle = desc->gmu_mem_handle;
  1174. if (desc->flags & HFI_MEMFLAG_GFX_PRIV)
  1175. priv |= KGSL_MEMDESC_PRIVILEGED;
  1176. if (!(desc->flags & HFI_MEMFLAG_GFX_WRITEABLE))
  1177. flags |= KGSL_MEMFLAGS_GPUREADONLY;
  1178. if (desc->flags & HFI_MEMFLAG_GFX_SECURE)
  1179. flags |= KGSL_MEMFLAGS_SECURE;
  1180. if (!(desc->flags & HFI_MEMFLAG_GFX_ACC) &&
  1181. (desc->mem_kind != HFI_MEMKIND_HW_FENCE)) {
  1182. if (desc->mem_kind == HFI_MEMKIND_MMIO_IPC_CORE)
  1183. entry->md = gen8_reserve_gmu_kernel_block_fixed(gmu, 0,
  1184. desc->size,
  1185. (desc->flags & HFI_MEMFLAG_GMU_CACHEABLE) ?
  1186. GMU_CACHE : GMU_NONCACHED_KERNEL,
  1187. "qcom,ipc-core", get_attrs(desc->flags),
  1188. desc->align);
  1189. else
  1190. entry->md = gen8_reserve_gmu_kernel_block(gmu, 0,
  1191. desc->size,
  1192. (desc->flags & HFI_MEMFLAG_GMU_CACHEABLE) ?
  1193. GMU_CACHE : GMU_NONCACHED_KERNEL,
  1194. desc->align);
  1195. if (IS_ERR(entry->md)) {
  1196. int ret = PTR_ERR(entry->md);
  1197. memset(entry, 0, sizeof(*entry));
  1198. return ERR_PTR(ret);
  1199. }
  1200. entry->desc.size = entry->md->size;
  1201. entry->desc.gmu_addr = entry->md->gmuaddr;
  1202. goto done;
  1203. }
  1204. /*
  1205. * Use pre-allocated memory descriptors to map the HFI_MEMKIND_HW_FENCE and
  1206. * HFI_MEMKIND_MEMSTORE
  1207. */
  1208. switch (desc->mem_kind) {
  1209. case HFI_MEMKIND_HW_FENCE:
  1210. entry->md = &adreno_dev->hwsched.hw_fence.memdesc;
  1211. break;
  1212. case HFI_MEMKIND_MEMSTORE:
  1213. entry->md = device->memstore;
  1214. break;
  1215. default:
  1216. entry->md = kgsl_allocate_global(device, desc->size, 0, flags,
  1217. priv, memkind_string);
  1218. break;
  1219. }
  1220. if (IS_ERR(entry->md)) {
  1221. int ret = PTR_ERR(entry->md);
  1222. memset(entry, 0, sizeof(*entry));
  1223. return ERR_PTR(ret);
  1224. }
  1225. entry->desc.size = entry->md->size;
  1226. entry->desc.gpu_addr = entry->md->gpuaddr;
  1227. if (!(desc->flags & HFI_MEMFLAG_GMU_ACC))
  1228. goto done;
  1229. /*
  1230. * If gmu mapping fails, then we have to live with
  1231. * leaking the gpu global buffer allocated above.
  1232. */
  1233. ret = gmu_import_buffer(adreno_dev, entry);
  1234. if (ret) {
  1235. dev_err(&gmu->pdev->dev,
  1236. "gpuaddr: 0x%llx size: %lld bytes lost\n",
  1237. entry->md->gpuaddr, entry->md->size);
  1238. memset(entry, 0, sizeof(*entry));
  1239. return ERR_PTR(ret);
  1240. }
  1241. entry->desc.gmu_addr = entry->md->gmuaddr;
  1242. done:
  1243. hfi->mem_alloc_entries++;
  1244. return entry;
  1245. }
  1246. static int process_mem_alloc(struct adreno_device *adreno_dev,
  1247. struct hfi_mem_alloc_desc *mad)
  1248. {
  1249. struct hfi_mem_alloc_entry *entry;
  1250. entry = get_mem_alloc_entry(adreno_dev, mad);
  1251. if (IS_ERR(entry))
  1252. return PTR_ERR(entry);
  1253. if (entry->md) {
  1254. mad->gpu_addr = entry->md->gpuaddr;
  1255. mad->gmu_addr = entry->md->gmuaddr;
  1256. }
  1257. /*
  1258. * GMU uses the host_mem_handle to check if this memalloc was
  1259. * successful
  1260. */
  1261. mad->host_mem_handle = mad->gmu_mem_handle;
  1262. return 0;
  1263. }
  1264. static int mem_alloc_reply(struct adreno_device *adreno_dev, void *rcvd)
  1265. {
  1266. struct hfi_mem_alloc_desc desc = {0};
  1267. struct hfi_mem_alloc_reply_cmd out = {0};
  1268. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1269. u32 seqnum;
  1270. int ret;
  1271. hfi_get_mem_alloc_desc(rcvd, &desc);
  1272. ret = process_mem_alloc(adreno_dev, &desc);
  1273. if (ret)
  1274. return ret;
  1275. memcpy(&out.desc, &desc, sizeof(out.desc));
  1276. out.hdr = ACK_MSG_HDR(F2H_MSG_MEM_ALLOC);
  1277. seqnum = atomic_inc_return(&gmu->hfi.seqnum);
  1278. out.hdr = MSG_HDR_SET_SEQNUM_SIZE(out.hdr, seqnum, sizeof(out) >> 2);
  1279. out.req_hdr = *(u32 *)rcvd;
  1280. return gen8_hfi_cmdq_write(adreno_dev, (u32 *)&out, sizeof(out));
  1281. }
  1282. static int gmu_cntr_register_reply(struct adreno_device *adreno_dev, void *rcvd)
  1283. {
  1284. struct hfi_gmu_cntr_register_cmd *in = (struct hfi_gmu_cntr_register_cmd *)rcvd;
  1285. struct hfi_gmu_cntr_register_reply_cmd out = {0};
  1286. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1287. u32 lo = 0, hi = 0, seqnum;
  1288. /*
  1289. * Failure to allocate counter is not fatal. Sending lo = 0, hi = 0
  1290. * indicates to GMU that counter allocation failed.
  1291. */
  1292. adreno_perfcounter_get(adreno_dev,
  1293. in->group_id, in->countable, &lo, &hi, PERFCOUNTER_FLAG_KERNEL);
  1294. out.hdr = ACK_MSG_HDR(F2H_MSG_GMU_CNTR_REGISTER);
  1295. seqnum = atomic_inc_return(&gmu->hfi.seqnum);
  1296. out.hdr = MSG_HDR_SET_SEQNUM_SIZE(out.hdr, seqnum, sizeof(out) >> 2);
  1297. out.req_hdr = in->hdr;
  1298. out.group_id = in->group_id;
  1299. out.countable = in->countable;
  1300. /* Fill in byte offset of counter */
  1301. out.cntr_lo = lo << 2;
  1302. out.cntr_hi = hi << 2;
  1303. return gen8_hfi_cmdq_write(adreno_dev, (u32 *)&out, sizeof(out));
  1304. }
  1305. static int send_warmboot_start_msg(struct adreno_device *adreno_dev)
  1306. {
  1307. int ret = 0;
  1308. struct hfi_start_cmd cmd;
  1309. if (!adreno_dev->warmboot_enabled)
  1310. return ret;
  1311. ret = CMD_MSG_HDR(cmd, H2F_MSG_START);
  1312. if (ret)
  1313. return ret;
  1314. cmd.hdr = RECORD_NOP_MSG_HDR(cmd.hdr);
  1315. return gen8_hfi_send_generic_req(adreno_dev, &cmd, sizeof(cmd));
  1316. }
  1317. static int send_start_msg(struct adreno_device *adreno_dev)
  1318. {
  1319. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1320. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  1321. int ret, rc = 0;
  1322. struct hfi_start_cmd cmd;
  1323. u32 seqnum, rcvd[MAX_RCVD_SIZE];
  1324. struct pending_cmd pending_ack = {0};
  1325. ret = CMD_MSG_HDR(cmd, H2F_MSG_START);
  1326. if (ret)
  1327. return ret;
  1328. seqnum = atomic_inc_return(&gmu->hfi.seqnum);
  1329. cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.hdr, seqnum, sizeof(cmd) >> 2);
  1330. pending_ack.sent_hdr = cmd.hdr;
  1331. rc = gen8_hfi_cmdq_write(adreno_dev, (u32 *)&cmd, sizeof(cmd));
  1332. if (rc)
  1333. return rc;
  1334. poll:
  1335. rc = gmu_core_timed_poll_check(device, GEN8_GMUCX_GMU2HOST_INTR_INFO,
  1336. HFI_IRQ_MSGQ_MASK, HFI_RSP_TIMEOUT, HFI_IRQ_MSGQ_MASK);
  1337. if (rc) {
  1338. dev_err(&gmu->pdev->dev,
  1339. "Timed out processing MSG_START seqnum: %d\n",
  1340. seqnum);
  1341. gmu_core_fault_snapshot(device);
  1342. return rc;
  1343. }
  1344. /* Clear the interrupt */
  1345. gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_CLR,
  1346. HFI_IRQ_MSGQ_MASK);
  1347. if (gen8_hfi_queue_read(gmu, HFI_MSG_ID, rcvd, sizeof(rcvd)) <= 0) {
  1348. dev_err(&gmu->pdev->dev, "MSG_START: no payload\n");
  1349. gmu_core_fault_snapshot(device);
  1350. return -EINVAL;
  1351. }
  1352. if (MSG_HDR_GET_TYPE(rcvd[0]) == HFI_MSG_ACK) {
  1353. rc = gen8_receive_ack_cmd(gmu, rcvd, &pending_ack);
  1354. if (rc)
  1355. return rc;
  1356. return check_ack_failure(adreno_dev, &pending_ack);
  1357. }
  1358. if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_MEM_ALLOC) {
  1359. rc = mem_alloc_reply(adreno_dev, rcvd);
  1360. if (rc)
  1361. return rc;
  1362. goto poll;
  1363. }
  1364. if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_GMU_CNTR_REGISTER) {
  1365. rc = gmu_cntr_register_reply(adreno_dev, rcvd);
  1366. if (rc)
  1367. return rc;
  1368. goto poll;
  1369. }
  1370. dev_err(&gmu->pdev->dev,
  1371. "MSG_START: unexpected response id:%d, type:%d\n",
  1372. MSG_HDR_GET_ID(rcvd[0]),
  1373. MSG_HDR_GET_TYPE(rcvd[0]));
  1374. gmu_core_fault_snapshot(device);
  1375. return rc;
  1376. }
  1377. static void reset_hfi_mem_records(struct adreno_device *adreno_dev)
  1378. {
  1379. struct gen8_hwsched_hfi *hw_hfi = to_gen8_hwsched_hfi(adreno_dev);
  1380. struct kgsl_memdesc *md = NULL;
  1381. u32 i;
  1382. for (i = 0; i < hw_hfi->mem_alloc_entries; i++) {
  1383. struct hfi_mem_alloc_desc *desc = &hw_hfi->mem_alloc_table[i].desc;
  1384. if (desc->flags & HFI_MEMFLAG_HOST_INIT) {
  1385. md = hw_hfi->mem_alloc_table[i].md;
  1386. memset(md->hostptr, 0x0, md->size);
  1387. }
  1388. }
  1389. }
  1390. static void reset_hfi_queues(struct adreno_device *adreno_dev)
  1391. {
  1392. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1393. struct hfi_queue_table *tbl = gmu->hfi.hfi_mem->hostptr;
  1394. u32 i;
  1395. /* Flush HFI queues */
  1396. for (i = 0; i < HFI_QUEUE_MAX; i++) {
  1397. struct hfi_queue_header *hdr = &tbl->qhdr[i];
  1398. if (hdr->status == HFI_QUEUE_STATUS_DISABLED)
  1399. continue;
  1400. hdr->read_index = hdr->write_index;
  1401. }
  1402. }
  1403. void gen8_hwsched_hfi_stop(struct adreno_device *adreno_dev)
  1404. {
  1405. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1406. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  1407. hfi->irq_mask &= ~HFI_IRQ_MSGQ_MASK;
  1408. /*
  1409. * In some corner cases, it is possible that GMU put TS_RETIRE
  1410. * on the msgq after we have turned off gmu interrupts. Hence,
  1411. * drain the queue one last time before we reset HFI queues.
  1412. */
  1413. gen8_hwsched_process_msgq(adreno_dev);
  1414. /* Drain the debug queue before we reset HFI queues */
  1415. gen8_hwsched_process_dbgq(adreno_dev, false);
  1416. kgsl_pwrctrl_axi(KGSL_DEVICE(adreno_dev), false);
  1417. clear_bit(GMU_PRIV_HFI_STARTED, &gmu->flags);
  1418. /*
  1419. * Reset the hfi host access memory records, As GMU expects hfi memory
  1420. * records to be clear in bootup.
  1421. */
  1422. reset_hfi_mem_records(adreno_dev);
  1423. }
  1424. static void gen8_hwsched_enable_async_hfi(struct adreno_device *adreno_dev)
  1425. {
  1426. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  1427. hfi->irq_mask |= HFI_IRQ_MSGQ_MASK;
  1428. gmu_core_regwrite(KGSL_DEVICE(adreno_dev), GEN8_GMUCX_GMU2HOST_INTR_MASK,
  1429. (u32)~hfi->irq_mask);
  1430. }
  1431. static int enable_preemption(struct adreno_device *adreno_dev)
  1432. {
  1433. const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
  1434. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  1435. u32 data;
  1436. int ret;
  1437. if (!adreno_is_preemption_enabled(adreno_dev))
  1438. return 0;
  1439. /*
  1440. * Bits [0:1] contains the preemption level
  1441. * Bit 2 is to enable/disable gmem save/restore
  1442. * Bit 3 is to enable/disable skipsaverestore
  1443. */
  1444. data = FIELD_PREP(GENMASK(1, 0), adreno_dev->preempt.preempt_level) |
  1445. FIELD_PREP(BIT(2), adreno_dev->preempt.usesgmem) |
  1446. FIELD_PREP(BIT(3), adreno_dev->preempt.skipsaverestore);
  1447. ret = gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_PREEMPTION, 1,
  1448. data);
  1449. if (ret)
  1450. return ret;
  1451. if (gen8_core->qos_value) {
  1452. int i;
  1453. for (i = 0; i < KGSL_PRIORITY_MAX_RB_LEVELS; i++) {
  1454. if (!gen8_core->qos_value[i])
  1455. continue;
  1456. gen8_hfi_send_set_value(adreno_dev,
  1457. HFI_VALUE_RB_GPU_QOS, i,
  1458. gen8_core->qos_value[i]);
  1459. }
  1460. }
  1461. if (device->pwrctrl.rt_bus_hint) {
  1462. ret = gen8_hfi_send_set_value(adreno_dev, HFI_VALUE_RB_IB_RULE, 0,
  1463. device->pwrctrl.rt_bus_hint);
  1464. if (ret)
  1465. device->pwrctrl.rt_bus_hint = 0;
  1466. }
  1467. /*
  1468. * Bits[3:0] contain the preemption timeout enable bit per ringbuffer
  1469. * Bits[31:4] contain the timeout in ms
  1470. */
  1471. return gen8_hfi_send_set_value(adreno_dev, HFI_VALUE_BIN_TIME, 1,
  1472. FIELD_PREP(GENMASK(31, 4), ADRENO_PREEMPT_TIMEOUT) |
  1473. FIELD_PREP(GENMASK(3, 0), 0xf));
  1474. }
  1475. static int enable_gmu_stats(struct adreno_device *adreno_dev)
  1476. {
  1477. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1478. u32 data;
  1479. if (!gmu->stats_enable)
  1480. return 0;
  1481. /*
  1482. * Bits [23:0] contains the countables mask
  1483. * Bits [31:24] is the sampling interval
  1484. */
  1485. data = FIELD_PREP(GENMASK(23, 0), gmu->stats_mask) |
  1486. FIELD_PREP(GENMASK(31, 24), gmu->stats_interval);
  1487. return gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_GMU_STATS, 1, data);
  1488. }
  1489. static int gen8_hfi_send_perfcounter_feature_ctrl(struct adreno_device *adreno_dev)
  1490. {
  1491. /*
  1492. * Perfcounter retention is disabled by default in GMU firmware.
  1493. * In case perfcounter retention behaviour is overwritten by sysfs
  1494. * setting dynmaically, send this HFI feature with 'enable = 0' to
  1495. * disable this feature in GMU firmware.
  1496. */
  1497. if (adreno_dev->perfcounter)
  1498. return gen8_hfi_send_feature_ctrl(adreno_dev,
  1499. HFI_FEATURE_PERF_NORETAIN, 0, 0);
  1500. return 0;
  1501. }
  1502. u32 gen8_hwsched_hfi_get_value(struct adreno_device *adreno_dev, u32 prop)
  1503. {
  1504. struct hfi_get_value_cmd cmd;
  1505. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1506. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  1507. struct pending_cmd pending_ack;
  1508. u32 seqnum;
  1509. int rc;
  1510. rc = CMD_MSG_HDR(cmd, H2F_MSG_GET_VALUE);
  1511. if (rc)
  1512. return 0;
  1513. seqnum = atomic_inc_return(&gmu->hfi.seqnum);
  1514. cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.hdr, seqnum, sizeof(cmd) >> 2);
  1515. cmd.type = prop;
  1516. cmd.subtype = 0;
  1517. add_waiter(hfi, cmd.hdr, &pending_ack);
  1518. rc = gen8_hfi_cmdq_write(adreno_dev, (u32 *)&cmd, sizeof(cmd));
  1519. if (rc)
  1520. goto done;
  1521. rc = adreno_hwsched_wait_ack_completion(adreno_dev, &gmu->pdev->dev, &pending_ack,
  1522. gen8_hwsched_process_msgq);
  1523. done:
  1524. del_waiter(hfi, &pending_ack);
  1525. if (rc || (pending_ack.results[2] == UINT_MAX))
  1526. return 0;
  1527. return pending_ack.results[2];
  1528. }
  1529. static void _context_queue_enable(struct adreno_device *adreno_dev)
  1530. {
  1531. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1532. if (GMU_VER_MINOR(gmu->ver.hfi) >= 3) {
  1533. if (gen8_hfi_send_get_value(adreno_dev, HFI_VALUE_CONTEXT_QUEUE, 0) == 1)
  1534. set_bit(ADRENO_HWSCHED_CONTEXT_QUEUE, &adreno_dev->hwsched.flags);
  1535. }
  1536. }
  1537. static int gen8_hfi_send_hw_fence_feature_ctrl(struct adreno_device *adreno_dev)
  1538. {
  1539. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1540. struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
  1541. int ret;
  1542. if (!test_bit(ADRENO_HWSCHED_HW_FENCE, &hwsched->flags))
  1543. return 0;
  1544. ret = gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_HW_FENCE, 1, 0);
  1545. if (ret && (ret == -ENOENT)) {
  1546. dev_err(&gmu->pdev->dev, "GMU doesn't support HW_FENCE feature\n");
  1547. adreno_hwsched_deregister_hw_fence(hwsched->hw_fence.handle);
  1548. return 0;
  1549. }
  1550. return ret;
  1551. }
  1552. static void gen8_spin_idle_debug_lpac(struct adreno_device *adreno_dev,
  1553. const char *str)
  1554. {
  1555. struct kgsl_device *device = &adreno_dev->dev;
  1556. u32 rptr, wptr, status, intstatus, global_status;
  1557. bool val = adreno_is_preemption_enabled(adreno_dev);
  1558. dev_err(device->dev, str);
  1559. kgsl_regread(device, GEN8_CP_RB_RPTR_LPAC, &rptr);
  1560. kgsl_regread(device, GEN8_CP_RB_WPTR_LPAC, &wptr);
  1561. kgsl_regread(device, GEN8_RBBM_STATUS, &status);
  1562. kgsl_regread(device, GEN8_RBBM_INT_0_STATUS, &intstatus);
  1563. kgsl_regread(device, GEN8_CP_INTERRUPT_STATUS_GLOBAL, &global_status);
  1564. dev_err(device->dev,
  1565. "LPAC rb=%d pos=%X/%X rbbm_status=%8.8X int_0_status=%8.8X global_status=%8.8X\n",
  1566. val ? KGSL_LPAC_RB_ID : 1, rptr, wptr,
  1567. status, intstatus, global_status);
  1568. kgsl_device_snapshot(device, NULL, NULL, false);
  1569. }
  1570. static bool gen8_hwsched_warmboot_possible(struct adreno_device *adreno_dev)
  1571. {
  1572. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1573. if (adreno_dev->warmboot_enabled && test_bit(GMU_PRIV_WARMBOOT_GMU_INIT_DONE, &gmu->flags)
  1574. && test_bit(GMU_PRIV_WARMBOOT_GPU_BOOT_DONE, &gmu->flags) &&
  1575. !test_bit(ADRENO_DEVICE_FORCE_COLDBOOT, &adreno_dev->priv))
  1576. return true;
  1577. return false;
  1578. }
  1579. static int gen8_hwsched_hfi_send_warmboot_cmd(struct adreno_device *adreno_dev,
  1580. struct kgsl_memdesc *desc, u32 flag, bool async, struct pending_cmd *ack)
  1581. {
  1582. struct hfi_warmboot_scratch_cmd cmd = {0};
  1583. int ret;
  1584. if (!adreno_dev->warmboot_enabled)
  1585. return 0;
  1586. cmd.scratch_addr = desc->gmuaddr;
  1587. cmd.scratch_size = desc->size;
  1588. cmd.flags = flag;
  1589. ret = CMD_MSG_HDR(cmd, H2F_MSG_WARMBOOT_CMD);
  1590. if (ret)
  1591. return ret;
  1592. if (async)
  1593. return gen8_hfi_send_cmd_async(adreno_dev, &cmd, sizeof(cmd));
  1594. return gen8_hfi_send_generic_req_v5(adreno_dev, &cmd, ack, sizeof(cmd));
  1595. }
  1596. static int gen8_hwsched_hfi_warmboot_gpu_cmd(struct adreno_device *adreno_dev,
  1597. struct pending_cmd *ret_cmd)
  1598. {
  1599. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1600. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  1601. struct hfi_warmboot_scratch_cmd cmd = {
  1602. .scratch_addr = gmu->gpu_boot_scratch->gmuaddr,
  1603. .scratch_size = gmu->gpu_boot_scratch->size,
  1604. .flags = HFI_WARMBOOT_EXEC_SCRATCH,
  1605. };
  1606. int ret = 0;
  1607. u32 seqnum;
  1608. if (!adreno_dev->warmboot_enabled)
  1609. return 0;
  1610. ret = CMD_MSG_HDR(cmd, H2F_MSG_WARMBOOT_CMD);
  1611. if (ret)
  1612. return ret;
  1613. seqnum = atomic_inc_return(&gmu->hfi.seqnum);
  1614. cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.hdr, seqnum, sizeof(cmd) >> 2);
  1615. add_waiter(hfi, cmd.hdr, ret_cmd);
  1616. ret = gen8_hfi_cmdq_write(adreno_dev, (u32 *)&cmd, sizeof(cmd));
  1617. if (ret)
  1618. goto err;
  1619. ret = adreno_hwsched_wait_ack_completion(adreno_dev, &gmu->pdev->dev, ret_cmd,
  1620. gen8_hwsched_process_msgq);
  1621. err:
  1622. del_waiter(hfi, ret_cmd);
  1623. return ret;
  1624. }
  1625. static int gen8_hwsched_warmboot_gpu(struct adreno_device *adreno_dev)
  1626. {
  1627. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1628. struct pending_cmd ret_cmd = {0};
  1629. int ret = 0;
  1630. ret = gen8_hwsched_hfi_warmboot_gpu_cmd(adreno_dev, &ret_cmd);
  1631. if (!ret)
  1632. return ret;
  1633. if (MSG_HDR_GET_TYPE(ret_cmd.results[1]) != H2F_MSG_WARMBOOT_CMD)
  1634. goto err;
  1635. switch (MSG_HDR_GET_TYPE(ret_cmd.results[2])) {
  1636. case H2F_MSG_ISSUE_CMD_RAW: {
  1637. if (ret_cmd.results[2] == gmu->cp_init_hdr)
  1638. gen8_spin_idle_debug(adreno_dev,
  1639. "CP initialization failed to idle\n");
  1640. else if (ret_cmd.results[2] == gmu->switch_to_unsec_hdr)
  1641. gen8_spin_idle_debug(adreno_dev,
  1642. "Switch to unsecure failed to idle\n");
  1643. }
  1644. break;
  1645. case H2F_MSG_ISSUE_LPAC_CMD_RAW:
  1646. gen8_spin_idle_debug_lpac(adreno_dev,
  1647. "LPAC CP initialization failed to idle\n");
  1648. break;
  1649. }
  1650. err:
  1651. /* Clear the bit on error so that in the next slumber exit we coldboot */
  1652. clear_bit(GMU_PRIV_WARMBOOT_GPU_BOOT_DONE, &gmu->flags);
  1653. gen8_disable_gpu_irq(adreno_dev);
  1654. return ret;
  1655. }
  1656. static int gen8_hwsched_coldboot_gpu(struct adreno_device *adreno_dev)
  1657. {
  1658. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1659. struct gen8_hfi *hfi = to_gen8_hfi(adreno_dev);
  1660. struct pending_cmd ack = {0};
  1661. int ret = 0;
  1662. ret = gen8_hwsched_hfi_send_warmboot_cmd(adreno_dev, gmu->gpu_boot_scratch,
  1663. HFI_WARMBOOT_SET_SCRATCH, true, &ack);
  1664. if (ret)
  1665. goto done;
  1666. ret = gen8_hwsched_cp_init(adreno_dev);
  1667. if (ret)
  1668. goto done;
  1669. ret = gen8_hwsched_lpac_cp_init(adreno_dev);
  1670. if (ret)
  1671. goto done;
  1672. ret = gen8_hwsched_hfi_send_warmboot_cmd(adreno_dev, gmu->gpu_boot_scratch,
  1673. HFI_WARMBOOT_QUERY_SCRATCH, true, &ack);
  1674. if (ret)
  1675. goto done;
  1676. if (adreno_dev->warmboot_enabled)
  1677. set_bit(GMU_PRIV_WARMBOOT_GPU_BOOT_DONE, &gmu->flags);
  1678. done:
  1679. /* Clear the bitmask so that we don't send record bit with future HFI messages */
  1680. memset(hfi->wb_set_record_bitmask, 0x0, sizeof(hfi->wb_set_record_bitmask));
  1681. if (ret)
  1682. gen8_disable_gpu_irq(adreno_dev);
  1683. return ret;
  1684. }
  1685. int gen8_hwsched_boot_gpu(struct adreno_device *adreno_dev)
  1686. {
  1687. /* If warmboot is possible just send the warmboot command else coldboot */
  1688. if (gen8_hwsched_warmboot_possible(adreno_dev))
  1689. return gen8_hwsched_warmboot_gpu(adreno_dev);
  1690. else
  1691. return gen8_hwsched_coldboot_gpu(adreno_dev);
  1692. }
  1693. static int gen8_hwsched_setup_default_votes(struct adreno_device *adreno_dev)
  1694. {
  1695. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  1696. int ret = 0;
  1697. /* Request default DCVS level */
  1698. ret = kgsl_pwrctrl_set_default_gpu_pwrlevel(device);
  1699. if (ret)
  1700. return ret;
  1701. /* Request default BW vote */
  1702. return kgsl_pwrctrl_axi(device, true);
  1703. }
  1704. int gen8_hwsched_warmboot_init_gmu(struct adreno_device *adreno_dev)
  1705. {
  1706. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1707. struct pending_cmd ack = {0};
  1708. int ret = 0;
  1709. ret = gen8_hwsched_hfi_send_warmboot_cmd(adreno_dev, gmu->gmu_init_scratch,
  1710. HFI_WARMBOOT_EXEC_SCRATCH, false, &ack);
  1711. if (ret)
  1712. goto err;
  1713. gen8_hwsched_enable_async_hfi(adreno_dev);
  1714. set_bit(GMU_PRIV_HFI_STARTED, &gmu->flags);
  1715. ret = gen8_hwsched_setup_default_votes(adreno_dev);
  1716. err:
  1717. if (ret) {
  1718. /* Clear the bit in case of an error so next boot will be coldboot */
  1719. clear_bit(GMU_PRIV_WARMBOOT_GMU_INIT_DONE, &gmu->flags);
  1720. clear_bit(GMU_PRIV_WARMBOOT_GPU_BOOT_DONE, &gmu->flags);
  1721. gen8_hwsched_hfi_stop(adreno_dev);
  1722. }
  1723. return ret;
  1724. }
  1725. static void warmboot_init_message_record_bitmask(struct adreno_device *adreno_dev)
  1726. {
  1727. struct gen8_hfi *hfi = to_gen8_hfi(adreno_dev);
  1728. if (!adreno_dev->warmboot_enabled)
  1729. return;
  1730. /* Set the record bit for all the messages */
  1731. memset(hfi->wb_set_record_bitmask, 0xFF, sizeof(hfi->wb_set_record_bitmask));
  1732. /* These messages should not be recorded */
  1733. clear_bit(H2F_MSG_WARMBOOT_CMD, hfi->wb_set_record_bitmask);
  1734. clear_bit(H2F_MSG_START, hfi->wb_set_record_bitmask);
  1735. clear_bit(H2F_MSG_GET_VALUE, hfi->wb_set_record_bitmask);
  1736. clear_bit(H2F_MSG_GX_BW_PERF_VOTE, hfi->wb_set_record_bitmask);
  1737. }
  1738. int gen8_hwsched_hfi_start(struct adreno_device *adreno_dev)
  1739. {
  1740. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1741. struct pending_cmd ack = {0};
  1742. int ret;
  1743. reset_hfi_queues(adreno_dev);
  1744. ret = gen8_gmu_hfi_start(adreno_dev);
  1745. if (ret)
  1746. goto err;
  1747. if (gen8_hwsched_warmboot_possible(adreno_dev))
  1748. return gen8_hwsched_warmboot_init_gmu(adreno_dev);
  1749. if (ADRENO_FEATURE(adreno_dev, ADRENO_GMU_WARMBOOT) &&
  1750. (!test_bit(GMU_PRIV_FIRST_BOOT_DONE, &gmu->flags))) {
  1751. if (gen8_hfi_send_get_value(adreno_dev, HFI_VALUE_GMU_WARMBOOT, 0) == 1)
  1752. adreno_dev->warmboot_enabled = true;
  1753. }
  1754. warmboot_init_message_record_bitmask(adreno_dev);
  1755. /* Reset the variable here and set it when we successfully record the scratch */
  1756. clear_bit(GMU_PRIV_WARMBOOT_GMU_INIT_DONE, &gmu->flags);
  1757. clear_bit(GMU_PRIV_WARMBOOT_GPU_BOOT_DONE, &gmu->flags);
  1758. ret = gen8_hwsched_hfi_send_warmboot_cmd(adreno_dev, gmu->gmu_init_scratch,
  1759. HFI_WARMBOOT_SET_SCRATCH, false, &ack);
  1760. if (ret)
  1761. goto err;
  1762. ret = gen8_hfi_send_gpu_perf_table(adreno_dev);
  1763. if (ret)
  1764. goto err;
  1765. ret = gen8_hfi_send_generic_req(adreno_dev, &gmu->hfi.bw_table, sizeof(gmu->hfi.bw_table));
  1766. if (ret)
  1767. goto err;
  1768. ret = gen8_hfi_send_acd_feature_ctrl(adreno_dev);
  1769. if (ret)
  1770. goto err;
  1771. ret = gen8_hfi_send_bcl_feature_ctrl(adreno_dev);
  1772. if (ret)
  1773. goto err;
  1774. ret = gen8_hfi_send_clx_feature_ctrl(adreno_dev);
  1775. if (ret)
  1776. goto err;
  1777. ret = gen8_hfi_send_ifpc_feature_ctrl(adreno_dev);
  1778. if (ret)
  1779. goto err;
  1780. ret = gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_HWSCHED, 1, 0);
  1781. if (ret)
  1782. goto err;
  1783. ret = gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_KPROF, 1, 0);
  1784. if (ret)
  1785. goto err;
  1786. if (ADRENO_FEATURE(adreno_dev, ADRENO_LSR)) {
  1787. ret = gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_LSR,
  1788. 1, 0);
  1789. if (ret)
  1790. goto err;
  1791. }
  1792. ret = gen8_hfi_send_perfcounter_feature_ctrl(adreno_dev);
  1793. if (ret)
  1794. goto err;
  1795. /* Enable the long ib timeout detection */
  1796. if (adreno_long_ib_detect(adreno_dev)) {
  1797. ret = gen8_hfi_send_feature_ctrl(adreno_dev,
  1798. HFI_FEATURE_BAIL_OUT_TIMER, 1, 0);
  1799. if (ret)
  1800. goto err;
  1801. }
  1802. enable_gmu_stats(adreno_dev);
  1803. if (gmu->log_stream_enable)
  1804. gen8_hfi_send_set_value(adreno_dev,
  1805. HFI_VALUE_LOG_STREAM_ENABLE, 0, 1);
  1806. if (gmu->log_group_mask)
  1807. gen8_hfi_send_set_value(adreno_dev,
  1808. HFI_VALUE_LOG_GROUP, 0, gmu->log_group_mask);
  1809. ret = gen8_hfi_send_core_fw_start(adreno_dev);
  1810. if (ret)
  1811. goto err;
  1812. /*
  1813. * HFI_VALUE_CONTEXT_QUEUE can only be queried after GMU has initialized some of the
  1814. * required resources as part of handling gen8_hfi_send_core_fw_start()
  1815. */
  1816. if (!test_bit(GMU_PRIV_FIRST_BOOT_DONE, &gmu->flags)) {
  1817. _context_queue_enable(adreno_dev);
  1818. adreno_hwsched_register_hw_fence(adreno_dev);
  1819. }
  1820. ret = gen8_hfi_send_hw_fence_feature_ctrl(adreno_dev);
  1821. if (ret)
  1822. goto err;
  1823. ret = enable_preemption(adreno_dev);
  1824. if (ret)
  1825. goto err;
  1826. ret = gen8_hfi_send_lpac_feature_ctrl(adreno_dev);
  1827. if (ret)
  1828. goto err;
  1829. if (ADRENO_FEATURE(adreno_dev, ADRENO_AQE)) {
  1830. ret = gen8_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_AQE, 1, 0);
  1831. if (ret)
  1832. goto err;
  1833. }
  1834. ret = send_start_msg(adreno_dev);
  1835. if (ret)
  1836. goto err;
  1837. /*
  1838. * Send this additional start message on cold boot if warmboot is enabled.
  1839. * This message will be recorded and on a warmboot this will trigger the
  1840. * sequence to replay memory allocation requests and ECP task setup
  1841. */
  1842. ret = send_warmboot_start_msg(adreno_dev);
  1843. if (ret)
  1844. goto err;
  1845. gen8_hwsched_enable_async_hfi(adreno_dev);
  1846. set_bit(GMU_PRIV_HFI_STARTED, &gmu->flags);
  1847. /* Send this message only on cold boot */
  1848. ret = gen8_hwsched_hfi_send_warmboot_cmd(adreno_dev, gmu->gmu_init_scratch,
  1849. HFI_WARMBOOT_QUERY_SCRATCH, true, &ack);
  1850. if (ret)
  1851. goto err;
  1852. if (adreno_dev->warmboot_enabled)
  1853. set_bit(GMU_PRIV_WARMBOOT_GMU_INIT_DONE, &gmu->flags);
  1854. ret = gen8_hwsched_setup_default_votes(adreno_dev);
  1855. err:
  1856. if (ret)
  1857. gen8_hwsched_hfi_stop(adreno_dev);
  1858. return ret;
  1859. }
  1860. static int submit_raw_cmds(struct adreno_device *adreno_dev, void *cmds, u32 size_bytes,
  1861. const char *str)
  1862. {
  1863. int ret;
  1864. ret = gen8_hfi_send_cmd_async(adreno_dev, cmds, size_bytes);
  1865. if (ret)
  1866. return ret;
  1867. ret = gmu_core_timed_poll_check(KGSL_DEVICE(adreno_dev),
  1868. GEN8_GMUAO_GPU_CX_BUSY_STATUS, 0, 200, BIT(23));
  1869. if (ret)
  1870. gen8_spin_idle_debug(adreno_dev, str);
  1871. return ret;
  1872. }
  1873. static int submit_lpac_raw_cmds(struct adreno_device *adreno_dev, void *cmds, u32 size_bytes,
  1874. const char *str)
  1875. {
  1876. int ret;
  1877. ret = gen8_hfi_send_cmd_async(adreno_dev, cmds, size_bytes);
  1878. if (ret)
  1879. return ret;
  1880. ret = gmu_core_timed_poll_check(KGSL_DEVICE(adreno_dev),
  1881. GEN8_GMUAO_LPAC_BUSY_STATUS, 0, 200, BIT(23));
  1882. if (ret)
  1883. gen8_spin_idle_debug_lpac(adreno_dev, str);
  1884. return ret;
  1885. }
  1886. static int cp_init(struct adreno_device *adreno_dev)
  1887. {
  1888. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1889. u32 cmds[GEN8_CP_INIT_DWORDS + 1];
  1890. int ret = 0;
  1891. cmds[0] = CREATE_MSG_HDR(H2F_MSG_ISSUE_CMD_RAW, HFI_MSG_CMD);
  1892. gen8_cp_init_cmds(adreno_dev, &cmds[1]);
  1893. ret = submit_raw_cmds(adreno_dev, cmds, sizeof(cmds),
  1894. "CP initialization failed to idle\n");
  1895. /* Save the header incase we need a warmboot debug */
  1896. gmu->cp_init_hdr = cmds[0];
  1897. return ret;
  1898. }
  1899. static int send_switch_to_unsecure(struct adreno_device *adreno_dev)
  1900. {
  1901. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1902. u32 cmds[3];
  1903. int ret = 0;
  1904. cmds[0] = CREATE_MSG_HDR(H2F_MSG_ISSUE_CMD_RAW, HFI_MSG_CMD);
  1905. cmds[1] = cp_type7_packet(CP_SET_SECURE_MODE, 1);
  1906. cmds[2] = 0;
  1907. ret = submit_raw_cmds(adreno_dev, cmds, sizeof(cmds),
  1908. "Switch to unsecure failed to idle\n");
  1909. /* Save the header incase we need a warmboot debug */
  1910. gmu->switch_to_unsec_hdr = cmds[0];
  1911. return ret;
  1912. }
  1913. int gen8_hwsched_cp_init(struct adreno_device *adreno_dev)
  1914. {
  1915. const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
  1916. int ret;
  1917. ret = cp_init(adreno_dev);
  1918. if (ret)
  1919. return ret;
  1920. ret = adreno_zap_shader_load(adreno_dev, gen8_core->zap_name);
  1921. if (ret)
  1922. return ret;
  1923. if (!adreno_dev->zap_loaded)
  1924. kgsl_regwrite(KGSL_DEVICE(adreno_dev),
  1925. GEN8_RBBM_SECVID_TRUST_CNTL, 0x0);
  1926. else
  1927. ret = send_switch_to_unsecure(adreno_dev);
  1928. return ret;
  1929. }
  1930. int gen8_hwsched_lpac_cp_init(struct adreno_device *adreno_dev)
  1931. {
  1932. u32 cmds[GEN8_CP_INIT_DWORDS + 1];
  1933. if (!adreno_dev->lpac_enabled)
  1934. return 0;
  1935. cmds[0] = CREATE_MSG_HDR(H2F_MSG_ISSUE_LPAC_CMD_RAW, HFI_MSG_CMD);
  1936. gen8_cp_init_cmds(adreno_dev, &cmds[1]);
  1937. return submit_lpac_raw_cmds(adreno_dev, cmds, sizeof(cmds),
  1938. "LPAC CP initialization failed to idle\n");
  1939. }
  1940. static bool is_queue_empty(struct adreno_device *adreno_dev, u32 queue_idx)
  1941. {
  1942. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1943. struct kgsl_memdesc *mem_addr = gmu->hfi.hfi_mem;
  1944. struct hfi_queue_table *tbl = mem_addr->hostptr;
  1945. struct hfi_queue_header *hdr = &tbl->qhdr[queue_idx];
  1946. if (hdr->status == HFI_QUEUE_STATUS_DISABLED)
  1947. return true;
  1948. if (hdr->read_index == hdr->write_index)
  1949. return true;
  1950. return false;
  1951. }
  1952. static int hfi_f2h_main(void *arg)
  1953. {
  1954. struct adreno_device *adreno_dev = arg;
  1955. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  1956. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1957. while (!kthread_should_stop()) {
  1958. wait_event_interruptible(hfi->f2h_wq, kthread_should_stop() ||
  1959. /* If msgq irq is enabled and msgq has messages to process */
  1960. (((hfi->irq_mask & HFI_IRQ_MSGQ_MASK) &&
  1961. !is_queue_empty(adreno_dev, HFI_MSG_ID)) ||
  1962. /* Trace buffer has messages to process */
  1963. !gmu_core_is_trace_empty(gmu->trace.md->hostptr) ||
  1964. /* Dbgq has messages to process */
  1965. !is_queue_empty(adreno_dev, HFI_DBG_ID)));
  1966. if (kthread_should_stop())
  1967. break;
  1968. gen8_hwsched_process_msgq(adreno_dev);
  1969. gmu_core_process_trace_data(KGSL_DEVICE(adreno_dev),
  1970. &gmu->pdev->dev, &gmu->trace);
  1971. gen8_hwsched_process_dbgq(adreno_dev, true);
  1972. }
  1973. return 0;
  1974. }
  1975. static void gen8_hwsched_hw_fence_timeout(struct work_struct *work)
  1976. {
  1977. struct gen8_hwsched_hfi *hfi = container_of(work, struct gen8_hwsched_hfi, hw_fence_ws);
  1978. struct gen8_hwsched_device *gen8_hw_dev = container_of(hfi, struct gen8_hwsched_device,
  1979. hwsched_hfi);
  1980. struct adreno_device *adreno_dev = &gen8_hw_dev->gen8_dev.adreno_dev;
  1981. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  1982. u32 unack_count, ts;
  1983. struct adreno_context *drawctxt = NULL;
  1984. bool fault;
  1985. /* Check msgq one last time before recording a fault */
  1986. gen8_hwsched_process_msgq(adreno_dev);
  1987. spin_lock(&hfi->hw_fence.lock);
  1988. unack_count = hfi->hw_fence.unack_count;
  1989. fault = test_bit(GEN8_HWSCHED_HW_FENCE_SLEEP_BIT, &hfi->hw_fence.flags) &&
  1990. test_bit(GEN8_HWSCHED_HW_FENCE_MAX_BIT, &hfi->hw_fence.flags) &&
  1991. (unack_count > MIN_HW_FENCE_UNACK_COUNT);
  1992. drawctxt = hfi->hw_fence.defer_drawctxt;
  1993. ts = hfi->hw_fence.defer_ts;
  1994. spin_unlock(&hfi->hw_fence.lock);
  1995. if (!fault)
  1996. return;
  1997. dev_err(&gmu->pdev->dev, "Hardware fence unack(%d) timeout\n", unack_count);
  1998. if (drawctxt) {
  1999. struct kgsl_process_private *proc_priv = drawctxt->base.proc_priv;
  2000. dev_err(&gmu->pdev->dev,
  2001. "Hardware fence got deferred for ctx:%d ts:%d pid:%d proc:%s\n",
  2002. drawctxt->base.id, ts, pid_nr(proc_priv->pid), proc_priv->comm);
  2003. }
  2004. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  2005. }
  2006. static void gen8_hwsched_hw_fence_timer(struct timer_list *t)
  2007. {
  2008. struct gen8_hwsched_hfi *hfi = from_timer(hfi, t, hw_fence_timer);
  2009. kgsl_schedule_work(&hfi->hw_fence_ws);
  2010. }
  2011. int gen8_hwsched_hfi_probe(struct adreno_device *adreno_dev)
  2012. {
  2013. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  2014. struct gen8_hwsched_hfi *hw_hfi = to_gen8_hwsched_hfi(adreno_dev);
  2015. gmu->hfi.irq = kgsl_request_irq(gmu->pdev, "hfi",
  2016. gen8_hwsched_hfi_handler, adreno_dev);
  2017. if (gmu->hfi.irq < 0)
  2018. return gmu->hfi.irq;
  2019. hw_hfi->irq_mask = HFI_IRQ_MASK;
  2020. rwlock_init(&hw_hfi->msglock);
  2021. INIT_LIST_HEAD(&hw_hfi->msglist);
  2022. INIT_LIST_HEAD(&hw_hfi->detached_hw_fence_list);
  2023. init_waitqueue_head(&hw_hfi->f2h_wq);
  2024. init_waitqueue_head(&hw_hfi->hw_fence.unack_wq);
  2025. spin_lock_init(&hw_hfi->hw_fence.lock);
  2026. mutex_init(&hw_hfi->msgq_mutex);
  2027. INIT_WORK(&hw_hfi->hw_fence_ws, gen8_hwsched_hw_fence_timeout);
  2028. timer_setup(&hw_hfi->hw_fence_timer, gen8_hwsched_hw_fence_timer, 0);
  2029. return 0;
  2030. }
  2031. void gen8_hwsched_hfi_remove(struct adreno_device *adreno_dev)
  2032. {
  2033. struct gen8_hwsched_hfi *hw_hfi = to_gen8_hwsched_hfi(adreno_dev);
  2034. if (hw_hfi->f2h_task)
  2035. kthread_stop(hw_hfi->f2h_task);
  2036. }
  2037. static void gen8_add_profile_events(struct adreno_device *adreno_dev,
  2038. struct kgsl_drawobj_cmd *cmdobj, struct adreno_submit_time *time)
  2039. {
  2040. unsigned long flags;
  2041. u64 time_in_s;
  2042. unsigned long time_in_ns;
  2043. struct kgsl_drawobj *drawobj = DRAWOBJ(cmdobj);
  2044. struct kgsl_context *context = drawobj->context;
  2045. struct submission_info info = {0};
  2046. struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
  2047. const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
  2048. if (!time)
  2049. return;
  2050. /*
  2051. * Here we are attempting to create a mapping between the
  2052. * GPU time domain (alwayson counter) and the CPU time domain
  2053. * (local_clock) by sampling both values as close together as
  2054. * possible. This is useful for many types of debugging and
  2055. * profiling. In order to make this mapping as accurate as
  2056. * possible, we must turn off interrupts to avoid running
  2057. * interrupt handlers between the two samples.
  2058. */
  2059. local_irq_save(flags);
  2060. /* Read always on registers */
  2061. time->ticks = gpudev->read_alwayson(adreno_dev);
  2062. /* Trace the GPU time to create a mapping to ftrace time */
  2063. trace_adreno_cmdbatch_sync(context->id, context->priority,
  2064. drawobj->timestamp, time->ticks);
  2065. /* Get the kernel clock for time since boot */
  2066. time->ktime = local_clock();
  2067. /* Get the timeofday for the wall time (for the user) */
  2068. ktime_get_real_ts64(&time->utime);
  2069. local_irq_restore(flags);
  2070. /* Return kernel clock time to the client if requested */
  2071. time_in_s = time->ktime;
  2072. time_in_ns = do_div(time_in_s, 1000000000);
  2073. info.inflight = hwsched->inflight;
  2074. info.rb_id = adreno_get_level(context);
  2075. info.gmu_dispatch_queue = context->gmu_dispatch_queue;
  2076. cmdobj->submit_ticks = time->ticks;
  2077. msm_perf_events_update(MSM_PERF_GFX, MSM_PERF_SUBMIT,
  2078. pid_nr(context->proc_priv->pid),
  2079. context->id, drawobj->timestamp,
  2080. !!(drawobj->flags & KGSL_DRAWOBJ_END_OF_FRAME));
  2081. trace_adreno_cmdbatch_submitted(drawobj, &info, time->ticks,
  2082. (unsigned long) time_in_s, time_in_ns / 1000, 0);
  2083. log_kgsl_cmdbatch_submitted_event(context->id, drawobj->timestamp,
  2084. context->priority, drawobj->flags);
  2085. }
  2086. static void init_gmu_context_queue(struct adreno_context *drawctxt)
  2087. {
  2088. struct kgsl_memdesc *md = &drawctxt->gmu_context_queue;
  2089. struct gmu_context_queue_header *hdr = md->hostptr;
  2090. hdr->start_addr = md->gmuaddr + sizeof(*hdr);
  2091. hdr->queue_size = (md->size - sizeof(*hdr)) >> 2;
  2092. hdr->hw_fence_buffer_va = drawctxt->gmu_hw_fence_queue.gmuaddr;
  2093. hdr->hw_fence_buffer_size = drawctxt->gmu_hw_fence_queue.size;
  2094. }
  2095. static u32 get_dq_id(struct adreno_device *adreno_dev, struct kgsl_context *context)
  2096. {
  2097. struct dq_info *info;
  2098. u32 next;
  2099. u32 priority = adreno_get_level(context);
  2100. if (adreno_dev->lpac_enabled)
  2101. info = &gen8_hfi_dqs_lpac[priority];
  2102. else
  2103. info = &gen8_hfi_dqs[priority];
  2104. next = info->base_dq_id + info->offset;
  2105. info->offset = (info->offset + 1) % info->max_dq;
  2106. return next;
  2107. }
  2108. static int allocate_context_queues(struct adreno_device *adreno_dev,
  2109. struct adreno_context *drawctxt)
  2110. {
  2111. int ret = 0;
  2112. if (!adreno_hwsched_context_queue_enabled(adreno_dev))
  2113. return 0;
  2114. if (test_bit(ADRENO_HWSCHED_HW_FENCE, &adreno_dev->hwsched.flags) &&
  2115. !drawctxt->gmu_hw_fence_queue.gmuaddr) {
  2116. ret = gen8_alloc_gmu_kernel_block(
  2117. to_gen8_gmu(adreno_dev), &drawctxt->gmu_hw_fence_queue,
  2118. HW_FENCE_QUEUE_SIZE, GMU_NONCACHED_KERNEL,
  2119. IOMMU_READ | IOMMU_WRITE | IOMMU_PRIV);
  2120. if (ret) {
  2121. memset(&drawctxt->gmu_hw_fence_queue, 0x0,
  2122. sizeof(drawctxt->gmu_hw_fence_queue));
  2123. return ret;
  2124. }
  2125. }
  2126. if (!drawctxt->gmu_context_queue.gmuaddr) {
  2127. ret = gen8_alloc_gmu_kernel_block(
  2128. to_gen8_gmu(adreno_dev), &drawctxt->gmu_context_queue,
  2129. SZ_4K, GMU_NONCACHED_KERNEL,
  2130. IOMMU_READ | IOMMU_WRITE | IOMMU_PRIV);
  2131. if (ret) {
  2132. memset(&drawctxt->gmu_context_queue, 0x0,
  2133. sizeof(drawctxt->gmu_context_queue));
  2134. return ret;
  2135. }
  2136. init_gmu_context_queue(drawctxt);
  2137. }
  2138. return 0;
  2139. }
  2140. static int send_context_register(struct adreno_device *adreno_dev,
  2141. struct kgsl_context *context)
  2142. {
  2143. struct adreno_context *drawctxt = ADRENO_CONTEXT(context);
  2144. struct hfi_register_ctxt_cmd cmd;
  2145. struct kgsl_pagetable *pt = context->proc_priv->pagetable;
  2146. int ret, asid = kgsl_mmu_pagetable_get_asid(pt, context);
  2147. if (asid < 0)
  2148. return asid;
  2149. ret = CMD_MSG_HDR(cmd, H2F_MSG_REGISTER_CONTEXT);
  2150. if (ret)
  2151. return ret;
  2152. ret = allocate_context_queues(adreno_dev, drawctxt);
  2153. if (ret)
  2154. return ret;
  2155. cmd.ctxt_id = context->id;
  2156. cmd.flags = HFI_CTXT_FLAG_NOTIFY | context->flags;
  2157. /*
  2158. * HLOS SMMU driver programs context bank to look up ASID from TTBR0 during a page
  2159. * table walk. So the TLB entries are tagged with the ASID from TTBR0. TLBIASID
  2160. * invalidates TLB entries whose ASID matches the value that was written to the
  2161. * CBn_TLBIASID register. Set ASID along with PT address.
  2162. */
  2163. cmd.pt_addr = kgsl_mmu_pagetable_get_ttbr0(pt) |
  2164. FIELD_PREP(GENMASK_ULL(63, KGSL_IOMMU_ASID_START_BIT), asid);
  2165. cmd.ctxt_idr = context->id;
  2166. cmd.ctxt_bank = kgsl_mmu_pagetable_get_context_bank(pt, context);
  2167. return gen8_hfi_send_cmd_async(adreno_dev, &cmd, sizeof(cmd));
  2168. }
  2169. static int send_context_pointers(struct adreno_device *adreno_dev,
  2170. struct kgsl_context *context)
  2171. {
  2172. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  2173. struct hfi_context_pointers_cmd cmd = {0};
  2174. struct adreno_context *drawctxt = ADRENO_CONTEXT(context);
  2175. int ret;
  2176. ret = CMD_MSG_HDR(cmd, H2F_MSG_CONTEXT_POINTERS);
  2177. if (ret)
  2178. return ret;
  2179. cmd.ctxt_id = context->id;
  2180. cmd.sop_addr = MEMSTORE_ID_GPU_ADDR(device, context->id, soptimestamp);
  2181. cmd.eop_addr = MEMSTORE_ID_GPU_ADDR(device, context->id, eoptimestamp);
  2182. if (context->user_ctxt_record)
  2183. cmd.user_ctxt_record_addr =
  2184. context->user_ctxt_record->memdesc.gpuaddr;
  2185. if (adreno_hwsched_context_queue_enabled(adreno_dev))
  2186. cmd.gmu_context_queue_addr = drawctxt->gmu_context_queue.gmuaddr;
  2187. return gen8_hfi_send_cmd_async(adreno_dev, &cmd, sizeof(cmd));
  2188. }
  2189. static int hfi_context_register(struct adreno_device *adreno_dev,
  2190. struct kgsl_context *context)
  2191. {
  2192. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  2193. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  2194. int ret;
  2195. if (context->gmu_registered)
  2196. return 0;
  2197. ret = send_context_register(adreno_dev, context);
  2198. if (ret) {
  2199. dev_err(&gmu->pdev->dev,
  2200. "Unable to register context %u: %d\n",
  2201. context->id, ret);
  2202. if (device->gmu_fault)
  2203. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  2204. return ret;
  2205. }
  2206. ret = send_context_pointers(adreno_dev, context);
  2207. if (ret) {
  2208. dev_err(&gmu->pdev->dev,
  2209. "Unable to register context %u pointers: %d\n",
  2210. context->id, ret);
  2211. if (device->gmu_fault)
  2212. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  2213. return ret;
  2214. }
  2215. context->gmu_registered = true;
  2216. if (adreno_hwsched_context_queue_enabled(adreno_dev))
  2217. context->gmu_dispatch_queue = UINT_MAX;
  2218. else
  2219. context->gmu_dispatch_queue = get_dq_id(adreno_dev, context);
  2220. return 0;
  2221. }
  2222. static void populate_ibs(struct adreno_device *adreno_dev,
  2223. struct hfi_submit_cmd *cmd, struct kgsl_drawobj_cmd *cmdobj)
  2224. {
  2225. struct hfi_issue_ib *issue_ib;
  2226. struct kgsl_memobj_node *ib;
  2227. if (cmdobj->numibs > HWSCHED_MAX_DISPATCH_NUMIBS) {
  2228. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  2229. struct kgsl_memdesc *big_ib;
  2230. if (test_bit(CMDOBJ_RECURRING_START, &cmdobj->priv))
  2231. big_ib = hfi->big_ib_recurring;
  2232. else
  2233. big_ib = hfi->big_ib;
  2234. /*
  2235. * The dispatcher ensures that there is only one big IB inflight
  2236. */
  2237. cmd->big_ib_gmu_va = big_ib->gmuaddr;
  2238. cmd->flags |= CMDBATCH_INDIRECT;
  2239. issue_ib = big_ib->hostptr;
  2240. } else {
  2241. issue_ib = (struct hfi_issue_ib *)&cmd[1];
  2242. }
  2243. list_for_each_entry(ib, &cmdobj->cmdlist, node) {
  2244. issue_ib->addr = ib->gpuaddr;
  2245. issue_ib->size = ib->size;
  2246. issue_ib++;
  2247. }
  2248. cmd->numibs = cmdobj->numibs;
  2249. }
  2250. #define HFI_DSP_IRQ_BASE 2
  2251. #define DISPQ_IRQ_BIT(_idx) BIT((_idx) + HFI_DSP_IRQ_BASE)
  2252. int gen8_gmu_context_queue_write(struct adreno_device *adreno_dev,
  2253. struct adreno_context *drawctxt, u32 *msg, u32 size_bytes,
  2254. struct kgsl_drawobj *drawobj, struct adreno_submit_time *time)
  2255. {
  2256. struct gmu_context_queue_header *hdr = drawctxt->gmu_context_queue.hostptr;
  2257. const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
  2258. u32 *queue = drawctxt->gmu_context_queue.hostptr + sizeof(*hdr);
  2259. u32 i, empty_space, write_idx = hdr->write_index, read_idx = hdr->read_index;
  2260. u32 size_dwords = size_bytes >> 2;
  2261. u32 align_size = ALIGN(size_dwords, SZ_4);
  2262. u32 id = MSG_HDR_GET_ID(*msg);
  2263. struct kgsl_drawobj_cmd *cmdobj = NULL;
  2264. empty_space = (write_idx >= read_idx) ?
  2265. (hdr->queue_size - (write_idx - read_idx))
  2266. : (read_idx - write_idx);
  2267. if (empty_space <= align_size)
  2268. return -ENOSPC;
  2269. if (!IS_ALIGNED(size_bytes, sizeof(u32)))
  2270. return -EINVAL;
  2271. for (i = 0; i < size_dwords; i++) {
  2272. queue[write_idx] = msg[i];
  2273. write_idx = (write_idx + 1) % hdr->queue_size;
  2274. }
  2275. /* Cookify any non used data at the end of the write buffer */
  2276. for (; i < align_size; i++) {
  2277. queue[write_idx] = 0xfafafafa;
  2278. write_idx = (write_idx + 1) % hdr->queue_size;
  2279. }
  2280. /* Ensure packet is written out before proceeding */
  2281. wmb();
  2282. if (drawobj->type & SYNCOBJ_TYPE) {
  2283. struct kgsl_drawobj_sync *syncobj = SYNCOBJ(drawobj);
  2284. trace_adreno_syncobj_submitted(drawobj->context->id, drawobj->timestamp,
  2285. syncobj->numsyncs, gpudev->read_alwayson(adreno_dev));
  2286. goto done;
  2287. }
  2288. cmdobj = CMDOBJ(drawobj);
  2289. gen8_add_profile_events(adreno_dev, cmdobj, time);
  2290. /*
  2291. * Put the profiling information in the user profiling buffer.
  2292. * The hfi_update_write_idx below has a wmb() before the actual
  2293. * write index update to ensure that the GMU does not see the
  2294. * packet before the profile data is written out.
  2295. */
  2296. adreno_profile_submit_time(time);
  2297. done:
  2298. trace_kgsl_hfi_send(id, size_dwords, MSG_HDR_GET_SEQNUM(*msg));
  2299. hfi_update_write_idx(&hdr->write_index, write_idx);
  2300. return 0;
  2301. }
  2302. static u32 get_irq_bit(struct adreno_device *adreno_dev, struct kgsl_drawobj *drawobj)
  2303. {
  2304. if (!adreno_hwsched_context_queue_enabled(adreno_dev))
  2305. return drawobj->context->gmu_dispatch_queue;
  2306. if (adreno_is_preemption_enabled(adreno_dev))
  2307. return adreno_get_level(drawobj->context);
  2308. if (kgsl_context_is_lpac(drawobj->context))
  2309. return 1;
  2310. return 0;
  2311. }
  2312. static int add_gmu_waiter(struct adreno_device *adreno_dev,
  2313. struct dma_fence *fence)
  2314. {
  2315. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  2316. int ret = msm_hw_fence_wait_update(adreno_dev->hwsched.hw_fence.handle,
  2317. &fence, 1, true);
  2318. if (ret)
  2319. dev_err_ratelimited(device->dev,
  2320. "Failed to add GMU as waiter ret:%d fence ctx:%llu ts:%llu\n",
  2321. ret, fence->context, fence->seqno);
  2322. return ret;
  2323. }
  2324. static void populate_kgsl_fence(struct hfi_syncobj *obj,
  2325. struct dma_fence *fence)
  2326. {
  2327. struct kgsl_sync_fence *kfence = (struct kgsl_sync_fence *)fence;
  2328. struct kgsl_sync_timeline *ktimeline = kfence->parent;
  2329. unsigned long flags;
  2330. obj->flags |= BIT(GMU_SYNCOBJ_FLAG_KGSL_FENCE_BIT);
  2331. spin_lock_irqsave(&ktimeline->lock, flags);
  2332. /* If the context is going away or the dma fence is signaled, mark the fence as triggered */
  2333. if (!ktimeline->context || dma_fence_is_signaled_locked(fence)) {
  2334. obj->flags |= BIT(GMU_SYNCOBJ_FLAG_SIGNALED_BIT);
  2335. spin_unlock_irqrestore(&ktimeline->lock, flags);
  2336. return;
  2337. }
  2338. obj->ctxt_id = ktimeline->context->id;
  2339. spin_unlock_irqrestore(&ktimeline->lock, flags);
  2340. obj->seq_no = kfence->timestamp;
  2341. }
  2342. static int _submit_hw_fence(struct adreno_device *adreno_dev,
  2343. struct kgsl_drawobj *drawobj, void *cmdbuf)
  2344. {
  2345. struct adreno_context *drawctxt = ADRENO_CONTEXT(drawobj->context);
  2346. int i, j;
  2347. u32 cmd_sizebytes, seqnum;
  2348. struct kgsl_drawobj_sync *syncobj = SYNCOBJ(drawobj);
  2349. struct hfi_submit_syncobj *cmd;
  2350. struct hfi_syncobj *obj = NULL;
  2351. /* Add hfi_syncobj struct for sync object */
  2352. cmd_sizebytes = sizeof(*cmd) +
  2353. (sizeof(struct hfi_syncobj) *
  2354. syncobj->num_hw_fence);
  2355. if (WARN_ON(cmd_sizebytes > HFI_MAX_MSG_SIZE))
  2356. return -EMSGSIZE;
  2357. memset(cmdbuf, 0x0, cmd_sizebytes);
  2358. cmd = cmdbuf;
  2359. cmd->num_syncobj = syncobj->num_hw_fence;
  2360. obj = (struct hfi_syncobj *)&cmd[1];
  2361. for (i = 0; i < syncobj->numsyncs; i++) {
  2362. struct kgsl_drawobj_sync_event *event = &syncobj->synclist[i];
  2363. struct kgsl_sync_fence_cb *kcb = event->handle;
  2364. struct dma_fence **fences;
  2365. struct dma_fence_array *array;
  2366. u32 num_fences;
  2367. if (!kcb)
  2368. return -EINVAL;
  2369. array = to_dma_fence_array(kcb->fence);
  2370. if (array != NULL) {
  2371. num_fences = array->num_fences;
  2372. fences = array->fences;
  2373. } else {
  2374. num_fences = 1;
  2375. fences = &kcb->fence;
  2376. }
  2377. for (j = 0; j < num_fences; j++) {
  2378. /*
  2379. * If this sync object has a software only fence, make sure that it is
  2380. * already signaled so that we can skip sending this fence to the GMU.
  2381. */
  2382. if (!test_bit(MSM_HW_FENCE_FLAG_ENABLED_BIT, &fences[j]->flags)) {
  2383. if (WARN(!dma_fence_is_signaled(fences[j]),
  2384. "sync object has unsignaled software fence"))
  2385. return -EINVAL;
  2386. continue;
  2387. }
  2388. if (is_kgsl_fence(fences[j])) {
  2389. populate_kgsl_fence(obj, fences[j]);
  2390. } else {
  2391. int ret = add_gmu_waiter(adreno_dev, fences[j]);
  2392. if (ret) {
  2393. syncobj->flags &= ~KGSL_SYNCOBJ_HW;
  2394. return ret;
  2395. }
  2396. if (test_bit(MSM_HW_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags) ||
  2397. test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags))
  2398. obj->flags |= BIT(GMU_SYNCOBJ_FLAG_SIGNALED_BIT);
  2399. obj->ctxt_id = fences[j]->context;
  2400. obj->seq_no = fences[j]->seqno;
  2401. }
  2402. trace_adreno_input_hw_fence(drawobj->context->id, obj->ctxt_id,
  2403. obj->seq_no, obj->flags, fences[j]->ops->get_timeline_name ?
  2404. fences[j]->ops->get_timeline_name(fences[j]) : "unknown");
  2405. obj++;
  2406. }
  2407. }
  2408. /*
  2409. * Attach a timestamp to this SYNCOBJ to keep track whether GMU has deemed it signaled
  2410. * or not.
  2411. */
  2412. drawobj->timestamp = ++drawctxt->syncobj_timestamp;
  2413. cmd->timestamp = drawobj->timestamp;
  2414. cmd->hdr = CREATE_MSG_HDR(H2F_MSG_ISSUE_SYNCOBJ, HFI_MSG_CMD);
  2415. seqnum = atomic_inc_return(&adreno_dev->hwsched.submission_seqnum);
  2416. cmd->hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd->hdr, seqnum, cmd_sizebytes >> 2);
  2417. return gen8_gmu_context_queue_write(adreno_dev, drawctxt, (u32 *)cmd, cmd_sizebytes,
  2418. drawobj, NULL);
  2419. }
  2420. int gen8_hwsched_check_context_inflight_hw_fences(struct adreno_device *adreno_dev,
  2421. struct adreno_context *drawctxt)
  2422. {
  2423. struct adreno_hw_fence_entry *entry, *tmp;
  2424. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  2425. int ret = 0;
  2426. spin_lock(&drawctxt->lock);
  2427. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_inflight_list, node) {
  2428. struct gmu_context_queue_header *hdr = drawctxt->gmu_context_queue.hostptr;
  2429. if (timestamp_cmp((u32)entry->cmd.ts, hdr->out_fence_ts) > 0) {
  2430. dev_err(&gmu->pdev->dev,
  2431. "detached ctx:%d has unsignaled fence ts:%d retired:%d\n",
  2432. drawctxt->base.id, (u32)entry->cmd.ts, hdr->out_fence_ts);
  2433. ret = -EINVAL;
  2434. break;
  2435. }
  2436. gen8_remove_hw_fence_entry(adreno_dev, entry);
  2437. }
  2438. spin_unlock(&drawctxt->lock);
  2439. return ret;
  2440. }
  2441. /**
  2442. * move_detached_context_hardware_fences - Move all pending hardware fences belonging to this
  2443. * context to the detached hardware fence list so as to send them to TxQueue after fault recovery.
  2444. * This is needed because this context may get destroyed before fault recovery gets executed.
  2445. */
  2446. static void move_detached_context_hardware_fences(struct adreno_device *adreno_dev,
  2447. struct adreno_context *drawctxt)
  2448. {
  2449. struct adreno_hw_fence_entry *entry, *tmp;
  2450. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  2451. /* We don't need the drawctxt lock here because this context has already been detached */
  2452. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_inflight_list, node) {
  2453. struct gmu_context_queue_header *hdr = drawctxt->gmu_context_queue.hostptr;
  2454. if ((timestamp_cmp((u32)entry->cmd.ts, hdr->out_fence_ts) > 0)) {
  2455. _kgsl_context_get(&drawctxt->base);
  2456. list_move_tail(&entry->node, &hfi->detached_hw_fence_list);
  2457. continue;
  2458. }
  2459. gen8_remove_hw_fence_entry(adreno_dev, entry);
  2460. }
  2461. /* Also grab all the hardware fences which were never sent to GMU */
  2462. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_list, node) {
  2463. _kgsl_context_get(&drawctxt->base);
  2464. list_move_tail(&entry->node, &hfi->detached_hw_fence_list);
  2465. }
  2466. }
  2467. /**
  2468. * check_detached_context_hardware_fences - When this context has been un-registered with the GMU,
  2469. * make sure all the hardware fences(that were sent to GMU) for this context have been sent to
  2470. * TxQueue. Also, send any hardware fences (to GMU) that were not yet dispatched to the GMU. In case
  2471. * of an error, move the pending hardware fences to detached hardware fence list, log the error,
  2472. * take a snapshot and trigger recovery.
  2473. */
  2474. static int check_detached_context_hardware_fences(struct adreno_device *adreno_dev,
  2475. struct adreno_context *drawctxt)
  2476. {
  2477. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  2478. struct adreno_hw_fence_entry *entry, *tmp;
  2479. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  2480. int ret = 0;
  2481. /* We don't need the drawctxt lock because this context has been detached */
  2482. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_inflight_list, node) {
  2483. struct gmu_context_queue_header *hdr = drawctxt->gmu_context_queue.hostptr;
  2484. if ((timestamp_cmp((u32)entry->cmd.ts, hdr->out_fence_ts) > 0)) {
  2485. dev_err(&gmu->pdev->dev,
  2486. "detached ctx:%d has unsignaled fence ts:%d retired:%d\n",
  2487. drawctxt->base.id, (u32)entry->cmd.ts, hdr->out_fence_ts);
  2488. ret = -EINVAL;
  2489. goto fault;
  2490. }
  2491. gen8_remove_hw_fence_entry(adreno_dev, entry);
  2492. }
  2493. /* Send hardware fences (to TxQueue) that were not dispatched to GMU */
  2494. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_list, node) {
  2495. ret = gen8_send_hw_fence_hfi_wait_ack(adreno_dev, entry,
  2496. HW_FENCE_FLAG_SKIP_MEMSTORE);
  2497. if (ret)
  2498. goto fault;
  2499. gen8_remove_hw_fence_entry(adreno_dev, entry);
  2500. }
  2501. return 0;
  2502. fault:
  2503. move_detached_context_hardware_fences(adreno_dev, drawctxt);
  2504. gmu_core_fault_snapshot(device);
  2505. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  2506. return ret;
  2507. }
  2508. static inline int setup_hw_fence_info_cmd(struct adreno_device *adreno_dev,
  2509. struct adreno_hw_fence_entry *entry)
  2510. {
  2511. struct kgsl_sync_fence *kfence = entry->kfence;
  2512. int ret;
  2513. ret = CMD_MSG_HDR(entry->cmd, H2F_MSG_HW_FENCE_INFO);
  2514. if (ret)
  2515. return ret;
  2516. entry->cmd.gmu_ctxt_id = entry->drawctxt->base.id;
  2517. entry->cmd.ctxt_id = kfence->fence.context;
  2518. entry->cmd.ts = kfence->fence.seqno;
  2519. entry->cmd.hash_index = kfence->hw_fence_index;
  2520. return 0;
  2521. }
  2522. /*
  2523. * gen8_send_hw_fence_hfi_wait_ack - This function is used in cases where multiple hardware fences
  2524. * are to be sent to GMU. Hence, we must send them one by one to avoid overwhelming the GMU with
  2525. * mutliple fences in a short span of time.
  2526. */
  2527. int gen8_send_hw_fence_hfi_wait_ack(struct adreno_device *adreno_dev,
  2528. struct adreno_hw_fence_entry *entry, u64 flags)
  2529. {
  2530. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  2531. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  2532. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  2533. int ret = 0;
  2534. u32 seqnum;
  2535. /* Device mutex is necessary to ensure only one hardware fence ack is being waited for */
  2536. if (WARN_ON(!mutex_is_locked(&device->mutex)))
  2537. return -EINVAL;
  2538. spin_lock(&hfi->hw_fence.lock);
  2539. init_completion(&gen8_hw_fence_ack.complete);
  2540. entry->cmd.flags |= flags;
  2541. seqnum = atomic_inc_return(&hfi->hw_fence.seqnum);
  2542. gen8_hw_fence_ack.sent_hdr = entry->cmd.hdr;
  2543. /*
  2544. * We don't need to increment the unack count here as we are waiting for the ack for
  2545. * this fence before sending another hardware fence.
  2546. */
  2547. ret = gen8_hfi_cmdq_write(adreno_dev, (u32 *)&entry->cmd, sizeof(entry->cmd));
  2548. spin_unlock(&hfi->hw_fence.lock);
  2549. if (!ret)
  2550. ret = adreno_hwsched_wait_ack_completion(adreno_dev,
  2551. &gmu->pdev->dev, &gen8_hw_fence_ack,
  2552. gen8_hwsched_process_msgq);
  2553. memset(&gen8_hw_fence_ack, 0x0, sizeof(gen8_hw_fence_ack));
  2554. return ret;
  2555. }
  2556. /**
  2557. * drawctxt_queue_hw_fence - Add a hardware fence to draw context's hardware fence list and make
  2558. * sure the list remains sorted (with the fence with the largest timestamp at the end)
  2559. */
  2560. static void drawctxt_queue_hw_fence(struct adreno_context *drawctxt,
  2561. struct adreno_hw_fence_entry *new)
  2562. {
  2563. struct adreno_hw_fence_entry *entry = NULL;
  2564. u32 ts = (u32)new->cmd.ts;
  2565. /* Walk the list backwards to find the right spot for this fence */
  2566. list_for_each_entry_reverse(entry, &drawctxt->hw_fence_list, node) {
  2567. if (timestamp_cmp(ts, (u32)entry->cmd.ts) > 0)
  2568. break;
  2569. }
  2570. list_add(&new->node, &entry->node);
  2571. }
  2572. #define DRAWCTXT_SLOT_AVAILABLE(count) \
  2573. ((count + 1) < (HW_FENCE_QUEUE_SIZE / sizeof(struct hfi_hw_fence_info)))
  2574. /**
  2575. * allocate_hw_fence_entry - Allocate an entry to keep track of a hardware fence. This is free'd
  2576. * when we know GMU has sent this fence to the TxQueue
  2577. */
  2578. static struct adreno_hw_fence_entry *allocate_hw_fence_entry(struct adreno_device *adreno_dev,
  2579. struct adreno_context *drawctxt, struct kgsl_sync_fence *kfence)
  2580. {
  2581. struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
  2582. struct adreno_hw_fence_entry *entry;
  2583. if (!DRAWCTXT_SLOT_AVAILABLE(drawctxt->hw_fence_count))
  2584. return NULL;
  2585. entry = kmem_cache_zalloc(hwsched->hw_fence_cache, GFP_ATOMIC);
  2586. if (!entry)
  2587. return NULL;
  2588. entry->kfence = kfence;
  2589. entry->drawctxt = drawctxt;
  2590. if (setup_hw_fence_info_cmd(adreno_dev, entry)) {
  2591. kmem_cache_free(hwsched->hw_fence_cache, entry);
  2592. return NULL;
  2593. }
  2594. dma_fence_get(&kfence->fence);
  2595. drawctxt->hw_fence_count++;
  2596. atomic_inc(&hwsched->hw_fence_count);
  2597. INIT_LIST_HEAD(&entry->node);
  2598. INIT_LIST_HEAD(&entry->reset_node);
  2599. return entry;
  2600. }
  2601. static bool _hw_fence_end_sleep(struct adreno_device *adreno_dev)
  2602. {
  2603. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  2604. bool ret;
  2605. spin_lock(&hfi->hw_fence.lock);
  2606. ret = !test_bit(GEN8_HWSCHED_HW_FENCE_SLEEP_BIT, &hfi->hw_fence.flags);
  2607. spin_unlock(&hfi->hw_fence.lock);
  2608. return ret;
  2609. }
  2610. /**
  2611. * _hw_fence_sleep() - Check if the thread needs to sleep until the hardware fence unack count
  2612. * drops to a desired threshold.
  2613. *
  2614. * Return: negative error code if the thread was woken up by a signal, or the context became bad in
  2615. * the meanwhile, or the hardware fence unack count hasn't yet dropped to a desired threshold, or
  2616. * if fault recovery is imminent.
  2617. * Otherwise, return 0.
  2618. */
  2619. static int _hw_fence_sleep(struct adreno_device *adreno_dev, struct adreno_context *drawctxt)
  2620. {
  2621. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  2622. int ret = 0;
  2623. if (!test_bit(GEN8_HWSCHED_HW_FENCE_SLEEP_BIT, &hfi->hw_fence.flags))
  2624. return 0;
  2625. spin_unlock(&hfi->hw_fence.lock);
  2626. spin_unlock(&drawctxt->lock);
  2627. ret = wait_event_interruptible(hfi->hw_fence.unack_wq,
  2628. _hw_fence_end_sleep(adreno_dev));
  2629. spin_lock(&drawctxt->lock);
  2630. spin_lock(&hfi->hw_fence.lock);
  2631. /*
  2632. * If the thread received a signal, or the context became bad in the meanwhile or the limit
  2633. * is still not settled, then return error to avoid creating this hardware fence
  2634. */
  2635. if ((ret == -ERESTARTSYS) || kgsl_context_is_bad(&drawctxt->base) ||
  2636. test_bit(GEN8_HWSCHED_HW_FENCE_MAX_BIT, &hfi->hw_fence.flags))
  2637. return -EINVAL;
  2638. /*
  2639. * If fault recovery is imminent then return error code to avoid creating new hardware
  2640. * fences until recovery is complete
  2641. */
  2642. if (test_bit(GEN8_HWSCHED_HW_FENCE_ABORT_BIT, &hfi->hw_fence.flags))
  2643. return -EBUSY;
  2644. return ret;
  2645. }
  2646. void gen8_hwsched_create_hw_fence(struct adreno_device *adreno_dev,
  2647. struct kgsl_sync_fence *kfence)
  2648. {
  2649. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  2650. struct kgsl_sync_timeline *ktimeline = kfence->parent;
  2651. struct kgsl_context *context = ktimeline->context;
  2652. struct adreno_context *drawctxt = ADRENO_CONTEXT(context);
  2653. struct adreno_hw_fence_entry *entry = NULL;
  2654. struct msm_hw_fence_create_params params = {0};
  2655. /* Only allow a single log in a second */
  2656. static DEFINE_RATELIMIT_STATE(_rs, HZ, 1);
  2657. struct gen8_hwsched_hfi *hw_hfi = to_gen8_hwsched_hfi(adreno_dev);
  2658. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  2659. u32 retired = 0;
  2660. int ret = 0;
  2661. bool destroy_hw_fence = true;
  2662. params.fence = &kfence->fence;
  2663. params.handle = &kfence->hw_fence_index;
  2664. kfence->hw_fence_handle = adreno_dev->hwsched.hw_fence.handle;
  2665. ret = msm_hw_fence_create(kfence->hw_fence_handle, &params);
  2666. if ((ret || IS_ERR_OR_NULL(params.handle))) {
  2667. if (__ratelimit(&_rs))
  2668. dev_err(device->dev, "Failed to create ctx:%d ts:%d hardware fence:%d\n",
  2669. kfence->context_id, kfence->timestamp, ret);
  2670. return;
  2671. }
  2672. spin_lock(&drawctxt->lock);
  2673. spin_lock(&hw_hfi->hw_fence.lock);
  2674. /*
  2675. * If we create a hardware fence and this context is going away, we may never dispatch
  2676. * this fence to the GMU. Hence, avoid creating a hardware fence if context is going away.
  2677. */
  2678. if (kgsl_context_is_bad(context))
  2679. goto done;
  2680. entry = allocate_hw_fence_entry(adreno_dev, drawctxt, kfence);
  2681. if (!entry)
  2682. goto done;
  2683. /* If recovery is imminent, then do not create a hardware fence */
  2684. if (test_bit(GEN8_HWSCHED_HW_FENCE_ABORT_BIT, &hw_hfi->hw_fence.flags)) {
  2685. destroy_hw_fence = true;
  2686. goto done;
  2687. }
  2688. ret = _hw_fence_sleep(adreno_dev, drawctxt);
  2689. if (ret)
  2690. goto done;
  2691. /*
  2692. * If this ts hasn't been submitted yet, then store it in the drawctxt hardware fence
  2693. * list and return. This fence will be sent to GMU when this ts is dispatched to GMU.
  2694. */
  2695. if (timestamp_cmp(kfence->timestamp, drawctxt->internal_timestamp) > 0) {
  2696. drawctxt_queue_hw_fence(drawctxt, entry);
  2697. destroy_hw_fence = false;
  2698. goto done;
  2699. }
  2700. kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, &retired);
  2701. /*
  2702. * Check if timestamp is retired. If we are in SLUMBER at this point, the timestamp is
  2703. * guaranteed to be retired. This way, we don't need the device mutex to check the device
  2704. * state explicitly.
  2705. */
  2706. if (timestamp_cmp(retired, kfence->timestamp) >= 0) {
  2707. kgsl_sync_timeline_signal(ktimeline, kfence->timestamp);
  2708. goto done;
  2709. }
  2710. /*
  2711. * If timestamp is not retired then GMU must already be powered up. This is because SLUMBER
  2712. * thread has to wait for hardware fence spinlock to make sure the hardware fence unack
  2713. * count is zero.
  2714. */
  2715. ret = _send_hw_fence_no_ack(adreno_dev, entry);
  2716. if (ret) {
  2717. if (__ratelimit(&_rs))
  2718. dev_err(&gmu->pdev->dev, "Aborting hw fence for ctx:%d ts:%d ret:%d\n",
  2719. kfence->context_id, kfence->timestamp, ret);
  2720. goto done;
  2721. }
  2722. list_add_tail(&entry->node, &drawctxt->hw_fence_inflight_list);
  2723. destroy_hw_fence = false;
  2724. done:
  2725. if (destroy_hw_fence) {
  2726. msm_hw_fence_destroy(kfence->hw_fence_handle, &kfence->fence);
  2727. if (entry)
  2728. gen8_remove_hw_fence_entry(adreno_dev, entry);
  2729. }
  2730. spin_unlock(&hw_hfi->hw_fence.lock);
  2731. spin_unlock(&drawctxt->lock);
  2732. }
  2733. /**
  2734. * setup_hw_fence_deferred_ctxt - The hardware fence(s) from this context couldn't be sent to the
  2735. * GMU because the hardware fence unack count reached a threshold. Hence, setup this context such
  2736. * that these hardware fences are sent to the GMU when the unack count drops to a desired threshold.
  2737. */
  2738. static void setup_hw_fence_deferred_ctxt(struct adreno_device *adreno_dev,
  2739. struct adreno_context *drawctxt, u32 ts)
  2740. {
  2741. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  2742. if (!_kgsl_context_get(&drawctxt->base))
  2743. return;
  2744. hfi->hw_fence.defer_drawctxt = drawctxt;
  2745. hfi->hw_fence.defer_ts = ts;
  2746. /*
  2747. * Increment the active count so that device doesn't get powered off until this fence has
  2748. * been sent to GMU
  2749. */
  2750. gen8_hwsched_active_count_get(adreno_dev);
  2751. }
  2752. /**
  2753. * process_hw_fence_queue - This function walks the draw context's list of hardware fences
  2754. * and sends the ones which have a timestamp less than or equal to the timestamp that just
  2755. * got submitted to the GMU.
  2756. */
  2757. static void process_hw_fence_queue(struct adreno_device *adreno_dev,
  2758. struct adreno_context *drawctxt, u32 ts)
  2759. {
  2760. struct adreno_hw_fence_entry *entry = NULL, *next;
  2761. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  2762. int ret = 0;
  2763. /* This list is sorted with smallest timestamp at head and highest timestamp at tail */
  2764. list_for_each_entry_safe(entry, next, &drawctxt->hw_fence_list, node) {
  2765. if (timestamp_cmp((u32)entry->cmd.ts, ts) > 0)
  2766. return;
  2767. spin_lock(&hfi->hw_fence.lock);
  2768. if (test_bit(GEN8_HWSCHED_HW_FENCE_MAX_BIT, &hfi->hw_fence.flags)) {
  2769. setup_hw_fence_deferred_ctxt(adreno_dev, drawctxt, ts);
  2770. spin_unlock(&hfi->hw_fence.lock);
  2771. return;
  2772. }
  2773. ret = _send_hw_fence_no_ack(adreno_dev, entry);
  2774. spin_unlock(&hfi->hw_fence.lock);
  2775. if (ret)
  2776. return;
  2777. /*
  2778. * A fence that is sent to GMU must be added to the drawctxt->hw_fence_inflight_list
  2779. * so that we can keep track of when GMU sends it to the TxQueue
  2780. */
  2781. list_del_init(&entry->node);
  2782. list_add_tail(&entry->node, &drawctxt->hw_fence_inflight_list);
  2783. }
  2784. }
  2785. /* Size in below functions are in unit of dwords */
  2786. static int gen8_hfi_dispatch_queue_write(struct adreno_device *adreno_dev, u32 queue_idx,
  2787. u32 *msg, u32 size_bytes, struct kgsl_drawobj_cmd *cmdobj, struct adreno_submit_time *time)
  2788. {
  2789. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  2790. struct hfi_queue_table *tbl = gmu->hfi.hfi_mem->hostptr;
  2791. struct hfi_queue_header *hdr = &tbl->qhdr[queue_idx];
  2792. u32 *queue;
  2793. u32 i, write, empty_space;
  2794. u32 size_dwords = size_bytes >> 2;
  2795. u32 align_size = ALIGN(size_dwords, SZ_4);
  2796. u32 id = MSG_HDR_GET_ID(*msg);
  2797. if (hdr->status == HFI_QUEUE_STATUS_DISABLED || !IS_ALIGNED(size_bytes, sizeof(u32)))
  2798. return -EINVAL;
  2799. queue = HOST_QUEUE_START_ADDR(gmu->hfi.hfi_mem, queue_idx);
  2800. empty_space = (hdr->write_index >= hdr->read_index) ?
  2801. (hdr->queue_size - (hdr->write_index - hdr->read_index))
  2802. : (hdr->read_index - hdr->write_index);
  2803. if (empty_space <= align_size)
  2804. return -ENOSPC;
  2805. write = hdr->write_index;
  2806. for (i = 0; i < size_dwords; i++) {
  2807. queue[write] = msg[i];
  2808. write = (write + 1) % hdr->queue_size;
  2809. }
  2810. /* Cookify any non used data at the end of the write buffer */
  2811. for (; i < align_size; i++) {
  2812. queue[write] = 0xfafafafa;
  2813. write = (write + 1) % hdr->queue_size;
  2814. }
  2815. /* Ensure packet is written out before proceeding */
  2816. wmb();
  2817. gen8_add_profile_events(adreno_dev, cmdobj, time);
  2818. /*
  2819. * Put the profiling information in the user profiling buffer.
  2820. * The hfi_update_write_idx below has a wmb() before the actual
  2821. * write index update to ensure that the GMU does not see the
  2822. * packet before the profile data is written out.
  2823. */
  2824. adreno_profile_submit_time(time);
  2825. trace_kgsl_hfi_send(id, size_dwords, MSG_HDR_GET_SEQNUM(*msg));
  2826. hfi_update_write_idx(&hdr->write_index, write);
  2827. return 0;
  2828. }
  2829. int gen8_hwsched_submit_drawobj(struct adreno_device *adreno_dev, struct kgsl_drawobj *drawobj)
  2830. {
  2831. int ret = 0;
  2832. u32 cmd_sizebytes, seqnum;
  2833. struct kgsl_drawobj_cmd *cmdobj = NULL;
  2834. struct hfi_submit_cmd *cmd;
  2835. struct adreno_submit_time time = {0};
  2836. struct adreno_context *drawctxt = ADRENO_CONTEXT(drawobj->context);
  2837. static void *cmdbuf;
  2838. if (cmdbuf == NULL) {
  2839. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  2840. cmdbuf = devm_kzalloc(&device->pdev->dev, HFI_MAX_MSG_SIZE,
  2841. GFP_KERNEL);
  2842. if (!cmdbuf)
  2843. return -ENOMEM;
  2844. }
  2845. ret = hfi_context_register(adreno_dev, drawobj->context);
  2846. if (ret)
  2847. return ret;
  2848. if ((drawobj->type & SYNCOBJ_TYPE) != 0)
  2849. return _submit_hw_fence(adreno_dev, drawobj, cmdbuf);
  2850. cmdobj = CMDOBJ(drawobj);
  2851. /*
  2852. * If the MARKER object is retired, it doesn't need to be dispatched to GMU. Simply trigger
  2853. * any pending fences that are less than/equal to this object's timestamp.
  2854. */
  2855. if (test_bit(CMDOBJ_MARKER_EXPIRED, &cmdobj->priv)) {
  2856. spin_lock(&drawctxt->lock);
  2857. process_hw_fence_queue(adreno_dev, drawctxt, drawobj->timestamp);
  2858. spin_unlock(&drawctxt->lock);
  2859. return 0;
  2860. }
  2861. /* Add a *issue_ib struct for each IB */
  2862. if (cmdobj->numibs > HWSCHED_MAX_DISPATCH_NUMIBS ||
  2863. test_bit(CMDOBJ_SKIP, &cmdobj->priv))
  2864. cmd_sizebytes = sizeof(*cmd);
  2865. else
  2866. cmd_sizebytes = sizeof(*cmd) +
  2867. (sizeof(struct hfi_issue_ib) * cmdobj->numibs);
  2868. if (WARN_ON(cmd_sizebytes > HFI_MAX_MSG_SIZE))
  2869. return -EMSGSIZE;
  2870. memset(cmdbuf, 0x0, cmd_sizebytes);
  2871. cmd = cmdbuf;
  2872. cmd->ctxt_id = drawobj->context->id;
  2873. cmd->flags = HFI_CTXT_FLAG_NOTIFY;
  2874. if (drawobj->flags & KGSL_DRAWOBJ_END_OF_FRAME)
  2875. cmd->flags |= CMDBATCH_EOF;
  2876. cmd->ts = drawobj->timestamp;
  2877. if (test_bit(CMDOBJ_SKIP, &cmdobj->priv))
  2878. goto skipib;
  2879. populate_ibs(adreno_dev, cmd, cmdobj);
  2880. if ((drawobj->flags & KGSL_DRAWOBJ_PROFILING) &&
  2881. cmdobj->profiling_buf_entry) {
  2882. time.drawobj = drawobj;
  2883. cmd->profile_gpuaddr_lo =
  2884. lower_32_bits(cmdobj->profiling_buffer_gpuaddr);
  2885. cmd->profile_gpuaddr_hi =
  2886. upper_32_bits(cmdobj->profiling_buffer_gpuaddr);
  2887. /* Indicate to GMU to do user profiling for this submission */
  2888. cmd->flags |= CMDBATCH_PROFILING;
  2889. }
  2890. skipib:
  2891. adreno_drawobj_set_constraint(KGSL_DEVICE(adreno_dev), drawobj);
  2892. cmd->hdr = CREATE_MSG_HDR(H2F_MSG_ISSUE_CMD, HFI_MSG_CMD);
  2893. seqnum = atomic_inc_return(&adreno_dev->hwsched.submission_seqnum);
  2894. cmd->hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd->hdr, seqnum, cmd_sizebytes >> 2);
  2895. if (adreno_hwsched_context_queue_enabled(adreno_dev))
  2896. ret = gen8_gmu_context_queue_write(adreno_dev,
  2897. drawctxt, (u32 *)cmd, cmd_sizebytes, drawobj, &time);
  2898. else
  2899. ret = gen8_hfi_dispatch_queue_write(adreno_dev,
  2900. HFI_DSP_ID_0 + drawobj->context->gmu_dispatch_queue,
  2901. (u32 *)cmd, cmd_sizebytes, cmdobj, &time);
  2902. if (ret)
  2903. return ret;
  2904. /* Send interrupt to GMU to receive the message */
  2905. gmu_core_regwrite(KGSL_DEVICE(adreno_dev), GEN8_GMUCX_HOST2GMU_INTR_SET,
  2906. DISPQ_IRQ_BIT(get_irq_bit(adreno_dev, drawobj)));
  2907. spin_lock(&drawctxt->lock);
  2908. process_hw_fence_queue(adreno_dev, drawctxt, drawobj->timestamp);
  2909. /*
  2910. * We need to update the internal timestamp while holding the drawctxt lock since we have to
  2911. * check it in the hardware fence creation path, where we are not taking the device mutex.
  2912. */
  2913. drawctxt->internal_timestamp = drawobj->timestamp;
  2914. spin_unlock(&drawctxt->lock);
  2915. return 0;
  2916. }
  2917. int gen8_hwsched_send_recurring_cmdobj(struct adreno_device *adreno_dev,
  2918. struct kgsl_drawobj_cmd *cmdobj)
  2919. {
  2920. struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
  2921. struct kgsl_drawobj *drawobj = DRAWOBJ(cmdobj);
  2922. struct hfi_submit_cmd *cmd;
  2923. struct kgsl_memobj_node *ib;
  2924. u32 cmd_sizebytes;
  2925. int ret;
  2926. static bool active;
  2927. if (adreno_gpu_halt(adreno_dev) || adreno_hwsched_gpu_fault(adreno_dev))
  2928. return -EBUSY;
  2929. if (test_bit(CMDOBJ_RECURRING_STOP, &cmdobj->priv)) {
  2930. cmdobj->numibs = 0;
  2931. } else {
  2932. list_for_each_entry(ib, &cmdobj->cmdlist, node)
  2933. cmdobj->numibs++;
  2934. }
  2935. if (cmdobj->numibs > HWSCHED_MAX_IBS)
  2936. return -EINVAL;
  2937. if (cmdobj->numibs > HWSCHED_MAX_DISPATCH_NUMIBS)
  2938. cmd_sizebytes = sizeof(*cmd);
  2939. else
  2940. cmd_sizebytes = sizeof(*cmd) +
  2941. (sizeof(struct hfi_issue_ib) * cmdobj->numibs);
  2942. if (WARN_ON(cmd_sizebytes > HFI_MAX_MSG_SIZE))
  2943. return -EMSGSIZE;
  2944. cmd = kzalloc(cmd_sizebytes, GFP_KERNEL);
  2945. if (cmd == NULL)
  2946. return -ENOMEM;
  2947. if (test_bit(CMDOBJ_RECURRING_START, &cmdobj->priv)) {
  2948. if (!active) {
  2949. ret = adreno_active_count_get(adreno_dev);
  2950. if (ret) {
  2951. kfree(cmd);
  2952. return ret;
  2953. }
  2954. active = true;
  2955. }
  2956. cmd->flags |= CMDBATCH_RECURRING_START;
  2957. populate_ibs(adreno_dev, cmd, cmdobj);
  2958. } else
  2959. cmd->flags |= CMDBATCH_RECURRING_STOP;
  2960. cmd->ctxt_id = drawobj->context->id;
  2961. ret = hfi_context_register(adreno_dev, drawobj->context);
  2962. if (ret) {
  2963. adreno_active_count_put(adreno_dev);
  2964. active = false;
  2965. kfree(cmd);
  2966. return ret;
  2967. }
  2968. cmd->hdr = CREATE_MSG_HDR(H2F_MSG_ISSUE_RECURRING_CMD, HFI_MSG_CMD);
  2969. ret = gen8_hfi_send_cmd_async(adreno_dev, cmd, sizeof(*cmd));
  2970. kfree(cmd);
  2971. if (ret) {
  2972. adreno_active_count_put(adreno_dev);
  2973. active = false;
  2974. return ret;
  2975. }
  2976. if (test_bit(CMDOBJ_RECURRING_STOP, &cmdobj->priv)) {
  2977. adreno_hwsched_retire_cmdobj(hwsched, hwsched->recurring_cmdobj);
  2978. del_timer_sync(&hwsched->lsr_timer);
  2979. hwsched->recurring_cmdobj = NULL;
  2980. if (active)
  2981. adreno_active_count_put(adreno_dev);
  2982. active = false;
  2983. return ret;
  2984. }
  2985. hwsched->recurring_cmdobj = cmdobj;
  2986. /* Star LSR timer for power stats collection */
  2987. mod_timer(&hwsched->lsr_timer, jiffies + msecs_to_jiffies(10));
  2988. return ret;
  2989. }
  2990. void gen8_trigger_hw_fence_cpu(struct adreno_device *adreno_dev,
  2991. struct adreno_hw_fence_entry *entry)
  2992. {
  2993. int ret = msm_hw_fence_update_txq(adreno_dev->hwsched.hw_fence.handle,
  2994. entry->cmd.hash_index, 0, 0);
  2995. if (ret) {
  2996. dev_err_ratelimited(adreno_dev->dev.dev,
  2997. "Failed to trigger hw fence via cpu: ctx:%d ts:%d ret:%d\n",
  2998. entry->drawctxt->base.id, (u32)entry->cmd.ts, ret);
  2999. return;
  3000. }
  3001. msm_hw_fence_trigger_signal(adreno_dev->hwsched.hw_fence.handle, IPCC_CLIENT_GPU,
  3002. IPCC_CLIENT_APSS, 0);
  3003. }
  3004. /* We don't want to unnecessarily wake the GMU to trigger hardware fences */
  3005. static void drain_context_hw_fence_cpu(struct adreno_device *adreno_dev,
  3006. struct adreno_context *drawctxt)
  3007. {
  3008. struct adreno_hw_fence_entry *entry, *tmp;
  3009. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_list, node) {
  3010. gen8_trigger_hw_fence_cpu(adreno_dev, entry);
  3011. gen8_remove_hw_fence_entry(adreno_dev, entry);
  3012. }
  3013. }
  3014. int gen8_hwsched_drain_context_hw_fences(struct adreno_device *adreno_dev,
  3015. struct adreno_context *drawctxt)
  3016. {
  3017. struct adreno_hw_fence_entry *entry, *tmp;
  3018. int ret = 0;
  3019. /* We don't need the drawctxt lock here as this context has already been invalidated */
  3020. list_for_each_entry_safe(entry, tmp, &drawctxt->hw_fence_list, node) {
  3021. /* Any error here is fatal */
  3022. ret = gen8_send_hw_fence_hfi_wait_ack(adreno_dev, entry,
  3023. HW_FENCE_FLAG_SKIP_MEMSTORE);
  3024. if (ret)
  3025. break;
  3026. gen8_remove_hw_fence_entry(adreno_dev, entry);
  3027. }
  3028. return ret;
  3029. }
  3030. static void trigger_context_unregister_fault(struct adreno_device *adreno_dev,
  3031. struct adreno_context *drawctxt)
  3032. {
  3033. gmu_core_fault_snapshot(KGSL_DEVICE(adreno_dev));
  3034. /* Make sure we send all fences from this context to the TxQueue after recovery */
  3035. move_detached_context_hardware_fences(adreno_dev, drawctxt);
  3036. gen8_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT);
  3037. }
  3038. static int send_context_unregister_hfi(struct adreno_device *adreno_dev,
  3039. struct kgsl_context *context, u32 ts)
  3040. {
  3041. struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
  3042. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  3043. struct adreno_context *drawctxt = ADRENO_CONTEXT(context);
  3044. struct pending_cmd pending_ack;
  3045. struct hfi_unregister_ctxt_cmd cmd;
  3046. u32 seqnum;
  3047. int ret;
  3048. /* Only send HFI if device is not in SLUMBER */
  3049. if (!context->gmu_registered ||
  3050. !test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) {
  3051. drain_context_hw_fence_cpu(adreno_dev, drawctxt);
  3052. return 0;
  3053. }
  3054. ret = CMD_MSG_HDR(cmd, H2F_MSG_UNREGISTER_CONTEXT);
  3055. if (ret)
  3056. return ret;
  3057. cmd.ctxt_id = context->id,
  3058. cmd.ts = ts,
  3059. /*
  3060. * Although we know device is powered on, we can still enter SLUMBER
  3061. * because the wait for ack below is done without holding the mutex. So
  3062. * take an active count before releasing the mutex so as to avoid a
  3063. * concurrent SLUMBER sequence while GMU is un-registering this context.
  3064. */
  3065. ret = gen8_hwsched_active_count_get(adreno_dev);
  3066. if (ret) {
  3067. trigger_context_unregister_fault(adreno_dev, drawctxt);
  3068. return ret;
  3069. }
  3070. seqnum = atomic_inc_return(&gmu->hfi.seqnum);
  3071. cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.hdr, seqnum, sizeof(cmd) >> 2);
  3072. add_waiter(hfi, cmd.hdr, &pending_ack);
  3073. ret = gen8_hfi_cmdq_write(adreno_dev, (u32 *)&cmd, sizeof(cmd));
  3074. if (ret) {
  3075. trigger_context_unregister_fault(adreno_dev, drawctxt);
  3076. goto done;
  3077. }
  3078. ret = adreno_hwsched_ctxt_unregister_wait_completion(adreno_dev,
  3079. &gmu->pdev->dev, &pending_ack, gen8_hwsched_process_msgq, &cmd);
  3080. if (ret) {
  3081. trigger_context_unregister_fault(adreno_dev, drawctxt);
  3082. goto done;
  3083. }
  3084. ret = check_detached_context_hardware_fences(adreno_dev, drawctxt);
  3085. if (!ret)
  3086. ret = check_ack_failure(adreno_dev, &pending_ack);
  3087. done:
  3088. gen8_hwsched_active_count_put(adreno_dev);
  3089. del_waiter(hfi, &pending_ack);
  3090. return ret;
  3091. }
  3092. void gen8_hwsched_context_detach(struct adreno_context *drawctxt)
  3093. {
  3094. struct kgsl_context *context = &drawctxt->base;
  3095. struct kgsl_device *device = context->device;
  3096. struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
  3097. int ret = 0;
  3098. mutex_lock(&device->mutex);
  3099. ret = send_context_unregister_hfi(adreno_dev, context,
  3100. drawctxt->internal_timestamp);
  3101. if (!ret) {
  3102. kgsl_sharedmem_writel(device->memstore,
  3103. KGSL_MEMSTORE_OFFSET(context->id, soptimestamp),
  3104. drawctxt->timestamp);
  3105. kgsl_sharedmem_writel(device->memstore,
  3106. KGSL_MEMSTORE_OFFSET(context->id, eoptimestamp),
  3107. drawctxt->timestamp);
  3108. adreno_profile_process_results(adreno_dev);
  3109. }
  3110. context->gmu_registered = false;
  3111. mutex_unlock(&device->mutex);
  3112. }
  3113. u32 gen8_hwsched_preempt_count_get(struct adreno_device *adreno_dev)
  3114. {
  3115. struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
  3116. if (device->state != KGSL_STATE_ACTIVE)
  3117. return 0;
  3118. return gen8_hwsched_hfi_get_value(adreno_dev, HFI_VALUE_PREEMPT_COUNT);
  3119. }
  3120. void gen8_hwsched_context_destroy(struct adreno_device *adreno_dev,
  3121. struct adreno_context *drawctxt)
  3122. {
  3123. if (!adreno_hwsched_context_queue_enabled(adreno_dev))
  3124. return;
  3125. if (drawctxt->gmu_context_queue.gmuaddr)
  3126. gen8_free_gmu_block(to_gen8_gmu(adreno_dev), &drawctxt->gmu_context_queue);
  3127. if (drawctxt->gmu_hw_fence_queue.gmuaddr)
  3128. gen8_free_gmu_block(to_gen8_gmu(adreno_dev), &drawctxt->gmu_hw_fence_queue);
  3129. }
  3130. int gen8_hwsched_disable_hw_fence_throttle(struct adreno_device *adreno_dev)
  3131. {
  3132. struct gen8_hwsched_hfi *hfi = to_gen8_hwsched_hfi(adreno_dev);
  3133. struct adreno_context *drawctxt = NULL;
  3134. u32 ts = 0;
  3135. int ret = 0;
  3136. if (!test_bit(ADRENO_HWSCHED_HW_FENCE, &adreno_dev->hwsched.flags))
  3137. return 0;
  3138. spin_lock(&hfi->hw_fence.lock);
  3139. drawctxt = hfi->hw_fence.defer_drawctxt;
  3140. ts = hfi->hw_fence.defer_ts;
  3141. spin_unlock(&hfi->hw_fence.lock);
  3142. if (!drawctxt)
  3143. goto done;
  3144. ret = process_hw_fence_deferred_ctxt(adreno_dev, drawctxt, ts);
  3145. kgsl_context_put(&drawctxt->base);
  3146. gen8_hwsched_active_count_put(adreno_dev);
  3147. done:
  3148. _disable_hw_fence_throttle(adreno_dev, true);
  3149. return ret;
  3150. }