qdf_mem.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888
  1. /*
  2. * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. /**
  20. * DOC: qdf_mem
  21. * This file provides OS dependent memory management APIs
  22. */
  23. #include "qdf_debugfs.h"
  24. #include "qdf_mem.h"
  25. #include "qdf_nbuf.h"
  26. #include "qdf_lock.h"
  27. #include "qdf_mc_timer.h"
  28. #include "qdf_module.h"
  29. #include <qdf_trace.h>
  30. #include "qdf_str.h"
  31. #include "qdf_talloc.h"
  32. #include <linux/debugfs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/string.h>
  35. #include <qdf_list.h>
  36. #ifdef CNSS_MEM_PRE_ALLOC
  37. #ifdef CONFIG_CNSS_OUT_OF_TREE
  38. #include "cnss_prealloc.h"
  39. #else
  40. #include <net/cnss_prealloc.h>
  41. #endif
  42. #endif
  43. #if defined(MEMORY_DEBUG) || defined(NBUF_MEMORY_DEBUG)
  44. static bool mem_debug_disabled;
  45. qdf_declare_param(mem_debug_disabled, bool);
  46. qdf_export_symbol(mem_debug_disabled);
  47. #endif
  48. #ifdef MEMORY_DEBUG
  49. static bool is_initial_mem_debug_disabled;
  50. #endif
  51. /* Preprocessor Definitions and Constants */
  52. #define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
  53. #define QDF_MEM_WARN_THRESHOLD 300 /* ms */
  54. #define QDF_DEBUG_STRING_SIZE 512
  55. /**
  56. * struct __qdf_mem_stat - qdf memory statistics
  57. * @kmalloc: total kmalloc allocations
  58. * @dma: total dma allocations
  59. * @skb: total skb allocations
  60. * @skb_total: total skb allocations in host driver
  61. * @dp_tx_skb: total Tx skb allocations in datapath
  62. * @dp_rx_skb: total Rx skb allocations in datapath
  63. * @skb_mem_max: high watermark for skb allocations
  64. * @dp_tx_skb_mem_max: high watermark for Tx DP skb allocations
  65. * @dp_rx_skb_mem_max: high watermark for Rx DP skb allocations
  66. * @dp_tx_skb_count: DP Tx buffer count
  67. * @dp_tx_skb_count_max: High watermark for DP Tx buffer count
  68. * @dp_rx_skb_count: DP Rx buffer count
  69. * @dp_rx_skb_count_max: High watermark for DP Rx buffer count
  70. * @tx_descs_outstanding: Current pending Tx descs count
  71. * @tx_descs_max: High watermark for pending Tx descs count
  72. */
  73. static struct __qdf_mem_stat {
  74. qdf_atomic_t kmalloc;
  75. qdf_atomic_t dma;
  76. qdf_atomic_t skb;
  77. qdf_atomic_t skb_total;
  78. qdf_atomic_t dp_tx_skb;
  79. qdf_atomic_t dp_rx_skb;
  80. int32_t skb_mem_max;
  81. int32_t dp_tx_skb_mem_max;
  82. int32_t dp_rx_skb_mem_max;
  83. qdf_atomic_t dp_tx_skb_count;
  84. int32_t dp_tx_skb_count_max;
  85. qdf_atomic_t dp_rx_skb_count;
  86. int32_t dp_rx_skb_count_max;
  87. qdf_atomic_t tx_descs_outstanding;
  88. int32_t tx_descs_max;
  89. } qdf_mem_stat;
  90. #ifdef MEMORY_DEBUG
  91. #include "qdf_debug_domain.h"
  92. enum list_type {
  93. LIST_TYPE_MEM = 0,
  94. LIST_TYPE_DMA = 1,
  95. LIST_TYPE_NBUF = 2,
  96. LIST_TYPE_MAX,
  97. };
  98. /**
  99. * major_alloc_priv: private data registered to debugfs entry created to list
  100. * the list major allocations
  101. * @type: type of the list to be parsed
  102. * @threshold: configured by user by overwriting the respective debugfs
  103. * sys entry. This is to list the functions which requested
  104. * memory/dma allocations more than threshold nubmer of times.
  105. */
  106. struct major_alloc_priv {
  107. enum list_type type;
  108. uint32_t threshold;
  109. };
  110. static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
  111. static qdf_spinlock_t qdf_mem_list_lock;
  112. static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
  113. static qdf_spinlock_t qdf_mem_dma_list_lock;
  114. static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
  115. {
  116. return &qdf_mem_domains[domain];
  117. }
  118. static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
  119. {
  120. return &qdf_mem_dma_domains[domain];
  121. }
  122. /**
  123. * struct qdf_mem_header - memory object to dubug
  124. * @node: node to the list
  125. * @domain: the active memory domain at time of allocation
  126. * @freed: flag set during free, used to detect double frees
  127. * Use uint8_t so we can detect corruption
  128. * @func: name of the function the allocation was made from
  129. * @line: line number of the file the allocation was made from
  130. * @size: size of the allocation in bytes
  131. * @caller: Caller of the function for which memory is allocated
  132. * @header: a known value, used to detect out-of-bounds access
  133. * @time: timestamp at which allocation was made
  134. */
  135. struct qdf_mem_header {
  136. qdf_list_node_t node;
  137. enum qdf_debug_domain domain;
  138. uint8_t freed;
  139. char func[QDF_MEM_FUNC_NAME_SIZE];
  140. uint32_t line;
  141. uint32_t size;
  142. void *caller;
  143. uint64_t header;
  144. uint64_t time;
  145. };
  146. /* align the qdf_mem_header to 8 bytes */
  147. #define QDF_DMA_MEM_HEADER_ALIGN 8
  148. static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
  149. static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
  150. static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
  151. {
  152. return (struct qdf_mem_header *)ptr - 1;
  153. }
  154. /* make sure the header pointer is 8bytes aligned */
  155. static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
  156. qdf_size_t size)
  157. {
  158. return (struct qdf_mem_header *)
  159. qdf_roundup((size_t)((uint8_t *)ptr + size),
  160. QDF_DMA_MEM_HEADER_ALIGN);
  161. }
  162. static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
  163. {
  164. return (uint64_t *)((void *)(header + 1) + header->size);
  165. }
  166. static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
  167. {
  168. return (void *)(header + 1);
  169. }
  170. /* number of bytes needed for the qdf memory debug information */
  171. #define QDF_MEM_DEBUG_SIZE \
  172. (sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
  173. /* number of bytes needed for the qdf dma memory debug information */
  174. #define QDF_DMA_MEM_DEBUG_SIZE \
  175. (sizeof(struct qdf_mem_header) + QDF_DMA_MEM_HEADER_ALIGN)
  176. static void qdf_mem_trailer_init(struct qdf_mem_header *header)
  177. {
  178. QDF_BUG(header);
  179. if (!header)
  180. return;
  181. *qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
  182. }
  183. static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
  184. const char *func, uint32_t line, void *caller)
  185. {
  186. QDF_BUG(header);
  187. if (!header)
  188. return;
  189. header->domain = qdf_debug_domain_get();
  190. header->freed = false;
  191. qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
  192. header->line = line;
  193. header->size = size;
  194. header->caller = caller;
  195. header->header = WLAN_MEM_HEADER;
  196. header->time = qdf_get_log_timestamp();
  197. }
  198. enum qdf_mem_validation_bitmap {
  199. QDF_MEM_BAD_HEADER = 1 << 0,
  200. QDF_MEM_BAD_TRAILER = 1 << 1,
  201. QDF_MEM_BAD_SIZE = 1 << 2,
  202. QDF_MEM_DOUBLE_FREE = 1 << 3,
  203. QDF_MEM_BAD_FREED = 1 << 4,
  204. QDF_MEM_BAD_NODE = 1 << 5,
  205. QDF_MEM_BAD_DOMAIN = 1 << 6,
  206. QDF_MEM_WRONG_DOMAIN = 1 << 7,
  207. };
  208. static enum qdf_mem_validation_bitmap
  209. qdf_mem_trailer_validate(struct qdf_mem_header *header)
  210. {
  211. enum qdf_mem_validation_bitmap error_bitmap = 0;
  212. if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
  213. error_bitmap |= QDF_MEM_BAD_TRAILER;
  214. return error_bitmap;
  215. }
  216. static enum qdf_mem_validation_bitmap
  217. qdf_mem_header_validate(struct qdf_mem_header *header,
  218. enum qdf_debug_domain domain)
  219. {
  220. enum qdf_mem_validation_bitmap error_bitmap = 0;
  221. if (header->header != WLAN_MEM_HEADER)
  222. error_bitmap |= QDF_MEM_BAD_HEADER;
  223. if (header->size > QDF_MEM_MAX_MALLOC)
  224. error_bitmap |= QDF_MEM_BAD_SIZE;
  225. if (header->freed == true)
  226. error_bitmap |= QDF_MEM_DOUBLE_FREE;
  227. else if (header->freed)
  228. error_bitmap |= QDF_MEM_BAD_FREED;
  229. if (!qdf_list_node_in_any_list(&header->node))
  230. error_bitmap |= QDF_MEM_BAD_NODE;
  231. if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
  232. header->domain >= QDF_DEBUG_DOMAIN_COUNT)
  233. error_bitmap |= QDF_MEM_BAD_DOMAIN;
  234. else if (header->domain != domain)
  235. error_bitmap |= QDF_MEM_WRONG_DOMAIN;
  236. return error_bitmap;
  237. }
  238. static void
  239. qdf_mem_header_assert_valid(struct qdf_mem_header *header,
  240. enum qdf_debug_domain current_domain,
  241. enum qdf_mem_validation_bitmap error_bitmap,
  242. const char *func,
  243. uint32_t line)
  244. {
  245. if (!error_bitmap)
  246. return;
  247. if (error_bitmap & QDF_MEM_BAD_HEADER)
  248. qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
  249. header->header, WLAN_MEM_HEADER);
  250. if (error_bitmap & QDF_MEM_BAD_SIZE)
  251. qdf_err("Corrupted memory size %u (expected < %d)",
  252. header->size, QDF_MEM_MAX_MALLOC);
  253. if (error_bitmap & QDF_MEM_BAD_TRAILER)
  254. qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
  255. *qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
  256. if (error_bitmap & QDF_MEM_DOUBLE_FREE)
  257. qdf_err("Memory has previously been freed");
  258. if (error_bitmap & QDF_MEM_BAD_FREED)
  259. qdf_err("Corrupted memory freed flag 0x%x", header->freed);
  260. if (error_bitmap & QDF_MEM_BAD_NODE)
  261. qdf_err("Corrupted memory header node or double free");
  262. if (error_bitmap & QDF_MEM_BAD_DOMAIN)
  263. qdf_err("Corrupted memory domain 0x%x", header->domain);
  264. if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
  265. qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
  266. qdf_debug_domain_name(header->domain), header->domain,
  267. qdf_debug_domain_name(current_domain), current_domain);
  268. QDF_MEMDEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
  269. }
  270. /**
  271. * struct __qdf_mem_info - memory statistics
  272. * @func: the function which allocated memory
  273. * @line: the line at which allocation happened
  274. * @size: the size of allocation
  275. * @caller: Address of the caller function
  276. * @count: how many allocations of same type
  277. * @time: timestamp at which allocation happened
  278. */
  279. struct __qdf_mem_info {
  280. char func[QDF_MEM_FUNC_NAME_SIZE];
  281. uint32_t line;
  282. uint32_t size;
  283. void *caller;
  284. uint32_t count;
  285. uint64_t time;
  286. };
  287. /*
  288. * The table depth defines the de-duplication proximity scope.
  289. * A deeper table takes more time, so choose any optimum value.
  290. */
  291. #define QDF_MEM_STAT_TABLE_SIZE 8
  292. /**
  293. * qdf_mem_debug_print_header() - memory debug header print logic
  294. * @print: the print adapter function
  295. * @print_priv: the private data to be consumed by @print
  296. * @threshold: the threshold value set by user to list top allocations
  297. *
  298. * Return: None
  299. */
  300. static void qdf_mem_debug_print_header(qdf_abstract_print print,
  301. void *print_priv,
  302. uint32_t threshold)
  303. {
  304. if (threshold)
  305. print(print_priv, "APIs requested allocations >= %u no of time",
  306. threshold);
  307. print(print_priv,
  308. "--------------------------------------------------------------");
  309. print(print_priv,
  310. " count size total filename caller timestamp");
  311. print(print_priv,
  312. "--------------------------------------------------------------");
  313. }
  314. /**
  315. * qdf_mem_meta_table_insert() - insert memory metadata into the given table
  316. * @table: the memory metadata table to insert into
  317. * @meta: the memory metadata to insert
  318. *
  319. * Return: true if the table is full after inserting, false otherwise
  320. */
  321. static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
  322. struct qdf_mem_header *meta)
  323. {
  324. int i;
  325. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  326. if (!table[i].count) {
  327. qdf_str_lcopy(table[i].func, meta->func,
  328. QDF_MEM_FUNC_NAME_SIZE);
  329. table[i].line = meta->line;
  330. table[i].size = meta->size;
  331. table[i].count = 1;
  332. table[i].caller = meta->caller;
  333. table[i].time = meta->time;
  334. break;
  335. }
  336. if (qdf_str_eq(table[i].func, meta->func) &&
  337. table[i].line == meta->line &&
  338. table[i].size == meta->size &&
  339. table[i].caller == meta->caller) {
  340. table[i].count++;
  341. break;
  342. }
  343. }
  344. /* return true if the table is now full */
  345. return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
  346. }
  347. /**
  348. * qdf_mem_domain_print() - output agnostic memory domain print logic
  349. * @domain: the memory domain to print
  350. * @print: the print adapter function
  351. * @print_priv: the private data to be consumed by @print
  352. * @threshold: the threshold value set by uset to list top allocations
  353. * @mem_print: pointer to function which prints the memory allocation data
  354. *
  355. * Return: None
  356. */
  357. static void qdf_mem_domain_print(qdf_list_t *domain,
  358. qdf_abstract_print print,
  359. void *print_priv,
  360. uint32_t threshold,
  361. void (*mem_print)(struct __qdf_mem_info *,
  362. qdf_abstract_print,
  363. void *, uint32_t))
  364. {
  365. QDF_STATUS status;
  366. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  367. qdf_list_node_t *node;
  368. qdf_mem_zero(table, sizeof(table));
  369. qdf_mem_debug_print_header(print, print_priv, threshold);
  370. /* hold lock while inserting to avoid use-after free of the metadata */
  371. qdf_spin_lock(&qdf_mem_list_lock);
  372. status = qdf_list_peek_front(domain, &node);
  373. while (QDF_IS_STATUS_SUCCESS(status)) {
  374. struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
  375. bool is_full = qdf_mem_meta_table_insert(table, meta);
  376. qdf_spin_unlock(&qdf_mem_list_lock);
  377. if (is_full) {
  378. (*mem_print)(table, print, print_priv, threshold);
  379. qdf_mem_zero(table, sizeof(table));
  380. }
  381. qdf_spin_lock(&qdf_mem_list_lock);
  382. status = qdf_list_peek_next(domain, node, &node);
  383. }
  384. qdf_spin_unlock(&qdf_mem_list_lock);
  385. (*mem_print)(table, print, print_priv, threshold);
  386. }
  387. /**
  388. * qdf_mem_meta_table_print() - memory metadata table print logic
  389. * @table: the memory metadata table to print
  390. * @print: the print adapter function
  391. * @print_priv: the private data to be consumed by @print
  392. * @threshold: the threshold value set by user to list top allocations
  393. *
  394. * Return: None
  395. */
  396. static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
  397. qdf_abstract_print print,
  398. void *print_priv,
  399. uint32_t threshold)
  400. {
  401. int i;
  402. char debug_str[QDF_DEBUG_STRING_SIZE];
  403. size_t len = 0;
  404. char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
  405. len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
  406. "%s", debug_prefix);
  407. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  408. if (!table[i].count)
  409. break;
  410. print(print_priv,
  411. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  412. table[i].count,
  413. table[i].size,
  414. table[i].count * table[i].size,
  415. table[i].func,
  416. table[i].line, table[i].caller,
  417. table[i].time);
  418. len += qdf_scnprintf(debug_str + len,
  419. sizeof(debug_str) - len,
  420. " @ %s:%u %pS",
  421. table[i].func,
  422. table[i].line,
  423. table[i].caller);
  424. }
  425. print(print_priv, "%s", debug_str);
  426. }
  427. static int qdf_err_printer(void *priv, const char *fmt, ...)
  428. {
  429. va_list args;
  430. va_start(args, fmt);
  431. QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
  432. va_end(args);
  433. return 0;
  434. }
  435. #endif /* MEMORY_DEBUG */
  436. bool prealloc_disabled = 1;
  437. qdf_declare_param(prealloc_disabled, bool);
  438. qdf_export_symbol(prealloc_disabled);
  439. int qdf_mem_malloc_flags(void)
  440. {
  441. if (in_interrupt() || irqs_disabled() || in_atomic())
  442. return GFP_ATOMIC;
  443. return GFP_KERNEL;
  444. }
  445. qdf_export_symbol(qdf_mem_malloc_flags);
  446. /**
  447. * qdf_prealloc_disabled_config_get() - Get the user configuration of
  448. * prealloc_disabled
  449. *
  450. * Return: value of prealloc_disabled qdf module argument
  451. */
  452. bool qdf_prealloc_disabled_config_get(void)
  453. {
  454. return prealloc_disabled;
  455. }
  456. qdf_export_symbol(qdf_prealloc_disabled_config_get);
  457. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  458. /**
  459. * qdf_prealloc_disabled_config_set() - Set prealloc_disabled
  460. * @str_value: value of the module param
  461. *
  462. * This function will set qdf module param prealloc_disabled
  463. *
  464. * Return: QDF_STATUS_SUCCESS on Success
  465. */
  466. QDF_STATUS qdf_prealloc_disabled_config_set(const char *str_value)
  467. {
  468. QDF_STATUS status;
  469. status = qdf_bool_parse(str_value, &prealloc_disabled);
  470. return status;
  471. }
  472. #endif
  473. #if defined WLAN_DEBUGFS
  474. /* Debugfs root directory for qdf_mem */
  475. static struct dentry *qdf_mem_debugfs_root;
  476. #ifdef MEMORY_DEBUG
  477. static int seq_printf_printer(void *priv, const char *fmt, ...)
  478. {
  479. struct seq_file *file = priv;
  480. va_list args;
  481. va_start(args, fmt);
  482. seq_vprintf(file, fmt, args);
  483. seq_puts(file, "\n");
  484. va_end(args);
  485. return 0;
  486. }
  487. /**
  488. * qdf_print_major_alloc() - memory metadata table print logic
  489. * @table: the memory metadata table to print
  490. * @print: the print adapter function
  491. * @print_priv: the private data to be consumed by @print
  492. * @threshold: the threshold value set by uset to list top allocations
  493. *
  494. * Return: None
  495. */
  496. static void qdf_print_major_alloc(struct __qdf_mem_info *table,
  497. qdf_abstract_print print,
  498. void *print_priv,
  499. uint32_t threshold)
  500. {
  501. int i;
  502. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  503. if (!table[i].count)
  504. break;
  505. if (table[i].count >= threshold)
  506. print(print_priv,
  507. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  508. table[i].count,
  509. table[i].size,
  510. table[i].count * table[i].size,
  511. table[i].func,
  512. table[i].line, table[i].caller,
  513. table[i].time);
  514. }
  515. }
  516. /**
  517. * qdf_mem_seq_start() - sequential callback to start
  518. * @seq: seq_file handle
  519. * @pos: The start position of the sequence
  520. *
  521. * Return: iterator pointer, or NULL if iteration is complete
  522. */
  523. static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
  524. {
  525. enum qdf_debug_domain domain = *pos;
  526. if (!qdf_debug_domain_valid(domain))
  527. return NULL;
  528. /* just use the current position as our iterator */
  529. return pos;
  530. }
  531. /**
  532. * qdf_mem_seq_next() - next sequential callback
  533. * @seq: seq_file handle
  534. * @v: the current iterator
  535. * @pos: the current position
  536. *
  537. * Get the next node and release previous node.
  538. *
  539. * Return: iterator pointer, or NULL if iteration is complete
  540. */
  541. static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  542. {
  543. ++*pos;
  544. return qdf_mem_seq_start(seq, pos);
  545. }
  546. /**
  547. * qdf_mem_seq_stop() - stop sequential callback
  548. * @seq: seq_file handle
  549. * @v: current iterator
  550. *
  551. * Return: None
  552. */
  553. static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
  554. /**
  555. * qdf_mem_seq_show() - print sequential callback
  556. * @seq: seq_file handle
  557. * @v: current iterator
  558. *
  559. * Return: 0 - success
  560. */
  561. static int qdf_mem_seq_show(struct seq_file *seq, void *v)
  562. {
  563. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  564. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  565. qdf_debug_domain_name(domain_id), domain_id);
  566. qdf_mem_domain_print(qdf_mem_list_get(domain_id),
  567. seq_printf_printer,
  568. seq,
  569. 0,
  570. qdf_mem_meta_table_print);
  571. return 0;
  572. }
  573. /* sequential file operation table */
  574. static const struct seq_operations qdf_mem_seq_ops = {
  575. .start = qdf_mem_seq_start,
  576. .next = qdf_mem_seq_next,
  577. .stop = qdf_mem_seq_stop,
  578. .show = qdf_mem_seq_show,
  579. };
  580. static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
  581. {
  582. return seq_open(file, &qdf_mem_seq_ops);
  583. }
  584. /**
  585. * qdf_major_alloc_show() - print sequential callback
  586. * @seq: seq_file handle
  587. * @v: current iterator
  588. *
  589. * Return: 0 - success
  590. */
  591. static int qdf_major_alloc_show(struct seq_file *seq, void *v)
  592. {
  593. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  594. struct major_alloc_priv *priv;
  595. qdf_list_t *list;
  596. priv = (struct major_alloc_priv *)seq->private;
  597. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  598. qdf_debug_domain_name(domain_id), domain_id);
  599. switch (priv->type) {
  600. case LIST_TYPE_MEM:
  601. list = qdf_mem_list_get(domain_id);
  602. break;
  603. case LIST_TYPE_DMA:
  604. list = qdf_mem_dma_list(domain_id);
  605. break;
  606. default:
  607. list = NULL;
  608. break;
  609. }
  610. if (list)
  611. qdf_mem_domain_print(list,
  612. seq_printf_printer,
  613. seq,
  614. priv->threshold,
  615. qdf_print_major_alloc);
  616. return 0;
  617. }
  618. /* sequential file operation table created to track major allocs */
  619. static const struct seq_operations qdf_major_allocs_seq_ops = {
  620. .start = qdf_mem_seq_start,
  621. .next = qdf_mem_seq_next,
  622. .stop = qdf_mem_seq_stop,
  623. .show = qdf_major_alloc_show,
  624. };
  625. static int qdf_major_allocs_open(struct inode *inode, struct file *file)
  626. {
  627. void *private = inode->i_private;
  628. struct seq_file *seq;
  629. int rc;
  630. rc = seq_open(file, &qdf_major_allocs_seq_ops);
  631. if (rc == 0) {
  632. seq = file->private_data;
  633. seq->private = private;
  634. }
  635. return rc;
  636. }
  637. static ssize_t qdf_major_alloc_set_threshold(struct file *file,
  638. const char __user *user_buf,
  639. size_t count,
  640. loff_t *pos)
  641. {
  642. char buf[32];
  643. ssize_t buf_size;
  644. uint32_t threshold;
  645. struct seq_file *seq = file->private_data;
  646. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  647. buf_size = min(count, (sizeof(buf) - 1));
  648. if (buf_size <= 0)
  649. return 0;
  650. if (copy_from_user(buf, user_buf, buf_size))
  651. return -EFAULT;
  652. buf[buf_size] = '\0';
  653. if (!kstrtou32(buf, 10, &threshold))
  654. priv->threshold = threshold;
  655. return buf_size;
  656. }
  657. /**
  658. * qdf_print_major_nbuf_allocs() - output agnostic nbuf print logic
  659. * @threshold: the threshold value set by uset to list top allocations
  660. * @print: the print adapter function
  661. * @print_priv: the private data to be consumed by @print
  662. * @mem_print: pointer to function which prints the memory allocation data
  663. *
  664. * Return: None
  665. */
  666. static void
  667. qdf_print_major_nbuf_allocs(uint32_t threshold,
  668. qdf_abstract_print print,
  669. void *print_priv,
  670. void (*mem_print)(struct __qdf_mem_info *,
  671. qdf_abstract_print,
  672. void *, uint32_t))
  673. {
  674. uint32_t nbuf_iter;
  675. unsigned long irq_flag = 0;
  676. QDF_NBUF_TRACK *p_node;
  677. QDF_NBUF_TRACK *p_prev;
  678. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  679. struct qdf_mem_header meta;
  680. bool is_full;
  681. qdf_mem_zero(table, sizeof(table));
  682. qdf_mem_debug_print_header(print, print_priv, threshold);
  683. if (is_initial_mem_debug_disabled)
  684. return;
  685. qdf_rl_info("major nbuf print with threshold %u", threshold);
  686. for (nbuf_iter = 0; nbuf_iter < QDF_NET_BUF_TRACK_MAX_SIZE;
  687. nbuf_iter++) {
  688. qdf_nbuf_acquire_track_lock(nbuf_iter, irq_flag);
  689. p_node = qdf_nbuf_get_track_tbl(nbuf_iter);
  690. while (p_node) {
  691. meta.line = p_node->line_num;
  692. meta.size = p_node->size;
  693. meta.caller = NULL;
  694. meta.time = p_node->time;
  695. qdf_str_lcopy(meta.func, p_node->func_name,
  696. QDF_MEM_FUNC_NAME_SIZE);
  697. is_full = qdf_mem_meta_table_insert(table, &meta);
  698. if (is_full) {
  699. (*mem_print)(table, print,
  700. print_priv, threshold);
  701. qdf_mem_zero(table, sizeof(table));
  702. }
  703. p_prev = p_node;
  704. p_node = p_node->p_next;
  705. }
  706. qdf_nbuf_release_track_lock(nbuf_iter, irq_flag);
  707. }
  708. (*mem_print)(table, print, print_priv, threshold);
  709. qdf_rl_info("major nbuf print end");
  710. }
  711. /**
  712. * qdf_major_nbuf_alloc_show() - print sequential callback
  713. * @seq: seq_file handle
  714. * @v: current iterator
  715. *
  716. * Return: 0 - success
  717. */
  718. static int qdf_major_nbuf_alloc_show(struct seq_file *seq, void *v)
  719. {
  720. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  721. if (!priv) {
  722. qdf_err("priv is null");
  723. return -EINVAL;
  724. }
  725. qdf_print_major_nbuf_allocs(priv->threshold,
  726. seq_printf_printer,
  727. seq,
  728. qdf_print_major_alloc);
  729. return 0;
  730. }
  731. /**
  732. * qdf_nbuf_seq_start() - sequential callback to start
  733. * @seq: seq_file handle
  734. * @pos: The start position of the sequence
  735. *
  736. * Return: iterator pointer, or NULL if iteration is complete
  737. */
  738. static void *qdf_nbuf_seq_start(struct seq_file *seq, loff_t *pos)
  739. {
  740. enum qdf_debug_domain domain = *pos;
  741. if (domain > QDF_DEBUG_NBUF_DOMAIN)
  742. return NULL;
  743. return pos;
  744. }
  745. /**
  746. * qdf_nbuf_seq_next() - next sequential callback
  747. * @seq: seq_file handle
  748. * @v: the current iterator
  749. * @pos: the current position
  750. *
  751. * Get the next node and release previous node.
  752. *
  753. * Return: iterator pointer, or NULL if iteration is complete
  754. */
  755. static void *qdf_nbuf_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  756. {
  757. ++*pos;
  758. return qdf_nbuf_seq_start(seq, pos);
  759. }
  760. /**
  761. * qdf_nbuf_seq_stop() - stop sequential callback
  762. * @seq: seq_file handle
  763. * @v: current iterator
  764. *
  765. * Return: None
  766. */
  767. static void qdf_nbuf_seq_stop(struct seq_file *seq, void *v) { }
  768. /* sequential file operation table created to track major skb allocs */
  769. static const struct seq_operations qdf_major_nbuf_allocs_seq_ops = {
  770. .start = qdf_nbuf_seq_start,
  771. .next = qdf_nbuf_seq_next,
  772. .stop = qdf_nbuf_seq_stop,
  773. .show = qdf_major_nbuf_alloc_show,
  774. };
  775. static int qdf_major_nbuf_allocs_open(struct inode *inode, struct file *file)
  776. {
  777. void *private = inode->i_private;
  778. struct seq_file *seq;
  779. int rc;
  780. rc = seq_open(file, &qdf_major_nbuf_allocs_seq_ops);
  781. if (rc == 0) {
  782. seq = file->private_data;
  783. seq->private = private;
  784. }
  785. return rc;
  786. }
  787. static ssize_t qdf_major_nbuf_alloc_set_threshold(struct file *file,
  788. const char __user *user_buf,
  789. size_t count,
  790. loff_t *pos)
  791. {
  792. char buf[32];
  793. ssize_t buf_size;
  794. uint32_t threshold;
  795. struct seq_file *seq = file->private_data;
  796. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  797. buf_size = min(count, (sizeof(buf) - 1));
  798. if (buf_size <= 0)
  799. return 0;
  800. if (copy_from_user(buf, user_buf, buf_size))
  801. return -EFAULT;
  802. buf[buf_size] = '\0';
  803. if (!kstrtou32(buf, 10, &threshold))
  804. priv->threshold = threshold;
  805. return buf_size;
  806. }
  807. /* file operation table for listing major allocs */
  808. static const struct file_operations fops_qdf_major_allocs = {
  809. .owner = THIS_MODULE,
  810. .open = qdf_major_allocs_open,
  811. .read = seq_read,
  812. .llseek = seq_lseek,
  813. .release = seq_release,
  814. .write = qdf_major_alloc_set_threshold,
  815. };
  816. /* debugfs file operation table */
  817. static const struct file_operations fops_qdf_mem_debugfs = {
  818. .owner = THIS_MODULE,
  819. .open = qdf_mem_debugfs_open,
  820. .read = seq_read,
  821. .llseek = seq_lseek,
  822. .release = seq_release,
  823. };
  824. /* file operation table for listing major allocs */
  825. static const struct file_operations fops_qdf_nbuf_major_allocs = {
  826. .owner = THIS_MODULE,
  827. .open = qdf_major_nbuf_allocs_open,
  828. .read = seq_read,
  829. .llseek = seq_lseek,
  830. .release = seq_release,
  831. .write = qdf_major_nbuf_alloc_set_threshold,
  832. };
  833. static struct major_alloc_priv mem_priv = {
  834. /* List type set to mem */
  835. LIST_TYPE_MEM,
  836. /* initial threshold to list APIs which allocates mem >= 50 times */
  837. 50
  838. };
  839. static struct major_alloc_priv dma_priv = {
  840. /* List type set to DMA */
  841. LIST_TYPE_DMA,
  842. /* initial threshold to list APIs which allocates dma >= 50 times */
  843. 50
  844. };
  845. static struct major_alloc_priv nbuf_priv = {
  846. /* List type set to NBUF */
  847. LIST_TYPE_NBUF,
  848. /* initial threshold to list APIs which allocates nbuf >= 50 times */
  849. 50
  850. };
  851. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  852. {
  853. if (is_initial_mem_debug_disabled)
  854. return QDF_STATUS_SUCCESS;
  855. if (!qdf_mem_debugfs_root)
  856. return QDF_STATUS_E_FAILURE;
  857. debugfs_create_file("list",
  858. S_IRUSR,
  859. qdf_mem_debugfs_root,
  860. NULL,
  861. &fops_qdf_mem_debugfs);
  862. debugfs_create_file("major_mem_allocs",
  863. 0600,
  864. qdf_mem_debugfs_root,
  865. &mem_priv,
  866. &fops_qdf_major_allocs);
  867. debugfs_create_file("major_dma_allocs",
  868. 0600,
  869. qdf_mem_debugfs_root,
  870. &dma_priv,
  871. &fops_qdf_major_allocs);
  872. debugfs_create_file("major_nbuf_allocs",
  873. 0600,
  874. qdf_mem_debugfs_root,
  875. &nbuf_priv,
  876. &fops_qdf_nbuf_major_allocs);
  877. return QDF_STATUS_SUCCESS;
  878. }
  879. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  880. {
  881. return QDF_STATUS_SUCCESS;
  882. }
  883. #else /* MEMORY_DEBUG */
  884. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  885. {
  886. return QDF_STATUS_E_NOSUPPORT;
  887. }
  888. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  889. {
  890. return QDF_STATUS_E_NOSUPPORT;
  891. }
  892. #endif /* MEMORY_DEBUG */
  893. static void qdf_mem_debugfs_exit(void)
  894. {
  895. debugfs_remove_recursive(qdf_mem_debugfs_root);
  896. qdf_mem_debugfs_root = NULL;
  897. }
  898. static QDF_STATUS qdf_mem_debugfs_init(void)
  899. {
  900. struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
  901. if (!qdf_debugfs_root)
  902. return QDF_STATUS_E_FAILURE;
  903. qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
  904. if (!qdf_mem_debugfs_root)
  905. return QDF_STATUS_E_FAILURE;
  906. debugfs_create_atomic_t("kmalloc",
  907. S_IRUSR,
  908. qdf_mem_debugfs_root,
  909. &qdf_mem_stat.kmalloc);
  910. debugfs_create_atomic_t("dma",
  911. S_IRUSR,
  912. qdf_mem_debugfs_root,
  913. &qdf_mem_stat.dma);
  914. debugfs_create_atomic_t("skb",
  915. S_IRUSR,
  916. qdf_mem_debugfs_root,
  917. &qdf_mem_stat.skb);
  918. return QDF_STATUS_SUCCESS;
  919. }
  920. #else /* WLAN_DEBUGFS */
  921. static QDF_STATUS qdf_mem_debugfs_init(void)
  922. {
  923. return QDF_STATUS_E_NOSUPPORT;
  924. }
  925. static void qdf_mem_debugfs_exit(void) {}
  926. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  927. {
  928. return QDF_STATUS_E_NOSUPPORT;
  929. }
  930. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  931. {
  932. return QDF_STATUS_E_NOSUPPORT;
  933. }
  934. #endif /* WLAN_DEBUGFS */
  935. void qdf_mem_kmalloc_inc(qdf_size_t size)
  936. {
  937. qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
  938. }
  939. static void qdf_mem_dma_inc(qdf_size_t size)
  940. {
  941. qdf_atomic_add(size, &qdf_mem_stat.dma);
  942. }
  943. #ifdef CONFIG_WLAN_SYSFS_MEM_STATS
  944. void qdf_mem_skb_inc(qdf_size_t size)
  945. {
  946. qdf_atomic_add(size, &qdf_mem_stat.skb);
  947. }
  948. void qdf_mem_skb_dec(qdf_size_t size)
  949. {
  950. qdf_atomic_sub(size, &qdf_mem_stat.skb);
  951. }
  952. void qdf_mem_skb_total_inc(qdf_size_t size)
  953. {
  954. int32_t skb_mem_max = 0;
  955. qdf_atomic_add(size, &qdf_mem_stat.skb_total);
  956. skb_mem_max = qdf_atomic_read(&qdf_mem_stat.skb_total);
  957. if (qdf_mem_stat.skb_mem_max < skb_mem_max)
  958. qdf_mem_stat.skb_mem_max = skb_mem_max;
  959. }
  960. void qdf_mem_skb_total_dec(qdf_size_t size)
  961. {
  962. qdf_atomic_sub(size, &qdf_mem_stat.skb_total);
  963. }
  964. void qdf_mem_dp_tx_skb_inc(qdf_size_t size)
  965. {
  966. int32_t curr_dp_tx_skb_mem_max = 0;
  967. qdf_atomic_add(size, &qdf_mem_stat.dp_tx_skb);
  968. curr_dp_tx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  969. if (qdf_mem_stat.dp_tx_skb_mem_max < curr_dp_tx_skb_mem_max)
  970. qdf_mem_stat.dp_tx_skb_mem_max = curr_dp_tx_skb_mem_max;
  971. }
  972. void qdf_mem_dp_tx_skb_dec(qdf_size_t size)
  973. {
  974. qdf_atomic_sub(size, &qdf_mem_stat.dp_tx_skb);
  975. }
  976. void qdf_mem_dp_rx_skb_inc(qdf_size_t size)
  977. {
  978. int32_t curr_dp_rx_skb_mem_max = 0;
  979. qdf_atomic_add(size, &qdf_mem_stat.dp_rx_skb);
  980. curr_dp_rx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  981. if (qdf_mem_stat.dp_rx_skb_mem_max < curr_dp_rx_skb_mem_max)
  982. qdf_mem_stat.dp_rx_skb_mem_max = curr_dp_rx_skb_mem_max;
  983. }
  984. void qdf_mem_dp_rx_skb_dec(qdf_size_t size)
  985. {
  986. qdf_atomic_sub(size, &qdf_mem_stat.dp_rx_skb);
  987. }
  988. void qdf_mem_dp_tx_skb_cnt_inc(void)
  989. {
  990. int32_t curr_dp_tx_skb_count_max = 0;
  991. qdf_atomic_add(1, &qdf_mem_stat.dp_tx_skb_count);
  992. curr_dp_tx_skb_count_max =
  993. qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  994. if (qdf_mem_stat.dp_tx_skb_count_max < curr_dp_tx_skb_count_max)
  995. qdf_mem_stat.dp_tx_skb_count_max = curr_dp_tx_skb_count_max;
  996. }
  997. void qdf_mem_dp_tx_skb_cnt_dec(void)
  998. {
  999. qdf_atomic_sub(1, &qdf_mem_stat.dp_tx_skb_count);
  1000. }
  1001. void qdf_mem_dp_rx_skb_cnt_inc(void)
  1002. {
  1003. int32_t curr_dp_rx_skb_count_max = 0;
  1004. qdf_atomic_add(1, &qdf_mem_stat.dp_rx_skb_count);
  1005. curr_dp_rx_skb_count_max =
  1006. qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  1007. if (qdf_mem_stat.dp_rx_skb_count_max < curr_dp_rx_skb_count_max)
  1008. qdf_mem_stat.dp_rx_skb_count_max = curr_dp_rx_skb_count_max;
  1009. }
  1010. void qdf_mem_dp_rx_skb_cnt_dec(void)
  1011. {
  1012. qdf_atomic_sub(1, &qdf_mem_stat.dp_rx_skb_count);
  1013. }
  1014. #endif
  1015. void qdf_mem_kmalloc_dec(qdf_size_t size)
  1016. {
  1017. qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
  1018. }
  1019. static inline void qdf_mem_dma_dec(qdf_size_t size)
  1020. {
  1021. qdf_atomic_sub(size, &qdf_mem_stat.dma);
  1022. }
  1023. /**
  1024. * __qdf_mempool_init() - Create and initialize memory pool
  1025. *
  1026. * @osdev: platform device object
  1027. * @pool_addr: address of the pool created
  1028. * @elem_cnt: no. of elements in pool
  1029. * @elem_size: size of each pool element in bytes
  1030. * @flags: flags
  1031. *
  1032. * return: Handle to memory pool or NULL if allocation failed
  1033. */
  1034. int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
  1035. int elem_cnt, size_t elem_size, u_int32_t flags)
  1036. {
  1037. __qdf_mempool_ctxt_t *new_pool = NULL;
  1038. u_int32_t align = L1_CACHE_BYTES;
  1039. unsigned long aligned_pool_mem;
  1040. int pool_id;
  1041. int i;
  1042. if (prealloc_disabled) {
  1043. /* TBD: We can maintain a list of pools in qdf_device_t
  1044. * to help debugging
  1045. * when pre-allocation is not enabled
  1046. */
  1047. new_pool = (__qdf_mempool_ctxt_t *)
  1048. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1049. if (!new_pool)
  1050. return QDF_STATUS_E_NOMEM;
  1051. memset(new_pool, 0, sizeof(*new_pool));
  1052. /* TBD: define flags for zeroing buffers etc */
  1053. new_pool->flags = flags;
  1054. new_pool->elem_size = elem_size;
  1055. new_pool->max_elem = elem_cnt;
  1056. *pool_addr = new_pool;
  1057. return 0;
  1058. }
  1059. for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
  1060. if (!osdev->mem_pool[pool_id])
  1061. break;
  1062. }
  1063. if (pool_id == MAX_MEM_POOLS)
  1064. return -ENOMEM;
  1065. new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
  1066. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1067. if (!new_pool)
  1068. return -ENOMEM;
  1069. memset(new_pool, 0, sizeof(*new_pool));
  1070. /* TBD: define flags for zeroing buffers etc */
  1071. new_pool->flags = flags;
  1072. new_pool->pool_id = pool_id;
  1073. /* Round up the element size to cacheline */
  1074. new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
  1075. new_pool->mem_size = elem_cnt * new_pool->elem_size +
  1076. ((align)?(align - 1):0);
  1077. new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
  1078. if (!new_pool->pool_mem) {
  1079. /* TBD: Check if we need get_free_pages above */
  1080. kfree(new_pool);
  1081. osdev->mem_pool[pool_id] = NULL;
  1082. return -ENOMEM;
  1083. }
  1084. spin_lock_init(&new_pool->lock);
  1085. /* Initialize free list */
  1086. aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
  1087. ((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
  1088. STAILQ_INIT(&new_pool->free_list);
  1089. for (i = 0; i < elem_cnt; i++)
  1090. STAILQ_INSERT_TAIL(&(new_pool->free_list),
  1091. (mempool_elem_t *)(aligned_pool_mem +
  1092. (new_pool->elem_size * i)), mempool_entry);
  1093. new_pool->free_cnt = elem_cnt;
  1094. *pool_addr = new_pool;
  1095. return 0;
  1096. }
  1097. qdf_export_symbol(__qdf_mempool_init);
  1098. /**
  1099. * __qdf_mempool_destroy() - Destroy memory pool
  1100. * @osdev: platform device object
  1101. * @Handle: to memory pool
  1102. *
  1103. * Returns: none
  1104. */
  1105. void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
  1106. {
  1107. int pool_id = 0;
  1108. if (!pool)
  1109. return;
  1110. if (prealloc_disabled) {
  1111. kfree(pool);
  1112. return;
  1113. }
  1114. pool_id = pool->pool_id;
  1115. /* TBD: Check if free count matches elem_cnt if debug is enabled */
  1116. kfree(pool->pool_mem);
  1117. kfree(pool);
  1118. osdev->mem_pool[pool_id] = NULL;
  1119. }
  1120. qdf_export_symbol(__qdf_mempool_destroy);
  1121. /**
  1122. * __qdf_mempool_alloc() - Allocate an element memory pool
  1123. *
  1124. * @osdev: platform device object
  1125. * @Handle: to memory pool
  1126. *
  1127. * Return: Pointer to the allocated element or NULL if the pool is empty
  1128. */
  1129. void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
  1130. {
  1131. void *buf = NULL;
  1132. if (!pool)
  1133. return NULL;
  1134. if (prealloc_disabled)
  1135. return qdf_mem_malloc(pool->elem_size);
  1136. spin_lock_bh(&pool->lock);
  1137. buf = STAILQ_FIRST(&pool->free_list);
  1138. if (buf) {
  1139. STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
  1140. pool->free_cnt--;
  1141. }
  1142. /* TBD: Update free count if debug is enabled */
  1143. spin_unlock_bh(&pool->lock);
  1144. return buf;
  1145. }
  1146. qdf_export_symbol(__qdf_mempool_alloc);
  1147. /**
  1148. * __qdf_mempool_free() - Free a memory pool element
  1149. * @osdev: Platform device object
  1150. * @pool: Handle to memory pool
  1151. * @buf: Element to be freed
  1152. *
  1153. * Returns: none
  1154. */
  1155. void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
  1156. {
  1157. if (!pool)
  1158. return;
  1159. if (prealloc_disabled)
  1160. return qdf_mem_free(buf);
  1161. spin_lock_bh(&pool->lock);
  1162. pool->free_cnt++;
  1163. STAILQ_INSERT_TAIL
  1164. (&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
  1165. spin_unlock_bh(&pool->lock);
  1166. }
  1167. qdf_export_symbol(__qdf_mempool_free);
  1168. #ifdef CNSS_MEM_PRE_ALLOC
  1169. static bool qdf_might_be_prealloc(void *ptr)
  1170. {
  1171. if (ksize(ptr) > WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1172. return true;
  1173. else
  1174. return false;
  1175. }
  1176. /**
  1177. * qdf_mem_prealloc_get() - conditionally pre-allocate memory
  1178. * @size: the number of bytes to allocate
  1179. *
  1180. * If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
  1181. * a chunk of pre-allocated memory. If size if less than or equal to
  1182. * WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
  1183. *
  1184. * Return: NULL on failure, non-NULL on success
  1185. */
  1186. static void *qdf_mem_prealloc_get(size_t size)
  1187. {
  1188. void *ptr;
  1189. if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1190. return NULL;
  1191. ptr = wcnss_prealloc_get(size);
  1192. if (!ptr)
  1193. return NULL;
  1194. memset(ptr, 0, size);
  1195. return ptr;
  1196. }
  1197. static inline bool qdf_mem_prealloc_put(void *ptr)
  1198. {
  1199. return wcnss_prealloc_put(ptr);
  1200. }
  1201. #else
  1202. static bool qdf_might_be_prealloc(void *ptr)
  1203. {
  1204. return false;
  1205. }
  1206. static inline void *qdf_mem_prealloc_get(size_t size)
  1207. {
  1208. return NULL;
  1209. }
  1210. static inline bool qdf_mem_prealloc_put(void *ptr)
  1211. {
  1212. return false;
  1213. }
  1214. #endif /* CNSS_MEM_PRE_ALLOC */
  1215. /* External Function implementation */
  1216. #ifdef MEMORY_DEBUG
  1217. /**
  1218. * qdf_mem_debug_config_get() - Get the user configuration of mem_debug_disabled
  1219. *
  1220. * Return: value of mem_debug_disabled qdf module argument
  1221. */
  1222. #ifdef DISABLE_MEM_DBG_LOAD_CONFIG
  1223. bool qdf_mem_debug_config_get(void)
  1224. {
  1225. /* Return false if DISABLE_LOAD_MEM_DBG_CONFIG flag is enabled */
  1226. return false;
  1227. }
  1228. #else
  1229. bool qdf_mem_debug_config_get(void)
  1230. {
  1231. return mem_debug_disabled;
  1232. }
  1233. #endif /* DISABLE_MEM_DBG_LOAD_CONFIG */
  1234. /**
  1235. * qdf_mem_debug_disabled_set() - Set mem_debug_disabled
  1236. * @str_value: value of the module param
  1237. *
  1238. * This function will se qdf module param mem_debug_disabled
  1239. *
  1240. * Return: QDF_STATUS_SUCCESS on Success
  1241. */
  1242. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1243. QDF_STATUS qdf_mem_debug_disabled_config_set(const char *str_value)
  1244. {
  1245. QDF_STATUS status;
  1246. status = qdf_bool_parse(str_value, &mem_debug_disabled);
  1247. return status;
  1248. }
  1249. #endif
  1250. /**
  1251. * qdf_mem_debug_init() - initialize qdf memory debug functionality
  1252. *
  1253. * Return: none
  1254. */
  1255. static void qdf_mem_debug_init(void)
  1256. {
  1257. int i;
  1258. is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
  1259. if (is_initial_mem_debug_disabled)
  1260. return;
  1261. /* Initalizing the list with maximum size of 60000 */
  1262. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1263. qdf_list_create(&qdf_mem_domains[i], 60000);
  1264. qdf_spinlock_create(&qdf_mem_list_lock);
  1265. /* dma */
  1266. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1267. qdf_list_create(&qdf_mem_dma_domains[i], 0);
  1268. qdf_spinlock_create(&qdf_mem_dma_list_lock);
  1269. }
  1270. static uint32_t
  1271. qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
  1272. qdf_list_t *mem_list)
  1273. {
  1274. if (is_initial_mem_debug_disabled)
  1275. return 0;
  1276. if (qdf_list_empty(mem_list))
  1277. return 0;
  1278. qdf_err("Memory leaks detected in %s domain!",
  1279. qdf_debug_domain_name(domain));
  1280. qdf_mem_domain_print(mem_list,
  1281. qdf_err_printer,
  1282. NULL,
  1283. 0,
  1284. qdf_mem_meta_table_print);
  1285. return mem_list->count;
  1286. }
  1287. static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
  1288. {
  1289. uint32_t leak_count = 0;
  1290. int i;
  1291. if (is_initial_mem_debug_disabled)
  1292. return;
  1293. /* detect and print leaks */
  1294. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1295. leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
  1296. if (leak_count)
  1297. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1298. leak_count);
  1299. }
  1300. /**
  1301. * qdf_mem_debug_exit() - exit qdf memory debug functionality
  1302. *
  1303. * Return: none
  1304. */
  1305. static void qdf_mem_debug_exit(void)
  1306. {
  1307. int i;
  1308. if (is_initial_mem_debug_disabled)
  1309. return;
  1310. /* mem */
  1311. qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
  1312. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1313. qdf_list_destroy(qdf_mem_list_get(i));
  1314. qdf_spinlock_destroy(&qdf_mem_list_lock);
  1315. /* dma */
  1316. qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
  1317. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1318. qdf_list_destroy(&qdf_mem_dma_domains[i]);
  1319. qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
  1320. }
  1321. void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
  1322. void *caller, uint32_t flag)
  1323. {
  1324. QDF_STATUS status;
  1325. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1326. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1327. struct qdf_mem_header *header;
  1328. void *ptr;
  1329. unsigned long start, duration;
  1330. if (is_initial_mem_debug_disabled)
  1331. return __qdf_mem_malloc(size, func, line);
  1332. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1333. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  1334. return NULL;
  1335. }
  1336. ptr = qdf_mem_prealloc_get(size);
  1337. if (ptr)
  1338. return ptr;
  1339. if (!flag)
  1340. flag = qdf_mem_malloc_flags();
  1341. start = qdf_mc_timer_get_system_time();
  1342. header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
  1343. duration = qdf_mc_timer_get_system_time() - start;
  1344. if (duration > QDF_MEM_WARN_THRESHOLD)
  1345. qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
  1346. duration, size, func, line);
  1347. if (!header) {
  1348. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  1349. return NULL;
  1350. }
  1351. qdf_mem_header_init(header, size, func, line, caller);
  1352. qdf_mem_trailer_init(header);
  1353. ptr = qdf_mem_get_ptr(header);
  1354. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1355. status = qdf_list_insert_front(mem_list, &header->node);
  1356. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1357. if (QDF_IS_STATUS_ERROR(status))
  1358. qdf_err("Failed to insert memory header; status %d", status);
  1359. qdf_mem_kmalloc_inc(ksize(header));
  1360. return ptr;
  1361. }
  1362. qdf_export_symbol(qdf_mem_malloc_debug);
  1363. void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
  1364. {
  1365. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1366. struct qdf_mem_header *header;
  1367. enum qdf_mem_validation_bitmap error_bitmap;
  1368. if (is_initial_mem_debug_disabled) {
  1369. __qdf_mem_free(ptr);
  1370. return;
  1371. }
  1372. /* freeing a null pointer is valid */
  1373. if (qdf_unlikely(!ptr))
  1374. return;
  1375. if (qdf_mem_prealloc_put(ptr))
  1376. return;
  1377. if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
  1378. QDF_MEMDEBUG_PANIC("Failed to free invalid memory location %pK",
  1379. ptr);
  1380. qdf_talloc_assert_no_children_fl(ptr, func, line);
  1381. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1382. header = qdf_mem_get_header(ptr);
  1383. error_bitmap = qdf_mem_header_validate(header, current_domain);
  1384. error_bitmap |= qdf_mem_trailer_validate(header);
  1385. if (!error_bitmap) {
  1386. header->freed = true;
  1387. qdf_list_remove_node(qdf_mem_list_get(header->domain),
  1388. &header->node);
  1389. }
  1390. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1391. qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
  1392. func, line);
  1393. qdf_mem_kmalloc_dec(ksize(header));
  1394. kfree(header);
  1395. }
  1396. qdf_export_symbol(qdf_mem_free_debug);
  1397. void qdf_mem_check_for_leaks(void)
  1398. {
  1399. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1400. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1401. qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
  1402. uint32_t leaks_count = 0;
  1403. if (is_initial_mem_debug_disabled)
  1404. return;
  1405. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
  1406. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
  1407. if (leaks_count)
  1408. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1409. leaks_count);
  1410. }
  1411. /**
  1412. * qdf_mem_multi_pages_alloc_debug() - Debug version of
  1413. * qdf_mem_multi_pages_alloc
  1414. * @osdev: OS device handle pointer
  1415. * @pages: Multi page information storage
  1416. * @element_size: Each element size
  1417. * @element_num: Total number of elements should be allocated
  1418. * @memctxt: Memory context
  1419. * @cacheable: Coherent memory or cacheable memory
  1420. * @func: Caller of this allocator
  1421. * @line: Line number of the caller
  1422. * @caller: Return address of the caller
  1423. *
  1424. * This function will allocate large size of memory over multiple pages.
  1425. * Large size of contiguous memory allocation will fail frequently, then
  1426. * instead of allocate large memory by one shot, allocate through multiple, non
  1427. * contiguous memory and combine pages when actual usage
  1428. *
  1429. * Return: None
  1430. */
  1431. void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev,
  1432. struct qdf_mem_multi_page_t *pages,
  1433. size_t element_size, uint16_t element_num,
  1434. qdf_dma_context_t memctxt, bool cacheable,
  1435. const char *func, uint32_t line,
  1436. void *caller)
  1437. {
  1438. uint16_t page_idx;
  1439. struct qdf_mem_dma_page_t *dma_pages;
  1440. void **cacheable_pages = NULL;
  1441. uint16_t i;
  1442. if (!pages->page_size)
  1443. pages->page_size = qdf_page_size;
  1444. pages->num_element_per_page = pages->page_size / element_size;
  1445. if (!pages->num_element_per_page) {
  1446. qdf_print("Invalid page %d or element size %d",
  1447. (int)pages->page_size, (int)element_size);
  1448. goto out_fail;
  1449. }
  1450. pages->num_pages = element_num / pages->num_element_per_page;
  1451. if (element_num % pages->num_element_per_page)
  1452. pages->num_pages++;
  1453. if (cacheable) {
  1454. /* Pages information storage */
  1455. pages->cacheable_pages = qdf_mem_malloc_debug(
  1456. pages->num_pages * sizeof(pages->cacheable_pages),
  1457. func, line, caller, 0);
  1458. if (!pages->cacheable_pages)
  1459. goto out_fail;
  1460. cacheable_pages = pages->cacheable_pages;
  1461. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1462. cacheable_pages[page_idx] = qdf_mem_malloc_debug(
  1463. pages->page_size, func, line, caller, 0);
  1464. if (!cacheable_pages[page_idx])
  1465. goto page_alloc_fail;
  1466. }
  1467. pages->dma_pages = NULL;
  1468. } else {
  1469. pages->dma_pages = qdf_mem_malloc_debug(
  1470. pages->num_pages * sizeof(struct qdf_mem_dma_page_t),
  1471. func, line, caller, 0);
  1472. if (!pages->dma_pages)
  1473. goto out_fail;
  1474. dma_pages = pages->dma_pages;
  1475. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1476. dma_pages->page_v_addr_start =
  1477. qdf_mem_alloc_consistent_debug(
  1478. osdev, osdev->dev, pages->page_size,
  1479. &dma_pages->page_p_addr,
  1480. func, line, caller);
  1481. if (!dma_pages->page_v_addr_start) {
  1482. qdf_print("dmaable page alloc fail pi %d",
  1483. page_idx);
  1484. goto page_alloc_fail;
  1485. }
  1486. dma_pages->page_v_addr_end =
  1487. dma_pages->page_v_addr_start + pages->page_size;
  1488. dma_pages++;
  1489. }
  1490. pages->cacheable_pages = NULL;
  1491. }
  1492. return;
  1493. page_alloc_fail:
  1494. if (cacheable) {
  1495. for (i = 0; i < page_idx; i++)
  1496. qdf_mem_free_debug(pages->cacheable_pages[i],
  1497. func, line);
  1498. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1499. } else {
  1500. dma_pages = pages->dma_pages;
  1501. for (i = 0; i < page_idx; i++) {
  1502. qdf_mem_free_consistent_debug(
  1503. osdev, osdev->dev,
  1504. pages->page_size, dma_pages->page_v_addr_start,
  1505. dma_pages->page_p_addr, memctxt, func, line);
  1506. dma_pages++;
  1507. }
  1508. qdf_mem_free_debug(pages->dma_pages, func, line);
  1509. }
  1510. out_fail:
  1511. pages->cacheable_pages = NULL;
  1512. pages->dma_pages = NULL;
  1513. pages->num_pages = 0;
  1514. }
  1515. qdf_export_symbol(qdf_mem_multi_pages_alloc_debug);
  1516. /**
  1517. * qdf_mem_multi_pages_free_debug() - Debug version of qdf_mem_multi_pages_free
  1518. * @osdev: OS device handle pointer
  1519. * @pages: Multi page information storage
  1520. * @memctxt: Memory context
  1521. * @cacheable: Coherent memory or cacheable memory
  1522. * @func: Caller of this allocator
  1523. * @line: Line number of the caller
  1524. *
  1525. * This function will free large size of memory over multiple pages.
  1526. *
  1527. * Return: None
  1528. */
  1529. void qdf_mem_multi_pages_free_debug(qdf_device_t osdev,
  1530. struct qdf_mem_multi_page_t *pages,
  1531. qdf_dma_context_t memctxt, bool cacheable,
  1532. const char *func, uint32_t line)
  1533. {
  1534. unsigned int page_idx;
  1535. struct qdf_mem_dma_page_t *dma_pages;
  1536. if (!pages->page_size)
  1537. pages->page_size = qdf_page_size;
  1538. if (cacheable) {
  1539. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1540. qdf_mem_free_debug(pages->cacheable_pages[page_idx],
  1541. func, line);
  1542. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1543. } else {
  1544. dma_pages = pages->dma_pages;
  1545. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1546. qdf_mem_free_consistent_debug(
  1547. osdev, osdev->dev, pages->page_size,
  1548. dma_pages->page_v_addr_start,
  1549. dma_pages->page_p_addr, memctxt, func, line);
  1550. dma_pages++;
  1551. }
  1552. qdf_mem_free_debug(pages->dma_pages, func, line);
  1553. }
  1554. pages->cacheable_pages = NULL;
  1555. pages->dma_pages = NULL;
  1556. pages->num_pages = 0;
  1557. }
  1558. qdf_export_symbol(qdf_mem_multi_pages_free_debug);
  1559. #else
  1560. static void qdf_mem_debug_init(void) {}
  1561. static void qdf_mem_debug_exit(void) {}
  1562. void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
  1563. {
  1564. void *ptr;
  1565. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1566. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1567. line);
  1568. return NULL;
  1569. }
  1570. ptr = qdf_mem_prealloc_get(size);
  1571. if (ptr)
  1572. return ptr;
  1573. ptr = kzalloc(size, GFP_ATOMIC);
  1574. if (!ptr) {
  1575. qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
  1576. size, func, line);
  1577. return NULL;
  1578. }
  1579. qdf_mem_kmalloc_inc(ksize(ptr));
  1580. return ptr;
  1581. }
  1582. qdf_export_symbol(qdf_mem_malloc_atomic_fl);
  1583. /**
  1584. * qdf_mem_multi_pages_alloc() - allocate large size of kernel memory
  1585. * @osdev: OS device handle pointer
  1586. * @pages: Multi page information storage
  1587. * @element_size: Each element size
  1588. * @element_num: Total number of elements should be allocated
  1589. * @memctxt: Memory context
  1590. * @cacheable: Coherent memory or cacheable memory
  1591. *
  1592. * This function will allocate large size of memory over multiple pages.
  1593. * Large size of contiguous memory allocation will fail frequently, then
  1594. * instead of allocate large memory by one shot, allocate through multiple, non
  1595. * contiguous memory and combine pages when actual usage
  1596. *
  1597. * Return: None
  1598. */
  1599. void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
  1600. struct qdf_mem_multi_page_t *pages,
  1601. size_t element_size, uint16_t element_num,
  1602. qdf_dma_context_t memctxt, bool cacheable)
  1603. {
  1604. uint16_t page_idx;
  1605. struct qdf_mem_dma_page_t *dma_pages;
  1606. void **cacheable_pages = NULL;
  1607. uint16_t i;
  1608. if (!pages->page_size)
  1609. pages->page_size = qdf_page_size;
  1610. pages->num_element_per_page = pages->page_size / element_size;
  1611. if (!pages->num_element_per_page) {
  1612. qdf_print("Invalid page %d or element size %d",
  1613. (int)pages->page_size, (int)element_size);
  1614. goto out_fail;
  1615. }
  1616. pages->num_pages = element_num / pages->num_element_per_page;
  1617. if (element_num % pages->num_element_per_page)
  1618. pages->num_pages++;
  1619. if (cacheable) {
  1620. /* Pages information storage */
  1621. pages->cacheable_pages = qdf_mem_malloc(
  1622. pages->num_pages * sizeof(pages->cacheable_pages));
  1623. if (!pages->cacheable_pages)
  1624. goto out_fail;
  1625. cacheable_pages = pages->cacheable_pages;
  1626. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1627. cacheable_pages[page_idx] =
  1628. qdf_mem_malloc(pages->page_size);
  1629. if (!cacheable_pages[page_idx])
  1630. goto page_alloc_fail;
  1631. }
  1632. pages->dma_pages = NULL;
  1633. } else {
  1634. pages->dma_pages = qdf_mem_malloc(
  1635. pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
  1636. if (!pages->dma_pages)
  1637. goto out_fail;
  1638. dma_pages = pages->dma_pages;
  1639. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1640. dma_pages->page_v_addr_start =
  1641. qdf_mem_alloc_consistent(osdev, osdev->dev,
  1642. pages->page_size,
  1643. &dma_pages->page_p_addr);
  1644. if (!dma_pages->page_v_addr_start) {
  1645. qdf_print("dmaable page alloc fail pi %d",
  1646. page_idx);
  1647. goto page_alloc_fail;
  1648. }
  1649. dma_pages->page_v_addr_end =
  1650. dma_pages->page_v_addr_start + pages->page_size;
  1651. dma_pages++;
  1652. }
  1653. pages->cacheable_pages = NULL;
  1654. }
  1655. return;
  1656. page_alloc_fail:
  1657. if (cacheable) {
  1658. for (i = 0; i < page_idx; i++)
  1659. qdf_mem_free(pages->cacheable_pages[i]);
  1660. qdf_mem_free(pages->cacheable_pages);
  1661. } else {
  1662. dma_pages = pages->dma_pages;
  1663. for (i = 0; i < page_idx; i++) {
  1664. qdf_mem_free_consistent(
  1665. osdev, osdev->dev, pages->page_size,
  1666. dma_pages->page_v_addr_start,
  1667. dma_pages->page_p_addr, memctxt);
  1668. dma_pages++;
  1669. }
  1670. qdf_mem_free(pages->dma_pages);
  1671. }
  1672. out_fail:
  1673. pages->cacheable_pages = NULL;
  1674. pages->dma_pages = NULL;
  1675. pages->num_pages = 0;
  1676. return;
  1677. }
  1678. qdf_export_symbol(qdf_mem_multi_pages_alloc);
  1679. /**
  1680. * qdf_mem_multi_pages_free() - free large size of kernel memory
  1681. * @osdev: OS device handle pointer
  1682. * @pages: Multi page information storage
  1683. * @memctxt: Memory context
  1684. * @cacheable: Coherent memory or cacheable memory
  1685. *
  1686. * This function will free large size of memory over multiple pages.
  1687. *
  1688. * Return: None
  1689. */
  1690. void qdf_mem_multi_pages_free(qdf_device_t osdev,
  1691. struct qdf_mem_multi_page_t *pages,
  1692. qdf_dma_context_t memctxt, bool cacheable)
  1693. {
  1694. unsigned int page_idx;
  1695. struct qdf_mem_dma_page_t *dma_pages;
  1696. if (!pages->page_size)
  1697. pages->page_size = qdf_page_size;
  1698. if (cacheable) {
  1699. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1700. qdf_mem_free(pages->cacheable_pages[page_idx]);
  1701. qdf_mem_free(pages->cacheable_pages);
  1702. } else {
  1703. dma_pages = pages->dma_pages;
  1704. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1705. qdf_mem_free_consistent(
  1706. osdev, osdev->dev, pages->page_size,
  1707. dma_pages->page_v_addr_start,
  1708. dma_pages->page_p_addr, memctxt);
  1709. dma_pages++;
  1710. }
  1711. qdf_mem_free(pages->dma_pages);
  1712. }
  1713. pages->cacheable_pages = NULL;
  1714. pages->dma_pages = NULL;
  1715. pages->num_pages = 0;
  1716. return;
  1717. }
  1718. qdf_export_symbol(qdf_mem_multi_pages_free);
  1719. #endif
  1720. void qdf_mem_multi_pages_zero(struct qdf_mem_multi_page_t *pages,
  1721. bool cacheable)
  1722. {
  1723. unsigned int page_idx;
  1724. struct qdf_mem_dma_page_t *dma_pages;
  1725. if (!pages->page_size)
  1726. pages->page_size = qdf_page_size;
  1727. if (cacheable) {
  1728. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1729. qdf_mem_zero(pages->cacheable_pages[page_idx],
  1730. pages->page_size);
  1731. } else {
  1732. dma_pages = pages->dma_pages;
  1733. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1734. qdf_mem_zero(dma_pages->page_v_addr_start,
  1735. pages->page_size);
  1736. dma_pages++;
  1737. }
  1738. }
  1739. }
  1740. qdf_export_symbol(qdf_mem_multi_pages_zero);
  1741. void __qdf_mem_free(void *ptr)
  1742. {
  1743. if (!ptr)
  1744. return;
  1745. if (qdf_might_be_prealloc(ptr)) {
  1746. if (qdf_mem_prealloc_put(ptr))
  1747. return;
  1748. }
  1749. qdf_mem_kmalloc_dec(ksize(ptr));
  1750. kfree(ptr);
  1751. }
  1752. qdf_export_symbol(__qdf_mem_free);
  1753. void *__qdf_mem_malloc(size_t size, const char *func, uint32_t line)
  1754. {
  1755. void *ptr;
  1756. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1757. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1758. line);
  1759. return NULL;
  1760. }
  1761. ptr = qdf_mem_prealloc_get(size);
  1762. if (ptr)
  1763. return ptr;
  1764. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1765. if (!ptr)
  1766. return NULL;
  1767. qdf_mem_kmalloc_inc(ksize(ptr));
  1768. return ptr;
  1769. }
  1770. qdf_export_symbol(__qdf_mem_malloc);
  1771. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1772. void __qdf_untracked_mem_free(void *ptr)
  1773. {
  1774. if (!ptr)
  1775. return;
  1776. kfree(ptr);
  1777. }
  1778. void *__qdf_untracked_mem_malloc(size_t size, const char *func, uint32_t line)
  1779. {
  1780. void *ptr;
  1781. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1782. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1783. line);
  1784. return NULL;
  1785. }
  1786. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1787. if (!ptr)
  1788. return NULL;
  1789. return ptr;
  1790. }
  1791. #endif
  1792. void *qdf_aligned_malloc_fl(uint32_t *size,
  1793. void **vaddr_unaligned,
  1794. qdf_dma_addr_t *paddr_unaligned,
  1795. qdf_dma_addr_t *paddr_aligned,
  1796. uint32_t align,
  1797. const char *func, uint32_t line)
  1798. {
  1799. void *vaddr_aligned;
  1800. uint32_t align_alloc_size;
  1801. *vaddr_unaligned = qdf_mem_malloc_fl((qdf_size_t)*size, func,
  1802. line);
  1803. if (!*vaddr_unaligned) {
  1804. qdf_warn("Failed to alloc %uB @ %s:%d", *size, func, line);
  1805. return NULL;
  1806. }
  1807. *paddr_unaligned = qdf_mem_virt_to_phys(*vaddr_unaligned);
  1808. /* Re-allocate additional bytes to align base address only if
  1809. * above allocation returns unaligned address. Reason for
  1810. * trying exact size allocation above is, OS tries to allocate
  1811. * blocks of size power-of-2 pages and then free extra pages.
  1812. * e.g., of a ring size of 1MB, the allocation below will
  1813. * request 1MB plus 7 bytes for alignment, which will cause a
  1814. * 2MB block allocation,and that is failing sometimes due to
  1815. * memory fragmentation.
  1816. */
  1817. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  1818. align_alloc_size = *size + align - 1;
  1819. qdf_mem_free(*vaddr_unaligned);
  1820. *vaddr_unaligned = qdf_mem_malloc_fl(
  1821. (qdf_size_t)align_alloc_size, func, line);
  1822. if (!*vaddr_unaligned) {
  1823. qdf_warn("Failed to alloc %uB @ %s:%d",
  1824. align_alloc_size, func, line);
  1825. return NULL;
  1826. }
  1827. *paddr_unaligned = qdf_mem_virt_to_phys(
  1828. *vaddr_unaligned);
  1829. *size = align_alloc_size;
  1830. }
  1831. *paddr_aligned = (qdf_dma_addr_t)qdf_align
  1832. ((unsigned long)(*paddr_unaligned), align);
  1833. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  1834. ((unsigned long)(*paddr_aligned) -
  1835. (unsigned long)(*paddr_unaligned)));
  1836. return vaddr_aligned;
  1837. }
  1838. qdf_export_symbol(qdf_aligned_malloc_fl);
  1839. /**
  1840. * qdf_mem_multi_page_link() - Make links for multi page elements
  1841. * @osdev: OS device handle pointer
  1842. * @pages: Multi page information storage
  1843. * @elem_size: Single element size
  1844. * @elem_count: elements count should be linked
  1845. * @cacheable: Coherent memory or cacheable memory
  1846. *
  1847. * This function will make links for multi page allocated structure
  1848. *
  1849. * Return: 0 success
  1850. */
  1851. int qdf_mem_multi_page_link(qdf_device_t osdev,
  1852. struct qdf_mem_multi_page_t *pages,
  1853. uint32_t elem_size, uint32_t elem_count, uint8_t cacheable)
  1854. {
  1855. uint16_t i, i_int;
  1856. void *page_info;
  1857. void **c_elem = NULL;
  1858. uint32_t num_link = 0;
  1859. for (i = 0; i < pages->num_pages; i++) {
  1860. if (cacheable)
  1861. page_info = pages->cacheable_pages[i];
  1862. else
  1863. page_info = pages->dma_pages[i].page_v_addr_start;
  1864. if (!page_info)
  1865. return -ENOMEM;
  1866. c_elem = (void **)page_info;
  1867. for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
  1868. if (i_int == (pages->num_element_per_page - 1)) {
  1869. if ((i + 1) == pages->num_pages)
  1870. break;
  1871. if (cacheable)
  1872. *c_elem = pages->
  1873. cacheable_pages[i + 1];
  1874. else
  1875. *c_elem = pages->
  1876. dma_pages[i + 1].
  1877. page_v_addr_start;
  1878. num_link++;
  1879. break;
  1880. } else {
  1881. *c_elem =
  1882. (void *)(((char *)c_elem) + elem_size);
  1883. }
  1884. num_link++;
  1885. c_elem = (void **)*c_elem;
  1886. /* Last link established exit */
  1887. if (num_link == (elem_count - 1))
  1888. break;
  1889. }
  1890. }
  1891. if (c_elem)
  1892. *c_elem = NULL;
  1893. return 0;
  1894. }
  1895. qdf_export_symbol(qdf_mem_multi_page_link);
  1896. void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1897. {
  1898. /* special case where dst_addr or src_addr can be NULL */
  1899. if (!num_bytes)
  1900. return;
  1901. QDF_BUG(dst_addr);
  1902. QDF_BUG(src_addr);
  1903. if (!dst_addr || !src_addr)
  1904. return;
  1905. memcpy(dst_addr, src_addr, num_bytes);
  1906. }
  1907. qdf_export_symbol(qdf_mem_copy);
  1908. qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
  1909. {
  1910. qdf_shared_mem_t *shared_mem;
  1911. qdf_dma_addr_t dma_addr, paddr;
  1912. int ret;
  1913. shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
  1914. if (!shared_mem)
  1915. return NULL;
  1916. shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
  1917. size, qdf_mem_get_dma_addr_ptr(osdev,
  1918. &shared_mem->mem_info));
  1919. if (!shared_mem->vaddr) {
  1920. qdf_err("Unable to allocate DMA memory for shared resource");
  1921. qdf_mem_free(shared_mem);
  1922. return NULL;
  1923. }
  1924. qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
  1925. size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
  1926. qdf_mem_zero(shared_mem->vaddr, size);
  1927. dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
  1928. paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
  1929. qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
  1930. ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
  1931. shared_mem->vaddr, dma_addr, size);
  1932. if (ret) {
  1933. qdf_err("Unable to get DMA sgtable");
  1934. qdf_mem_free_consistent(osdev, osdev->dev,
  1935. shared_mem->mem_info.size,
  1936. shared_mem->vaddr,
  1937. dma_addr,
  1938. qdf_get_dma_mem_context(shared_mem,
  1939. memctx));
  1940. qdf_mem_free(shared_mem);
  1941. return NULL;
  1942. }
  1943. qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
  1944. return shared_mem;
  1945. }
  1946. qdf_export_symbol(qdf_mem_shared_mem_alloc);
  1947. /**
  1948. * qdf_mem_copy_toio() - copy memory
  1949. * @dst_addr: Pointer to destination memory location (to copy to)
  1950. * @src_addr: Pointer to source memory location (to copy from)
  1951. * @num_bytes: Number of bytes to copy.
  1952. *
  1953. * Return: none
  1954. */
  1955. void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1956. {
  1957. if (0 == num_bytes) {
  1958. /* special case where dst_addr or src_addr can be NULL */
  1959. return;
  1960. }
  1961. if ((!dst_addr) || (!src_addr)) {
  1962. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  1963. "%s called with NULL parameter, source:%pK destination:%pK",
  1964. __func__, src_addr, dst_addr);
  1965. QDF_ASSERT(0);
  1966. return;
  1967. }
  1968. memcpy_toio(dst_addr, src_addr, num_bytes);
  1969. }
  1970. qdf_export_symbol(qdf_mem_copy_toio);
  1971. /**
  1972. * qdf_mem_set_io() - set (fill) memory with a specified byte value.
  1973. * @ptr: Pointer to memory that will be set
  1974. * @value: Byte set in memory
  1975. * @num_bytes: Number of bytes to be set
  1976. *
  1977. * Return: None
  1978. */
  1979. void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
  1980. {
  1981. if (!ptr) {
  1982. qdf_print("%s called with NULL parameter ptr", __func__);
  1983. return;
  1984. }
  1985. memset_io(ptr, value, num_bytes);
  1986. }
  1987. qdf_export_symbol(qdf_mem_set_io);
  1988. void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
  1989. {
  1990. QDF_BUG(ptr);
  1991. if (!ptr)
  1992. return;
  1993. memset(ptr, value, num_bytes);
  1994. }
  1995. qdf_export_symbol(qdf_mem_set);
  1996. void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1997. {
  1998. /* special case where dst_addr or src_addr can be NULL */
  1999. if (!num_bytes)
  2000. return;
  2001. QDF_BUG(dst_addr);
  2002. QDF_BUG(src_addr);
  2003. if (!dst_addr || !src_addr)
  2004. return;
  2005. memmove(dst_addr, src_addr, num_bytes);
  2006. }
  2007. qdf_export_symbol(qdf_mem_move);
  2008. int qdf_mem_cmp(const void *left, const void *right, size_t size)
  2009. {
  2010. QDF_BUG(left);
  2011. QDF_BUG(right);
  2012. return memcmp(left, right, size);
  2013. }
  2014. qdf_export_symbol(qdf_mem_cmp);
  2015. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  2016. /**
  2017. * qdf_mem_dma_alloc() - allocates memory for dma
  2018. * @osdev: OS device handle
  2019. * @dev: Pointer to device handle
  2020. * @size: Size to be allocated
  2021. * @phy_addr: Physical address
  2022. *
  2023. * Return: pointer of allocated memory or null if memory alloc fails
  2024. */
  2025. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2026. qdf_size_t size,
  2027. qdf_dma_addr_t *phy_addr)
  2028. {
  2029. void *vaddr;
  2030. vaddr = qdf_mem_malloc(size);
  2031. *phy_addr = ((uintptr_t) vaddr);
  2032. /* using this type conversion to suppress "cast from pointer to integer
  2033. * of different size" warning on some platforms
  2034. */
  2035. BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
  2036. return vaddr;
  2037. }
  2038. #elif defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) && \
  2039. !defined(QCA_WIFI_QCN9000)
  2040. #define QCA8074_RAM_BASE 0x50000000
  2041. #define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
  2042. void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
  2043. qdf_dma_addr_t *phy_addr)
  2044. {
  2045. void *vaddr = NULL;
  2046. int i;
  2047. *phy_addr = 0;
  2048. for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
  2049. vaddr = dma_alloc_coherent(dev, size, phy_addr,
  2050. qdf_mem_malloc_flags());
  2051. if (!vaddr) {
  2052. qdf_err("%s failed , size: %zu!", __func__, size);
  2053. return NULL;
  2054. }
  2055. if (*phy_addr >= QCA8074_RAM_BASE)
  2056. return vaddr;
  2057. dma_free_coherent(dev, size, vaddr, *phy_addr);
  2058. }
  2059. return NULL;
  2060. }
  2061. #else
  2062. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2063. qdf_size_t size, qdf_dma_addr_t *paddr)
  2064. {
  2065. return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
  2066. }
  2067. #endif
  2068. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  2069. static inline void
  2070. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2071. {
  2072. qdf_mem_free(vaddr);
  2073. }
  2074. #else
  2075. static inline void
  2076. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2077. {
  2078. dma_free_coherent(dev, size, vaddr, paddr);
  2079. }
  2080. #endif
  2081. #ifdef MEMORY_DEBUG
  2082. void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
  2083. qdf_size_t size, qdf_dma_addr_t *paddr,
  2084. const char *func, uint32_t line,
  2085. void *caller)
  2086. {
  2087. QDF_STATUS status;
  2088. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  2089. qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
  2090. struct qdf_mem_header *header;
  2091. void *vaddr;
  2092. if (is_initial_mem_debug_disabled)
  2093. return __qdf_mem_alloc_consistent(osdev, dev,
  2094. size, paddr,
  2095. func, line);
  2096. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2097. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  2098. return NULL;
  2099. }
  2100. vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
  2101. paddr);
  2102. if (!vaddr) {
  2103. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  2104. return NULL;
  2105. }
  2106. header = qdf_mem_dma_get_header(vaddr, size);
  2107. /* For DMA buffers we only add trailers, this function will init
  2108. * the header structure at the tail
  2109. * Prefix the header into DMA buffer causes SMMU faults, so
  2110. * do not prefix header into the DMA buffers
  2111. */
  2112. qdf_mem_header_init(header, size, func, line, caller);
  2113. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2114. status = qdf_list_insert_front(mem_list, &header->node);
  2115. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2116. if (QDF_IS_STATUS_ERROR(status))
  2117. qdf_err("Failed to insert memory header; status %d", status);
  2118. qdf_mem_dma_inc(size);
  2119. return vaddr;
  2120. }
  2121. qdf_export_symbol(qdf_mem_alloc_consistent_debug);
  2122. void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
  2123. qdf_size_t size, void *vaddr,
  2124. qdf_dma_addr_t paddr,
  2125. qdf_dma_context_t memctx,
  2126. const char *func, uint32_t line)
  2127. {
  2128. enum qdf_debug_domain domain = qdf_debug_domain_get();
  2129. struct qdf_mem_header *header;
  2130. enum qdf_mem_validation_bitmap error_bitmap;
  2131. if (is_initial_mem_debug_disabled) {
  2132. __qdf_mem_free_consistent(
  2133. osdev, dev,
  2134. size, vaddr,
  2135. paddr, memctx);
  2136. return;
  2137. }
  2138. /* freeing a null pointer is valid */
  2139. if (qdf_unlikely(!vaddr))
  2140. return;
  2141. qdf_talloc_assert_no_children_fl(vaddr, func, line);
  2142. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2143. /* For DMA buffers we only add trailers, this function will retrieve
  2144. * the header structure at the tail
  2145. * Prefix the header into DMA buffer causes SMMU faults, so
  2146. * do not prefix header into the DMA buffers
  2147. */
  2148. header = qdf_mem_dma_get_header(vaddr, size);
  2149. error_bitmap = qdf_mem_header_validate(header, domain);
  2150. if (!error_bitmap) {
  2151. header->freed = true;
  2152. qdf_list_remove_node(qdf_mem_dma_list(header->domain),
  2153. &header->node);
  2154. }
  2155. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2156. qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
  2157. qdf_mem_dma_dec(header->size);
  2158. qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
  2159. }
  2160. qdf_export_symbol(qdf_mem_free_consistent_debug);
  2161. #endif /* MEMORY_DEBUG */
  2162. void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
  2163. qdf_size_t size, void *vaddr,
  2164. qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
  2165. {
  2166. qdf_mem_dma_dec(size);
  2167. qdf_mem_dma_free(dev, size, vaddr, paddr);
  2168. }
  2169. qdf_export_symbol(__qdf_mem_free_consistent);
  2170. void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
  2171. qdf_size_t size, qdf_dma_addr_t *paddr,
  2172. const char *func, uint32_t line)
  2173. {
  2174. void *vaddr;
  2175. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2176. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d",
  2177. size, func, line);
  2178. return NULL;
  2179. }
  2180. vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
  2181. if (vaddr)
  2182. qdf_mem_dma_inc(size);
  2183. return vaddr;
  2184. }
  2185. qdf_export_symbol(__qdf_mem_alloc_consistent);
  2186. void *qdf_aligned_mem_alloc_consistent_fl(
  2187. qdf_device_t osdev, uint32_t *size,
  2188. void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
  2189. qdf_dma_addr_t *paddr_aligned, uint32_t align,
  2190. const char *func, uint32_t line)
  2191. {
  2192. void *vaddr_aligned;
  2193. uint32_t align_alloc_size;
  2194. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2195. osdev, osdev->dev, (qdf_size_t)*size, paddr_unaligned);
  2196. if (!*vaddr_unaligned) {
  2197. qdf_warn("Failed to alloc %uB @ %s:%d",
  2198. *size, func, line);
  2199. return NULL;
  2200. }
  2201. /* Re-allocate additional bytes to align base address only if
  2202. * above allocation returns unaligned address. Reason for
  2203. * trying exact size allocation above is, OS tries to allocate
  2204. * blocks of size power-of-2 pages and then free extra pages.
  2205. * e.g., of a ring size of 1MB, the allocation below will
  2206. * request 1MB plus 7 bytes for alignment, which will cause a
  2207. * 2MB block allocation,and that is failing sometimes due to
  2208. * memory fragmentation.
  2209. */
  2210. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  2211. align_alloc_size = *size + align - 1;
  2212. qdf_mem_free_consistent(osdev, osdev->dev, *size,
  2213. *vaddr_unaligned,
  2214. *paddr_unaligned, 0);
  2215. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2216. osdev, osdev->dev, align_alloc_size,
  2217. paddr_unaligned);
  2218. if (!*vaddr_unaligned) {
  2219. qdf_warn("Failed to alloc %uB @ %s:%d",
  2220. align_alloc_size, func, line);
  2221. return NULL;
  2222. }
  2223. *size = align_alloc_size;
  2224. }
  2225. *paddr_aligned = (qdf_dma_addr_t)qdf_align(
  2226. (unsigned long)(*paddr_unaligned), align);
  2227. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  2228. ((unsigned long)(*paddr_aligned) -
  2229. (unsigned long)(*paddr_unaligned)));
  2230. return vaddr_aligned;
  2231. }
  2232. qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
  2233. /**
  2234. * qdf_mem_dma_sync_single_for_device() - assign memory to device
  2235. * @osdev: OS device handle
  2236. * @bus_addr: dma address to give to the device
  2237. * @size: Size of the memory block
  2238. * @direction: direction data will be DMAed
  2239. *
  2240. * Assign memory to the remote device.
  2241. * The cache lines are flushed to ram or invalidated as needed.
  2242. *
  2243. * Return: none
  2244. */
  2245. void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
  2246. qdf_dma_addr_t bus_addr,
  2247. qdf_size_t size,
  2248. enum dma_data_direction direction)
  2249. {
  2250. dma_sync_single_for_device(osdev->dev, bus_addr, size, direction);
  2251. }
  2252. qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
  2253. /**
  2254. * qdf_mem_dma_sync_single_for_cpu() - assign memory to CPU
  2255. * @osdev: OS device handle
  2256. * @bus_addr: dma address to give to the cpu
  2257. * @size: Size of the memory block
  2258. * @direction: direction data will be DMAed
  2259. *
  2260. * Assign memory to the CPU.
  2261. *
  2262. * Return: none
  2263. */
  2264. void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
  2265. qdf_dma_addr_t bus_addr,
  2266. qdf_size_t size,
  2267. enum dma_data_direction direction)
  2268. {
  2269. dma_sync_single_for_cpu(osdev->dev, bus_addr, size, direction);
  2270. }
  2271. qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
  2272. void qdf_mem_init(void)
  2273. {
  2274. qdf_mem_debug_init();
  2275. qdf_net_buf_debug_init();
  2276. qdf_frag_debug_init();
  2277. qdf_mem_debugfs_init();
  2278. qdf_mem_debug_debugfs_init();
  2279. }
  2280. qdf_export_symbol(qdf_mem_init);
  2281. void qdf_mem_exit(void)
  2282. {
  2283. qdf_mem_debug_debugfs_exit();
  2284. qdf_mem_debugfs_exit();
  2285. qdf_frag_debug_exit();
  2286. qdf_net_buf_debug_exit();
  2287. qdf_mem_debug_exit();
  2288. }
  2289. qdf_export_symbol(qdf_mem_exit);
  2290. /**
  2291. * qdf_ether_addr_copy() - copy an Ethernet address
  2292. *
  2293. * @dst_addr: A six-byte array Ethernet address destination
  2294. * @src_addr: A six-byte array Ethernet address source
  2295. *
  2296. * Please note: dst & src must both be aligned to u16.
  2297. *
  2298. * Return: none
  2299. */
  2300. void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
  2301. {
  2302. if ((!dst_addr) || (!src_addr)) {
  2303. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  2304. "%s called with NULL parameter, source:%pK destination:%pK",
  2305. __func__, src_addr, dst_addr);
  2306. QDF_ASSERT(0);
  2307. return;
  2308. }
  2309. ether_addr_copy(dst_addr, src_addr);
  2310. }
  2311. qdf_export_symbol(qdf_ether_addr_copy);
  2312. int32_t qdf_dma_mem_stats_read(void)
  2313. {
  2314. return qdf_atomic_read(&qdf_mem_stat.dma);
  2315. }
  2316. qdf_export_symbol(qdf_dma_mem_stats_read);
  2317. int32_t qdf_heap_mem_stats_read(void)
  2318. {
  2319. return qdf_atomic_read(&qdf_mem_stat.kmalloc);
  2320. }
  2321. qdf_export_symbol(qdf_heap_mem_stats_read);
  2322. int32_t qdf_skb_mem_stats_read(void)
  2323. {
  2324. return qdf_atomic_read(&qdf_mem_stat.skb);
  2325. }
  2326. qdf_export_symbol(qdf_skb_mem_stats_read);
  2327. int32_t qdf_skb_total_mem_stats_read(void)
  2328. {
  2329. return qdf_atomic_read(&qdf_mem_stat.skb_total);
  2330. }
  2331. qdf_export_symbol(qdf_skb_total_mem_stats_read);
  2332. int32_t qdf_skb_max_mem_stats_read(void)
  2333. {
  2334. return qdf_mem_stat.skb_mem_max;
  2335. }
  2336. qdf_export_symbol(qdf_skb_max_mem_stats_read);
  2337. int32_t qdf_dp_tx_skb_mem_stats_read(void)
  2338. {
  2339. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  2340. }
  2341. qdf_export_symbol(qdf_dp_tx_skb_mem_stats_read);
  2342. int32_t qdf_dp_rx_skb_mem_stats_read(void)
  2343. {
  2344. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  2345. }
  2346. qdf_export_symbol(qdf_dp_rx_skb_mem_stats_read);
  2347. int32_t qdf_mem_dp_tx_skb_cnt_read(void)
  2348. {
  2349. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  2350. }
  2351. qdf_export_symbol(qdf_mem_dp_tx_skb_cnt_read);
  2352. int32_t qdf_mem_dp_tx_skb_max_cnt_read(void)
  2353. {
  2354. return qdf_mem_stat.dp_tx_skb_count_max;
  2355. }
  2356. qdf_export_symbol(qdf_mem_dp_tx_skb_max_cnt_read);
  2357. int32_t qdf_mem_dp_rx_skb_cnt_read(void)
  2358. {
  2359. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  2360. }
  2361. qdf_export_symbol(qdf_mem_dp_rx_skb_cnt_read);
  2362. int32_t qdf_mem_dp_rx_skb_max_cnt_read(void)
  2363. {
  2364. return qdf_mem_stat.dp_rx_skb_count_max;
  2365. }
  2366. qdf_export_symbol(qdf_mem_dp_rx_skb_max_cnt_read);
  2367. int32_t qdf_dp_tx_skb_max_mem_stats_read(void)
  2368. {
  2369. return qdf_mem_stat.dp_tx_skb_mem_max;
  2370. }
  2371. qdf_export_symbol(qdf_dp_tx_skb_max_mem_stats_read);
  2372. int32_t qdf_dp_rx_skb_max_mem_stats_read(void)
  2373. {
  2374. return qdf_mem_stat.dp_rx_skb_mem_max;
  2375. }
  2376. qdf_export_symbol(qdf_dp_rx_skb_max_mem_stats_read);
  2377. int32_t qdf_mem_tx_desc_cnt_read(void)
  2378. {
  2379. return qdf_atomic_read(&qdf_mem_stat.tx_descs_outstanding);
  2380. }
  2381. qdf_export_symbol(qdf_mem_tx_desc_cnt_read);
  2382. int32_t qdf_mem_tx_desc_max_read(void)
  2383. {
  2384. return qdf_mem_stat.tx_descs_max;
  2385. }
  2386. qdf_export_symbol(qdf_mem_tx_desc_max_read);
  2387. void qdf_mem_tx_desc_cnt_update(qdf_atomic_t pending_tx_descs,
  2388. int32_t tx_descs_max)
  2389. {
  2390. qdf_mem_stat.tx_descs_outstanding = pending_tx_descs;
  2391. qdf_mem_stat.tx_descs_max = tx_descs_max;
  2392. }
  2393. qdf_export_symbol(qdf_mem_tx_desc_cnt_update);
  2394. void qdf_mem_stats_init(void)
  2395. {
  2396. qdf_mem_stat.skb_mem_max = 0;
  2397. qdf_mem_stat.dp_tx_skb_mem_max = 0;
  2398. qdf_mem_stat.dp_rx_skb_mem_max = 0;
  2399. qdf_mem_stat.dp_tx_skb_count_max = 0;
  2400. qdf_mem_stat.dp_rx_skb_count_max = 0;
  2401. qdf_mem_stat.tx_descs_max = 0;
  2402. }
  2403. qdf_export_symbol(qdf_mem_stats_init);
  2404. void *__qdf_mem_valloc(size_t size, const char *func, uint32_t line)
  2405. {
  2406. void *ptr;
  2407. if (!size) {
  2408. qdf_err("Valloc called with 0 bytes @ %s:%d", func, line);
  2409. return NULL;
  2410. }
  2411. ptr = vzalloc(size);
  2412. return ptr;
  2413. }
  2414. qdf_export_symbol(__qdf_mem_valloc);
  2415. void __qdf_mem_vfree(void *ptr)
  2416. {
  2417. if (qdf_unlikely(!ptr))
  2418. return;
  2419. vfree(ptr);
  2420. }
  2421. qdf_export_symbol(__qdf_mem_vfree);