power.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/of_gpio.h>
  13. #include <linux/pinctrl/consumer.h>
  14. #include <linux/regulator/consumer.h>
  15. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  16. #include <soc/qcom/cmd-db.h>
  17. #endif
  18. #include "main.h"
  19. #include "debug.h"
  20. #include "bus.h"
  21. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  22. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  23. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  24. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  25. {"vdd-wlan-io12", 1200000, 1200000, 0, 0, 0},
  26. {"vdd-wlan-ant-share", 1800000, 1800000, 0, 0, 0},
  27. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  28. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  29. {"vdd-wlan", 0, 0, 0, 0, 0},
  30. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  31. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  32. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  33. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  34. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  35. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  36. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  37. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  38. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  39. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  40. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  41. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  42. };
  43. static struct cnss_clk_cfg cnss_clk_list[] = {
  44. {"rf_clk", 0, 0},
  45. };
  46. #else
  47. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  48. };
  49. static struct cnss_clk_cfg cnss_clk_list[] = {
  50. };
  51. #endif
  52. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  53. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  54. #define MAX_PROP_SIZE 32
  55. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  56. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  57. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  58. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  59. #define SOL_DEFAULT "sol_default"
  60. #define WLAN_EN_GPIO "wlan-en-gpio"
  61. #define BT_EN_GPIO "qcom,bt-en-gpio"
  62. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  63. #define SW_CTRL_GPIO "qcom,sw-ctrl-gpio"
  64. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  65. #define WLAN_EN_ACTIVE "wlan_en_active"
  66. #define WLAN_EN_SLEEP "wlan_en_sleep"
  67. #define WLAN_VREGS_PROP "wlan_vregs"
  68. #define BOOTSTRAP_DELAY 1000
  69. #define WLAN_ENABLE_DELAY 1000
  70. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  71. #define TCS_OFFSET 0xC8
  72. #define TCS_CMD_OFFSET 0x10
  73. #define MAX_TCS_NUM 8
  74. #define MAX_TCS_CMD_NUM 5
  75. #define BT_CXMX_VOLTAGE_MV 950
  76. #define CNSS_MBOX_MSG_MAX_LEN 64
  77. #define CNSS_MBOX_TIMEOUT_MS 1000
  78. /* Platform HW config */
  79. #define CNSS_PMIC_VOLTAGE_STEP 4
  80. #define CNSS_PMIC_AUTO_HEADROOM 16
  81. #define CNSS_IR_DROP_WAKE 30
  82. #define CNSS_IR_DROP_SLEEP 10
  83. /**
  84. * enum cnss_aop_vreg_param: Voltage regulator TCS param
  85. * @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
  86. * @CNSS_VREG_MODE: Regulator mode
  87. * @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
  88. */
  89. enum cnss_aop_vreg_param {
  90. CNSS_VREG_VOLTAGE,
  91. CNSS_VREG_MODE,
  92. CNSS_VREG_ENABLE,
  93. CNSS_VREG_PARAM_MAX
  94. };
  95. /** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
  96. enum cnss_aop_vreg_param_mode {
  97. CNSS_VREG_RET_MODE = 3,
  98. CNSS_VREG_LPM_MODE = 4,
  99. CNSS_VREG_AUTO_MODE = 6,
  100. CNSS_VREG_NPM_MODE = 7,
  101. CNSS_VREG_MODE_MAX
  102. };
  103. /**
  104. * enum cnss_aop_tcs_seq: TCS sequence ID for trigger
  105. * @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  106. * @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  107. * @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
  108. */
  109. enum cnss_aop_tcs_seq_param {
  110. CNSS_TCS_UP_SEQ,
  111. CNSS_TCS_DOWN_SEQ,
  112. CNSS_TCS_ENABLE_SEQ,
  113. CNSS_TCS_SEQ_MAX
  114. };
  115. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  116. struct cnss_vreg_info *vreg)
  117. {
  118. int ret = 0;
  119. struct device *dev;
  120. struct regulator *reg;
  121. const __be32 *prop;
  122. char prop_name[MAX_PROP_SIZE] = {0};
  123. int len;
  124. struct device_node *dt_node;
  125. dev = &plat_priv->plat_dev->dev;
  126. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  127. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  128. if (IS_ERR(reg)) {
  129. ret = PTR_ERR(reg);
  130. if (ret == -ENODEV)
  131. return ret;
  132. else if (ret == -EPROBE_DEFER)
  133. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  134. vreg->cfg.name);
  135. else
  136. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  137. vreg->cfg.name, ret);
  138. return ret;
  139. }
  140. vreg->reg = reg;
  141. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  142. vreg->cfg.name);
  143. prop = of_get_property(dt_node, prop_name, &len);
  144. if (!prop || len != (5 * sizeof(__be32))) {
  145. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  146. prop ? "invalid format" : "doesn't exist");
  147. } else {
  148. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  149. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  150. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  151. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  152. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  153. }
  154. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  155. vreg->cfg.name, vreg->cfg.min_uv,
  156. vreg->cfg.max_uv, vreg->cfg.load_ua,
  157. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  158. return 0;
  159. }
  160. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  161. struct cnss_vreg_info *vreg)
  162. {
  163. struct device *dev = &plat_priv->plat_dev->dev;
  164. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  165. devm_regulator_put(vreg->reg);
  166. devm_kfree(dev, vreg);
  167. }
  168. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  169. {
  170. int ret = 0;
  171. if (vreg->enabled) {
  172. cnss_pr_dbg("Regulator %s is already enabled\n",
  173. vreg->cfg.name);
  174. return 0;
  175. }
  176. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  177. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  178. ret = regulator_set_voltage(vreg->reg,
  179. vreg->cfg.min_uv,
  180. vreg->cfg.max_uv);
  181. if (ret) {
  182. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  183. vreg->cfg.name, vreg->cfg.min_uv,
  184. vreg->cfg.max_uv, ret);
  185. goto out;
  186. }
  187. }
  188. if (vreg->cfg.load_ua) {
  189. ret = regulator_set_load(vreg->reg,
  190. vreg->cfg.load_ua);
  191. if (ret < 0) {
  192. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  193. vreg->cfg.name, vreg->cfg.load_ua,
  194. ret);
  195. goto out;
  196. }
  197. }
  198. if (vreg->cfg.delay_us)
  199. udelay(vreg->cfg.delay_us);
  200. ret = regulator_enable(vreg->reg);
  201. if (ret) {
  202. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  203. vreg->cfg.name, ret);
  204. goto out;
  205. }
  206. vreg->enabled = true;
  207. out:
  208. return ret;
  209. }
  210. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  211. {
  212. int ret = 0;
  213. if (!vreg->enabled) {
  214. cnss_pr_dbg("Regulator %s is already disabled\n",
  215. vreg->cfg.name);
  216. return 0;
  217. }
  218. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  219. if (vreg->cfg.load_ua) {
  220. ret = regulator_set_load(vreg->reg, 0);
  221. if (ret < 0)
  222. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  223. vreg->cfg.name, ret);
  224. }
  225. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  226. ret = regulator_set_voltage(vreg->reg, 0,
  227. vreg->cfg.max_uv);
  228. if (ret)
  229. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  230. vreg->cfg.name, ret);
  231. }
  232. return ret;
  233. }
  234. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  235. {
  236. int ret = 0;
  237. if (!vreg->enabled) {
  238. cnss_pr_dbg("Regulator %s is already disabled\n",
  239. vreg->cfg.name);
  240. return 0;
  241. }
  242. cnss_pr_dbg("Regulator %s is being disabled\n",
  243. vreg->cfg.name);
  244. ret = regulator_disable(vreg->reg);
  245. if (ret)
  246. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  247. vreg->cfg.name, ret);
  248. if (vreg->cfg.load_ua) {
  249. ret = regulator_set_load(vreg->reg, 0);
  250. if (ret < 0)
  251. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  252. vreg->cfg.name, ret);
  253. }
  254. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  255. ret = regulator_set_voltage(vreg->reg, 0,
  256. vreg->cfg.max_uv);
  257. if (ret)
  258. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  259. vreg->cfg.name, ret);
  260. }
  261. vreg->enabled = false;
  262. return ret;
  263. }
  264. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  265. enum cnss_vreg_type type)
  266. {
  267. switch (type) {
  268. case CNSS_VREG_PRIM:
  269. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  270. return cnss_vreg_list;
  271. default:
  272. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  273. *vreg_list_size = 0;
  274. return NULL;
  275. }
  276. }
  277. /*
  278. * For multi-exchg dt node, get the required vregs' names from property
  279. * 'wlan_vregs', which is string array;
  280. *
  281. * if the property is present but no value is set, then no additional wlan
  282. * verg is required.
  283. *
  284. * For non-multi-exchg dt, go through all vregs in the static array
  285. * 'cnss_vreg_list'.
  286. */
  287. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  288. struct list_head *vreg_list,
  289. struct cnss_vreg_cfg *vreg_cfg,
  290. u32 vreg_list_size)
  291. {
  292. int ret = 0;
  293. int i;
  294. struct cnss_vreg_info *vreg;
  295. struct device *dev = &plat_priv->plat_dev->dev;
  296. int id_n;
  297. struct device_node *dt_node;
  298. if (!list_empty(vreg_list) &&
  299. (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)) {
  300. cnss_pr_dbg("Vregs have already been updated\n");
  301. return 0;
  302. }
  303. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  304. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  305. id_n = of_property_count_strings(dt_node,
  306. WLAN_VREGS_PROP);
  307. if (id_n <= 0) {
  308. if (id_n == -ENODATA) {
  309. cnss_pr_dbg("No additional vregs for: %s:%lx\n",
  310. dt_node->name,
  311. plat_priv->device_id);
  312. return 0;
  313. }
  314. cnss_pr_err("property %s is invalid or missed: %s:%lx\n",
  315. WLAN_VREGS_PROP, dt_node->name,
  316. plat_priv->device_id);
  317. return -EINVAL;
  318. }
  319. } else {
  320. id_n = vreg_list_size;
  321. }
  322. for (i = 0; i < id_n; i++) {
  323. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  324. if (!vreg)
  325. return -ENOMEM;
  326. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  327. ret = of_property_read_string_index(dt_node,
  328. WLAN_VREGS_PROP, i,
  329. &vreg->cfg.name);
  330. if (ret) {
  331. cnss_pr_err("Failed to read vreg ids\n");
  332. return ret;
  333. }
  334. } else {
  335. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  336. }
  337. ret = cnss_get_vreg_single(plat_priv, vreg);
  338. if (ret != 0) {
  339. if (ret == -ENODEV) {
  340. devm_kfree(dev, vreg);
  341. continue;
  342. } else {
  343. devm_kfree(dev, vreg);
  344. return ret;
  345. }
  346. }
  347. list_add_tail(&vreg->list, vreg_list);
  348. }
  349. return 0;
  350. }
  351. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  352. struct list_head *vreg_list)
  353. {
  354. struct cnss_vreg_info *vreg;
  355. while (!list_empty(vreg_list)) {
  356. vreg = list_first_entry(vreg_list,
  357. struct cnss_vreg_info, list);
  358. list_del(&vreg->list);
  359. if (IS_ERR_OR_NULL(vreg->reg))
  360. continue;
  361. cnss_put_vreg_single(plat_priv, vreg);
  362. }
  363. }
  364. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  365. struct list_head *vreg_list)
  366. {
  367. struct cnss_vreg_info *vreg;
  368. int ret = 0;
  369. list_for_each_entry(vreg, vreg_list, list) {
  370. if (IS_ERR_OR_NULL(vreg->reg))
  371. continue;
  372. ret = cnss_vreg_on_single(vreg);
  373. if (ret)
  374. break;
  375. }
  376. if (!ret)
  377. return 0;
  378. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  379. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  380. continue;
  381. cnss_vreg_off_single(vreg);
  382. }
  383. return ret;
  384. }
  385. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  386. struct list_head *vreg_list)
  387. {
  388. struct cnss_vreg_info *vreg;
  389. list_for_each_entry_reverse(vreg, vreg_list, list) {
  390. if (IS_ERR_OR_NULL(vreg->reg))
  391. continue;
  392. cnss_vreg_off_single(vreg);
  393. }
  394. return 0;
  395. }
  396. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  397. struct list_head *vreg_list)
  398. {
  399. struct cnss_vreg_info *vreg;
  400. list_for_each_entry_reverse(vreg, vreg_list, list) {
  401. if (IS_ERR_OR_NULL(vreg->reg))
  402. continue;
  403. if (vreg->cfg.need_unvote)
  404. cnss_vreg_unvote_single(vreg);
  405. }
  406. return 0;
  407. }
  408. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  409. enum cnss_vreg_type type)
  410. {
  411. struct cnss_vreg_cfg *vreg_cfg;
  412. u32 vreg_list_size = 0;
  413. int ret = 0;
  414. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  415. if (!vreg_cfg)
  416. return -EINVAL;
  417. switch (type) {
  418. case CNSS_VREG_PRIM:
  419. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  420. vreg_cfg, vreg_list_size);
  421. break;
  422. default:
  423. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  424. return -EINVAL;
  425. }
  426. return ret;
  427. }
  428. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  429. enum cnss_vreg_type type)
  430. {
  431. switch (type) {
  432. case CNSS_VREG_PRIM:
  433. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  434. break;
  435. default:
  436. return;
  437. }
  438. }
  439. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  440. enum cnss_vreg_type type)
  441. {
  442. int ret = 0;
  443. switch (type) {
  444. case CNSS_VREG_PRIM:
  445. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  446. break;
  447. default:
  448. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  449. return -EINVAL;
  450. }
  451. return ret;
  452. }
  453. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  454. enum cnss_vreg_type type)
  455. {
  456. int ret = 0;
  457. switch (type) {
  458. case CNSS_VREG_PRIM:
  459. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  460. break;
  461. default:
  462. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  463. return -EINVAL;
  464. }
  465. return ret;
  466. }
  467. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  468. enum cnss_vreg_type type)
  469. {
  470. int ret = 0;
  471. switch (type) {
  472. case CNSS_VREG_PRIM:
  473. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  474. break;
  475. default:
  476. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  477. return -EINVAL;
  478. }
  479. return ret;
  480. }
  481. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  482. struct cnss_clk_info *clk_info)
  483. {
  484. struct device *dev = &plat_priv->plat_dev->dev;
  485. struct clk *clk;
  486. int ret;
  487. clk = devm_clk_get(dev, clk_info->cfg.name);
  488. if (IS_ERR(clk)) {
  489. ret = PTR_ERR(clk);
  490. if (clk_info->cfg.required)
  491. cnss_pr_err("Failed to get clock %s, err = %d\n",
  492. clk_info->cfg.name, ret);
  493. else
  494. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  495. clk_info->cfg.name, ret);
  496. return ret;
  497. }
  498. clk_info->clk = clk;
  499. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  500. clk_info->cfg.name, clk_info->cfg.freq);
  501. return 0;
  502. }
  503. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  504. struct cnss_clk_info *clk_info)
  505. {
  506. struct device *dev = &plat_priv->plat_dev->dev;
  507. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  508. devm_clk_put(dev, clk_info->clk);
  509. }
  510. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  511. {
  512. int ret;
  513. if (clk_info->enabled) {
  514. cnss_pr_dbg("Clock %s is already enabled\n",
  515. clk_info->cfg.name);
  516. return 0;
  517. }
  518. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  519. if (clk_info->cfg.freq) {
  520. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  521. if (ret) {
  522. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  523. clk_info->cfg.freq, clk_info->cfg.name,
  524. ret);
  525. return ret;
  526. }
  527. }
  528. ret = clk_prepare_enable(clk_info->clk);
  529. if (ret) {
  530. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  531. clk_info->cfg.name, ret);
  532. return ret;
  533. }
  534. clk_info->enabled = true;
  535. return 0;
  536. }
  537. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  538. {
  539. if (!clk_info->enabled) {
  540. cnss_pr_dbg("Clock %s is already disabled\n",
  541. clk_info->cfg.name);
  542. return 0;
  543. }
  544. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  545. clk_disable_unprepare(clk_info->clk);
  546. clk_info->enabled = false;
  547. return 0;
  548. }
  549. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  550. {
  551. struct device *dev;
  552. struct list_head *clk_list;
  553. struct cnss_clk_info *clk_info;
  554. int ret, i;
  555. if (!plat_priv)
  556. return -ENODEV;
  557. dev = &plat_priv->plat_dev->dev;
  558. clk_list = &plat_priv->clk_list;
  559. if (!list_empty(clk_list)) {
  560. cnss_pr_dbg("Clocks have already been updated\n");
  561. return 0;
  562. }
  563. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  564. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  565. if (!clk_info) {
  566. ret = -ENOMEM;
  567. goto cleanup;
  568. }
  569. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  570. sizeof(clk_info->cfg));
  571. ret = cnss_get_clk_single(plat_priv, clk_info);
  572. if (ret != 0) {
  573. if (clk_info->cfg.required) {
  574. devm_kfree(dev, clk_info);
  575. goto cleanup;
  576. } else {
  577. devm_kfree(dev, clk_info);
  578. continue;
  579. }
  580. }
  581. list_add_tail(&clk_info->list, clk_list);
  582. }
  583. return 0;
  584. cleanup:
  585. while (!list_empty(clk_list)) {
  586. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  587. list);
  588. list_del(&clk_info->list);
  589. if (IS_ERR_OR_NULL(clk_info->clk))
  590. continue;
  591. cnss_put_clk_single(plat_priv, clk_info);
  592. devm_kfree(dev, clk_info);
  593. }
  594. return ret;
  595. }
  596. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  597. {
  598. struct device *dev;
  599. struct list_head *clk_list;
  600. struct cnss_clk_info *clk_info;
  601. if (!plat_priv)
  602. return;
  603. dev = &plat_priv->plat_dev->dev;
  604. clk_list = &plat_priv->clk_list;
  605. while (!list_empty(clk_list)) {
  606. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  607. list);
  608. list_del(&clk_info->list);
  609. if (IS_ERR_OR_NULL(clk_info->clk))
  610. continue;
  611. cnss_put_clk_single(plat_priv, clk_info);
  612. devm_kfree(dev, clk_info);
  613. }
  614. }
  615. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  616. struct list_head *clk_list)
  617. {
  618. struct cnss_clk_info *clk_info;
  619. int ret = 0;
  620. list_for_each_entry(clk_info, clk_list, list) {
  621. if (IS_ERR_OR_NULL(clk_info->clk))
  622. continue;
  623. ret = cnss_clk_on_single(clk_info);
  624. if (ret)
  625. break;
  626. }
  627. if (!ret)
  628. return 0;
  629. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  630. if (IS_ERR_OR_NULL(clk_info->clk))
  631. continue;
  632. cnss_clk_off_single(clk_info);
  633. }
  634. return ret;
  635. }
  636. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  637. struct list_head *clk_list)
  638. {
  639. struct cnss_clk_info *clk_info;
  640. list_for_each_entry_reverse(clk_info, clk_list, list) {
  641. if (IS_ERR_OR_NULL(clk_info->clk))
  642. continue;
  643. cnss_clk_off_single(clk_info);
  644. }
  645. return 0;
  646. }
  647. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  648. {
  649. int ret = 0;
  650. struct device *dev;
  651. struct cnss_pinctrl_info *pinctrl_info;
  652. dev = &plat_priv->plat_dev->dev;
  653. pinctrl_info = &plat_priv->pinctrl_info;
  654. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  655. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  656. ret = PTR_ERR(pinctrl_info->pinctrl);
  657. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  658. goto out;
  659. }
  660. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  661. pinctrl_info->bootstrap_active =
  662. pinctrl_lookup_state(pinctrl_info->pinctrl,
  663. BOOTSTRAP_ACTIVE);
  664. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  665. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  666. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  667. ret);
  668. goto out;
  669. }
  670. }
  671. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  672. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  673. pinctrl_info->sol_default =
  674. pinctrl_lookup_state(pinctrl_info->pinctrl,
  675. SOL_DEFAULT);
  676. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  677. ret = PTR_ERR(pinctrl_info->sol_default);
  678. cnss_pr_err("Failed to get sol default state, err = %d\n",
  679. ret);
  680. goto out;
  681. }
  682. cnss_pr_dbg("Got sol default state\n");
  683. }
  684. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  685. pinctrl_info->wlan_en_gpio = of_get_named_gpio(dev->of_node,
  686. WLAN_EN_GPIO, 0);
  687. cnss_pr_dbg("WLAN_EN GPIO: %d\n", pinctrl_info->wlan_en_gpio);
  688. pinctrl_info->wlan_en_active =
  689. pinctrl_lookup_state(pinctrl_info->pinctrl,
  690. WLAN_EN_ACTIVE);
  691. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  692. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  693. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  694. ret);
  695. goto out;
  696. }
  697. pinctrl_info->wlan_en_sleep =
  698. pinctrl_lookup_state(pinctrl_info->pinctrl,
  699. WLAN_EN_SLEEP);
  700. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  701. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  702. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  703. ret);
  704. goto out;
  705. }
  706. cnss_set_feature_list(plat_priv, CNSS_WLAN_EN_SUPPORT_V01);
  707. } else {
  708. pinctrl_info->wlan_en_gpio = -EINVAL;
  709. }
  710. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  711. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  712. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  713. BT_EN_GPIO, 0);
  714. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  715. } else {
  716. pinctrl_info->bt_en_gpio = -EINVAL;
  717. }
  718. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  719. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  720. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  721. XO_CLK_GPIO, 0);
  722. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  723. pinctrl_info->xo_clk_gpio);
  724. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  725. } else {
  726. pinctrl_info->xo_clk_gpio = -EINVAL;
  727. }
  728. if (of_find_property(dev->of_node, SW_CTRL_GPIO, NULL)) {
  729. pinctrl_info->sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  730. SW_CTRL_GPIO,
  731. 0);
  732. cnss_pr_dbg("Switch control GPIO: %d\n",
  733. pinctrl_info->sw_ctrl_gpio);
  734. } else {
  735. pinctrl_info->sw_ctrl_gpio = -EINVAL;
  736. }
  737. return 0;
  738. out:
  739. return ret;
  740. }
  741. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  742. {
  743. struct device *dev;
  744. struct cnss_pinctrl_info *pinctrl_info;
  745. dev = &plat_priv->plat_dev->dev;
  746. pinctrl_info = &plat_priv->pinctrl_info;
  747. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  748. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  749. WLAN_SW_CTRL_GPIO,
  750. 0);
  751. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  752. pinctrl_info->wlan_sw_ctrl_gpio);
  753. } else {
  754. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  755. }
  756. return 0;
  757. }
  758. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  759. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  760. bool enable)
  761. {
  762. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  763. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  764. return;
  765. retry_gpio_req:
  766. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  767. if (ret) {
  768. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  769. /* wait for ~(10 - 20) ms */
  770. usleep_range(10000, 20000);
  771. goto retry_gpio_req;
  772. }
  773. }
  774. if (ret) {
  775. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  776. return;
  777. }
  778. if (enable) {
  779. gpio_direction_output(xo_clk_gpio, 1);
  780. /*XO CLK must be asserted for some time before WLAN_EN */
  781. usleep_range(100, 200);
  782. } else {
  783. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  784. usleep_range(2000, 5000);
  785. gpio_direction_output(xo_clk_gpio, 0);
  786. }
  787. gpio_free(xo_clk_gpio);
  788. }
  789. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  790. bool state)
  791. {
  792. int ret = 0;
  793. struct cnss_pinctrl_info *pinctrl_info;
  794. if (!plat_priv) {
  795. cnss_pr_err("plat_priv is NULL!\n");
  796. ret = -ENODEV;
  797. goto out;
  798. }
  799. pinctrl_info = &plat_priv->pinctrl_info;
  800. if (state) {
  801. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  802. ret = pinctrl_select_state
  803. (pinctrl_info->pinctrl,
  804. pinctrl_info->bootstrap_active);
  805. if (ret) {
  806. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  807. ret);
  808. goto out;
  809. }
  810. udelay(BOOTSTRAP_DELAY);
  811. }
  812. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  813. ret = pinctrl_select_state
  814. (pinctrl_info->pinctrl,
  815. pinctrl_info->sol_default);
  816. if (ret) {
  817. cnss_pr_err("Failed to select sol default state, err = %d\n",
  818. ret);
  819. goto out;
  820. }
  821. cnss_pr_dbg("Selected sol default state\n");
  822. }
  823. cnss_set_xo_clk_gpio_state(plat_priv, true);
  824. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  825. ret = pinctrl_select_state
  826. (pinctrl_info->pinctrl,
  827. pinctrl_info->wlan_en_active);
  828. if (ret) {
  829. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  830. ret);
  831. goto out;
  832. }
  833. udelay(WLAN_ENABLE_DELAY);
  834. cnss_set_xo_clk_gpio_state(plat_priv, false);
  835. } else {
  836. cnss_set_xo_clk_gpio_state(plat_priv, false);
  837. goto out;
  838. }
  839. } else {
  840. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  841. cnss_wlan_hw_disable_check(plat_priv);
  842. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  843. cnss_pr_dbg("Avoid WLAN_EN low. WLAN HW Disbaled");
  844. goto out;
  845. }
  846. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  847. pinctrl_info->wlan_en_sleep);
  848. if (ret) {
  849. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  850. ret);
  851. goto out;
  852. }
  853. } else {
  854. goto out;
  855. }
  856. }
  857. cnss_pr_dbg("WLAN_EN Value: %d\n", gpio_get_value(pinctrl_info->wlan_en_gpio));
  858. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  859. state ? "Assert" : "De-assert");
  860. return 0;
  861. out:
  862. return ret;
  863. }
  864. /**
  865. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  866. * @plat_priv: Platform private data structure pointer
  867. *
  868. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  869. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  870. *
  871. * Return: Status of pinctrl select operation. 0 - Success.
  872. */
  873. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  874. {
  875. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  876. u8 wlan_en_state = 0;
  877. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  878. goto set_wlan_en;
  879. if (gpio_get_value(bt_en_gpio)) {
  880. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  881. ret = cnss_select_pinctrl_state(plat_priv, true);
  882. if (!ret)
  883. return ret;
  884. wlan_en_state = 1;
  885. }
  886. if (!gpio_get_value(bt_en_gpio)) {
  887. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  888. /* check for BT_EN_GPIO down race during above operation */
  889. if (wlan_en_state) {
  890. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  891. cnss_select_pinctrl_state(plat_priv, false);
  892. wlan_en_state = 0;
  893. }
  894. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  895. msleep(100);
  896. }
  897. set_wlan_en:
  898. if (!wlan_en_state)
  899. ret = cnss_select_pinctrl_state(plat_priv, true);
  900. return ret;
  901. }
  902. int cnss_get_input_gpio_value(struct cnss_plat_data *plat_priv, int gpio_num)
  903. {
  904. int ret;
  905. if (gpio_num < 0)
  906. return -EINVAL;
  907. ret = gpio_direction_input(gpio_num);
  908. if (ret) {
  909. cnss_pr_err("Failed to set direction of GPIO(%d), err = %d",
  910. gpio_num, ret);
  911. return -EINVAL;
  912. }
  913. return gpio_get_value(gpio_num);
  914. }
  915. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  916. {
  917. int ret = 0;
  918. if (plat_priv->powered_on) {
  919. cnss_pr_dbg("Already powered up");
  920. return 0;
  921. }
  922. cnss_wlan_hw_disable_check(plat_priv);
  923. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  924. cnss_pr_dbg("Avoid WLAN Power On. WLAN HW Disbaled");
  925. return -EINVAL;
  926. }
  927. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  928. if (ret) {
  929. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  930. goto out;
  931. }
  932. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  933. if (ret) {
  934. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  935. goto vreg_off;
  936. }
  937. ret = cnss_select_pinctrl_enable(plat_priv);
  938. if (ret) {
  939. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  940. goto clk_off;
  941. }
  942. plat_priv->powered_on = true;
  943. cnss_enable_dev_sol_irq(plat_priv);
  944. cnss_set_host_sol_value(plat_priv, 0);
  945. return 0;
  946. clk_off:
  947. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  948. vreg_off:
  949. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  950. out:
  951. return ret;
  952. }
  953. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  954. {
  955. if (!plat_priv->powered_on) {
  956. cnss_pr_dbg("Already powered down");
  957. return;
  958. }
  959. cnss_disable_dev_sol_irq(plat_priv);
  960. cnss_select_pinctrl_state(plat_priv, false);
  961. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  962. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  963. plat_priv->powered_on = false;
  964. }
  965. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  966. {
  967. return plat_priv->powered_on;
  968. }
  969. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  970. {
  971. unsigned long pin_status = 0;
  972. set_bit(CNSS_WLAN_EN, &pin_status);
  973. set_bit(CNSS_PCIE_TXN, &pin_status);
  974. set_bit(CNSS_PCIE_TXP, &pin_status);
  975. set_bit(CNSS_PCIE_RXN, &pin_status);
  976. set_bit(CNSS_PCIE_RXP, &pin_status);
  977. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  978. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  979. set_bit(CNSS_PCIE_RST, &pin_status);
  980. plat_priv->pin_result.host_pin_result = pin_status;
  981. }
  982. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  983. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  984. {
  985. return cmd_db_ready();
  986. }
  987. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  988. const char *res_id)
  989. {
  990. return cmd_db_read_addr(res_id);
  991. }
  992. #else
  993. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  994. {
  995. return -EOPNOTSUPP;
  996. }
  997. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  998. const char *res_id)
  999. {
  1000. return 0;
  1001. }
  1002. #endif
  1003. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  1004. {
  1005. struct platform_device *plat_dev = plat_priv->plat_dev;
  1006. struct resource *res;
  1007. resource_size_t addr_len;
  1008. void __iomem *tcs_cmd_base_addr;
  1009. int ret = 0;
  1010. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  1011. if (!res) {
  1012. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  1013. goto out;
  1014. }
  1015. plat_priv->tcs_info.cmd_base_addr = res->start;
  1016. addr_len = resource_size(res);
  1017. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  1018. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  1019. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  1020. if (!tcs_cmd_base_addr) {
  1021. ret = -EINVAL;
  1022. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  1023. ret);
  1024. goto out;
  1025. }
  1026. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  1027. return 0;
  1028. out:
  1029. return ret;
  1030. }
  1031. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  1032. {
  1033. struct platform_device *plat_dev = plat_priv->plat_dev;
  1034. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1035. const char *cmd_db_name;
  1036. u32 cpr_pmic_addr = 0;
  1037. int ret = 0;
  1038. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1039. cnss_pr_dbg("TCS CMD not configured\n");
  1040. return 0;
  1041. }
  1042. ret = of_property_read_string(plat_dev->dev.of_node,
  1043. "qcom,cmd_db_name", &cmd_db_name);
  1044. if (ret) {
  1045. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  1046. goto out;
  1047. }
  1048. ret = cnss_cmd_db_ready(plat_priv);
  1049. if (ret) {
  1050. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  1051. goto out;
  1052. }
  1053. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  1054. if (cpr_pmic_addr > 0) {
  1055. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  1056. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  1057. cpr_info->cpr_pmic_addr, cmd_db_name);
  1058. } else {
  1059. cnss_pr_err("CPR PMIC address is not available for %s\n",
  1060. cmd_db_name);
  1061. ret = -EINVAL;
  1062. goto out;
  1063. }
  1064. return 0;
  1065. out:
  1066. return ret;
  1067. }
  1068. #if IS_ENABLED(CONFIG_MSM_QMP)
  1069. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1070. {
  1071. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  1072. struct mbox_chan *chan;
  1073. int ret;
  1074. plat_priv->mbox_chan = NULL;
  1075. mbox->dev = &plat_priv->plat_dev->dev;
  1076. mbox->tx_block = true;
  1077. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  1078. mbox->knows_txdone = false;
  1079. chan = mbox_request_channel(mbox, 0);
  1080. if (IS_ERR(chan)) {
  1081. cnss_pr_err("Failed to get mbox channel\n");
  1082. return PTR_ERR(chan);
  1083. }
  1084. plat_priv->mbox_chan = chan;
  1085. cnss_pr_dbg("Mbox channel initialized\n");
  1086. ret = cnss_aop_pdc_reconfig(plat_priv);
  1087. if (ret)
  1088. cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
  1089. return 0;
  1090. }
  1091. /**
  1092. * cnss_aop_send_msg: Sends json message to AOP using QMP
  1093. * @plat_priv: Pointer to cnss platform data
  1094. * @msg: String in json format
  1095. *
  1096. * AOP accepts JSON message to configure WLAN resources. Format as follows:
  1097. * To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
  1098. * res: <VReg_name>.<param>, <seq_param>: <value>}
  1099. * To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
  1100. * enable: <Value>}
  1101. * QMP returns timeout error if format not correct or AOP operation fails.
  1102. *
  1103. * Return: 0 for success
  1104. */
  1105. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1106. {
  1107. struct qmp_pkt pkt;
  1108. int ret = 0;
  1109. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1110. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1111. pkt.data = mbox_msg;
  1112. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1113. if (ret < 0)
  1114. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1115. else
  1116. ret = 0;
  1117. return ret;
  1118. }
  1119. /* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
  1120. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1121. {
  1122. u32 i;
  1123. int ret;
  1124. if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
  1125. return 0;
  1126. cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
  1127. plat_priv->device_id);
  1128. for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
  1129. ret = cnss_aop_send_msg(plat_priv,
  1130. (char *)plat_priv->pdc_init_table[i]);
  1131. if (ret < 0)
  1132. break;
  1133. }
  1134. return ret;
  1135. }
  1136. /* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
  1137. static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
  1138. const char *vreg_name)
  1139. {
  1140. u32 i;
  1141. static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
  1142. const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
  1143. if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
  1144. goto end;
  1145. for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
  1146. vreg_map_name = plat_priv->vreg_pdc_map[i];
  1147. if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
  1148. pdc = plat_priv->vreg_pdc_map[i + 1];
  1149. break;
  1150. }
  1151. }
  1152. end:
  1153. cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
  1154. return pdc;
  1155. }
  1156. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1157. const char *vreg_name,
  1158. enum cnss_aop_vreg_param param,
  1159. enum cnss_aop_tcs_seq_param seq_param,
  1160. int val)
  1161. {
  1162. char msg[CNSS_MBOX_MSG_MAX_LEN];
  1163. static const char * const aop_vreg_param_str[] = {
  1164. [CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
  1165. [CNSS_VREG_ENABLE] = "e",};
  1166. static const char * const aop_tcs_seq_str[] = {
  1167. [CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
  1168. [CNSS_TCS_ENABLE_SEQ] = "enable",};
  1169. if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
  1170. !vreg_name)
  1171. return -EINVAL;
  1172. snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
  1173. "{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
  1174. cnss_aop_pdc_name_str(plat_priv, vreg_name),
  1175. vreg_name, aop_vreg_param_str[param],
  1176. aop_tcs_seq_str[seq_param], val);
  1177. return cnss_aop_send_msg(plat_priv, msg);
  1178. }
  1179. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1180. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1181. {
  1182. const char *pmu_pin, *vreg;
  1183. struct wlfw_pmu_param_v01 *fw_pmu_param;
  1184. u32 fw_pmu_param_len, i, j, plat_vreg_param_len = 0;
  1185. int ret = 0;
  1186. struct platform_vreg_param {
  1187. char vreg[MAX_PROP_SIZE];
  1188. u32 wake_volt;
  1189. u32 sleep_volt;
  1190. } plat_vreg_param[QMI_WLFW_PMU_PARAMS_MAX_V01] = {0};
  1191. static bool config_done;
  1192. if (config_done)
  1193. return 0;
  1194. if (plat_priv->pmu_vreg_map_len <= 0 || !plat_priv->mbox_chan ||
  1195. !plat_priv->pmu_vreg_map) {
  1196. cnss_pr_dbg("Mbox channel / PMU VReg Map not configured\n");
  1197. goto end;
  1198. }
  1199. if (!fw_pmu_cfg)
  1200. return -EINVAL;
  1201. fw_pmu_param = fw_pmu_cfg->pmu_param;
  1202. fw_pmu_param_len = fw_pmu_cfg->pmu_param_len;
  1203. /* Get PMU Pin name to Platfom Vreg Mapping */
  1204. for (i = 0; i < fw_pmu_param_len; i++) {
  1205. cnss_pr_dbg("FW_PMU Data: %s %d %d %d %d\n",
  1206. fw_pmu_param[i].pin_name,
  1207. fw_pmu_param[i].wake_volt_valid,
  1208. fw_pmu_param[i].wake_volt,
  1209. fw_pmu_param[i].sleep_volt_valid,
  1210. fw_pmu_param[i].sleep_volt);
  1211. if (!fw_pmu_param[i].wake_volt_valid &&
  1212. !fw_pmu_param[i].sleep_volt_valid)
  1213. continue;
  1214. vreg = NULL;
  1215. for (j = 0; j < plat_priv->pmu_vreg_map_len; j += 2) {
  1216. pmu_pin = plat_priv->pmu_vreg_map[j];
  1217. if (strnstr(pmu_pin, fw_pmu_param[i].pin_name,
  1218. strlen(pmu_pin))) {
  1219. vreg = plat_priv->pmu_vreg_map[j + 1];
  1220. break;
  1221. }
  1222. }
  1223. if (!vreg) {
  1224. cnss_pr_err("No VREG mapping for %s\n",
  1225. fw_pmu_param[i].pin_name);
  1226. continue;
  1227. } else {
  1228. cnss_pr_dbg("%s mapped to %s\n",
  1229. fw_pmu_param[i].pin_name, vreg);
  1230. }
  1231. for (j = 0; j < QMI_WLFW_PMU_PARAMS_MAX_V01; j++) {
  1232. u32 wake_volt = 0, sleep_volt = 0;
  1233. if (plat_vreg_param[j].vreg[0] == '\0')
  1234. strlcpy(plat_vreg_param[j].vreg, vreg,
  1235. sizeof(plat_vreg_param[j].vreg));
  1236. else if (!strnstr(plat_vreg_param[j].vreg, vreg,
  1237. strlen(plat_vreg_param[j].vreg)))
  1238. continue;
  1239. if (fw_pmu_param[i].wake_volt_valid)
  1240. wake_volt = roundup(fw_pmu_param[i].wake_volt,
  1241. CNSS_PMIC_VOLTAGE_STEP) -
  1242. CNSS_PMIC_AUTO_HEADROOM +
  1243. CNSS_IR_DROP_WAKE;
  1244. if (fw_pmu_param[i].sleep_volt_valid)
  1245. sleep_volt = roundup(fw_pmu_param[i].sleep_volt,
  1246. CNSS_PMIC_VOLTAGE_STEP) -
  1247. CNSS_PMIC_AUTO_HEADROOM +
  1248. CNSS_IR_DROP_SLEEP;
  1249. plat_vreg_param[j].wake_volt =
  1250. (wake_volt > plat_vreg_param[j].wake_volt ?
  1251. wake_volt : plat_vreg_param[j].wake_volt);
  1252. plat_vreg_param[j].sleep_volt =
  1253. (sleep_volt > plat_vreg_param[j].sleep_volt ?
  1254. sleep_volt : plat_vreg_param[j].sleep_volt);
  1255. plat_vreg_param_len = (plat_vreg_param_len > j ?
  1256. plat_vreg_param_len : j);
  1257. cnss_pr_dbg("Plat VReg Data: %s %d %d\n",
  1258. plat_vreg_param[j].vreg,
  1259. plat_vreg_param[j].wake_volt,
  1260. plat_vreg_param[j].sleep_volt);
  1261. break;
  1262. }
  1263. }
  1264. for (i = 0; i <= plat_vreg_param_len; i++) {
  1265. if (plat_vreg_param[i].wake_volt > 0) {
  1266. ret =
  1267. cnss_aop_set_vreg_param(plat_priv,
  1268. plat_vreg_param[i].vreg,
  1269. CNSS_VREG_VOLTAGE,
  1270. CNSS_TCS_UP_SEQ,
  1271. plat_vreg_param[i].wake_volt);
  1272. }
  1273. if (plat_vreg_param[i].sleep_volt > 0) {
  1274. ret =
  1275. cnss_aop_set_vreg_param(plat_priv,
  1276. plat_vreg_param[i].vreg,
  1277. CNSS_VREG_VOLTAGE,
  1278. CNSS_TCS_DOWN_SEQ,
  1279. plat_vreg_param[i].sleep_volt);
  1280. }
  1281. if (ret < 0)
  1282. break;
  1283. }
  1284. end:
  1285. config_done = true;
  1286. return ret;
  1287. }
  1288. #else
  1289. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1290. {
  1291. return 0;
  1292. }
  1293. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *msg)
  1294. {
  1295. return 0;
  1296. }
  1297. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1298. {
  1299. return 0;
  1300. }
  1301. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1302. const char *vreg_name,
  1303. enum cnss_aop_vreg_param param,
  1304. enum cnss_aop_tcs_seq_param seq_param,
  1305. int val)
  1306. {
  1307. return 0;
  1308. }
  1309. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1310. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1311. {
  1312. return 0;
  1313. }
  1314. #endif
  1315. void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
  1316. {
  1317. struct device *dev = &plat_priv->plat_dev->dev;
  1318. int ret;
  1319. /* common DT Entries */
  1320. plat_priv->pdc_init_table_len =
  1321. of_property_count_strings(dev->of_node,
  1322. "qcom,pdc_init_table");
  1323. if (plat_priv->pdc_init_table_len > 0) {
  1324. plat_priv->pdc_init_table =
  1325. kcalloc(plat_priv->pdc_init_table_len,
  1326. sizeof(char *), GFP_KERNEL);
  1327. ret =
  1328. of_property_read_string_array(dev->of_node,
  1329. "qcom,pdc_init_table",
  1330. plat_priv->pdc_init_table,
  1331. plat_priv->pdc_init_table_len);
  1332. if (ret < 0)
  1333. cnss_pr_err("Failed to get PDC Init Table\n");
  1334. } else {
  1335. cnss_pr_dbg("PDC Init Table not configured\n");
  1336. }
  1337. plat_priv->vreg_pdc_map_len =
  1338. of_property_count_strings(dev->of_node,
  1339. "qcom,vreg_pdc_map");
  1340. if (plat_priv->vreg_pdc_map_len > 0) {
  1341. plat_priv->vreg_pdc_map =
  1342. kcalloc(plat_priv->vreg_pdc_map_len,
  1343. sizeof(char *), GFP_KERNEL);
  1344. ret =
  1345. of_property_read_string_array(dev->of_node,
  1346. "qcom,vreg_pdc_map",
  1347. plat_priv->vreg_pdc_map,
  1348. plat_priv->vreg_pdc_map_len);
  1349. if (ret < 0)
  1350. cnss_pr_err("Failed to get VReg PDC Mapping\n");
  1351. } else {
  1352. cnss_pr_dbg("VReg PDC Mapping not configured\n");
  1353. }
  1354. plat_priv->pmu_vreg_map_len =
  1355. of_property_count_strings(dev->of_node,
  1356. "qcom,pmu_vreg_map");
  1357. if (plat_priv->pmu_vreg_map_len > 0) {
  1358. plat_priv->pmu_vreg_map = kcalloc(plat_priv->pmu_vreg_map_len,
  1359. sizeof(char *), GFP_KERNEL);
  1360. ret =
  1361. of_property_read_string_array(dev->of_node, "qcom,pmu_vreg_map",
  1362. plat_priv->pmu_vreg_map,
  1363. plat_priv->pmu_vreg_map_len);
  1364. if (ret < 0)
  1365. cnss_pr_err("Fail to get PMU VReg Mapping\n");
  1366. } else {
  1367. cnss_pr_dbg("PMU VReg Mapping not configured\n");
  1368. }
  1369. /* Device DT Specific */
  1370. if (plat_priv->device_id == QCA6390_DEVICE_ID ||
  1371. plat_priv->device_id == QCA6490_DEVICE_ID) {
  1372. ret = of_property_read_string(dev->of_node,
  1373. "qcom,vreg_ol_cpr",
  1374. &plat_priv->vreg_ol_cpr);
  1375. if (ret)
  1376. cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
  1377. ret = of_property_read_string(dev->of_node,
  1378. "qcom,vreg_ipa",
  1379. &plat_priv->vreg_ipa);
  1380. if (ret)
  1381. cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
  1382. }
  1383. }
  1384. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1385. {
  1386. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1387. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1388. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1389. int i, j;
  1390. if (cpr_info->voltage == 0) {
  1391. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1392. cpr_info->voltage);
  1393. return -EINVAL;
  1394. }
  1395. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1396. return -EINVAL;
  1397. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  1398. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  1399. } else {
  1400. return cnss_aop_set_vreg_param(plat_priv,
  1401. plat_priv->vreg_ol_cpr,
  1402. CNSS_VREG_VOLTAGE,
  1403. CNSS_TCS_DOWN_SEQ,
  1404. cpr_info->voltage);
  1405. }
  1406. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1407. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1408. return 0;
  1409. }
  1410. if (cpr_info->cpr_pmic_addr == 0) {
  1411. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1412. cpr_info->cpr_pmic_addr);
  1413. return -EINVAL;
  1414. }
  1415. if (cpr_info->tcs_cmd_data_addr_io)
  1416. goto update_cpr;
  1417. for (i = 0; i < MAX_TCS_NUM; i++) {
  1418. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1419. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1420. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1421. offset;
  1422. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1423. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1424. tcs_cmd_data_addr = tcs_cmd_addr +
  1425. TCS_CMD_DATA_ADDR_OFFSET;
  1426. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1427. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1428. voltage_tmp, i, j);
  1429. if (voltage_tmp > voltage) {
  1430. voltage = voltage_tmp;
  1431. cpr_info->tcs_cmd_data_addr =
  1432. plat_priv->tcs_info.cmd_base_addr +
  1433. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1434. cpr_info->tcs_cmd_data_addr_io =
  1435. tcs_cmd_data_addr;
  1436. }
  1437. }
  1438. }
  1439. }
  1440. if (!cpr_info->tcs_cmd_data_addr_io) {
  1441. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1442. return -EINVAL;
  1443. }
  1444. update_cpr:
  1445. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1446. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1447. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1448. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1449. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1450. return 0;
  1451. }
  1452. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1453. {
  1454. struct platform_device *plat_dev = plat_priv->plat_dev;
  1455. u32 offset, addr_val, data_val;
  1456. void __iomem *tcs_cmd;
  1457. int ret;
  1458. static bool config_done;
  1459. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1460. return -EINVAL;
  1461. if (config_done) {
  1462. cnss_pr_dbg("IPA Vreg already configured\n");
  1463. return 0;
  1464. }
  1465. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1466. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1467. } else {
  1468. ret = cnss_aop_set_vreg_param(plat_priv,
  1469. plat_priv->vreg_ipa,
  1470. CNSS_VREG_ENABLE,
  1471. CNSS_TCS_UP_SEQ, 1);
  1472. if (ret == 0)
  1473. config_done = true;
  1474. return ret;
  1475. }
  1476. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1477. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1478. return -EINVAL;
  1479. }
  1480. ret = of_property_read_u32(plat_dev->dev.of_node,
  1481. "qcom,tcs_offset_int_pow_amp_vreg",
  1482. &offset);
  1483. if (ret) {
  1484. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1485. return -EINVAL;
  1486. }
  1487. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1488. addr_val = readl_relaxed(tcs_cmd);
  1489. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1490. /* 1 = enable Vreg */
  1491. writel_relaxed(1, tcs_cmd);
  1492. data_val = readl_relaxed(tcs_cmd);
  1493. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1494. config_done = true;
  1495. return 0;
  1496. }
  1497. int cnss_dev_specific_power_on(struct cnss_plat_data *plat_priv)
  1498. {
  1499. int ret;
  1500. if (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)
  1501. return 0;
  1502. ret = cnss_get_vreg_type(plat_priv, CNSS_VREG_PRIM);
  1503. if (ret)
  1504. return ret;
  1505. plat_priv->powered_on = false;
  1506. return cnss_power_on_device(plat_priv);
  1507. }