dp_rx.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DP_RATETABLE_SUPPORT
  42. #include "dp_ratetable.h"
  43. #endif
  44. #include "enet.h"
  45. #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */
  46. #ifdef DUP_RX_DESC_WAR
  47. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  48. hal_ring_handle_t hal_ring,
  49. hal_ring_desc_t ring_desc,
  50. struct dp_rx_desc *rx_desc)
  51. {
  52. void *hal_soc = soc->hal_soc;
  53. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  54. dp_rx_desc_dump(rx_desc);
  55. }
  56. #else
  57. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  58. hal_ring_handle_t hal_ring_hdl,
  59. hal_ring_desc_t ring_desc,
  60. struct dp_rx_desc *rx_desc)
  61. {
  62. hal_soc_handle_t hal_soc = soc->hal_soc;
  63. dp_rx_desc_dump(rx_desc);
  64. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  65. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  66. qdf_assert_always(0);
  67. }
  68. #endif
  69. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  70. #ifdef RX_DESC_SANITY_WAR
  71. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  72. hal_ring_handle_t hal_ring_hdl,
  73. hal_ring_desc_t ring_desc,
  74. struct dp_rx_desc *rx_desc)
  75. {
  76. uint8_t return_buffer_manager;
  77. if (qdf_unlikely(!rx_desc)) {
  78. /*
  79. * This is an unlikely case where the cookie obtained
  80. * from the ring_desc is invalid and hence we are not
  81. * able to find the corresponding rx_desc
  82. */
  83. goto fail;
  84. }
  85. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  86. if (qdf_unlikely(!(return_buffer_manager ==
  87. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  88. return_buffer_manager ==
  89. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  90. goto fail;
  91. }
  92. return QDF_STATUS_SUCCESS;
  93. fail:
  94. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  95. dp_err_rl("Sanity failed for ring Desc:");
  96. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  97. ring_desc);
  98. return QDF_STATUS_E_NULL_VALUE;
  99. }
  100. #endif
  101. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  102. hal_ring_handle_t hal_ring_hdl,
  103. uint32_t num_entries,
  104. bool *near_full)
  105. {
  106. uint32_t num_pending = 0;
  107. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  108. hal_ring_hdl,
  109. true);
  110. if (num_entries && (num_pending >= num_entries >> 1))
  111. *near_full = true;
  112. else
  113. *near_full = false;
  114. return num_pending;
  115. }
  116. #ifdef RX_DESC_DEBUG_CHECK
  117. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  118. hal_ring_desc_t ring_desc,
  119. struct dp_rx_desc *rx_desc)
  120. {
  121. struct hal_buf_info hbi;
  122. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  123. /* Sanity check for possible buffer paddr corruption */
  124. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  125. return QDF_STATUS_SUCCESS;
  126. return QDF_STATUS_E_FAILURE;
  127. }
  128. /**
  129. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  130. * out of bound access from H.W
  131. *
  132. * @soc: DP soc
  133. * @pkt_len: Packet length received from H.W
  134. *
  135. * Return: NONE
  136. */
  137. static inline void
  138. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  139. uint32_t pkt_len)
  140. {
  141. struct rx_desc_pool *rx_desc_pool;
  142. rx_desc_pool = &soc->rx_desc_buf[0];
  143. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  144. }
  145. #else
  146. static inline void
  147. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  148. #endif
  149. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  150. void
  151. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  152. hal_ring_desc_t ring_desc)
  153. {
  154. struct dp_buf_info_record *record;
  155. struct hal_buf_info hbi;
  156. uint32_t idx;
  157. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  158. return;
  159. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  160. /* buffer_addr_info is the first element of ring_desc */
  161. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  162. &hbi);
  163. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  164. DP_RX_HIST_MAX);
  165. /* No NULL check needed for record since its an array */
  166. record = &soc->rx_ring_history[ring_num]->entry[idx];
  167. record->timestamp = qdf_get_log_timestamp();
  168. record->hbi.paddr = hbi.paddr;
  169. record->hbi.sw_cookie = hbi.sw_cookie;
  170. record->hbi.rbm = hbi.rbm;
  171. }
  172. #endif
  173. #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
  174. void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
  175. uint8_t *rx_tlv,
  176. qdf_nbuf_t nbuf)
  177. {
  178. struct dp_soc *soc;
  179. if (!pdev->is_first_wakeup_packet)
  180. return;
  181. soc = pdev->soc;
  182. if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
  183. qdf_nbuf_mark_wakeup_frame(nbuf);
  184. dp_info("First packet after WOW Wakeup rcvd");
  185. }
  186. }
  187. #endif
  188. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  189. #endif /* WLAN_SOFTUMAC_SUPPORT */
  190. /**
  191. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  192. *
  193. * @dp_soc: struct dp_soc *
  194. * @nbuf_frag_info_t: nbuf frag info
  195. * @dp_pdev: struct dp_pdev *
  196. * @rx_desc_pool: Rx desc pool
  197. *
  198. * Return: QDF_STATUS
  199. */
  200. #ifdef DP_RX_MON_MEM_FRAG
  201. static inline QDF_STATUS
  202. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  203. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  204. struct dp_pdev *dp_pdev,
  205. struct rx_desc_pool *rx_desc_pool)
  206. {
  207. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  208. (nbuf_frag_info_t->virt_addr).vaddr =
  209. qdf_frag_alloc(&rx_desc_pool->pf_cache, rx_desc_pool->buf_size);
  210. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  211. dp_err("Frag alloc failed");
  212. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  213. return QDF_STATUS_E_NOMEM;
  214. }
  215. ret = qdf_mem_map_page(dp_soc->osdev,
  216. (nbuf_frag_info_t->virt_addr).vaddr,
  217. QDF_DMA_FROM_DEVICE,
  218. rx_desc_pool->buf_size,
  219. &nbuf_frag_info_t->paddr);
  220. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  221. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  222. dp_err("Frag map failed");
  223. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  224. return QDF_STATUS_E_FAULT;
  225. }
  226. return QDF_STATUS_SUCCESS;
  227. }
  228. #else
  229. static inline QDF_STATUS
  230. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  231. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  232. struct dp_pdev *dp_pdev,
  233. struct rx_desc_pool *rx_desc_pool)
  234. {
  235. return QDF_STATUS_SUCCESS;
  236. }
  237. #endif /* DP_RX_MON_MEM_FRAG */
  238. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  239. /**
  240. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  241. * @soc: Datapath soc structure
  242. * @ring_num: Refill ring number
  243. * @hal_ring_hdl:
  244. * @num_req: number of buffers requested for refill
  245. * @num_refill: number of buffers refilled
  246. *
  247. * Return: None
  248. */
  249. static inline void
  250. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  251. hal_ring_handle_t hal_ring_hdl,
  252. uint32_t num_req, uint32_t num_refill)
  253. {
  254. struct dp_refill_info_record *record;
  255. uint32_t idx;
  256. uint32_t tp;
  257. uint32_t hp;
  258. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  259. !soc->rx_refill_ring_history[ring_num]))
  260. return;
  261. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  262. DP_RX_REFILL_HIST_MAX);
  263. /* No NULL check needed for record since its an array */
  264. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  265. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  266. record->timestamp = qdf_get_log_timestamp();
  267. record->num_req = num_req;
  268. record->num_refill = num_refill;
  269. record->hp = hp;
  270. record->tp = tp;
  271. }
  272. #else
  273. static inline void
  274. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  275. hal_ring_handle_t hal_ring_hdl,
  276. uint32_t num_req, uint32_t num_refill)
  277. {
  278. }
  279. #endif
  280. /**
  281. * dp_pdev_nbuf_alloc_and_map_replenish() - Allocate nbuf for desc buffer and
  282. * map
  283. * @dp_soc: struct dp_soc *
  284. * @mac_id: Mac id
  285. * @num_entries_avail: num_entries_avail
  286. * @nbuf_frag_info_t: nbuf frag info
  287. * @dp_pdev: struct dp_pdev *
  288. * @rx_desc_pool: Rx desc pool
  289. *
  290. * Return: QDF_STATUS
  291. */
  292. static inline QDF_STATUS
  293. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  294. uint32_t mac_id,
  295. uint32_t num_entries_avail,
  296. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  297. struct dp_pdev *dp_pdev,
  298. struct rx_desc_pool *rx_desc_pool)
  299. {
  300. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  301. (nbuf_frag_info_t->virt_addr).nbuf =
  302. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  303. mac_id,
  304. rx_desc_pool,
  305. num_entries_avail);
  306. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  307. dp_err("nbuf alloc failed");
  308. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  309. return QDF_STATUS_E_NOMEM;
  310. }
  311. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  312. nbuf_frag_info_t);
  313. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  314. dp_rx_buffer_pool_nbuf_free(dp_soc,
  315. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  316. dp_err("nbuf map failed");
  317. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  318. return QDF_STATUS_E_FAULT;
  319. }
  320. nbuf_frag_info_t->paddr =
  321. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  322. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, (qdf_nbuf_t)(
  323. (nbuf_frag_info_t->virt_addr).nbuf),
  324. rx_desc_pool->buf_size,
  325. true, __func__, __LINE__);
  326. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  327. &nbuf_frag_info_t->paddr,
  328. rx_desc_pool);
  329. if (ret == QDF_STATUS_E_FAILURE) {
  330. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  331. return QDF_STATUS_E_ADDRNOTAVAIL;
  332. }
  333. return QDF_STATUS_SUCCESS;
  334. }
  335. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  336. QDF_STATUS
  337. __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
  338. struct dp_srng *dp_rxdma_srng,
  339. struct rx_desc_pool *rx_desc_pool,
  340. bool force_replenish)
  341. {
  342. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  343. uint32_t count;
  344. void *rxdma_ring_entry;
  345. union dp_rx_desc_list_elem_t *next = NULL;
  346. void *rxdma_srng;
  347. qdf_nbuf_t nbuf;
  348. qdf_dma_addr_t paddr;
  349. uint16_t num_entries_avail = 0;
  350. uint16_t num_alloc_desc = 0;
  351. union dp_rx_desc_list_elem_t *desc_list = NULL;
  352. union dp_rx_desc_list_elem_t *tail = NULL;
  353. int sync_hw_ptr = 0;
  354. rxdma_srng = dp_rxdma_srng->hal_srng;
  355. if (qdf_unlikely(!dp_pdev)) {
  356. dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
  357. return QDF_STATUS_E_FAILURE;
  358. }
  359. if (qdf_unlikely(!rxdma_srng)) {
  360. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  361. return QDF_STATUS_E_FAILURE;
  362. }
  363. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  364. num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
  365. rxdma_srng,
  366. sync_hw_ptr);
  367. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  368. soc, num_entries_avail);
  369. if (qdf_unlikely(!force_replenish && (num_entries_avail <
  370. ((dp_rxdma_srng->num_entries * 3) / 4)))) {
  371. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  372. return QDF_STATUS_E_FAILURE;
  373. }
  374. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  375. num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
  376. rx_desc_pool,
  377. num_entries_avail,
  378. &desc_list,
  379. &tail);
  380. if (!num_alloc_desc) {
  381. dp_rx_err("%pK: no free rx_descs in freelist", soc);
  382. DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
  383. num_entries_avail);
  384. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  385. return QDF_STATUS_E_NOMEM;
  386. }
  387. for (count = 0; count < num_alloc_desc; count++) {
  388. next = desc_list->next;
  389. qdf_prefetch(next);
  390. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  391. if (qdf_unlikely(!nbuf)) {
  392. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  393. break;
  394. }
  395. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  396. rx_desc_pool->buf_size);
  397. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
  398. rxdma_srng);
  399. qdf_assert_always(rxdma_ring_entry);
  400. desc_list->rx_desc.nbuf = nbuf;
  401. dp_rx_set_reuse_nbuf(&desc_list->rx_desc, nbuf);
  402. desc_list->rx_desc.rx_buf_start = nbuf->data;
  403. desc_list->rx_desc.paddr_buf_start = paddr;
  404. desc_list->rx_desc.unmapped = 0;
  405. /* rx_desc.in_use should be zero at this time*/
  406. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  407. desc_list->rx_desc.in_use = 1;
  408. desc_list->rx_desc.in_err_state = 0;
  409. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  410. paddr,
  411. desc_list->rx_desc.cookie,
  412. rx_desc_pool->owner);
  413. desc_list = next;
  414. }
  415. qdf_dsb();
  416. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  417. /* No need to count the number of bytes received during replenish.
  418. * Therefore set replenish.pkts.bytes as 0.
  419. */
  420. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  421. DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
  422. /*
  423. * add any available free desc back to the free list
  424. */
  425. if (desc_list)
  426. dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
  427. mac_id, rx_desc_pool);
  428. return QDF_STATUS_SUCCESS;
  429. }
  430. QDF_STATUS
  431. __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
  432. struct dp_srng *dp_rxdma_srng,
  433. struct rx_desc_pool *rx_desc_pool,
  434. uint32_t num_req_buffers,
  435. union dp_rx_desc_list_elem_t **desc_list,
  436. union dp_rx_desc_list_elem_t **tail)
  437. {
  438. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  439. uint32_t count;
  440. void *rxdma_ring_entry;
  441. union dp_rx_desc_list_elem_t *next;
  442. void *rxdma_srng;
  443. qdf_nbuf_t nbuf;
  444. qdf_nbuf_t nbuf_next;
  445. qdf_nbuf_t nbuf_head = NULL;
  446. qdf_nbuf_t nbuf_tail = NULL;
  447. qdf_dma_addr_t paddr;
  448. rxdma_srng = dp_rxdma_srng->hal_srng;
  449. if (qdf_unlikely(!dp_pdev)) {
  450. dp_rx_err("%pK: pdev is null for mac_id = %d",
  451. soc, mac_id);
  452. return QDF_STATUS_E_FAILURE;
  453. }
  454. if (qdf_unlikely(!rxdma_srng)) {
  455. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  456. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  457. return QDF_STATUS_E_FAILURE;
  458. }
  459. /* Allocate required number of nbufs */
  460. for (count = 0; count < num_req_buffers; count++) {
  461. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  462. if (qdf_unlikely(!nbuf)) {
  463. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  464. /* Update num_req_buffers to nbufs allocated count */
  465. num_req_buffers = count;
  466. break;
  467. }
  468. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  469. rx_desc_pool->buf_size);
  470. QDF_NBUF_CB_PADDR(nbuf) = paddr;
  471. DP_RX_LIST_APPEND(nbuf_head,
  472. nbuf_tail,
  473. nbuf);
  474. }
  475. qdf_dsb();
  476. nbuf = nbuf_head;
  477. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  478. for (count = 0; count < num_req_buffers; count++) {
  479. next = (*desc_list)->next;
  480. nbuf_next = nbuf->next;
  481. qdf_prefetch(next);
  482. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  483. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  484. if (!rxdma_ring_entry)
  485. break;
  486. (*desc_list)->rx_desc.nbuf = nbuf;
  487. dp_rx_set_reuse_nbuf(&(*desc_list)->rx_desc, nbuf);
  488. (*desc_list)->rx_desc.rx_buf_start = nbuf->data;
  489. (*desc_list)->rx_desc.paddr_buf_start = QDF_NBUF_CB_PADDR(nbuf);
  490. (*desc_list)->rx_desc.unmapped = 0;
  491. /* rx_desc.in_use should be zero at this time*/
  492. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  493. (*desc_list)->rx_desc.in_use = 1;
  494. (*desc_list)->rx_desc.in_err_state = 0;
  495. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  496. QDF_NBUF_CB_PADDR(nbuf),
  497. (*desc_list)->rx_desc.cookie,
  498. rx_desc_pool->owner);
  499. *desc_list = next;
  500. nbuf = nbuf_next;
  501. }
  502. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  503. /* No need to count the number of bytes received during replenish.
  504. * Therefore set replenish.pkts.bytes as 0.
  505. */
  506. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  507. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  508. /*
  509. * add any available free desc back to the free list
  510. */
  511. if (*desc_list)
  512. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  513. mac_id, rx_desc_pool);
  514. while (nbuf) {
  515. nbuf_next = nbuf->next;
  516. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, nbuf);
  517. qdf_nbuf_free(nbuf);
  518. nbuf = nbuf_next;
  519. }
  520. return QDF_STATUS_SUCCESS;
  521. }
  522. #ifdef WLAN_SUPPORT_PPEDS
  523. QDF_STATUS
  524. __dp_rx_comp2refill_replenish(struct dp_soc *soc, uint32_t mac_id,
  525. struct dp_srng *dp_rxdma_srng,
  526. struct rx_desc_pool *rx_desc_pool,
  527. uint32_t num_req_buffers,
  528. union dp_rx_desc_list_elem_t **desc_list,
  529. union dp_rx_desc_list_elem_t **tail)
  530. {
  531. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  532. uint32_t count;
  533. void *rxdma_ring_entry;
  534. union dp_rx_desc_list_elem_t *next;
  535. union dp_rx_desc_list_elem_t *cur;
  536. void *rxdma_srng;
  537. qdf_nbuf_t nbuf;
  538. rxdma_srng = dp_rxdma_srng->hal_srng;
  539. if (qdf_unlikely(!dp_pdev)) {
  540. dp_rx_err("%pK: pdev is null for mac_id = %d",
  541. soc, mac_id);
  542. return QDF_STATUS_E_FAILURE;
  543. }
  544. if (qdf_unlikely(!rxdma_srng)) {
  545. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  546. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  547. return QDF_STATUS_E_FAILURE;
  548. }
  549. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  550. for (count = 0; count < num_req_buffers; count++) {
  551. next = (*desc_list)->next;
  552. qdf_prefetch(next);
  553. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  554. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  555. if (!rxdma_ring_entry)
  556. break;
  557. (*desc_list)->rx_desc.in_use = 1;
  558. (*desc_list)->rx_desc.in_err_state = 0;
  559. (*desc_list)->rx_desc.nbuf = (*desc_list)->rx_desc.reuse_nbuf;
  560. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  561. (*desc_list)->rx_desc.paddr_buf_start,
  562. (*desc_list)->rx_desc.cookie,
  563. rx_desc_pool->owner);
  564. *desc_list = next;
  565. }
  566. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  567. /* No need to count the number of bytes received during replenish.
  568. * Therefore set replenish.pkts.bytes as 0.
  569. */
  570. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  571. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  572. /*
  573. * add any available free desc back to the free list
  574. */
  575. cur = *desc_list;
  576. for ( ; count < num_req_buffers; count++) {
  577. next = cur->next;
  578. qdf_prefetch(next);
  579. nbuf = cur->rx_desc.reuse_nbuf;
  580. cur->rx_desc.nbuf = NULL;
  581. cur->rx_desc.in_use = 0;
  582. cur->rx_desc.has_reuse_nbuf = false;
  583. cur->rx_desc.reuse_nbuf = NULL;
  584. if (!nbuf->recycled_for_ds)
  585. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, nbuf);
  586. nbuf->recycled_for_ds = 0;
  587. nbuf->fast_recycled = 0;
  588. qdf_nbuf_free(nbuf);
  589. cur = next;
  590. }
  591. if (*desc_list)
  592. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  593. mac_id, rx_desc_pool);
  594. return QDF_STATUS_SUCCESS;
  595. }
  596. #endif
  597. QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
  598. uint32_t mac_id,
  599. struct dp_srng *dp_rxdma_srng,
  600. struct rx_desc_pool *rx_desc_pool,
  601. uint32_t num_req_buffers)
  602. {
  603. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  604. uint32_t count;
  605. uint32_t nr_descs = 0;
  606. void *rxdma_ring_entry;
  607. union dp_rx_desc_list_elem_t *next;
  608. void *rxdma_srng;
  609. qdf_nbuf_t nbuf;
  610. qdf_dma_addr_t paddr;
  611. union dp_rx_desc_list_elem_t *desc_list = NULL;
  612. union dp_rx_desc_list_elem_t *tail = NULL;
  613. rxdma_srng = dp_rxdma_srng->hal_srng;
  614. if (qdf_unlikely(!dp_pdev)) {
  615. dp_rx_err("%pK: pdev is null for mac_id = %d",
  616. soc, mac_id);
  617. return QDF_STATUS_E_FAILURE;
  618. }
  619. if (qdf_unlikely(!rxdma_srng)) {
  620. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  621. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  622. return QDF_STATUS_E_FAILURE;
  623. }
  624. dp_rx_debug("%pK: requested %d buffers for replenish",
  625. soc, num_req_buffers);
  626. nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
  627. num_req_buffers, &desc_list, &tail);
  628. if (!nr_descs) {
  629. dp_err("no free rx_descs in freelist");
  630. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  631. return QDF_STATUS_E_NOMEM;
  632. }
  633. dp_debug("got %u RX descs for driver attach", nr_descs);
  634. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  635. for (count = 0; count < nr_descs; count++) {
  636. next = desc_list->next;
  637. qdf_prefetch(next);
  638. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  639. if (qdf_unlikely(!nbuf)) {
  640. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  641. break;
  642. }
  643. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  644. rx_desc_pool->buf_size);
  645. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  646. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  647. if (!rxdma_ring_entry) {
  648. qdf_nbuf_free(nbuf);
  649. break;
  650. }
  651. desc_list->rx_desc.nbuf = nbuf;
  652. dp_rx_set_reuse_nbuf(&desc_list->rx_desc, nbuf);
  653. desc_list->rx_desc.rx_buf_start = nbuf->data;
  654. desc_list->rx_desc.paddr_buf_start = paddr;
  655. desc_list->rx_desc.unmapped = 0;
  656. /* rx_desc.in_use should be zero at this time*/
  657. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  658. desc_list->rx_desc.in_use = 1;
  659. desc_list->rx_desc.in_err_state = 0;
  660. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  661. paddr,
  662. desc_list->rx_desc.cookie,
  663. rx_desc_pool->owner);
  664. desc_list = next;
  665. }
  666. qdf_dsb();
  667. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  668. /* No need to count the number of bytes received during replenish.
  669. * Therefore set replenish.pkts.bytes as 0.
  670. */
  671. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  672. return QDF_STATUS_SUCCESS;
  673. }
  674. #endif
  675. #ifdef DP_UMAC_HW_RESET_SUPPORT
  676. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  677. static inline
  678. qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
  679. uint32_t buf_size)
  680. {
  681. return dp_rx_nbuf_sync_no_dsb(dp_soc, nbuf, buf_size);
  682. }
  683. #else
  684. static inline
  685. qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
  686. uint32_t buf_size)
  687. {
  688. return qdf_nbuf_get_frag_paddr(nbuf, 0);
  689. }
  690. #endif
  691. /**
  692. * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time
  693. * @soc: core txrx main context
  694. * @dp_rxdma_srng: rxdma ring
  695. * @rx_desc_pool: rx descriptor pool
  696. * @rx_desc:rx descriptor
  697. *
  698. * Return: void
  699. */
  700. static inline
  701. void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
  702. struct rx_desc_pool *rx_desc_pool,
  703. struct dp_rx_desc *rx_desc)
  704. {
  705. void *rxdma_srng;
  706. void *rxdma_ring_entry;
  707. qdf_dma_addr_t paddr;
  708. rxdma_srng = dp_rxdma_srng->hal_srng;
  709. /* No one else should be accessing the srng at this point */
  710. hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng);
  711. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  712. qdf_assert_always(rxdma_ring_entry);
  713. rx_desc->in_err_state = 0;
  714. paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf,
  715. rx_desc_pool->buf_size);
  716. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr,
  717. rx_desc->cookie, rx_desc_pool->owner);
  718. hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng);
  719. }
  720. void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list)
  721. {
  722. int mac_id, i, j;
  723. union dp_rx_desc_list_elem_t *head = NULL;
  724. union dp_rx_desc_list_elem_t *tail = NULL;
  725. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  726. struct dp_srng *dp_rxdma_srng =
  727. &soc->rx_refill_buf_ring[mac_id];
  728. struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
  729. uint32_t rx_sw_desc_num = rx_desc_pool->pool_size;
  730. /* Only fill up 1/3 of the ring size */
  731. uint32_t num_req_decs;
  732. if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng ||
  733. !rx_desc_pool->array)
  734. continue;
  735. num_req_decs = dp_rxdma_srng->num_entries / 3;
  736. for (i = 0, j = 0; i < rx_sw_desc_num; i++) {
  737. struct dp_rx_desc *rx_desc =
  738. (struct dp_rx_desc *)&rx_desc_pool->array[i];
  739. if (rx_desc->in_use) {
  740. if (j < (dp_rxdma_srng->num_entries - 1)) {
  741. dp_rx_desc_replenish(soc, dp_rxdma_srng,
  742. rx_desc_pool,
  743. rx_desc);
  744. } else {
  745. dp_rx_nbuf_unmap(soc, rx_desc, 0);
  746. rx_desc->unmapped = 0;
  747. rx_desc->nbuf->next = *nbuf_list;
  748. *nbuf_list = rx_desc->nbuf;
  749. dp_rx_add_to_free_desc_list(&head,
  750. &tail,
  751. rx_desc);
  752. }
  753. j++;
  754. }
  755. }
  756. if (head)
  757. dp_rx_add_desc_list_to_free_list(soc, &head, &tail,
  758. mac_id, rx_desc_pool);
  759. /* If num of descs in use were less, then we need to replenish
  760. * the ring with some buffers
  761. */
  762. head = NULL;
  763. tail = NULL;
  764. if (j < (num_req_decs - 1))
  765. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  766. rx_desc_pool,
  767. ((num_req_decs - 1) - j),
  768. &head, &tail, true);
  769. }
  770. }
  771. #endif
  772. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  773. struct dp_srng *dp_rxdma_srng,
  774. struct rx_desc_pool *rx_desc_pool,
  775. uint32_t num_req_buffers,
  776. union dp_rx_desc_list_elem_t **desc_list,
  777. union dp_rx_desc_list_elem_t **tail,
  778. bool req_only, bool force_replenish,
  779. const char *func_name)
  780. {
  781. uint32_t num_alloc_desc;
  782. uint16_t num_desc_to_free = 0;
  783. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  784. uint32_t num_entries_avail;
  785. uint32_t count;
  786. uint32_t extra_buffers;
  787. int sync_hw_ptr = 1;
  788. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  789. void *rxdma_ring_entry;
  790. union dp_rx_desc_list_elem_t *next;
  791. QDF_STATUS ret;
  792. void *rxdma_srng;
  793. union dp_rx_desc_list_elem_t *desc_list_append = NULL;
  794. union dp_rx_desc_list_elem_t *tail_append = NULL;
  795. union dp_rx_desc_list_elem_t *temp_list = NULL;
  796. rxdma_srng = dp_rxdma_srng->hal_srng;
  797. if (qdf_unlikely(!dp_pdev)) {
  798. dp_rx_err("%pK: pdev is null for mac_id = %d",
  799. dp_soc, mac_id);
  800. return QDF_STATUS_E_FAILURE;
  801. }
  802. if (qdf_unlikely(!rxdma_srng)) {
  803. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  804. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  805. return QDF_STATUS_E_FAILURE;
  806. }
  807. dp_verbose_debug("%pK: requested %d buffers for replenish",
  808. dp_soc, num_req_buffers);
  809. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  810. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  811. rxdma_srng,
  812. sync_hw_ptr);
  813. dp_verbose_debug("%pK: no of available entries in rxdma ring: %d",
  814. dp_soc, num_entries_avail);
  815. if (!req_only && !(*desc_list) &&
  816. (force_replenish || (num_entries_avail >
  817. ((dp_rxdma_srng->num_entries * 3) / 4)))) {
  818. num_req_buffers = num_entries_avail;
  819. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  820. } else if (num_entries_avail < num_req_buffers) {
  821. num_desc_to_free = num_req_buffers - num_entries_avail;
  822. num_req_buffers = num_entries_avail;
  823. } else if ((*desc_list) &&
  824. dp_rxdma_srng->num_entries - num_entries_avail <
  825. CRITICAL_BUFFER_THRESHOLD) {
  826. /* set extra buffers to CRITICAL_BUFFER_THRESHOLD only if
  827. * total buff requested after adding extra buffers is less
  828. * than or equal to num entries available, else set it to max
  829. * possible additional buffers available at that moment
  830. */
  831. extra_buffers =
  832. ((num_req_buffers + CRITICAL_BUFFER_THRESHOLD) > num_entries_avail) ?
  833. (num_entries_avail - num_req_buffers) :
  834. CRITICAL_BUFFER_THRESHOLD;
  835. /* Append some free descriptors to tail */
  836. num_alloc_desc =
  837. dp_rx_get_free_desc_list(dp_soc, mac_id,
  838. rx_desc_pool,
  839. extra_buffers,
  840. &desc_list_append,
  841. &tail_append);
  842. if (num_alloc_desc) {
  843. temp_list = *desc_list;
  844. *desc_list = desc_list_append;
  845. tail_append->next = temp_list;
  846. num_req_buffers += num_alloc_desc;
  847. DP_STATS_DEC(dp_pdev,
  848. replenish.free_list,
  849. num_alloc_desc);
  850. } else
  851. dp_err_rl("%pK: no free rx_descs in freelist", dp_soc);
  852. }
  853. if (qdf_unlikely(!num_req_buffers)) {
  854. num_desc_to_free = num_req_buffers;
  855. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  856. goto free_descs;
  857. }
  858. /*
  859. * if desc_list is NULL, allocate the descs from freelist
  860. */
  861. if (!(*desc_list)) {
  862. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  863. rx_desc_pool,
  864. num_req_buffers,
  865. desc_list,
  866. tail);
  867. if (!num_alloc_desc) {
  868. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  869. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  870. num_req_buffers);
  871. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  872. return QDF_STATUS_E_NOMEM;
  873. }
  874. dp_verbose_debug("%pK: %d rx desc allocated", dp_soc,
  875. num_alloc_desc);
  876. num_req_buffers = num_alloc_desc;
  877. }
  878. count = 0;
  879. while (count < num_req_buffers) {
  880. /* Flag is set while pdev rx_desc_pool initialization */
  881. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  882. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  883. &nbuf_frag_info,
  884. dp_pdev,
  885. rx_desc_pool);
  886. else
  887. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  888. mac_id,
  889. num_entries_avail, &nbuf_frag_info,
  890. dp_pdev, rx_desc_pool);
  891. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  892. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  893. continue;
  894. break;
  895. }
  896. count++;
  897. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  898. rxdma_srng);
  899. qdf_assert_always(rxdma_ring_entry);
  900. next = (*desc_list)->next;
  901. /* Flag is set while pdev rx_desc_pool initialization */
  902. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  903. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  904. &nbuf_frag_info);
  905. else
  906. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  907. &nbuf_frag_info);
  908. /* rx_desc.in_use should be zero at this time*/
  909. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  910. (*desc_list)->rx_desc.in_use = 1;
  911. (*desc_list)->rx_desc.in_err_state = 0;
  912. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  913. func_name, RX_DESC_REPLENISHED);
  914. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  915. nbuf_frag_info.virt_addr.nbuf,
  916. (unsigned long long)(nbuf_frag_info.paddr),
  917. (*desc_list)->rx_desc.cookie);
  918. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  919. nbuf_frag_info.paddr,
  920. (*desc_list)->rx_desc.cookie,
  921. rx_desc_pool->owner);
  922. *desc_list = next;
  923. }
  924. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  925. num_req_buffers, count);
  926. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  927. dp_rx_schedule_refill_thread(dp_soc);
  928. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  929. count, num_desc_to_free);
  930. /* No need to count the number of bytes received during replenish.
  931. * Therefore set replenish.pkts.bytes as 0.
  932. */
  933. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  934. DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count);
  935. free_descs:
  936. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  937. /*
  938. * add any available free desc back to the free list
  939. */
  940. if (*desc_list)
  941. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  942. mac_id, rx_desc_pool);
  943. return QDF_STATUS_SUCCESS;
  944. }
  945. qdf_export_symbol(__dp_rx_buffers_replenish);
  946. void
  947. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  948. struct dp_txrx_peer *txrx_peer, uint8_t link_id)
  949. {
  950. qdf_nbuf_t deliver_list_head = NULL;
  951. qdf_nbuf_t deliver_list_tail = NULL;
  952. qdf_nbuf_t nbuf;
  953. nbuf = nbuf_list;
  954. while (nbuf) {
  955. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  956. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  957. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  958. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
  959. qdf_nbuf_len(nbuf), link_id);
  960. nbuf = next;
  961. }
  962. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  963. &deliver_list_tail);
  964. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  965. }
  966. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  967. #ifndef FEATURE_WDS
  968. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  969. struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
  970. {
  971. }
  972. #endif
  973. #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
  974. /**
  975. * dp_classify_critical_pkts() - API for marking critical packets
  976. * @soc: dp_soc context
  977. * @vdev: vdev on which packet is to be sent
  978. * @nbuf: nbuf that has to be classified
  979. *
  980. * The function parses the packet, identifies whether its a critical frame and
  981. * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
  982. * Code for marking which frames are CRITICAL is accessed via callback.
  983. * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
  984. *
  985. * Return: None
  986. */
  987. static
  988. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  989. qdf_nbuf_t nbuf)
  990. {
  991. if (vdev->tx_classify_critical_pkt_cb)
  992. vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
  993. }
  994. #else
  995. static inline
  996. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  997. qdf_nbuf_t nbuf)
  998. {
  999. }
  1000. #endif
  1001. #ifdef QCA_OL_TX_MULTIQ_SUPPORT
  1002. static inline
  1003. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  1004. {
  1005. qdf_nbuf_set_queue_mapping(nbuf, ring_id);
  1006. }
  1007. #else
  1008. static inline
  1009. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  1010. {
  1011. }
  1012. #endif
  1013. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  1014. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  1015. struct cdp_tid_rx_stats *tid_stats,
  1016. uint8_t link_id)
  1017. {
  1018. uint16_t len;
  1019. qdf_nbuf_t nbuf_copy;
  1020. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  1021. nbuf))
  1022. return true;
  1023. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf, link_id))
  1024. return false;
  1025. /* If the source peer in the isolation list
  1026. * then dont forward instead push to bridge stack
  1027. */
  1028. if (dp_get_peer_isolation(ta_peer))
  1029. return false;
  1030. nbuf_copy = qdf_nbuf_copy(nbuf);
  1031. if (!nbuf_copy)
  1032. return false;
  1033. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1034. qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  1035. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
  1036. if (soc->arch_ops.dp_rx_intrabss_mcast_handler(soc, ta_peer,
  1037. nbuf_copy,
  1038. tid_stats,
  1039. link_id))
  1040. return false;
  1041. /* Don't send packets if tx is paused */
  1042. if (!soc->is_tx_pause &&
  1043. !dp_tx_send((struct cdp_soc_t *)soc,
  1044. ta_peer->vdev->vdev_id, nbuf_copy)) {
  1045. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  1046. len, link_id);
  1047. tid_stats->intrabss_cnt++;
  1048. } else {
  1049. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  1050. len, link_id);
  1051. tid_stats->fail_cnt[INTRABSS_DROP]++;
  1052. dp_rx_nbuf_free(nbuf_copy);
  1053. }
  1054. return false;
  1055. }
  1056. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  1057. uint8_t tx_vdev_id,
  1058. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  1059. struct cdp_tid_rx_stats *tid_stats,
  1060. uint8_t link_id)
  1061. {
  1062. uint16_t len;
  1063. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1064. /* linearize the nbuf just before we send to
  1065. * dp_tx_send()
  1066. */
  1067. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1068. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  1069. return false;
  1070. nbuf = qdf_nbuf_unshare(nbuf);
  1071. if (!nbuf) {
  1072. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
  1073. rx.intra_bss.fail,
  1074. 1, len, link_id);
  1075. /* return true even though the pkt is
  1076. * not forwarded. Basically skb_unshare
  1077. * failed and we want to continue with
  1078. * next nbuf.
  1079. */
  1080. tid_stats->fail_cnt[INTRABSS_DROP]++;
  1081. return false;
  1082. }
  1083. }
  1084. qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
  1085. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
  1086. /* Don't send packets if tx is paused */
  1087. if (!soc->is_tx_pause && !dp_tx_send((struct cdp_soc_t *)soc,
  1088. tx_vdev_id, nbuf)) {
  1089. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  1090. len, link_id);
  1091. } else {
  1092. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  1093. len, link_id);
  1094. tid_stats->fail_cnt[INTRABSS_DROP]++;
  1095. return false;
  1096. }
  1097. return true;
  1098. }
  1099. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1100. #ifdef MESH_MODE_SUPPORT
  1101. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1102. uint8_t *rx_tlv_hdr,
  1103. struct dp_txrx_peer *txrx_peer)
  1104. {
  1105. struct mesh_recv_hdr_s *rx_info = NULL;
  1106. uint32_t pkt_type;
  1107. uint32_t nss;
  1108. uint32_t rate_mcs;
  1109. uint32_t bw;
  1110. uint8_t primary_chan_num;
  1111. uint32_t center_chan_freq;
  1112. struct dp_soc *soc = vdev->pdev->soc;
  1113. struct dp_peer *peer;
  1114. struct dp_peer *primary_link_peer;
  1115. struct dp_soc *link_peer_soc;
  1116. cdp_peer_stats_param_t buf = {0};
  1117. /* fill recv mesh stats */
  1118. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  1119. /* upper layers are responsible to free this memory */
  1120. if (!rx_info) {
  1121. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  1122. vdev->pdev->soc);
  1123. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  1124. return;
  1125. }
  1126. rx_info->rs_flags = MESH_RXHDR_VER1;
  1127. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1128. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  1129. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  1130. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  1131. peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
  1132. if (peer) {
  1133. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  1134. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  1135. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  1136. rx_tlv_hdr);
  1137. if (vdev->osif_get_key)
  1138. vdev->osif_get_key(vdev->osif_vdev,
  1139. &rx_info->rs_decryptkey[0],
  1140. &peer->mac_addr.raw[0],
  1141. rx_info->rs_keyix);
  1142. }
  1143. dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
  1144. }
  1145. primary_link_peer = dp_get_primary_link_peer_by_id(soc,
  1146. txrx_peer->peer_id,
  1147. DP_MOD_ID_MESH);
  1148. if (qdf_likely(primary_link_peer)) {
  1149. link_peer_soc = primary_link_peer->vdev->pdev->soc;
  1150. dp_monitor_peer_get_stats_param(link_peer_soc,
  1151. primary_link_peer,
  1152. cdp_peer_rx_snr, &buf);
  1153. rx_info->rs_snr = buf.rx_snr;
  1154. dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
  1155. }
  1156. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  1157. soc = vdev->pdev->soc;
  1158. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  1159. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  1160. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  1161. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  1162. soc->ctrl_psoc,
  1163. vdev->pdev->pdev_id,
  1164. center_chan_freq);
  1165. }
  1166. rx_info->rs_channel = primary_chan_num;
  1167. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1168. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1169. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1170. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1171. /*
  1172. * The MCS index does not start with 0 when NSS>1 in HT mode.
  1173. * MCS params for optional 20/40MHz, NSS=1~3, EQM(NSS>1):
  1174. * ------------------------------------------------------
  1175. * NSS | 1 | 2 | 3 | 4
  1176. * ------------------------------------------------------
  1177. * MCS index: HT20 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  1178. * ------------------------------------------------------
  1179. * MCS index: HT40 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  1180. * ------------------------------------------------------
  1181. * Currently, the MAX_NSS=2. If NSS>2, MCS index = 8 * (NSS-1)
  1182. */
  1183. if ((pkt_type == DOT11_N) && (nss == 2))
  1184. rate_mcs += 8;
  1185. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  1186. (bw << 24);
  1187. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  1188. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  1189. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  1190. rx_info->rs_flags,
  1191. rx_info->rs_rssi,
  1192. rx_info->rs_channel,
  1193. rx_info->rs_ratephy1,
  1194. rx_info->rs_keyix,
  1195. rx_info->rs_snr);
  1196. }
  1197. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1198. uint8_t *rx_tlv_hdr)
  1199. {
  1200. union dp_align_mac_addr mac_addr;
  1201. struct dp_soc *soc = vdev->pdev->soc;
  1202. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  1203. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  1204. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  1205. rx_tlv_hdr))
  1206. return QDF_STATUS_SUCCESS;
  1207. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  1208. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  1209. rx_tlv_hdr))
  1210. return QDF_STATUS_SUCCESS;
  1211. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  1212. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  1213. rx_tlv_hdr) &&
  1214. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  1215. rx_tlv_hdr))
  1216. return QDF_STATUS_SUCCESS;
  1217. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  1218. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  1219. rx_tlv_hdr,
  1220. &mac_addr.raw[0]))
  1221. return QDF_STATUS_E_FAILURE;
  1222. if (!qdf_mem_cmp(&mac_addr.raw[0],
  1223. &vdev->mac_addr.raw[0],
  1224. QDF_MAC_ADDR_SIZE))
  1225. return QDF_STATUS_SUCCESS;
  1226. }
  1227. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  1228. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  1229. rx_tlv_hdr,
  1230. &mac_addr.raw[0]))
  1231. return QDF_STATUS_E_FAILURE;
  1232. if (!qdf_mem_cmp(&mac_addr.raw[0],
  1233. &vdev->mac_addr.raw[0],
  1234. QDF_MAC_ADDR_SIZE))
  1235. return QDF_STATUS_SUCCESS;
  1236. }
  1237. }
  1238. return QDF_STATUS_E_FAILURE;
  1239. }
  1240. #else
  1241. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1242. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
  1243. {
  1244. }
  1245. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1246. uint8_t *rx_tlv_hdr)
  1247. {
  1248. return QDF_STATUS_E_FAILURE;
  1249. }
  1250. #endif
  1251. #ifdef RX_PEER_INVALID_ENH
  1252. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1253. uint8_t mac_id)
  1254. {
  1255. struct dp_invalid_peer_msg msg;
  1256. struct dp_vdev *vdev = NULL;
  1257. struct dp_pdev *pdev = NULL;
  1258. struct ieee80211_frame *wh;
  1259. qdf_nbuf_t curr_nbuf, next_nbuf;
  1260. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1261. uint8_t *rx_pkt_hdr = NULL;
  1262. int i = 0;
  1263. uint32_t nbuf_len;
  1264. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  1265. dp_rx_debug("%pK: Drop decapped frames", soc);
  1266. goto free;
  1267. }
  1268. /* In RAW packet, packet header will be part of data */
  1269. rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
  1270. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1271. if (!DP_FRAME_IS_DATA(wh)) {
  1272. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  1273. goto free;
  1274. }
  1275. nbuf_len = qdf_nbuf_len(mpdu);
  1276. if (nbuf_len < sizeof(struct ieee80211_frame)) {
  1277. dp_rx_err("%pK: Invalid nbuf length: %u", soc, nbuf_len);
  1278. goto free;
  1279. }
  1280. /* In DMAC case the rx_desc_pools are common across PDEVs
  1281. * so PDEV cannot be derived from the pool_id.
  1282. *
  1283. * link_id need to derived from the TLV tag word which is
  1284. * disabled by default. For now adding a WAR to get vdev
  1285. * with brute force this need to fixed with word based subscription
  1286. * support is added by enabling TLV tag word
  1287. */
  1288. if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
  1289. for (i = 0; i < MAX_PDEV_CNT; i++) {
  1290. pdev = soc->pdev_list[i];
  1291. if (!pdev || qdf_unlikely(pdev->is_pdev_down))
  1292. continue;
  1293. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1294. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1295. QDF_MAC_ADDR_SIZE) == 0) {
  1296. goto out;
  1297. }
  1298. }
  1299. }
  1300. } else {
  1301. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1302. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  1303. dp_rx_err("%pK: PDEV %s",
  1304. soc, !pdev ? "not found" : "down");
  1305. goto free;
  1306. }
  1307. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  1308. QDF_STATUS_SUCCESS)
  1309. return 0;
  1310. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1311. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1312. QDF_MAC_ADDR_SIZE) == 0) {
  1313. goto out;
  1314. }
  1315. }
  1316. }
  1317. if (!vdev) {
  1318. dp_rx_err("%pK: VDEV not found", soc);
  1319. goto free;
  1320. }
  1321. out:
  1322. msg.wh = wh;
  1323. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  1324. msg.nbuf = mpdu;
  1325. msg.vdev_id = vdev->vdev_id;
  1326. /*
  1327. * NOTE: Only valid for HKv1.
  1328. * If smart monitor mode is enabled on RE, we are getting invalid
  1329. * peer frames with RA as STA mac of RE and the TA not matching
  1330. * with any NAC list or the the BSSID.Such frames need to dropped
  1331. * in order to avoid HM_WDS false addition.
  1332. */
  1333. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  1334. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  1335. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  1336. soc, wh->i_addr1);
  1337. goto free;
  1338. }
  1339. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  1340. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  1341. pdev->pdev_id, &msg);
  1342. }
  1343. free:
  1344. /* Drop and free packet */
  1345. curr_nbuf = mpdu;
  1346. while (curr_nbuf) {
  1347. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1348. dp_rx_nbuf_free(curr_nbuf);
  1349. curr_nbuf = next_nbuf;
  1350. }
  1351. return 0;
  1352. }
  1353. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1354. qdf_nbuf_t mpdu, bool mpdu_done,
  1355. uint8_t mac_id)
  1356. {
  1357. /* Only trigger the process when mpdu is completed */
  1358. if (mpdu_done)
  1359. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1360. }
  1361. #else
  1362. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1363. uint8_t mac_id)
  1364. {
  1365. qdf_nbuf_t curr_nbuf, next_nbuf;
  1366. struct dp_pdev *pdev;
  1367. struct dp_vdev *vdev = NULL;
  1368. struct ieee80211_frame *wh;
  1369. struct dp_peer *peer = NULL;
  1370. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1371. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  1372. uint32_t nbuf_len;
  1373. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1374. if (!DP_FRAME_IS_DATA(wh)) {
  1375. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  1376. "only for data frames");
  1377. goto free;
  1378. }
  1379. nbuf_len = qdf_nbuf_len(mpdu);
  1380. if (nbuf_len < sizeof(struct ieee80211_frame)) {
  1381. dp_rx_info_rl("%pK: Invalid nbuf length: %u", soc, nbuf_len);
  1382. goto free;
  1383. }
  1384. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1385. if (!pdev) {
  1386. dp_rx_info_rl("%pK: PDEV not found", soc);
  1387. goto free;
  1388. }
  1389. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  1390. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  1391. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1392. QDF_MAC_ADDR_SIZE) == 0) {
  1393. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1394. goto out;
  1395. }
  1396. }
  1397. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1398. if (!vdev) {
  1399. dp_rx_info_rl("%pK: VDEV not found", soc);
  1400. goto free;
  1401. }
  1402. out:
  1403. if (vdev->opmode == wlan_op_mode_ap) {
  1404. peer = dp_peer_find_hash_find(soc, wh->i_addr2, 0,
  1405. vdev->vdev_id,
  1406. DP_MOD_ID_RX_ERR);
  1407. /* If SA is a valid peer in vdev,
  1408. * don't send disconnect
  1409. */
  1410. if (peer) {
  1411. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1412. DP_STATS_INC(soc, rx.err.decrypt_err_drop, 1);
  1413. dp_err_rl("invalid peer frame with correct SA/RA is freed");
  1414. goto free;
  1415. }
  1416. }
  1417. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  1418. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  1419. free:
  1420. /* Drop and free packet */
  1421. curr_nbuf = mpdu;
  1422. while (curr_nbuf) {
  1423. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1424. dp_rx_nbuf_free(curr_nbuf);
  1425. curr_nbuf = next_nbuf;
  1426. }
  1427. /* Reset the head and tail pointers */
  1428. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1429. if (pdev) {
  1430. pdev->invalid_peer_head_msdu = NULL;
  1431. pdev->invalid_peer_tail_msdu = NULL;
  1432. }
  1433. return 0;
  1434. }
  1435. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1436. qdf_nbuf_t mpdu, bool mpdu_done,
  1437. uint8_t mac_id)
  1438. {
  1439. /* Process the nbuf */
  1440. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1441. }
  1442. #endif
  1443. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1444. #ifdef RECEIVE_OFFLOAD
  1445. /**
  1446. * dp_rx_print_offload_info() - Print offload info from RX TLV
  1447. * @soc: dp soc handle
  1448. * @msdu: MSDU for which the offload info is to be printed
  1449. * @ofl_info: offload info saved in hal_offload_info structure
  1450. *
  1451. * Return: None
  1452. */
  1453. static void dp_rx_print_offload_info(struct dp_soc *soc,
  1454. qdf_nbuf_t msdu,
  1455. struct hal_offload_info *ofl_info)
  1456. {
  1457. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  1458. dp_verbose_debug("lro_eligible 0x%x",
  1459. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  1460. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  1461. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  1462. dp_verbose_debug("TCP seq num 0x%x", ofl_info->tcp_seq_num);
  1463. dp_verbose_debug("TCP ack num 0x%x", ofl_info->tcp_ack_num);
  1464. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  1465. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  1466. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  1467. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  1468. dp_verbose_debug("---------------------------------------------------------");
  1469. }
  1470. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1471. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1472. {
  1473. struct hal_offload_info offload_info;
  1474. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1475. return;
  1476. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  1477. return;
  1478. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1479. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  1480. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  1481. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1482. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1483. rx_tlv);
  1484. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  1485. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  1486. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  1487. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  1488. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  1489. dp_rx_print_offload_info(soc, msdu, &offload_info);
  1490. }
  1491. #endif /* RECEIVE_OFFLOAD */
  1492. /**
  1493. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1494. *
  1495. * @soc: DP soc handle
  1496. * @nbuf: pointer to msdu.
  1497. * @mpdu_len: mpdu length
  1498. * @l3_pad_len: L3 padding length by HW
  1499. *
  1500. * Return: returns true if nbuf is last msdu of mpdu else returns false.
  1501. */
  1502. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  1503. qdf_nbuf_t nbuf,
  1504. uint16_t *mpdu_len,
  1505. uint32_t l3_pad_len)
  1506. {
  1507. bool last_nbuf;
  1508. uint32_t pkt_hdr_size;
  1509. uint16_t buf_size;
  1510. buf_size = wlan_cfg_rx_buffer_size(soc->wlan_cfg_ctx);
  1511. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  1512. if ((*mpdu_len + pkt_hdr_size) > buf_size) {
  1513. qdf_nbuf_set_pktlen(nbuf, buf_size);
  1514. last_nbuf = false;
  1515. *mpdu_len -= (buf_size - pkt_hdr_size);
  1516. } else {
  1517. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  1518. last_nbuf = true;
  1519. *mpdu_len = 0;
  1520. }
  1521. return last_nbuf;
  1522. }
  1523. /**
  1524. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  1525. *
  1526. * @soc: DP soc handle
  1527. * @nbuf: pointer to msdu.
  1528. *
  1529. * Return: returns padding length in bytes.
  1530. */
  1531. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  1532. qdf_nbuf_t nbuf)
  1533. {
  1534. uint32_t l3_hdr_pad = 0;
  1535. uint8_t *rx_tlv_hdr;
  1536. struct hal_rx_msdu_metadata msdu_metadata;
  1537. while (nbuf) {
  1538. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1539. /* scattered msdu end with continuation is 0 */
  1540. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1541. hal_rx_msdu_metadata_get(soc->hal_soc,
  1542. rx_tlv_hdr,
  1543. &msdu_metadata);
  1544. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  1545. break;
  1546. }
  1547. nbuf = nbuf->next;
  1548. }
  1549. return l3_hdr_pad;
  1550. }
  1551. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1552. {
  1553. qdf_nbuf_t parent, frag_list, next = NULL;
  1554. uint16_t frag_list_len = 0;
  1555. uint16_t mpdu_len;
  1556. bool last_nbuf;
  1557. uint32_t l3_hdr_pad_offset = 0;
  1558. /*
  1559. * Use msdu len got from REO entry descriptor instead since
  1560. * there is case the RX PKT TLV is corrupted while msdu_len
  1561. * from REO descriptor is right for non-raw RX scatter msdu.
  1562. */
  1563. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1564. /*
  1565. * this is a case where the complete msdu fits in one single nbuf.
  1566. * in this case HW sets both start and end bit and we only need to
  1567. * reset these bits for RAW mode simulator to decap the pkt
  1568. */
  1569. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1570. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1571. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  1572. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1573. return nbuf;
  1574. }
  1575. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1576. /*
  1577. * This is a case where we have multiple msdus (A-MSDU) spread across
  1578. * multiple nbufs. here we create a fraglist out of these nbufs.
  1579. *
  1580. * the moment we encounter a nbuf with continuation bit set we
  1581. * know for sure we have an MSDU which is spread across multiple
  1582. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1583. */
  1584. parent = nbuf;
  1585. frag_list = nbuf->next;
  1586. nbuf = nbuf->next;
  1587. /*
  1588. * set the start bit in the first nbuf we encounter with continuation
  1589. * bit set. This has the proper mpdu length set as it is the first
  1590. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1591. * nbufs will form the frag_list of the parent nbuf.
  1592. */
  1593. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1594. /*
  1595. * L3 header padding is only needed for the 1st buffer
  1596. * in a scattered msdu
  1597. */
  1598. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1599. l3_hdr_pad_offset);
  1600. /*
  1601. * MSDU cont bit is set but reported MPDU length can fit
  1602. * in to single buffer
  1603. *
  1604. * Increment error stats and avoid SG list creation
  1605. */
  1606. if (last_nbuf) {
  1607. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1608. qdf_nbuf_pull_head(parent,
  1609. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1610. return parent;
  1611. }
  1612. /*
  1613. * this is where we set the length of the fragments which are
  1614. * associated to the parent nbuf. We iterate through the frag_list
  1615. * till we hit the last_nbuf of the list.
  1616. */
  1617. do {
  1618. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1619. qdf_nbuf_pull_head(nbuf,
  1620. soc->rx_pkt_tlv_size);
  1621. frag_list_len += qdf_nbuf_len(nbuf);
  1622. if (last_nbuf) {
  1623. next = nbuf->next;
  1624. nbuf->next = NULL;
  1625. break;
  1626. } else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1627. dp_err("Invalid packet length");
  1628. qdf_assert_always(0);
  1629. }
  1630. nbuf = nbuf->next;
  1631. } while (!last_nbuf);
  1632. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1633. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1634. parent->next = next;
  1635. qdf_nbuf_pull_head(parent,
  1636. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1637. return parent;
  1638. }
  1639. #ifdef DP_RX_SG_FRAME_SUPPORT
  1640. bool dp_rx_is_sg_supported(void)
  1641. {
  1642. return true;
  1643. }
  1644. #else
  1645. bool dp_rx_is_sg_supported(void)
  1646. {
  1647. return false;
  1648. }
  1649. #endif
  1650. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1651. #ifdef QCA_PEER_EXT_STATS
  1652. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1653. qdf_nbuf_t nbuf)
  1654. {
  1655. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1656. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1657. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1658. }
  1659. #endif /* QCA_PEER_EXT_STATS */
  1660. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1661. {
  1662. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1663. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1664. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1665. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1666. uint32_t interframe_delay =
  1667. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1668. struct cdp_tid_rx_stats *rstats =
  1669. &vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1670. dp_update_delay_stats(NULL, rstats, to_stack, tid,
  1671. CDP_DELAY_STATS_REAP_STACK, ring_id, false);
  1672. /*
  1673. * Update interframe delay stats calculated at deliver_data_ol point.
  1674. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1675. * interframe delay will not be calculate correctly for 1st frame.
  1676. * On the other side, this will help in avoiding extra per packet check
  1677. * of vdev->prev_rx_deliver_tstamp.
  1678. */
  1679. dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
  1680. CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
  1681. vdev->prev_rx_deliver_tstamp = current_ts;
  1682. }
  1683. /**
  1684. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1685. * @pdev: dp pdev reference
  1686. * @buf_list: buffer list to be dropepd
  1687. *
  1688. * Return: int (number of bufs dropped)
  1689. */
  1690. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1691. qdf_nbuf_t buf_list)
  1692. {
  1693. struct cdp_tid_rx_stats *stats = NULL;
  1694. uint8_t tid = 0, ring_id = 0;
  1695. int num_dropped = 0;
  1696. qdf_nbuf_t buf, next_buf;
  1697. buf = buf_list;
  1698. while (buf) {
  1699. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1700. next_buf = qdf_nbuf_queue_next(buf);
  1701. tid = qdf_nbuf_get_tid_val(buf);
  1702. if (qdf_likely(pdev)) {
  1703. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1704. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1705. stats->delivered_to_stack--;
  1706. }
  1707. dp_rx_nbuf_free(buf);
  1708. buf = next_buf;
  1709. num_dropped++;
  1710. }
  1711. return num_dropped;
  1712. }
  1713. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1714. /**
  1715. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1716. * @soc: core txrx main context
  1717. * @vdev: vdev
  1718. * @txrx_peer: txrx peer
  1719. * @nbuf_head: skb list head
  1720. *
  1721. * Return: true if packet is delivered to netdev per STA.
  1722. */
  1723. bool
  1724. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1725. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1726. {
  1727. /*
  1728. * When extended WDS is disabled, frames are sent to AP netdevice.
  1729. */
  1730. if (qdf_likely(!vdev->wds_ext_enabled))
  1731. return false;
  1732. /*
  1733. * There can be 2 cases:
  1734. * 1. Send frame to parent netdev if its not for netdev per STA
  1735. * 2. If frame is meant for netdev per STA:
  1736. * a. Send frame to appropriate netdev using registered fp.
  1737. * b. If fp is NULL, drop the frames.
  1738. */
  1739. if (!txrx_peer->wds_ext.init)
  1740. return false;
  1741. if (txrx_peer->osif_rx)
  1742. txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
  1743. else
  1744. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1745. return true;
  1746. }
  1747. #else
  1748. static inline bool
  1749. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1750. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1751. {
  1752. return false;
  1753. }
  1754. #endif
  1755. #ifdef PEER_CACHE_RX_PKTS
  1756. #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
  1757. /**
  1758. * dp_set_nbuf_band() - Set band in nbuf cb
  1759. * @peer: dp_peer
  1760. * @nbuf: nbuf
  1761. *
  1762. * Return: None
  1763. */
  1764. static inline void
  1765. dp_set_nbuf_band(struct dp_peer *peer, qdf_nbuf_t nbuf)
  1766. {
  1767. uint8_t link_id = 0;
  1768. link_id = dp_rx_get_stats_arr_idx_from_link_id(nbuf, peer->txrx_peer);
  1769. dp_rx_set_nbuf_band(nbuf, peer->txrx_peer, link_id);
  1770. }
  1771. #else
  1772. static inline void
  1773. dp_set_nbuf_band(struct dp_peer *peer, qdf_nbuf_t nbuf)
  1774. {
  1775. }
  1776. #endif
  1777. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1778. {
  1779. struct dp_peer_cached_bufq *bufqi;
  1780. struct dp_rx_cached_buf *cache_buf = NULL;
  1781. ol_txrx_rx_fp data_rx = NULL;
  1782. int num_buff_elem;
  1783. QDF_STATUS status;
  1784. /*
  1785. * Flush dp cached frames only for mld peers and legacy peers, as
  1786. * link peers don't store cached frames
  1787. */
  1788. if (IS_MLO_DP_LINK_PEER(peer))
  1789. return;
  1790. if (!peer->txrx_peer) {
  1791. dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
  1792. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1793. return;
  1794. }
  1795. if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
  1796. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1797. return;
  1798. }
  1799. qdf_spin_lock_bh(&peer->peer_info_lock);
  1800. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1801. data_rx = peer->vdev->osif_rx;
  1802. else
  1803. drop = true;
  1804. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1805. bufqi = &peer->txrx_peer->bufq_info;
  1806. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1807. qdf_list_remove_front(&bufqi->cached_bufq,
  1808. (qdf_list_node_t **)&cache_buf);
  1809. while (cache_buf) {
  1810. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1811. cache_buf->buf);
  1812. bufqi->entries -= num_buff_elem;
  1813. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1814. if (drop) {
  1815. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1816. cache_buf->buf);
  1817. } else {
  1818. dp_set_nbuf_band(peer, cache_buf->buf);
  1819. /* Flush the cached frames to OSIF DEV */
  1820. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1821. if (status != QDF_STATUS_SUCCESS)
  1822. bufqi->dropped = dp_rx_drop_nbuf_list(
  1823. peer->vdev->pdev,
  1824. cache_buf->buf);
  1825. }
  1826. qdf_mem_free(cache_buf);
  1827. cache_buf = NULL;
  1828. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1829. qdf_list_remove_front(&bufqi->cached_bufq,
  1830. (qdf_list_node_t **)&cache_buf);
  1831. }
  1832. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1833. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1834. }
  1835. /**
  1836. * dp_rx_enqueue_rx() - cache rx frames
  1837. * @peer: peer
  1838. * @txrx_peer: DP txrx_peer
  1839. * @rx_buf_list: cache buffer list
  1840. *
  1841. * Return: None
  1842. */
  1843. static QDF_STATUS
  1844. dp_rx_enqueue_rx(struct dp_peer *peer,
  1845. struct dp_txrx_peer *txrx_peer,
  1846. qdf_nbuf_t rx_buf_list)
  1847. {
  1848. struct dp_rx_cached_buf *cache_buf;
  1849. struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
  1850. int num_buff_elem;
  1851. QDF_STATUS ret = QDF_STATUS_SUCCESS;
  1852. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  1853. struct dp_peer *ta_peer = NULL;
  1854. /*
  1855. * If peer id is invalid which likely peer map has not completed,
  1856. * then need caller provide dp_peer pointer, else it's ok to use
  1857. * txrx_peer->peer_id to get dp_peer.
  1858. */
  1859. if (peer) {
  1860. if (QDF_STATUS_SUCCESS ==
  1861. dp_peer_get_ref(soc, peer, DP_MOD_ID_RX))
  1862. ta_peer = peer;
  1863. } else {
  1864. ta_peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  1865. DP_MOD_ID_RX);
  1866. }
  1867. if (!ta_peer) {
  1868. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1869. rx_buf_list);
  1870. return QDF_STATUS_E_INVAL;
  1871. }
  1872. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1873. bufqi->dropped);
  1874. if (!ta_peer->valid) {
  1875. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1876. rx_buf_list);
  1877. ret = QDF_STATUS_E_INVAL;
  1878. goto fail;
  1879. }
  1880. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1881. if (bufqi->entries >= bufqi->thresh) {
  1882. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1883. rx_buf_list);
  1884. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1885. ret = QDF_STATUS_E_RESOURCES;
  1886. goto fail;
  1887. }
  1888. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1889. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1890. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1891. if (!cache_buf) {
  1892. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1893. "Failed to allocate buf to cache rx frames");
  1894. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1895. rx_buf_list);
  1896. ret = QDF_STATUS_E_NOMEM;
  1897. goto fail;
  1898. }
  1899. cache_buf->buf = rx_buf_list;
  1900. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1901. qdf_list_insert_back(&bufqi->cached_bufq,
  1902. &cache_buf->node);
  1903. bufqi->entries += num_buff_elem;
  1904. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1905. fail:
  1906. dp_peer_unref_delete(ta_peer, DP_MOD_ID_RX);
  1907. return ret;
  1908. }
  1909. static inline
  1910. bool dp_rx_is_peer_cache_bufq_supported(void)
  1911. {
  1912. return true;
  1913. }
  1914. #else
  1915. static inline
  1916. bool dp_rx_is_peer_cache_bufq_supported(void)
  1917. {
  1918. return false;
  1919. }
  1920. static inline QDF_STATUS
  1921. dp_rx_enqueue_rx(struct dp_peer *peer,
  1922. struct dp_txrx_peer *txrx_peer,
  1923. qdf_nbuf_t rx_buf_list)
  1924. {
  1925. return QDF_STATUS_SUCCESS;
  1926. }
  1927. #endif
  1928. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1929. /**
  1930. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1931. * using the appropriate call back functions.
  1932. * @soc: soc
  1933. * @vdev: vdev
  1934. * @txrx_peer: peer
  1935. * @nbuf_head: skb list head
  1936. *
  1937. * Return: None
  1938. */
  1939. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1940. struct dp_vdev *vdev,
  1941. struct dp_txrx_peer *txrx_peer,
  1942. qdf_nbuf_t nbuf_head)
  1943. {
  1944. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1945. txrx_peer, nbuf_head)))
  1946. return;
  1947. /* Function pointer initialized only when FISA is enabled */
  1948. if (vdev->osif_fisa_rx)
  1949. /* on failure send it via regular path */
  1950. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1951. else
  1952. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1953. }
  1954. #else
  1955. /**
  1956. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1957. * using the appropriate call back functions.
  1958. * @soc: soc
  1959. * @vdev: vdev
  1960. * @txrx_peer: txrx peer
  1961. * @nbuf_head: skb list head
  1962. *
  1963. * Check the return status of the call back function and drop
  1964. * the packets if the return status indicates a failure.
  1965. *
  1966. * Return: None
  1967. */
  1968. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1969. struct dp_vdev *vdev,
  1970. struct dp_txrx_peer *txrx_peer,
  1971. qdf_nbuf_t nbuf_head)
  1972. {
  1973. int num_nbuf = 0;
  1974. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1975. /* Function pointer initialized only when FISA is enabled */
  1976. if (vdev->osif_fisa_rx)
  1977. /* on failure send it via regular path */
  1978. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1979. else if (vdev->osif_rx)
  1980. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1981. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1982. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1983. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1984. if (txrx_peer)
  1985. DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
  1986. num_nbuf);
  1987. }
  1988. }
  1989. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1990. /**
  1991. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1992. * @soc: DP soc
  1993. * @vdev: DP vdev handle
  1994. * @txrx_peer: pointer to the txrx peer object
  1995. * @nbuf_head: skb list head
  1996. *
  1997. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1998. * QDF_STATUS_E_FAILURE
  1999. */
  2000. static inline QDF_STATUS
  2001. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  2002. struct dp_vdev *vdev,
  2003. struct dp_txrx_peer *txrx_peer,
  2004. qdf_nbuf_t nbuf_head)
  2005. {
  2006. int num_nbuf;
  2007. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  2008. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  2009. /*
  2010. * This is a special case where vdev is invalid,
  2011. * so we cannot know the pdev to which this packet
  2012. * belonged. Hence we update the soc rx error stats.
  2013. */
  2014. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  2015. return QDF_STATUS_E_FAILURE;
  2016. }
  2017. /*
  2018. * highly unlikely to have a vdev without a registered rx
  2019. * callback function. if so let us free the nbuf_list.
  2020. */
  2021. if (qdf_unlikely(!vdev->osif_rx)) {
  2022. if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
  2023. dp_rx_enqueue_rx(NULL, txrx_peer, nbuf_head);
  2024. } else {
  2025. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  2026. nbuf_head);
  2027. DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
  2028. vdev->pdev->enhanced_stats_en);
  2029. }
  2030. return QDF_STATUS_E_FAILURE;
  2031. }
  2032. return QDF_STATUS_SUCCESS;
  2033. }
  2034. #if defined(WLAN_FEATURE_11BE_MLO) && defined(RAW_PKT_MLD_ADDR_CONVERSION)
  2035. static void dp_rx_raw_pkt_mld_addr_conv(struct dp_soc *soc,
  2036. struct dp_vdev *vdev,
  2037. struct dp_txrx_peer *txrx_peer,
  2038. qdf_nbuf_t nbuf_head)
  2039. {
  2040. qdf_nbuf_t nbuf, next;
  2041. struct dp_peer *peer = NULL;
  2042. struct ieee80211_frame *wh = NULL;
  2043. if (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)
  2044. return;
  2045. peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  2046. DP_MOD_ID_RX);
  2047. if (!peer)
  2048. return;
  2049. if (!IS_MLO_DP_MLD_PEER(peer)) {
  2050. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2051. return;
  2052. }
  2053. nbuf = nbuf_head;
  2054. while (nbuf) {
  2055. next = nbuf->next;
  2056. wh = (struct ieee80211_frame *)qdf_nbuf_data(nbuf);
  2057. qdf_mem_copy(wh->i_addr1, vdev->mld_mac_addr.raw,
  2058. QDF_MAC_ADDR_SIZE);
  2059. qdf_mem_copy(wh->i_addr2, peer->mac_addr.raw,
  2060. QDF_MAC_ADDR_SIZE);
  2061. nbuf = next;
  2062. }
  2063. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2064. }
  2065. #else
  2066. static inline
  2067. void dp_rx_raw_pkt_mld_addr_conv(struct dp_soc *soc,
  2068. struct dp_vdev *vdev,
  2069. struct dp_txrx_peer *txrx_peer,
  2070. qdf_nbuf_t nbuf_head)
  2071. { }
  2072. #endif
  2073. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  2074. struct dp_vdev *vdev,
  2075. struct dp_txrx_peer *txrx_peer,
  2076. qdf_nbuf_t nbuf_head,
  2077. qdf_nbuf_t nbuf_tail)
  2078. {
  2079. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  2080. QDF_STATUS_SUCCESS)
  2081. return QDF_STATUS_E_FAILURE;
  2082. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  2083. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  2084. dp_rx_raw_pkt_mld_addr_conv(soc, vdev, txrx_peer, nbuf_head);
  2085. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  2086. &nbuf_tail);
  2087. }
  2088. dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
  2089. return QDF_STATUS_SUCCESS;
  2090. }
  2091. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  2092. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  2093. struct dp_vdev *vdev,
  2094. struct dp_txrx_peer *txrx_peer,
  2095. qdf_nbuf_t nbuf_head,
  2096. qdf_nbuf_t nbuf_tail)
  2097. {
  2098. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  2099. QDF_STATUS_SUCCESS)
  2100. return QDF_STATUS_E_FAILURE;
  2101. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  2102. return QDF_STATUS_SUCCESS;
  2103. }
  2104. #endif
  2105. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  2106. #ifdef VDEV_PEER_PROTOCOL_COUNT
  2107. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
  2108. { \
  2109. qdf_nbuf_t nbuf_local; \
  2110. struct dp_txrx_peer *txrx_peer_local; \
  2111. struct dp_vdev *vdev_local = vdev_hdl; \
  2112. do { \
  2113. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  2114. break; \
  2115. nbuf_local = nbuf; \
  2116. txrx_peer_local = txrx_peer; \
  2117. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  2118. break; \
  2119. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  2120. break; \
  2121. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  2122. (nbuf_local), \
  2123. (txrx_peer_local), 0, 1); \
  2124. } while (0); \
  2125. }
  2126. #else
  2127. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
  2128. #endif
  2129. #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
  2130. /**
  2131. * dp_rx_rates_stats_update() - update rate stats
  2132. * from rx msdu.
  2133. * @soc: datapath soc handle
  2134. * @nbuf: received msdu buffer
  2135. * @rx_tlv_hdr: rx tlv header
  2136. * @txrx_peer: datapath txrx_peer handle
  2137. * @sgi: Short Guard Interval
  2138. * @mcs: Modulation and Coding Set
  2139. * @nss: Number of Spatial Streams
  2140. * @bw: BandWidth
  2141. * @pkt_type: Corresponds to preamble
  2142. * @link_id: Link Id on which packet is received
  2143. *
  2144. * To be precisely record rates, following factors are considered:
  2145. * Exclude specific frames, ARP, DHCP, ssdp, etc.
  2146. * Make sure to affect rx throughput as least as possible.
  2147. *
  2148. * Return: void
  2149. */
  2150. static void
  2151. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2152. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  2153. uint32_t sgi, uint32_t mcs,
  2154. uint32_t nss, uint32_t bw, uint32_t pkt_type,
  2155. uint8_t link_id)
  2156. {
  2157. uint32_t rix;
  2158. uint16_t ratecode;
  2159. uint32_t avg_rx_rate;
  2160. uint32_t ratekbps;
  2161. enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
  2162. if (soc->high_throughput ||
  2163. dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
  2164. return;
  2165. }
  2166. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs, link_id);
  2167. /* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */
  2168. if (qdf_unlikely(pkt_type == DOT11_B))
  2169. nss = 1;
  2170. /* here pkt_type corresponds to preamble */
  2171. ratekbps = dp_getrateindex(sgi,
  2172. mcs,
  2173. nss - 1,
  2174. pkt_type,
  2175. bw,
  2176. punc_mode,
  2177. &rix,
  2178. &ratecode);
  2179. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps, link_id);
  2180. avg_rx_rate =
  2181. dp_ath_rate_lpf(
  2182. txrx_peer->stats[link_id].extd_stats.rx.avg_rx_rate,
  2183. ratekbps);
  2184. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate, link_id);
  2185. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss, link_id);
  2186. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs, link_id);
  2187. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw, link_id);
  2188. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi, link_id);
  2189. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type, link_id);
  2190. }
  2191. #else
  2192. static inline void
  2193. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2194. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  2195. uint32_t sgi, uint32_t mcs,
  2196. uint32_t nss, uint32_t bw, uint32_t pkt_type,
  2197. uint8_t link_id)
  2198. {
  2199. }
  2200. #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
  2201. #ifndef QCA_ENHANCED_STATS_SUPPORT
  2202. /**
  2203. * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
  2204. *
  2205. * @soc: datapath soc handle
  2206. * @nbuf: received msdu buffer
  2207. * @rx_tlv_hdr: rx tlv header
  2208. * @txrx_peer: datapath txrx_peer handle
  2209. * @link_id: link id on which the packet is received
  2210. *
  2211. * Return: void
  2212. */
  2213. static inline
  2214. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2215. uint8_t *rx_tlv_hdr,
  2216. struct dp_txrx_peer *txrx_peer,
  2217. uint8_t link_id)
  2218. {
  2219. bool is_ampdu;
  2220. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  2221. uint8_t dst_mcs_idx;
  2222. /*
  2223. * TODO - For KIWI this field is present in ring_desc
  2224. * Try to use ring desc instead of tlv.
  2225. */
  2226. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  2227. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu, link_id);
  2228. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu),
  2229. link_id);
  2230. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  2231. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  2232. tid = qdf_nbuf_get_tid_val(nbuf);
  2233. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  2234. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  2235. rx_tlv_hdr);
  2236. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  2237. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  2238. /* do HW to SW pkt type conversion */
  2239. pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
  2240. hal_2_dp_pkt_type_map[pkt_type]);
  2241. /*
  2242. * The MCS index does not start with 0 when NSS>1 in HT mode.
  2243. * MCS params for optional 20/40MHz, NSS=1~3, EQM(NSS>1):
  2244. * ------------------------------------------------------
  2245. * NSS | 1 | 2 | 3 | 4
  2246. * ------------------------------------------------------
  2247. * MCS index: HT20 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  2248. * ------------------------------------------------------
  2249. * MCS index: HT40 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  2250. * ------------------------------------------------------
  2251. * Currently, the MAX_NSS=2. If NSS>2, MCS index = 8 * (NSS-1)
  2252. */
  2253. if ((pkt_type == DOT11_N) && (nss == 2))
  2254. mcs += 8;
  2255. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
  2256. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)),
  2257. link_id);
  2258. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  2259. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)),
  2260. link_id);
  2261. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1, link_id);
  2262. /*
  2263. * only if nss > 0 and pkt_type is 11N/AC/AX,
  2264. * then increase index [nss - 1] in array counter.
  2265. */
  2266. if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
  2267. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1, link_id);
  2268. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1, link_id);
  2269. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
  2270. hal_rx_tlv_mic_err_get(soc->hal_soc,
  2271. rx_tlv_hdr), link_id);
  2272. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
  2273. hal_rx_tlv_decrypt_err_get(soc->hal_soc,
  2274. rx_tlv_hdr), link_id);
  2275. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1,
  2276. link_id);
  2277. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1,
  2278. link_id);
  2279. dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
  2280. if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
  2281. DP_PEER_EXTD_STATS_INC(txrx_peer,
  2282. rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
  2283. 1, link_id);
  2284. dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
  2285. sgi, mcs, nss, bw, pkt_type, link_id);
  2286. }
  2287. #else
  2288. static inline
  2289. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2290. uint8_t *rx_tlv_hdr,
  2291. struct dp_txrx_peer *txrx_peer,
  2292. uint8_t link_id)
  2293. {
  2294. }
  2295. #endif
  2296. #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
  2297. static inline void
  2298. dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
  2299. qdf_nbuf_t nbuf, uint8_t link_id)
  2300. {
  2301. uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
  2302. if (qdf_unlikely(lmac_id >= CDP_MAX_LMACS)) {
  2303. dp_err_rl("Invalid lmac_id: %u vdev_id: %u",
  2304. lmac_id, QDF_NBUF_CB_RX_VDEV_ID(nbuf));
  2305. if (qdf_likely(txrx_peer))
  2306. dp_err_rl("peer_id: %u", txrx_peer->peer_id);
  2307. return;
  2308. }
  2309. /* only count stats per lmac for MLO connection*/
  2310. DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
  2311. QDF_NBUF_CB_RX_PKT_LEN(nbuf),
  2312. txrx_peer->is_mld_peer, link_id);
  2313. }
  2314. #else
  2315. static inline void
  2316. dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
  2317. qdf_nbuf_t nbuf, uint8_t link_id)
  2318. {
  2319. }
  2320. #endif
  2321. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2322. uint8_t *rx_tlv_hdr,
  2323. struct dp_txrx_peer *txrx_peer,
  2324. uint8_t ring_id,
  2325. struct cdp_tid_rx_stats *tid_stats,
  2326. uint8_t link_id)
  2327. {
  2328. bool is_not_amsdu;
  2329. struct dp_vdev *vdev = txrx_peer->vdev;
  2330. uint8_t enh_flag;
  2331. qdf_ether_header_t *eh;
  2332. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2333. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
  2334. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  2335. qdf_nbuf_is_rx_chfrag_end(nbuf);
  2336. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
  2337. msdu_len, link_id);
  2338. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
  2339. is_not_amsdu, link_id);
  2340. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1,
  2341. !is_not_amsdu, link_id);
  2342. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
  2343. qdf_nbuf_is_rx_retry_flag(nbuf), link_id);
  2344. dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf, link_id);
  2345. tid_stats->msdu_cnt++;
  2346. enh_flag = vdev->pdev->enhanced_stats_en;
  2347. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  2348. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  2349. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  2350. DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag, link_id);
  2351. tid_stats->mcast_msdu_cnt++;
  2352. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  2353. DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len,
  2354. enh_flag, link_id);
  2355. tid_stats->bcast_msdu_cnt++;
  2356. }
  2357. } else {
  2358. DP_PEER_UC_INCC_PKT(txrx_peer, 1, msdu_len,
  2359. enh_flag, link_id);
  2360. }
  2361. txrx_peer->stats[link_id].per_pkt_stats.rx.last_rx_ts =
  2362. qdf_system_ticks();
  2363. dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr,
  2364. txrx_peer, link_id);
  2365. }
  2366. #ifndef WDS_VENDOR_EXTENSION
  2367. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  2368. struct dp_vdev *vdev,
  2369. struct dp_txrx_peer *txrx_peer)
  2370. {
  2371. return 1;
  2372. }
  2373. #endif
  2374. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  2375. #ifdef DP_RX_UDP_OVER_PEER_ROAM
  2376. /**
  2377. * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
  2378. * during roaming
  2379. * @vdev: dp_vdev pointer
  2380. * @rx_tlv_hdr: rx tlv header
  2381. * @nbuf: pkt skb pointer
  2382. *
  2383. * This function will check if rx udp data is received from authorised
  2384. * roamed peer before peer map indication is received from FW after
  2385. * roaming. This is needed for VoIP scenarios in which packet loss
  2386. * expected during roaming is minimal.
  2387. *
  2388. * Return: bool
  2389. */
  2390. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2391. uint8_t *rx_tlv_hdr,
  2392. qdf_nbuf_t nbuf)
  2393. {
  2394. char *hdr_desc;
  2395. struct ieee80211_frame *wh = NULL;
  2396. hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
  2397. rx_tlv_hdr);
  2398. wh = (struct ieee80211_frame *)hdr_desc;
  2399. if (vdev->roaming_peer_status ==
  2400. WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
  2401. !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
  2402. QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
  2403. qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
  2404. return true;
  2405. return false;
  2406. }
  2407. #else
  2408. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2409. uint8_t *rx_tlv_hdr,
  2410. qdf_nbuf_t nbuf)
  2411. {
  2412. return false;
  2413. }
  2414. #endif
  2415. #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
  2416. /**
  2417. * dp_rx_nbuf_band_set() - set nbuf band.
  2418. * @soc: dp soc handle
  2419. * @nbuf: nbuf handle
  2420. *
  2421. * Return: None
  2422. */
  2423. static inline void
  2424. dp_rx_nbuf_band_set(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2425. {
  2426. struct qdf_mac_addr *mac_addr;
  2427. struct dp_peer *peer;
  2428. struct dp_txrx_peer *txrx_peer;
  2429. uint8_t link_id;
  2430. mac_addr = (struct qdf_mac_addr *)(qdf_nbuf_data(nbuf) +
  2431. QDF_NBUF_SRC_MAC_OFFSET);
  2432. peer = dp_mld_peer_find_hash_find(soc, mac_addr->bytes, 0,
  2433. DP_VDEV_ALL, DP_MOD_ID_RX);
  2434. if (qdf_likely(peer)) {
  2435. txrx_peer = dp_get_txrx_peer(peer);
  2436. if (qdf_likely(txrx_peer)) {
  2437. link_id = QDF_NBUF_CB_RX_LOGICAL_LINK_ID(nbuf);
  2438. qdf_nbuf_rx_set_band(nbuf, txrx_peer->ll_band[link_id]);
  2439. }
  2440. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2441. }
  2442. }
  2443. #else
  2444. static inline void
  2445. dp_rx_nbuf_band_set(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2446. {
  2447. }
  2448. #endif
  2449. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2450. {
  2451. uint16_t peer_id;
  2452. uint8_t vdev_id;
  2453. struct dp_vdev *vdev = NULL;
  2454. uint32_t l2_hdr_offset = 0;
  2455. uint16_t msdu_len = 0;
  2456. uint32_t pkt_len = 0;
  2457. uint8_t *rx_tlv_hdr;
  2458. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  2459. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP |
  2460. FRAME_MASK_DNS_QUERY | FRAME_MASK_DNS_RESP;
  2461. bool is_special_frame = false;
  2462. struct dp_peer *peer = NULL;
  2463. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2464. if (peer_id > soc->max_peer_id)
  2465. goto deliver_fail;
  2466. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2467. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  2468. if (!vdev || vdev->delete.pending)
  2469. goto deliver_fail;
  2470. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  2471. goto deliver_fail;
  2472. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2473. l2_hdr_offset =
  2474. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2475. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2476. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  2477. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2478. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2479. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  2480. is_special_frame = dp_rx_is_special_frame(nbuf, frame_mask);
  2481. if (qdf_likely(vdev->osif_rx)) {
  2482. if (is_special_frame ||
  2483. dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr,
  2484. nbuf)) {
  2485. dp_rx_nbuf_band_set(soc, nbuf);
  2486. qdf_nbuf_set_exc_frame(nbuf, 1);
  2487. if (QDF_STATUS_SUCCESS !=
  2488. vdev->osif_rx(vdev->osif_vdev, nbuf))
  2489. goto deliver_fail;
  2490. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  2491. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2492. return;
  2493. }
  2494. } else if (is_special_frame) {
  2495. /*
  2496. * If MLO connection, txrx_peer for link peer does not exist,
  2497. * try to store these RX packets to txrx_peer's bufq of MLD
  2498. * peer until vdev->osif_rx is registered from CP and flush
  2499. * them to stack.
  2500. */
  2501. peer = dp_peer_get_tgt_peer_by_id(soc, peer_id,
  2502. DP_MOD_ID_RX);
  2503. if (!peer)
  2504. goto deliver_fail;
  2505. /* only check for MLO connection */
  2506. if (IS_MLO_DP_MLD_PEER(peer) && peer->txrx_peer &&
  2507. dp_rx_is_peer_cache_bufq_supported()) {
  2508. qdf_nbuf_set_exc_frame(nbuf, 1);
  2509. if (QDF_STATUS_SUCCESS ==
  2510. dp_rx_enqueue_rx(peer, peer->txrx_peer, nbuf)) {
  2511. DP_STATS_INC(soc,
  2512. rx.err.pkt_delivered_no_peer,
  2513. 1);
  2514. } else {
  2515. DP_STATS_INC(soc,
  2516. rx.err.rx_invalid_peer.num,
  2517. 1);
  2518. }
  2519. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2520. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2521. return;
  2522. }
  2523. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2524. }
  2525. deliver_fail:
  2526. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2527. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2528. dp_rx_nbuf_free(nbuf);
  2529. if (vdev)
  2530. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2531. }
  2532. #else
  2533. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2534. {
  2535. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2536. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2537. dp_rx_nbuf_free(nbuf);
  2538. }
  2539. #endif
  2540. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2541. #ifdef WLAN_SUPPORT_RX_FISA
  2542. QDF_STATUS dp_fisa_config(ol_txrx_soc_handle cdp_soc, uint8_t pdev_id,
  2543. enum cdp_fisa_config_id config_id,
  2544. union cdp_fisa_config *cfg)
  2545. {
  2546. struct dp_soc *soc = (struct dp_soc *)cdp_soc;
  2547. struct dp_pdev *pdev;
  2548. QDF_STATUS status;
  2549. pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
  2550. if (!pdev) {
  2551. dp_err("pdev is NULL for pdev_id %u", pdev_id);
  2552. return QDF_STATUS_E_INVAL;
  2553. }
  2554. switch (config_id) {
  2555. case CDP_FISA_HTT_RX_FISA_CFG:
  2556. status = dp_htt_rx_fisa_config(pdev, cfg->fisa_config);
  2557. break;
  2558. case CDP_FISA_HTT_RX_FSE_OP_CFG:
  2559. status = dp_htt_rx_flow_fse_operation(pdev, cfg->fse_op_cmd);
  2560. break;
  2561. case CDP_FISA_HTT_RX_FSE_SETUP_CFG:
  2562. status = dp_htt_rx_flow_fst_setup(pdev, cfg->fse_setup_info);
  2563. break;
  2564. default:
  2565. status = QDF_STATUS_E_INVAL;
  2566. }
  2567. return status;
  2568. }
  2569. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2570. {
  2571. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  2572. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2573. }
  2574. #else
  2575. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2576. {
  2577. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2578. }
  2579. #endif
  2580. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  2581. #ifdef DP_RX_DROP_RAW_FRM
  2582. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  2583. {
  2584. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2585. dp_rx_nbuf_free(nbuf);
  2586. return true;
  2587. }
  2588. return false;
  2589. }
  2590. #endif
  2591. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  2592. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2593. {
  2594. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  2595. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2596. }
  2597. #endif
  2598. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  2599. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  2600. uint16_t peer_id, uint32_t is_offload,
  2601. qdf_nbuf_t netbuf)
  2602. {
  2603. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2604. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  2605. peer_id, is_offload, pdev->pdev_id);
  2606. }
  2607. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2608. uint32_t is_offload)
  2609. {
  2610. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2611. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  2612. soc, nbuf, HTT_INVALID_VDEV,
  2613. is_offload, 0);
  2614. }
  2615. #endif
  2616. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2617. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2618. {
  2619. QDF_STATUS ret;
  2620. if (vdev->osif_rx_flush) {
  2621. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2622. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2623. dp_err("Failed to flush rx pkts for vdev %d",
  2624. vdev->vdev_id);
  2625. return ret;
  2626. }
  2627. }
  2628. return QDF_STATUS_SUCCESS;
  2629. }
  2630. static QDF_STATUS
  2631. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2632. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2633. struct dp_pdev *dp_pdev,
  2634. struct rx_desc_pool *rx_desc_pool,
  2635. bool dp_buf_page_frag_alloc_enable)
  2636. {
  2637. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2638. if (dp_buf_page_frag_alloc_enable) {
  2639. (nbuf_frag_info_t->virt_addr).nbuf =
  2640. qdf_nbuf_frag_alloc(dp_soc->osdev,
  2641. rx_desc_pool->buf_size,
  2642. RX_BUFFER_RESERVATION,
  2643. rx_desc_pool->buf_alignment, FALSE);
  2644. } else {
  2645. (nbuf_frag_info_t->virt_addr).nbuf =
  2646. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2647. RX_BUFFER_RESERVATION,
  2648. rx_desc_pool->buf_alignment, FALSE);
  2649. }
  2650. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2651. dp_err("nbuf alloc failed");
  2652. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2653. return ret;
  2654. }
  2655. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2656. (nbuf_frag_info_t->virt_addr).nbuf,
  2657. QDF_DMA_FROM_DEVICE,
  2658. rx_desc_pool->buf_size);
  2659. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2660. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2661. dp_err("nbuf map failed");
  2662. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2663. return ret;
  2664. }
  2665. nbuf_frag_info_t->paddr =
  2666. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2667. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2668. &nbuf_frag_info_t->paddr,
  2669. rx_desc_pool);
  2670. if (ret == QDF_STATUS_E_FAILURE) {
  2671. dp_err("nbuf check x86 failed");
  2672. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2673. return ret;
  2674. }
  2675. return QDF_STATUS_SUCCESS;
  2676. }
  2677. QDF_STATUS
  2678. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2679. struct dp_srng *dp_rxdma_srng,
  2680. struct rx_desc_pool *rx_desc_pool,
  2681. uint32_t num_req_buffers)
  2682. {
  2683. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2684. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2685. union dp_rx_desc_list_elem_t *next;
  2686. void *rxdma_ring_entry;
  2687. qdf_dma_addr_t paddr;
  2688. struct dp_rx_nbuf_frag_info *nf_info;
  2689. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2690. uint32_t buffer_index, nbuf_ptrs_per_page;
  2691. qdf_nbuf_t nbuf;
  2692. QDF_STATUS ret;
  2693. int page_idx, total_pages;
  2694. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2695. union dp_rx_desc_list_elem_t *tail = NULL;
  2696. int sync_hw_ptr = 1;
  2697. uint32_t num_entries_avail;
  2698. bool dp_buf_page_frag_alloc_enable;
  2699. if (qdf_unlikely(!dp_pdev)) {
  2700. dp_rx_err("%pK: pdev is null for mac_id = %d",
  2701. dp_soc, mac_id);
  2702. return QDF_STATUS_E_FAILURE;
  2703. }
  2704. dp_buf_page_frag_alloc_enable =
  2705. wlan_cfg_is_dp_buf_page_frag_alloc_enable(dp_soc->wlan_cfg_ctx);
  2706. if (qdf_unlikely(!rxdma_srng)) {
  2707. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2708. return QDF_STATUS_E_FAILURE;
  2709. }
  2710. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2711. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2712. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2713. rxdma_srng,
  2714. sync_hw_ptr);
  2715. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2716. if (!num_entries_avail) {
  2717. dp_err("Num of available entries is zero, nothing to do");
  2718. return QDF_STATUS_E_NOMEM;
  2719. }
  2720. if (num_entries_avail < num_req_buffers)
  2721. num_req_buffers = num_entries_avail;
  2722. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2723. num_req_buffers, &desc_list, &tail);
  2724. if (!nr_descs) {
  2725. dp_err("no free rx_descs in freelist");
  2726. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2727. return QDF_STATUS_E_NOMEM;
  2728. }
  2729. dp_debug("got %u RX descs for driver attach", nr_descs);
  2730. /*
  2731. * Try to allocate pointers to the nbuf one page at a time.
  2732. * Take pointers that can fit in one page of memory and
  2733. * iterate through the total descriptors that need to be
  2734. * allocated in order of pages. Reuse the pointers that
  2735. * have been allocated to fit in one page across each
  2736. * iteration to index into the nbuf.
  2737. */
  2738. total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
  2739. /*
  2740. * Add an extra page to store the remainder if any
  2741. */
  2742. if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
  2743. total_pages++;
  2744. nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
  2745. if (!nf_info) {
  2746. dp_err("failed to allocate nbuf array");
  2747. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2748. QDF_BUG(0);
  2749. return QDF_STATUS_E_NOMEM;
  2750. }
  2751. nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
  2752. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2753. qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
  2754. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2755. /*
  2756. * The last page of buffer pointers may not be required
  2757. * completely based on the number of descriptors. Below
  2758. * check will ensure we are allocating only the
  2759. * required number of descriptors.
  2760. */
  2761. if (nr_nbuf_total >= nr_descs)
  2762. break;
  2763. /* Flag is set while pdev rx_desc_pool initialization */
  2764. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2765. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2766. &nf_info[nr_nbuf], dp_pdev,
  2767. rx_desc_pool);
  2768. else
  2769. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2770. &nf_info[nr_nbuf], dp_pdev,
  2771. rx_desc_pool,
  2772. dp_buf_page_frag_alloc_enable);
  2773. if (QDF_IS_STATUS_ERROR(ret))
  2774. break;
  2775. nr_nbuf_total++;
  2776. }
  2777. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2778. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2779. rxdma_ring_entry =
  2780. hal_srng_src_get_next(dp_soc->hal_soc,
  2781. rxdma_srng);
  2782. qdf_assert_always(rxdma_ring_entry);
  2783. next = desc_list->next;
  2784. paddr = nf_info[buffer_index].paddr;
  2785. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2786. /* Flag is set while pdev rx_desc_pool initialization */
  2787. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2788. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2789. &nf_info[buffer_index]);
  2790. else
  2791. dp_rx_desc_prep(&desc_list->rx_desc,
  2792. &nf_info[buffer_index]);
  2793. desc_list->rx_desc.in_use = 1;
  2794. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2795. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2796. __func__,
  2797. RX_DESC_REPLENISHED);
  2798. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2799. desc_list->rx_desc.cookie,
  2800. rx_desc_pool->owner);
  2801. dp_ipa_handle_rx_buf_smmu_mapping(
  2802. dp_soc, nbuf,
  2803. rx_desc_pool->buf_size, true,
  2804. __func__, __LINE__);
  2805. dp_audio_smmu_map(dp_soc->osdev,
  2806. qdf_mem_paddr_from_dmaaddr(dp_soc->osdev,
  2807. QDF_NBUF_CB_PADDR(nbuf)),
  2808. QDF_NBUF_CB_PADDR(nbuf),
  2809. rx_desc_pool->buf_size);
  2810. desc_list = next;
  2811. }
  2812. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2813. rxdma_srng, nr_nbuf, nr_nbuf);
  2814. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2815. }
  2816. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2817. qdf_mem_free(nf_info);
  2818. if (!nr_nbuf_total) {
  2819. dp_err("No nbuf's allocated");
  2820. QDF_BUG(0);
  2821. return QDF_STATUS_E_RESOURCES;
  2822. }
  2823. /* No need to count the number of bytes received during replenish.
  2824. * Therefore set replenish.pkts.bytes as 0.
  2825. */
  2826. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2827. return QDF_STATUS_SUCCESS;
  2828. }
  2829. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2830. #ifdef DP_RX_MON_MEM_FRAG
  2831. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2832. bool is_mon_dest_desc)
  2833. {
  2834. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2835. if (is_mon_dest_desc)
  2836. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2837. else
  2838. qdf_frag_cache_drain(&rx_desc_pool->pf_cache);
  2839. }
  2840. #else
  2841. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2842. bool is_mon_dest_desc)
  2843. {
  2844. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2845. if (is_mon_dest_desc)
  2846. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2847. }
  2848. #endif
  2849. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2850. QDF_STATUS
  2851. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2852. {
  2853. struct dp_soc *soc = pdev->soc;
  2854. uint32_t rxdma_entries;
  2855. uint32_t rx_sw_desc_num;
  2856. struct dp_srng *dp_rxdma_srng;
  2857. struct rx_desc_pool *rx_desc_pool;
  2858. uint32_t status = QDF_STATUS_SUCCESS;
  2859. int mac_for_pdev;
  2860. mac_for_pdev = pdev->lmac_id;
  2861. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2862. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2863. soc, mac_for_pdev);
  2864. return status;
  2865. }
  2866. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2867. rxdma_entries = dp_rxdma_srng->num_entries;
  2868. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2869. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2870. rx_desc_pool->desc_type = QDF_DP_RX_DESC_BUF_TYPE;
  2871. status = dp_rx_desc_pool_alloc(soc,
  2872. rx_sw_desc_num,
  2873. rx_desc_pool);
  2874. if (status != QDF_STATUS_SUCCESS)
  2875. return status;
  2876. return status;
  2877. }
  2878. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2879. {
  2880. int mac_for_pdev = pdev->lmac_id;
  2881. struct dp_soc *soc = pdev->soc;
  2882. struct rx_desc_pool *rx_desc_pool;
  2883. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2884. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2885. }
  2886. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2887. {
  2888. int mac_for_pdev = pdev->lmac_id;
  2889. struct dp_soc *soc = pdev->soc;
  2890. uint32_t rxdma_entries;
  2891. uint32_t rx_sw_desc_num;
  2892. struct dp_srng *dp_rxdma_srng;
  2893. struct rx_desc_pool *rx_desc_pool;
  2894. uint32_t target_type = hal_get_target_type(soc->hal_soc);
  2895. uint16_t buf_size;
  2896. buf_size = wlan_cfg_rx_buffer_size(soc->wlan_cfg_ctx);
  2897. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2898. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2899. /*
  2900. * If NSS is enabled, rx_desc_pool is already filled.
  2901. * Hence, just disable desc_pool frag flag.
  2902. */
  2903. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2904. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2905. soc, mac_for_pdev);
  2906. return QDF_STATUS_SUCCESS;
  2907. }
  2908. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2909. return QDF_STATUS_E_NOMEM;
  2910. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2911. rxdma_entries = dp_rxdma_srng->num_entries;
  2912. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2913. rx_sw_desc_num =
  2914. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2915. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2916. rx_desc_pool->buf_size = buf_size;
  2917. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2918. /* Disable monitor dest processing via frag */
  2919. if (target_type == TARGET_TYPE_QCN9160) {
  2920. rx_desc_pool->buf_size = RX_MONITOR_BUFFER_SIZE;
  2921. rx_desc_pool->buf_alignment = RX_MONITOR_BUFFER_ALIGNMENT;
  2922. dp_rx_enable_mon_dest_frag(rx_desc_pool, true);
  2923. } else {
  2924. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2925. }
  2926. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2927. rx_sw_desc_num, rx_desc_pool);
  2928. return QDF_STATUS_SUCCESS;
  2929. }
  2930. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2931. {
  2932. int mac_for_pdev = pdev->lmac_id;
  2933. struct dp_soc *soc = pdev->soc;
  2934. struct rx_desc_pool *rx_desc_pool;
  2935. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2936. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2937. }
  2938. QDF_STATUS
  2939. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2940. {
  2941. int mac_for_pdev = pdev->lmac_id;
  2942. struct dp_soc *soc = pdev->soc;
  2943. struct dp_srng *dp_rxdma_srng;
  2944. struct rx_desc_pool *rx_desc_pool;
  2945. uint32_t rxdma_entries;
  2946. uint32_t target_type = hal_get_target_type(soc->hal_soc);
  2947. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2948. rxdma_entries = dp_rxdma_srng->num_entries;
  2949. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2950. /* Initialize RX buffer pool which will be
  2951. * used during low memory conditions
  2952. */
  2953. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2954. if (target_type == TARGET_TYPE_QCN9160)
  2955. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev,
  2956. dp_rxdma_srng,
  2957. rx_desc_pool,
  2958. rxdma_entries - 1);
  2959. else
  2960. return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
  2961. dp_rxdma_srng,
  2962. rx_desc_pool,
  2963. rxdma_entries - 1);
  2964. }
  2965. void
  2966. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2967. {
  2968. int mac_for_pdev = pdev->lmac_id;
  2969. struct dp_soc *soc = pdev->soc;
  2970. struct rx_desc_pool *rx_desc_pool;
  2971. uint32_t target_type = hal_get_target_type(soc->hal_soc);
  2972. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2973. if (target_type == TARGET_TYPE_QCN9160)
  2974. dp_rx_desc_frag_free(soc, rx_desc_pool);
  2975. else
  2976. dp_rx_desc_nbuf_free(soc, rx_desc_pool, false);
  2977. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2978. }
  2979. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2980. bool dp_rx_deliver_special_frame(struct dp_soc *soc,
  2981. struct dp_txrx_peer *txrx_peer,
  2982. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2983. uint8_t *rx_tlv_hdr)
  2984. {
  2985. uint32_t l2_hdr_offset = 0;
  2986. uint16_t msdu_len = 0;
  2987. uint32_t skip_len;
  2988. l2_hdr_offset =
  2989. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2990. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2991. skip_len = l2_hdr_offset;
  2992. } else {
  2993. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2994. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2995. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2996. }
  2997. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2998. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2999. qdf_nbuf_pull_head(nbuf, skip_len);
  3000. if (txrx_peer->vdev) {
  3001. dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
  3002. QDF_TX_RX_STATUS_OK);
  3003. }
  3004. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  3005. dp_info("special frame, mpdu sn 0x%x",
  3006. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  3007. qdf_nbuf_set_exc_frame(nbuf, 1);
  3008. dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
  3009. nbuf, NULL);
  3010. return true;
  3011. }
  3012. return false;
  3013. }
  3014. #endif
  3015. #ifdef QCA_MULTIPASS_SUPPORT
  3016. bool dp_rx_multipass_process(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf,
  3017. uint8_t tid)
  3018. {
  3019. struct vlan_ethhdr *vethhdrp;
  3020. if (qdf_unlikely(!txrx_peer->vlan_id))
  3021. return true;
  3022. vethhdrp = (struct vlan_ethhdr *)qdf_nbuf_data(nbuf);
  3023. /*
  3024. * h_vlan_proto & h_vlan_TCI should be 0x8100 & zero respectively
  3025. * as it is expected to be padded by 0
  3026. * return false if frame doesn't have above tag so that caller will
  3027. * drop the frame.
  3028. */
  3029. if (qdf_unlikely(vethhdrp->h_vlan_proto != htons(QDF_ETH_TYPE_8021Q)) ||
  3030. qdf_unlikely(vethhdrp->h_vlan_TCI != 0))
  3031. return false;
  3032. vethhdrp->h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
  3033. (txrx_peer->vlan_id & VLAN_VID_MASK));
  3034. if (vethhdrp->h_vlan_encapsulated_proto == htons(ETHERTYPE_PAE))
  3035. dp_tx_remove_vlan_tag(txrx_peer->vdev, nbuf);
  3036. return true;
  3037. }
  3038. #endif /* QCA_MULTIPASS_SUPPORT */