dp_rx.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093
  1. /*
  2. * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef RX_DESC_DEBUG_CHECK
  32. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  33. {
  34. rx_desc->magic = DP_RX_DESC_MAGIC;
  35. rx_desc->nbuf = nbuf;
  36. }
  37. #else
  38. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  39. {
  40. rx_desc->nbuf = nbuf;
  41. }
  42. #endif
  43. #ifdef CONFIG_WIN
  44. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  45. {
  46. return vdev->ap_bridge_enabled;
  47. }
  48. #else
  49. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  50. {
  51. if (vdev->opmode != wlan_op_mode_sta)
  52. return true;
  53. else
  54. return false;
  55. }
  56. #endif
  57. #ifdef ATH_RX_PRI_SAVE
  58. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  59. {
  60. qdf_nbuf_set_priority(nbuf, tid);
  61. if (qdf_unlikely(flag))
  62. qdf_nbuf_set_timestamp(nbuf);
  63. }
  64. #else
  65. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  66. {
  67. if (qdf_unlikely(flag)) {
  68. qdf_nbuf_set_priority(nbuf, tid);
  69. qdf_nbuf_set_timestamp(nbuf);
  70. }
  71. }
  72. #endif
  73. /*
  74. * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
  75. *
  76. * @soc: core txrx main context
  77. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  78. * @ring_desc: opaque pointer to the RX ring descriptor
  79. * @rx_desc: host rs descriptor
  80. *
  81. * Return: void
  82. */
  83. void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
  84. void *ring_desc, struct dp_rx_desc *rx_desc)
  85. {
  86. void *hal_soc = soc->hal_soc;
  87. dp_rx_desc_dump(rx_desc);
  88. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  89. hal_srng_dump_ring(hal_soc, hal_ring);
  90. qdf_assert_always(rx_desc->in_use);
  91. }
  92. /*
  93. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  94. * called during dp rx initialization
  95. * and at the end of dp_rx_process.
  96. *
  97. * @soc: core txrx main context
  98. * @mac_id: mac_id which is one of 3 mac_ids
  99. * @dp_rxdma_srng: dp rxdma circular ring
  100. * @rx_desc_pool: Pointer to free Rx descriptor pool
  101. * @num_req_buffers: number of buffer to be replenished
  102. * @desc_list: list of descs if called from dp_rx_process
  103. * or NULL during dp rx initialization or out of buffer
  104. * interrupt.
  105. * @tail: tail of descs list
  106. * Return: return success or failure
  107. */
  108. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  109. struct dp_srng *dp_rxdma_srng,
  110. struct rx_desc_pool *rx_desc_pool,
  111. uint32_t num_req_buffers,
  112. union dp_rx_desc_list_elem_t **desc_list,
  113. union dp_rx_desc_list_elem_t **tail)
  114. {
  115. uint32_t num_alloc_desc;
  116. uint16_t num_desc_to_free = 0;
  117. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  118. uint32_t num_entries_avail;
  119. uint32_t count;
  120. int sync_hw_ptr = 1;
  121. qdf_dma_addr_t paddr;
  122. qdf_nbuf_t rx_netbuf;
  123. void *rxdma_ring_entry;
  124. union dp_rx_desc_list_elem_t *next;
  125. QDF_STATUS ret;
  126. void *rxdma_srng;
  127. rxdma_srng = dp_rxdma_srng->hal_srng;
  128. if (!rxdma_srng) {
  129. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  130. "rxdma srng not initialized");
  131. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  132. return QDF_STATUS_E_FAILURE;
  133. }
  134. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  135. "requested %d buffers for replenish", num_req_buffers);
  136. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  137. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  138. rxdma_srng,
  139. sync_hw_ptr);
  140. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  141. "no of available entries in rxdma ring: %d",
  142. num_entries_avail);
  143. if (!(*desc_list) && (num_entries_avail >
  144. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  145. num_req_buffers = num_entries_avail;
  146. } else if (num_entries_avail < num_req_buffers) {
  147. num_desc_to_free = num_req_buffers - num_entries_avail;
  148. num_req_buffers = num_entries_avail;
  149. }
  150. if (qdf_unlikely(!num_req_buffers)) {
  151. num_desc_to_free = num_req_buffers;
  152. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  153. goto free_descs;
  154. }
  155. /*
  156. * if desc_list is NULL, allocate the descs from freelist
  157. */
  158. if (!(*desc_list)) {
  159. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  160. rx_desc_pool,
  161. num_req_buffers,
  162. desc_list,
  163. tail);
  164. if (!num_alloc_desc) {
  165. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  166. "no free rx_descs in freelist");
  167. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  168. num_req_buffers);
  169. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  170. return QDF_STATUS_E_NOMEM;
  171. }
  172. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  173. "%d rx desc allocated", num_alloc_desc);
  174. num_req_buffers = num_alloc_desc;
  175. }
  176. count = 0;
  177. while (count < num_req_buffers) {
  178. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  179. RX_BUFFER_SIZE,
  180. RX_BUFFER_RESERVATION,
  181. RX_BUFFER_ALIGNMENT,
  182. FALSE);
  183. if (!rx_netbuf) {
  184. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  185. continue;
  186. }
  187. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  188. QDF_DMA_BIDIRECTIONAL);
  189. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  190. qdf_nbuf_free(rx_netbuf);
  191. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  192. continue;
  193. }
  194. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  195. /*
  196. * check if the physical address of nbuf->data is
  197. * less then 0x50000000 then free the nbuf and try
  198. * allocating new nbuf. We can try for 100 times.
  199. * this is a temp WAR till we fix it properly.
  200. */
  201. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  202. if (ret == QDF_STATUS_E_FAILURE) {
  203. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  204. break;
  205. }
  206. count++;
  207. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  208. rxdma_srng);
  209. qdf_assert_always(rxdma_ring_entry);
  210. next = (*desc_list)->next;
  211. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  212. (*desc_list)->rx_desc.in_use = 1;
  213. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  214. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  215. (unsigned long long)paddr,
  216. (*desc_list)->rx_desc.cookie);
  217. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  218. (*desc_list)->rx_desc.cookie,
  219. rx_desc_pool->owner);
  220. *desc_list = next;
  221. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  222. }
  223. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  224. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  225. num_req_buffers, num_desc_to_free);
  226. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  227. (RX_BUFFER_SIZE * num_req_buffers));
  228. free_descs:
  229. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  230. /*
  231. * add any available free desc back to the free list
  232. */
  233. if (*desc_list)
  234. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  235. mac_id, rx_desc_pool);
  236. return QDF_STATUS_SUCCESS;
  237. }
  238. /*
  239. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  240. * pkts to RAW mode simulation to
  241. * decapsulate the pkt.
  242. *
  243. * @vdev: vdev on which RAW mode is enabled
  244. * @nbuf_list: list of RAW pkts to process
  245. * @peer: peer object from which the pkt is rx
  246. *
  247. * Return: void
  248. */
  249. void
  250. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  251. struct dp_peer *peer)
  252. {
  253. qdf_nbuf_t deliver_list_head = NULL;
  254. qdf_nbuf_t deliver_list_tail = NULL;
  255. qdf_nbuf_t nbuf;
  256. nbuf = nbuf_list;
  257. while (nbuf) {
  258. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  259. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  260. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  261. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  262. /*
  263. * reset the chfrag_start and chfrag_end bits in nbuf cb
  264. * as this is a non-amsdu pkt and RAW mode simulation expects
  265. * these bit s to be 0 for non-amsdu pkt.
  266. */
  267. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  268. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  269. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  270. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  271. }
  272. nbuf = next;
  273. }
  274. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  275. &deliver_list_tail, (struct cdp_peer*) peer);
  276. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  277. }
  278. #ifdef DP_LFR
  279. /*
  280. * In case of LFR, data of a new peer might be sent up
  281. * even before peer is added.
  282. */
  283. static inline struct dp_vdev *
  284. dp_get_vdev_from_peer(struct dp_soc *soc,
  285. uint16_t peer_id,
  286. struct dp_peer *peer,
  287. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  288. {
  289. struct dp_vdev *vdev;
  290. uint8_t vdev_id;
  291. if (unlikely(!peer)) {
  292. if (peer_id != HTT_INVALID_PEER) {
  293. vdev_id = DP_PEER_METADATA_ID_GET(
  294. mpdu_desc_info.peer_meta_data);
  295. QDF_TRACE(QDF_MODULE_ID_DP,
  296. QDF_TRACE_LEVEL_DEBUG,
  297. FL("PeerID %d not found use vdevID %d"),
  298. peer_id, vdev_id);
  299. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  300. vdev_id);
  301. } else {
  302. QDF_TRACE(QDF_MODULE_ID_DP,
  303. QDF_TRACE_LEVEL_DEBUG,
  304. FL("Invalid PeerID %d"),
  305. peer_id);
  306. return NULL;
  307. }
  308. } else {
  309. vdev = peer->vdev;
  310. }
  311. return vdev;
  312. }
  313. #else
  314. static inline struct dp_vdev *
  315. dp_get_vdev_from_peer(struct dp_soc *soc,
  316. uint16_t peer_id,
  317. struct dp_peer *peer,
  318. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  319. {
  320. if (unlikely(!peer)) {
  321. QDF_TRACE(QDF_MODULE_ID_DP,
  322. QDF_TRACE_LEVEL_DEBUG,
  323. FL("Peer not found for peerID %d"),
  324. peer_id);
  325. return NULL;
  326. } else {
  327. return peer->vdev;
  328. }
  329. }
  330. #endif
  331. /**
  332. * dp_rx_da_learn() - Add AST entry based on DA lookup
  333. * This is a WAR for HK 1.0 and will
  334. * be removed in HK 2.0
  335. *
  336. * @soc: core txrx main context
  337. * @rx_tlv_hdr : start address of rx tlvs
  338. * @ta_peer : Transmitter peer entry
  339. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  340. *
  341. */
  342. #ifdef FEATURE_WDS
  343. static void
  344. dp_rx_da_learn(struct dp_soc *soc,
  345. uint8_t *rx_tlv_hdr,
  346. struct dp_peer *ta_peer,
  347. qdf_nbuf_t nbuf)
  348. {
  349. /* For HKv2 DA port learing is not needed */
  350. if (qdf_likely(soc->ast_override_support))
  351. return;
  352. if (qdf_unlikely(!ta_peer))
  353. return;
  354. if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
  355. return;
  356. if (!soc->da_war_enabled)
  357. return;
  358. if (qdf_unlikely(!hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  359. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  360. dp_peer_add_ast(soc,
  361. ta_peer,
  362. qdf_nbuf_data(nbuf),
  363. CDP_TXRX_AST_TYPE_DA,
  364. IEEE80211_NODE_F_WDS_HM);
  365. }
  366. }
  367. #else
  368. static void
  369. dp_rx_da_learn(struct dp_soc *soc,
  370. uint8_t *rx_tlv_hdr,
  371. struct dp_peer *ta_peer,
  372. qdf_nbuf_t nbuf)
  373. {
  374. }
  375. #endif
  376. /**
  377. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  378. *
  379. * @soc: core txrx main context
  380. * @ta_peer : source peer entry
  381. * @rx_tlv_hdr : start address of rx tlvs
  382. * @nbuf : nbuf that has to be intrabss forwarded
  383. *
  384. * Return: bool: true if it is forwarded else false
  385. */
  386. static bool
  387. dp_rx_intrabss_fwd(struct dp_soc *soc,
  388. struct dp_peer *ta_peer,
  389. uint8_t *rx_tlv_hdr,
  390. qdf_nbuf_t nbuf)
  391. {
  392. uint16_t da_idx;
  393. uint16_t len;
  394. struct dp_peer *da_peer;
  395. struct dp_ast_entry *ast_entry;
  396. qdf_nbuf_t nbuf_copy;
  397. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  398. struct cdp_tid_rx_stats *tid_stats =
  399. &ta_peer->vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
  400. /* check if the destination peer is available in peer table
  401. * and also check if the source peer and destination peer
  402. * belong to the same vap and destination peer is not bss peer.
  403. */
  404. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  405. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  406. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  407. ast_entry = soc->ast_table[da_idx];
  408. if (!ast_entry)
  409. return false;
  410. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  411. ast_entry->is_active = TRUE;
  412. return false;
  413. }
  414. da_peer = ast_entry->peer;
  415. if (!da_peer)
  416. return false;
  417. /* TA peer cannot be same as peer(DA) on which AST is present
  418. * this indicates a change in topology and that AST entries
  419. * are yet to be updated.
  420. */
  421. if (da_peer == ta_peer)
  422. return false;
  423. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  424. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  425. len = qdf_nbuf_len(nbuf);
  426. /* linearize the nbuf just before we send to
  427. * dp_tx_send()
  428. */
  429. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  430. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  431. return false;
  432. nbuf = qdf_nbuf_unshare(nbuf);
  433. if (!nbuf) {
  434. DP_STATS_INC_PKT(ta_peer,
  435. rx.intra_bss.fail,
  436. 1,
  437. len);
  438. /* return true even though the pkt is
  439. * not forwarded. Basically skb_unshare
  440. * failed and we want to continue with
  441. * next nbuf.
  442. */
  443. tid_stats->fail_cnt[INTRABSS_DROP]++;
  444. return true;
  445. }
  446. }
  447. if (!dp_tx_send(ta_peer->vdev, nbuf)) {
  448. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  449. len);
  450. return true;
  451. } else {
  452. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  453. len);
  454. tid_stats->fail_cnt[INTRABSS_DROP]++;
  455. return false;
  456. }
  457. }
  458. }
  459. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  460. * source, then clone the pkt and send the cloned pkt for
  461. * intra BSS forwarding and original pkt up the network stack
  462. * Note: how do we handle multicast pkts. do we forward
  463. * all multicast pkts as is or let a higher layer module
  464. * like igmpsnoop decide whether to forward or not with
  465. * Mcast enhancement.
  466. */
  467. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  468. !ta_peer->bss_peer))) {
  469. nbuf_copy = qdf_nbuf_copy(nbuf);
  470. if (!nbuf_copy)
  471. return false;
  472. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  473. len = qdf_nbuf_len(nbuf_copy);
  474. if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
  475. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  476. tid_stats->fail_cnt[INTRABSS_DROP]++;
  477. qdf_nbuf_free(nbuf_copy);
  478. } else {
  479. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  480. tid_stats->intrabss_cnt++;
  481. }
  482. }
  483. /* return false as we have to still send the original pkt
  484. * up the stack
  485. */
  486. return false;
  487. }
  488. #ifdef MESH_MODE_SUPPORT
  489. /**
  490. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  491. *
  492. * @vdev: DP Virtual device handle
  493. * @nbuf: Buffer pointer
  494. * @rx_tlv_hdr: start of rx tlv header
  495. * @peer: pointer to peer
  496. *
  497. * This function allocated memory for mesh receive stats and fill the
  498. * required stats. Stores the memory address in skb cb.
  499. *
  500. * Return: void
  501. */
  502. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  503. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  504. {
  505. struct mesh_recv_hdr_s *rx_info = NULL;
  506. uint32_t pkt_type;
  507. uint32_t nss;
  508. uint32_t rate_mcs;
  509. uint32_t bw;
  510. /* fill recv mesh stats */
  511. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  512. /* upper layers are resposible to free this memory */
  513. if (!rx_info) {
  514. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  515. "Memory allocation failed for mesh rx stats");
  516. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  517. return;
  518. }
  519. rx_info->rs_flags = MESH_RXHDR_VER1;
  520. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  521. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  522. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  523. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  524. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  525. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  526. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  527. if (vdev->osif_get_key)
  528. vdev->osif_get_key(vdev->osif_vdev,
  529. &rx_info->rs_decryptkey[0],
  530. &peer->mac_addr.raw[0],
  531. rx_info->rs_keyix);
  532. }
  533. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  534. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  535. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  536. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  537. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  538. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  539. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  540. (bw << 24);
  541. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  542. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  543. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  544. rx_info->rs_flags,
  545. rx_info->rs_rssi,
  546. rx_info->rs_channel,
  547. rx_info->rs_ratephy1,
  548. rx_info->rs_keyix);
  549. }
  550. /**
  551. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  552. *
  553. * @vdev: DP Virtual device handle
  554. * @nbuf: Buffer pointer
  555. * @rx_tlv_hdr: start of rx tlv header
  556. *
  557. * This checks if the received packet is matching any filter out
  558. * catogery and and drop the packet if it matches.
  559. *
  560. * Return: status(0 indicates drop, 1 indicate to no drop)
  561. */
  562. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  563. uint8_t *rx_tlv_hdr)
  564. {
  565. union dp_align_mac_addr mac_addr;
  566. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  567. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  568. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  569. return QDF_STATUS_SUCCESS;
  570. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  571. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  572. return QDF_STATUS_SUCCESS;
  573. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  574. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  575. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  576. return QDF_STATUS_SUCCESS;
  577. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  578. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  579. &mac_addr.raw[0]))
  580. return QDF_STATUS_E_FAILURE;
  581. if (!qdf_mem_cmp(&mac_addr.raw[0],
  582. &vdev->mac_addr.raw[0],
  583. QDF_MAC_ADDR_SIZE))
  584. return QDF_STATUS_SUCCESS;
  585. }
  586. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  587. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  588. &mac_addr.raw[0]))
  589. return QDF_STATUS_E_FAILURE;
  590. if (!qdf_mem_cmp(&mac_addr.raw[0],
  591. &vdev->mac_addr.raw[0],
  592. QDF_MAC_ADDR_SIZE))
  593. return QDF_STATUS_SUCCESS;
  594. }
  595. }
  596. return QDF_STATUS_E_FAILURE;
  597. }
  598. #else
  599. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  600. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  601. {
  602. }
  603. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  604. uint8_t *rx_tlv_hdr)
  605. {
  606. return QDF_STATUS_E_FAILURE;
  607. }
  608. #endif
  609. #ifdef CONFIG_WIN
  610. /**
  611. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  612. * clients
  613. * @pdev: DP pdev handle
  614. * @rx_pkt_hdr: Rx packet Header
  615. *
  616. * return: dp_vdev*
  617. */
  618. static
  619. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  620. uint8_t *rx_pkt_hdr)
  621. {
  622. struct ieee80211_frame *wh;
  623. struct dp_neighbour_peer *peer = NULL;
  624. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  625. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  626. return NULL;
  627. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  628. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  629. neighbour_peer_list_elem) {
  630. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  631. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  632. QDF_TRACE(
  633. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  634. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  635. peer->neighbour_peers_macaddr.raw[0],
  636. peer->neighbour_peers_macaddr.raw[1],
  637. peer->neighbour_peers_macaddr.raw[2],
  638. peer->neighbour_peers_macaddr.raw[3],
  639. peer->neighbour_peers_macaddr.raw[4],
  640. peer->neighbour_peers_macaddr.raw[5]);
  641. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  642. return pdev->monitor_vdev;
  643. }
  644. }
  645. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  646. return NULL;
  647. }
  648. /**
  649. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  650. * @soc: DP SOC handle
  651. * @mpdu: mpdu for which peer is invalid
  652. *
  653. * return: integer type
  654. */
  655. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  656. {
  657. struct dp_invalid_peer_msg msg;
  658. struct dp_vdev *vdev = NULL;
  659. struct dp_pdev *pdev = NULL;
  660. struct ieee80211_frame *wh;
  661. uint8_t i;
  662. qdf_nbuf_t curr_nbuf, next_nbuf;
  663. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  664. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  665. if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) {
  666. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  667. "Drop decapped frames");
  668. goto free;
  669. }
  670. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  671. if (!DP_FRAME_IS_DATA(wh)) {
  672. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  673. "NAWDS valid only for data frames");
  674. goto free;
  675. }
  676. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  677. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  678. "Invalid nbuf length");
  679. goto free;
  680. }
  681. for (i = 0; i < MAX_PDEV_CNT; i++) {
  682. pdev = soc->pdev_list[i];
  683. if (!pdev) {
  684. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  685. "PDEV not found");
  686. continue;
  687. }
  688. if (pdev->filter_neighbour_peers) {
  689. /* Next Hop scenario not yet handle */
  690. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  691. if (vdev) {
  692. dp_rx_mon_deliver(soc, i,
  693. pdev->invalid_peer_head_msdu,
  694. pdev->invalid_peer_tail_msdu);
  695. pdev->invalid_peer_head_msdu = NULL;
  696. pdev->invalid_peer_tail_msdu = NULL;
  697. return 0;
  698. }
  699. }
  700. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  701. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  702. QDF_MAC_ADDR_SIZE) == 0) {
  703. goto out;
  704. }
  705. }
  706. }
  707. if (!vdev) {
  708. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  709. "VDEV not found");
  710. goto free;
  711. }
  712. out:
  713. msg.wh = wh;
  714. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  715. msg.nbuf = mpdu;
  716. msg.vdev_id = vdev->vdev_id;
  717. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  718. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  719. &msg);
  720. free:
  721. /* Drop and free packet */
  722. curr_nbuf = mpdu;
  723. while (curr_nbuf) {
  724. next_nbuf = qdf_nbuf_next(curr_nbuf);
  725. qdf_nbuf_free(curr_nbuf);
  726. curr_nbuf = next_nbuf;
  727. }
  728. return 0;
  729. }
  730. /**
  731. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  732. * @soc: DP SOC handle
  733. * @mpdu: mpdu for which peer is invalid
  734. * @mpdu_done: if an mpdu is completed
  735. *
  736. * return: integer type
  737. */
  738. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  739. qdf_nbuf_t mpdu, bool mpdu_done)
  740. {
  741. /* Only trigger the process when mpdu is completed */
  742. if (mpdu_done)
  743. dp_rx_process_invalid_peer(soc, mpdu);
  744. }
  745. #else
  746. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  747. {
  748. qdf_nbuf_t curr_nbuf, next_nbuf;
  749. struct dp_pdev *pdev;
  750. uint8_t i;
  751. struct dp_vdev *vdev = NULL;
  752. struct ieee80211_frame *wh;
  753. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  754. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  755. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  756. if (!DP_FRAME_IS_DATA(wh)) {
  757. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  758. "only for data frames");
  759. goto free;
  760. }
  761. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  762. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  763. "Invalid nbuf length");
  764. goto free;
  765. }
  766. for (i = 0; i < MAX_PDEV_CNT; i++) {
  767. pdev = soc->pdev_list[i];
  768. if (!pdev) {
  769. QDF_TRACE(QDF_MODULE_ID_DP,
  770. QDF_TRACE_LEVEL_ERROR,
  771. "PDEV not found");
  772. continue;
  773. }
  774. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  775. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  776. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  777. QDF_MAC_ADDR_SIZE) == 0) {
  778. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  779. goto out;
  780. }
  781. }
  782. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  783. }
  784. if (!vdev) {
  785. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  786. "VDEV not found");
  787. goto free;
  788. }
  789. out:
  790. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  791. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  792. free:
  793. /* reset the head and tail pointers */
  794. for (i = 0; i < MAX_PDEV_CNT; i++) {
  795. pdev = soc->pdev_list[i];
  796. if (!pdev) {
  797. QDF_TRACE(QDF_MODULE_ID_DP,
  798. QDF_TRACE_LEVEL_ERROR,
  799. "PDEV not found");
  800. continue;
  801. }
  802. pdev->invalid_peer_head_msdu = NULL;
  803. pdev->invalid_peer_tail_msdu = NULL;
  804. }
  805. /* Drop and free packet */
  806. curr_nbuf = mpdu;
  807. while (curr_nbuf) {
  808. next_nbuf = qdf_nbuf_next(curr_nbuf);
  809. qdf_nbuf_free(curr_nbuf);
  810. curr_nbuf = next_nbuf;
  811. }
  812. return 0;
  813. }
  814. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  815. qdf_nbuf_t mpdu, bool mpdu_done)
  816. {
  817. /* Process the nbuf */
  818. dp_rx_process_invalid_peer(soc, mpdu);
  819. }
  820. #endif
  821. #ifdef RECEIVE_OFFLOAD
  822. /**
  823. * dp_rx_print_offload_info() - Print offload info from RX TLV
  824. * @rx_tlv: RX TLV for which offload information is to be printed
  825. *
  826. * Return: None
  827. */
  828. static void dp_rx_print_offload_info(uint8_t *rx_tlv)
  829. {
  830. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  831. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  832. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  833. dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  834. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  835. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  836. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  837. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  838. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  839. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  840. dp_verbose_debug("---------------------------------------------------------");
  841. }
  842. /**
  843. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  844. * @soc: DP SOC handle
  845. * @rx_tlv: RX TLV received for the msdu
  846. * @msdu: msdu for which GRO info needs to be filled
  847. *
  848. * Return: None
  849. */
  850. static
  851. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  852. qdf_nbuf_t msdu)
  853. {
  854. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  855. return;
  856. /* Filling up RX offload info only for TCP packets */
  857. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  858. return;
  859. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  860. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  861. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  862. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  863. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  864. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  865. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  866. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  867. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  868. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  869. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  870. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  871. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  872. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  873. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  874. HAL_RX_TLV_GET_IPV6(rx_tlv);
  875. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  876. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  877. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  878. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  879. dp_rx_print_offload_info(rx_tlv);
  880. }
  881. #else
  882. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  883. qdf_nbuf_t msdu)
  884. {
  885. }
  886. #endif /* RECEIVE_OFFLOAD */
  887. /**
  888. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  889. *
  890. * @nbuf: pointer to msdu.
  891. * @mpdu_len: mpdu length
  892. *
  893. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  894. */
  895. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  896. {
  897. bool last_nbuf;
  898. if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  899. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  900. last_nbuf = false;
  901. } else {
  902. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  903. last_nbuf = true;
  904. }
  905. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  906. return last_nbuf;
  907. }
  908. /**
  909. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  910. * multiple nbufs.
  911. * @nbuf: pointer to the first msdu of an amsdu.
  912. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  913. *
  914. *
  915. * This function implements the creation of RX frag_list for cases
  916. * where an MSDU is spread across multiple nbufs.
  917. *
  918. * Return: returns the head nbuf which contains complete frag_list.
  919. */
  920. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  921. {
  922. qdf_nbuf_t parent, next, frag_list;
  923. uint16_t frag_list_len = 0;
  924. uint16_t mpdu_len;
  925. bool last_nbuf;
  926. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  927. /*
  928. * this is a case where the complete msdu fits in one single nbuf.
  929. * in this case HW sets both start and end bit and we only need to
  930. * reset these bits for RAW mode simulator to decap the pkt
  931. */
  932. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  933. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  934. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  935. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  936. return nbuf;
  937. }
  938. /*
  939. * This is a case where we have multiple msdus (A-MSDU) spread across
  940. * multiple nbufs. here we create a fraglist out of these nbufs.
  941. *
  942. * the moment we encounter a nbuf with continuation bit set we
  943. * know for sure we have an MSDU which is spread across multiple
  944. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  945. */
  946. parent = nbuf;
  947. frag_list = nbuf->next;
  948. nbuf = nbuf->next;
  949. /*
  950. * set the start bit in the first nbuf we encounter with continuation
  951. * bit set. This has the proper mpdu length set as it is the first
  952. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  953. * nbufs will form the frag_list of the parent nbuf.
  954. */
  955. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  956. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  957. /*
  958. * this is where we set the length of the fragments which are
  959. * associated to the parent nbuf. We iterate through the frag_list
  960. * till we hit the last_nbuf of the list.
  961. */
  962. do {
  963. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  964. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  965. frag_list_len += qdf_nbuf_len(nbuf);
  966. if (last_nbuf) {
  967. next = nbuf->next;
  968. nbuf->next = NULL;
  969. break;
  970. }
  971. nbuf = nbuf->next;
  972. } while (!last_nbuf);
  973. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  974. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  975. parent->next = next;
  976. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  977. return parent;
  978. }
  979. /**
  980. * dp_rx_compute_delay() - Compute and fill in all timestamps
  981. * to pass in correct fields
  982. *
  983. * @vdev: pdev handle
  984. * @tx_desc: tx descriptor
  985. * @tid: tid value
  986. * Return: none
  987. */
  988. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  989. {
  990. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  991. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  992. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  993. uint32_t interframe_delay =
  994. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  995. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  996. CDP_DELAY_STATS_REAP_STACK);
  997. /*
  998. * Update interframe delay stats calculated at deliver_data_ol point.
  999. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1000. * interframe delay will not be calculate correctly for 1st frame.
  1001. * On the other side, this will help in avoiding extra per packet check
  1002. * of vdev->prev_rx_deliver_tstamp.
  1003. */
  1004. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1005. CDP_DELAY_STATS_RX_INTERFRAME);
  1006. vdev->prev_rx_deliver_tstamp = current_ts;
  1007. }
  1008. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  1009. struct dp_peer *peer,
  1010. qdf_nbuf_t nbuf_head,
  1011. qdf_nbuf_t nbuf_tail)
  1012. {
  1013. struct cdp_tid_rx_stats *stats = NULL;
  1014. uint8_t tid = 0;
  1015. /*
  1016. * highly unlikely to have a vdev without a registered rx
  1017. * callback function. if so let us free the nbuf_list.
  1018. */
  1019. if (qdf_unlikely(!vdev->osif_rx)) {
  1020. qdf_nbuf_t nbuf;
  1021. do {
  1022. nbuf = nbuf_head;
  1023. nbuf_head = nbuf_head->next;
  1024. tid = qdf_nbuf_get_priority(nbuf);
  1025. stats = &vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
  1026. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1027. stats->delivered_to_stack--;
  1028. qdf_nbuf_free(nbuf);
  1029. } while (nbuf_head);
  1030. return;
  1031. }
  1032. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1033. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1034. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1035. &nbuf_tail, (struct cdp_peer *) peer);
  1036. }
  1037. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1038. }
  1039. /**
  1040. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1041. * @nbuf: pointer to the first msdu of an amsdu.
  1042. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1043. *
  1044. * The ipsumed field of the skb is set based on whether HW validated the
  1045. * IP/TCP/UDP checksum.
  1046. *
  1047. * Return: void
  1048. */
  1049. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1050. qdf_nbuf_t nbuf,
  1051. uint8_t *rx_tlv_hdr)
  1052. {
  1053. qdf_nbuf_rx_cksum_t cksum = {0};
  1054. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1055. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1056. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1057. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1058. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1059. } else {
  1060. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1061. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1062. }
  1063. }
  1064. /**
  1065. * dp_rx_msdu_stats_update() - update per msdu stats.
  1066. * @soc: core txrx main context
  1067. * @nbuf: pointer to the first msdu of an amsdu.
  1068. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1069. * @peer: pointer to the peer object.
  1070. * @ring_id: reo dest ring number on which pkt is reaped.
  1071. *
  1072. * update all the per msdu stats for that nbuf.
  1073. * Return: void
  1074. */
  1075. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1076. qdf_nbuf_t nbuf,
  1077. uint8_t *rx_tlv_hdr,
  1078. struct dp_peer *peer,
  1079. uint8_t ring_id)
  1080. {
  1081. bool is_ampdu, is_not_amsdu;
  1082. uint16_t peer_id;
  1083. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1084. struct dp_vdev *vdev = peer->vdev;
  1085. qdf_ether_header_t *eh;
  1086. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  1087. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1088. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  1089. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1090. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1091. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1092. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1093. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1094. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  1095. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1096. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1097. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1098. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1099. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1100. }
  1101. }
  1102. /*
  1103. * currently we can return from here as we have similar stats
  1104. * updated at per ppdu level instead of msdu level
  1105. */
  1106. if (!soc->process_rx_status)
  1107. return;
  1108. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1109. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1110. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1111. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1112. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1113. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
  1114. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1115. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1116. rx_tlv_hdr);
  1117. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1118. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1119. DP_STATS_INC(peer, rx.bw[bw], 1);
  1120. DP_STATS_INC(peer, rx.nss[nss], 1);
  1121. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1122. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1123. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1124. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1125. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1126. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1127. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1128. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1129. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1130. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1131. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1132. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1133. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1134. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1135. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1136. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1137. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1138. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1139. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1140. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1141. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1142. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1143. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1144. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1145. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1146. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1147. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1148. if ((soc->process_rx_status) &&
  1149. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1150. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1151. if (!vdev->pdev)
  1152. return;
  1153. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1154. &peer->stats, peer_id,
  1155. UPDATE_PEER_STATS,
  1156. vdev->pdev->pdev_id);
  1157. #endif
  1158. }
  1159. }
  1160. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1161. void *rx_tlv_hdr)
  1162. {
  1163. if ((hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr) &&
  1164. (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
  1165. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1166. (hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  1167. (hal_rx_msdu_end_da_idx_get(soc->hal_soc,
  1168. rx_tlv_hdr) >
  1169. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1170. return false;
  1171. return true;
  1172. }
  1173. #ifdef WDS_VENDOR_EXTENSION
  1174. int dp_wds_rx_policy_check(
  1175. uint8_t *rx_tlv_hdr,
  1176. struct dp_vdev *vdev,
  1177. struct dp_peer *peer,
  1178. int rx_mcast
  1179. )
  1180. {
  1181. struct dp_peer *bss_peer;
  1182. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1183. int rx_policy_ucast, rx_policy_mcast;
  1184. if (vdev->opmode == wlan_op_mode_ap) {
  1185. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1186. if (bss_peer->bss_peer) {
  1187. /* if wds policy check is not enabled on this vdev, accept all frames */
  1188. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1189. return 1;
  1190. }
  1191. break;
  1192. }
  1193. }
  1194. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1195. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1196. } else { /* sta mode */
  1197. if (!peer->wds_ecm.wds_rx_filter) {
  1198. return 1;
  1199. }
  1200. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1201. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1202. }
  1203. /* ------------------------------------------------
  1204. * self
  1205. * peer- rx rx-
  1206. * wds ucast mcast dir policy accept note
  1207. * ------------------------------------------------
  1208. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1209. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1210. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1211. * 1 1 0 00 x1 0 bad frame, won't see it
  1212. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1213. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1214. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1215. * 1 0 1 00 1x 0 bad frame, won't see it
  1216. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1217. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1218. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1219. * 1 1 0 00 x0 0 bad frame, won't see it
  1220. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1221. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1222. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1223. * 1 0 1 00 0x 0 bad frame, won't see it
  1224. *
  1225. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1226. * 0 x x 01 xx 1
  1227. * 0 x x 10 xx 0
  1228. * 0 x x 00 xx 0 bad frame, won't see it
  1229. * ------------------------------------------------
  1230. */
  1231. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1232. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1233. rx_3addr = fr_ds ^ to_ds;
  1234. rx_4addr = fr_ds & to_ds;
  1235. if (vdev->opmode == wlan_op_mode_ap) {
  1236. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1237. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1238. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1239. return 1;
  1240. }
  1241. } else { /* sta mode */
  1242. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1243. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1244. return 1;
  1245. }
  1246. }
  1247. return 0;
  1248. }
  1249. #else
  1250. int dp_wds_rx_policy_check(
  1251. uint8_t *rx_tlv_hdr,
  1252. struct dp_vdev *vdev,
  1253. struct dp_peer *peer,
  1254. int rx_mcast
  1255. )
  1256. {
  1257. return 1;
  1258. }
  1259. #endif
  1260. #ifdef RX_DESC_DEBUG_CHECK
  1261. /**
  1262. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1263. * corruption
  1264. *
  1265. * @ring_desc: REO ring descriptor
  1266. * @rx_desc: Rx descriptor
  1267. *
  1268. * Return: NONE
  1269. */
  1270. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1271. struct dp_rx_desc *rx_desc)
  1272. {
  1273. struct hal_buf_info hbi;
  1274. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1275. /* Sanity check for possible buffer paddr corruption */
  1276. qdf_assert_always((&hbi)->paddr ==
  1277. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1278. }
  1279. #else
  1280. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1281. struct dp_rx_desc *rx_desc)
  1282. {
  1283. }
  1284. #endif
  1285. /**
  1286. * dp_rx_process() - Brain of the Rx processing functionality
  1287. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1288. * @soc: core txrx main context
  1289. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1290. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1291. * @quota: No. of units (packets) that can be serviced in one shot.
  1292. *
  1293. * This function implements the core of Rx functionality. This is
  1294. * expected to handle only non-error frames.
  1295. *
  1296. * Return: uint32_t: No. of elements processed
  1297. */
  1298. uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
  1299. uint8_t reo_ring_num, uint32_t quota)
  1300. {
  1301. void *hal_soc;
  1302. void *ring_desc;
  1303. struct dp_rx_desc *rx_desc = NULL;
  1304. qdf_nbuf_t nbuf, next;
  1305. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1306. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1307. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1308. uint32_t l2_hdr_offset = 0;
  1309. uint16_t msdu_len = 0;
  1310. uint16_t peer_id;
  1311. struct dp_peer *peer = NULL;
  1312. struct dp_vdev *vdev = NULL;
  1313. uint32_t pkt_len = 0;
  1314. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1315. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1316. enum hal_reo_error_status error;
  1317. uint32_t peer_mdata;
  1318. uint8_t *rx_tlv_hdr;
  1319. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1320. uint8_t mac_id = 0;
  1321. struct dp_pdev *pdev;
  1322. struct dp_pdev *rx_pdev;
  1323. struct dp_srng *dp_rxdma_srng;
  1324. struct rx_desc_pool *rx_desc_pool;
  1325. struct dp_soc *soc = int_ctx->soc;
  1326. uint8_t ring_id = 0;
  1327. uint8_t core_id = 0;
  1328. qdf_nbuf_t nbuf_head = NULL;
  1329. qdf_nbuf_t nbuf_tail = NULL;
  1330. qdf_nbuf_t deliver_list_head = NULL;
  1331. qdf_nbuf_t deliver_list_tail = NULL;
  1332. int32_t tid = 0;
  1333. uint32_t dst_num_valid = 0;
  1334. struct cdp_tid_rx_stats *tid_stats;
  1335. DP_HIST_INIT();
  1336. /* Debug -- Remove later */
  1337. qdf_assert(soc && hal_ring);
  1338. hal_soc = soc->hal_soc;
  1339. /* Debug -- Remove later */
  1340. qdf_assert(hal_soc);
  1341. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1342. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1343. /*
  1344. * Need API to convert from hal_ring pointer to
  1345. * Ring Type / Ring Id combo
  1346. */
  1347. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1348. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1349. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1350. hal_srng_access_end(hal_soc, hal_ring);
  1351. goto done;
  1352. }
  1353. /*
  1354. * start reaping the buffers from reo ring and queue
  1355. * them in per vdev queue.
  1356. * Process the received pkts in a different per vdev loop.
  1357. */
  1358. while (qdf_likely(quota)) {
  1359. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1360. /*
  1361. * in case HW has updated hp after we cached the hp
  1362. * ring_desc can be NULL even there are entries
  1363. * available in the ring. Update the cached_hp
  1364. * and reap the buffers available to read complete
  1365. * mpdu in one reap
  1366. *
  1367. * This is needed for RAW mode we have to read all
  1368. * msdus corresponding to amsdu in one reap to create
  1369. * SG list properly but due to mismatch in cached_hp
  1370. * and actual hp sometimes we are unable to read
  1371. * complete mpdu in one reap.
  1372. */
  1373. if (qdf_unlikely(!ring_desc)) {
  1374. dst_num_valid = hal_srng_dst_num_valid(hal_soc,
  1375. hal_ring,
  1376. true);
  1377. if (dst_num_valid) {
  1378. DP_STATS_INC(soc, rx.hp_oos, 1);
  1379. hal_srng_access_end_unlocked(hal_soc,
  1380. hal_ring);
  1381. continue;
  1382. } else {
  1383. break;
  1384. }
  1385. }
  1386. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1387. ring_id = hal_srng_ring_id_get(hal_ring);
  1388. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1389. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1390. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1391. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1392. /* Don't know how to deal with this -- assert */
  1393. qdf_assert(0);
  1394. }
  1395. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1396. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1397. qdf_assert(rx_desc);
  1398. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1399. /*
  1400. * this is a unlikely scenario where the host is reaping
  1401. * a descriptor which it already reaped just a while ago
  1402. * but is yet to replenish it back to HW.
  1403. * In this case host will dump the last 128 descriptors
  1404. * including the software descriptor rx_desc and assert.
  1405. */
  1406. if (qdf_unlikely(!rx_desc->in_use)) {
  1407. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1408. dp_rx_dump_info_and_assert(soc, hal_ring,
  1409. ring_desc, rx_desc);
  1410. }
  1411. rx_bufs_reaped[rx_desc->pool_id]++;
  1412. /* TODO */
  1413. /*
  1414. * Need a separate API for unmapping based on
  1415. * phyiscal address
  1416. */
  1417. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1418. QDF_DMA_BIDIRECTIONAL);
  1419. core_id = smp_processor_id();
  1420. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1421. /* Get MPDU DESC info */
  1422. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1423. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1424. mpdu_desc_info.peer_meta_data);
  1425. /* Get MSDU DESC info */
  1426. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1427. /*
  1428. * save msdu flags first, last and continuation msdu in
  1429. * nbuf->cb
  1430. */
  1431. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1432. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1433. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1434. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1435. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1436. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1437. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1438. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1439. /*
  1440. * if continuation bit is set then we have MSDU spread
  1441. * across multiple buffers, let us not decrement quota
  1442. * till we reap all buffers of that MSDU.
  1443. */
  1444. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1445. quota -= 1;
  1446. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1447. &tail[rx_desc->pool_id],
  1448. rx_desc);
  1449. }
  1450. done:
  1451. hal_srng_access_end(hal_soc, hal_ring);
  1452. if (nbuf_tail)
  1453. QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
  1454. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1455. /*
  1456. * continue with next mac_id if no pkts were reaped
  1457. * from that pool
  1458. */
  1459. if (!rx_bufs_reaped[mac_id])
  1460. continue;
  1461. pdev = soc->pdev_list[mac_id];
  1462. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1463. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1464. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1465. rx_desc_pool, rx_bufs_reaped[mac_id],
  1466. &head[mac_id], &tail[mac_id]);
  1467. }
  1468. /* Peer can be NULL is case of LFR */
  1469. if (qdf_likely(peer))
  1470. vdev = NULL;
  1471. /*
  1472. * BIG loop where each nbuf is dequeued from global queue,
  1473. * processed and queued back on a per vdev basis. These nbufs
  1474. * are sent to stack as and when we run out of nbufs
  1475. * or a new nbuf dequeued from global queue has a different
  1476. * vdev when compared to previous nbuf.
  1477. */
  1478. nbuf = nbuf_head;
  1479. while (nbuf) {
  1480. next = nbuf->next;
  1481. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1482. /* Get TID from first msdu per MPDU, save to skb->priority */
  1483. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1484. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
  1485. rx_tlv_hdr);
  1486. /*
  1487. * Check if DMA completed -- msdu_done is the last bit
  1488. * to be written
  1489. */
  1490. rx_pdev = soc->pdev_list[rx_desc->pool_id];
  1491. dp_rx_save_tid_ts(nbuf, tid, rx_pdev->delay_stats_flag);
  1492. tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[tid];
  1493. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1494. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1495. FL("MSDU DONE failure"));
  1496. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1497. QDF_TRACE_LEVEL_INFO);
  1498. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1499. qdf_assert(0);
  1500. }
  1501. tid_stats->msdu_cnt++;
  1502. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1503. tid_stats->mcast_msdu_cnt++;
  1504. if (qdf_nbuf_is_bcast_pkt(nbuf))
  1505. tid_stats->bcast_msdu_cnt++;
  1506. }
  1507. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1508. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1509. peer = dp_peer_find_by_id(soc, peer_id);
  1510. if (peer) {
  1511. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1512. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1513. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1514. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1515. QDF_NBUF_RX_PKT_DATA_TRACK;
  1516. }
  1517. rx_bufs_used++;
  1518. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1519. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1520. deliver_list_tail);
  1521. deliver_list_head = NULL;
  1522. deliver_list_tail = NULL;
  1523. }
  1524. if (qdf_likely(peer)) {
  1525. vdev = peer->vdev;
  1526. } else {
  1527. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1528. qdf_nbuf_len(nbuf));
  1529. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1530. qdf_nbuf_free(nbuf);
  1531. nbuf = next;
  1532. continue;
  1533. }
  1534. if (qdf_unlikely(!vdev)) {
  1535. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1536. qdf_nbuf_free(nbuf);
  1537. nbuf = next;
  1538. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1539. dp_peer_unref_del_find_by_id(peer);
  1540. continue;
  1541. }
  1542. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1543. /*
  1544. * First IF condition:
  1545. * 802.11 Fragmented pkts are reinjected to REO
  1546. * HW block as SG pkts and for these pkts we only
  1547. * need to pull the RX TLVS header length.
  1548. * Second IF condition:
  1549. * The below condition happens when an MSDU is spread
  1550. * across multiple buffers. This can happen in two cases
  1551. * 1. The nbuf size is smaller then the received msdu.
  1552. * ex: we have set the nbuf size to 2048 during
  1553. * nbuf_alloc. but we received an msdu which is
  1554. * 2304 bytes in size then this msdu is spread
  1555. * across 2 nbufs.
  1556. *
  1557. * 2. AMSDUs when RAW mode is enabled.
  1558. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1559. * across 1st nbuf and 2nd nbuf and last MSDU is
  1560. * spread across 2nd nbuf and 3rd nbuf.
  1561. *
  1562. * for these scenarios let us create a skb frag_list and
  1563. * append these buffers till the last MSDU of the AMSDU
  1564. * Third condition:
  1565. * This is the most likely case, we receive 802.3 pkts
  1566. * decapsulated by HW, here we need to set the pkt length.
  1567. */
  1568. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1569. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1570. else if (qdf_unlikely(vdev->rx_decap_type ==
  1571. htt_cmn_pkt_type_raw)) {
  1572. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1573. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1574. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1575. DP_STATS_INC_PKT(peer, rx.raw, 1,
  1576. msdu_len);
  1577. next = nbuf->next;
  1578. } else {
  1579. l2_hdr_offset =
  1580. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1581. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1582. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1583. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1584. qdf_nbuf_pull_head(nbuf,
  1585. RX_PKT_TLVS_LEN +
  1586. l2_hdr_offset);
  1587. }
  1588. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1589. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1590. QDF_TRACE(QDF_MODULE_ID_DP,
  1591. QDF_TRACE_LEVEL_ERROR,
  1592. FL("Policy Check Drop pkt"));
  1593. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1594. /* Drop & free packet */
  1595. qdf_nbuf_free(nbuf);
  1596. /* Statistics */
  1597. nbuf = next;
  1598. dp_peer_unref_del_find_by_id(peer);
  1599. continue;
  1600. }
  1601. if (qdf_unlikely(peer && peer->bss_peer)) {
  1602. QDF_TRACE(QDF_MODULE_ID_DP,
  1603. QDF_TRACE_LEVEL_ERROR,
  1604. FL("received pkt with same src MAC"));
  1605. tid_stats->fail_cnt[MEC_DROP]++;
  1606. DP_STATS_INC_PKT(peer, rx.mec_drop, 1, msdu_len);
  1607. /* Drop & free packet */
  1608. qdf_nbuf_free(nbuf);
  1609. /* Statistics */
  1610. nbuf = next;
  1611. dp_peer_unref_del_find_by_id(peer);
  1612. continue;
  1613. }
  1614. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1615. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1616. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1617. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1618. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1619. qdf_nbuf_free(nbuf);
  1620. nbuf = next;
  1621. dp_peer_unref_del_find_by_id(peer);
  1622. continue;
  1623. }
  1624. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1625. dp_set_rx_queue(nbuf, ring_id);
  1626. /*
  1627. * HW structures call this L3 header padding --
  1628. * even though this is actually the offset from
  1629. * the buffer beginning where the L2 header
  1630. * begins.
  1631. */
  1632. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1633. FL("rxhash: flow id toeplitz: 0x%x"),
  1634. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1635. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1636. if (qdf_unlikely(vdev->mesh_vdev)) {
  1637. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1638. == QDF_STATUS_SUCCESS) {
  1639. QDF_TRACE(QDF_MODULE_ID_DP,
  1640. QDF_TRACE_LEVEL_INFO_MED,
  1641. FL("mesh pkt filtered"));
  1642. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1643. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1644. 1);
  1645. qdf_nbuf_free(nbuf);
  1646. nbuf = next;
  1647. dp_peer_unref_del_find_by_id(peer);
  1648. continue;
  1649. }
  1650. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1651. }
  1652. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1653. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1654. "p_id %d msdu_len %d hdr_off %d",
  1655. peer_id, msdu_len, l2_hdr_offset);
  1656. print_hex_dump(KERN_ERR,
  1657. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1658. qdf_nbuf_data(nbuf), 128, false);
  1659. #endif /* NAPIER_EMULATION */
  1660. if (qdf_likely(vdev->rx_decap_type ==
  1661. htt_cmn_pkt_type_ethernet) &&
  1662. qdf_likely(!vdev->mesh_vdev)) {
  1663. /* WDS Destination Address Learning */
  1664. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1665. /* Due to HW issue, sometimes we see that the sa_idx
  1666. * and da_idx are invalid with sa_valid and da_valid
  1667. * bits set
  1668. *
  1669. * in this case we also see that value of
  1670. * sa_sw_peer_id is set as 0
  1671. *
  1672. * Drop the packet if sa_idx and da_idx OOB or
  1673. * sa_sw_peerid is 0
  1674. */
  1675. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr)) {
  1676. qdf_nbuf_free(nbuf);
  1677. nbuf = next;
  1678. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  1679. continue;
  1680. }
  1681. /* WDS Source Port Learning */
  1682. if (vdev->wds_enabled)
  1683. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1684. peer, nbuf);
  1685. /* Intrabss-fwd */
  1686. if (dp_rx_check_ap_bridge(vdev))
  1687. if (dp_rx_intrabss_fwd(soc,
  1688. peer,
  1689. rx_tlv_hdr,
  1690. nbuf)) {
  1691. nbuf = next;
  1692. dp_peer_unref_del_find_by_id(peer);
  1693. tid_stats->intrabss_cnt++;
  1694. continue; /* Get next desc */
  1695. }
  1696. }
  1697. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
  1698. qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
  1699. DP_RX_LIST_APPEND(deliver_list_head,
  1700. deliver_list_tail,
  1701. nbuf);
  1702. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1703. qdf_nbuf_len(nbuf));
  1704. tid_stats->delivered_to_stack++;
  1705. nbuf = next;
  1706. dp_peer_unref_del_find_by_id(peer);
  1707. }
  1708. /* Update histogram statistics by looping through pdev's */
  1709. DP_RX_HIST_STATS_PER_PDEV();
  1710. if (deliver_list_head)
  1711. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1712. deliver_list_tail);
  1713. return rx_bufs_used; /* Assume no scale factor for now */
  1714. }
  1715. /**
  1716. * dp_rx_detach() - detach dp rx
  1717. * @pdev: core txrx pdev context
  1718. *
  1719. * This function will detach DP RX into main device context
  1720. * will free DP Rx resources.
  1721. *
  1722. * Return: void
  1723. */
  1724. void
  1725. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1726. {
  1727. uint8_t pdev_id = pdev->pdev_id;
  1728. struct dp_soc *soc = pdev->soc;
  1729. struct rx_desc_pool *rx_desc_pool;
  1730. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1731. if (rx_desc_pool->pool_size != 0) {
  1732. if (!dp_is_soc_reinit(soc))
  1733. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1734. else
  1735. dp_rx_desc_nbuf_pool_free(soc, rx_desc_pool);
  1736. }
  1737. return;
  1738. }
  1739. /**
  1740. * dp_rx_attach() - attach DP RX
  1741. * @pdev: core txrx pdev context
  1742. *
  1743. * This function will attach a DP RX instance into the main
  1744. * device (SOC) context. Will allocate dp rx resource and
  1745. * initialize resources.
  1746. *
  1747. * Return: QDF_STATUS_SUCCESS: success
  1748. * QDF_STATUS_E_RESOURCES: Error return
  1749. */
  1750. QDF_STATUS
  1751. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1752. {
  1753. uint8_t pdev_id = pdev->pdev_id;
  1754. struct dp_soc *soc = pdev->soc;
  1755. uint32_t rxdma_entries;
  1756. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1757. union dp_rx_desc_list_elem_t *tail = NULL;
  1758. struct dp_srng *dp_rxdma_srng;
  1759. struct rx_desc_pool *rx_desc_pool;
  1760. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1761. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1762. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1763. return QDF_STATUS_SUCCESS;
  1764. }
  1765. pdev = soc->pdev_list[pdev_id];
  1766. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1767. rxdma_entries = dp_rxdma_srng->num_entries;
  1768. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1769. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1770. dp_rx_desc_pool_alloc(soc, pdev_id,
  1771. DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
  1772. rx_desc_pool);
  1773. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1774. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1775. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1776. 0, &desc_list, &tail);
  1777. return QDF_STATUS_SUCCESS;
  1778. }
  1779. /*
  1780. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1781. * @soc: core txrx main context
  1782. * @pdev: core txrx pdev context
  1783. *
  1784. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1785. * until retry times reaches max threshold or succeeded.
  1786. *
  1787. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1788. */
  1789. qdf_nbuf_t
  1790. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1791. {
  1792. uint8_t *buf;
  1793. int32_t nbuf_retry_count;
  1794. QDF_STATUS ret;
  1795. qdf_nbuf_t nbuf = NULL;
  1796. for (nbuf_retry_count = 0; nbuf_retry_count <
  1797. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1798. nbuf_retry_count++) {
  1799. /* Allocate a new skb */
  1800. nbuf = qdf_nbuf_alloc(soc->osdev,
  1801. RX_BUFFER_SIZE,
  1802. RX_BUFFER_RESERVATION,
  1803. RX_BUFFER_ALIGNMENT,
  1804. FALSE);
  1805. if (!nbuf) {
  1806. DP_STATS_INC(pdev,
  1807. replenish.nbuf_alloc_fail, 1);
  1808. continue;
  1809. }
  1810. buf = qdf_nbuf_data(nbuf);
  1811. memset(buf, 0, RX_BUFFER_SIZE);
  1812. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1813. QDF_DMA_BIDIRECTIONAL);
  1814. /* nbuf map failed */
  1815. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1816. qdf_nbuf_free(nbuf);
  1817. DP_STATS_INC(pdev, replenish.map_err, 1);
  1818. continue;
  1819. }
  1820. /* qdf_nbuf alloc and map succeeded */
  1821. break;
  1822. }
  1823. /* qdf_nbuf still alloc or map failed */
  1824. if (qdf_unlikely(nbuf_retry_count >=
  1825. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1826. return NULL;
  1827. return nbuf;
  1828. }