power.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #include <linux/of.h>
  9. #include <linux/of_gpio.h>
  10. #include <linux/pinctrl/consumer.h>
  11. #include <linux/pinctrl/qcom-pinctrl.h>
  12. #include <linux/regulator/consumer.h>
  13. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  14. #include <soc/qcom/cmd-db.h>
  15. #endif
  16. #include "main.h"
  17. #include "debug.h"
  18. #include "bus.h"
  19. #include <linux/soc/qcom/qcom_aoss.h>
  20. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  21. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  22. {"vdd-wlan-m2", 3300000, 3300000, 0, 0, 0},
  23. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  24. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  25. {"vdd-wlan-io12", 1200000, 1200000, 0, 0, 0},
  26. {"vdd-wlan-ant-share", 1800000, 1800000, 0, 0, 0},
  27. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  28. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  29. {"vdd-wlan", 0, 0, 0, 0, 0},
  30. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  31. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  32. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  33. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  34. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  35. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  36. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  37. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  38. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  39. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  40. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  41. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  42. };
  43. static struct cnss_clk_cfg cnss_clk_list[] = {
  44. {"rf_clk", 0, 0},
  45. };
  46. #else
  47. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  48. };
  49. static struct cnss_clk_cfg cnss_clk_list[] = {
  50. };
  51. #endif
  52. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  53. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  54. #define MAX_PROP_SIZE 32
  55. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  56. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  57. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  58. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  59. #define SOL_DEFAULT "sol_default"
  60. #define WLAN_EN_GPIO "wlan-en-gpio"
  61. #define BT_EN_GPIO "qcom,bt-en-gpio"
  62. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  63. #define SW_CTRL_GPIO "qcom,sw-ctrl-gpio"
  64. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  65. #define WLAN_EN_ACTIVE "wlan_en_active"
  66. #define WLAN_EN_SLEEP "wlan_en_sleep"
  67. #define WLAN_VREGS_PROP "wlan_vregs"
  68. /* unit us */
  69. #define BOOTSTRAP_DELAY 1000
  70. #define WLAN_ENABLE_DELAY 1000
  71. /* unit ms */
  72. #define WLAN_ENABLE_DELAY_ROME 10
  73. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  74. #define TCS_OFFSET 0xC8
  75. #define TCS_CMD_OFFSET 0x10
  76. #define MAX_TCS_NUM 8
  77. #define MAX_TCS_CMD_NUM 5
  78. #define BT_CXMX_VOLTAGE_MV 950
  79. #define CNSS_MBOX_MSG_MAX_LEN 64
  80. #define CNSS_MBOX_TIMEOUT_MS 1000
  81. /* Platform HW config */
  82. #define CNSS_PMIC_VOLTAGE_STEP 4
  83. #define CNSS_PMIC_AUTO_HEADROOM 16
  84. #define CNSS_IR_DROP_WAKE 30
  85. #define CNSS_IR_DROP_SLEEP 10
  86. #define VREG_NOTFOUND 1
  87. /**
  88. * enum cnss_aop_vreg_param: Voltage regulator TCS param
  89. * @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
  90. * @CNSS_VREG_MODE: Regulator mode
  91. * @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
  92. */
  93. enum cnss_aop_vreg_param {
  94. CNSS_VREG_VOLTAGE,
  95. CNSS_VREG_MODE,
  96. CNSS_VREG_ENABLE,
  97. CNSS_VREG_PARAM_MAX
  98. };
  99. /** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
  100. enum cnss_aop_vreg_param_mode {
  101. CNSS_VREG_RET_MODE = 3,
  102. CNSS_VREG_LPM_MODE = 4,
  103. CNSS_VREG_AUTO_MODE = 6,
  104. CNSS_VREG_NPM_MODE = 7,
  105. CNSS_VREG_MODE_MAX
  106. };
  107. /**
  108. * enum cnss_aop_tcs_seq: TCS sequence ID for trigger
  109. * @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  110. * @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  111. * @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
  112. */
  113. enum cnss_aop_tcs_seq_param {
  114. CNSS_TCS_UP_SEQ,
  115. CNSS_TCS_DOWN_SEQ,
  116. CNSS_TCS_ENABLE_SEQ,
  117. CNSS_TCS_SEQ_MAX
  118. };
  119. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  120. struct cnss_vreg_info *vreg)
  121. {
  122. int ret = 0;
  123. struct device *dev;
  124. struct regulator *reg;
  125. const __be32 *prop;
  126. char prop_name[MAX_PROP_SIZE] = {0};
  127. int len;
  128. struct device_node *dt_node;
  129. dev = &plat_priv->plat_dev->dev;
  130. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  131. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  132. if (IS_ERR(reg)) {
  133. ret = PTR_ERR(reg);
  134. if (ret == -ENODEV)
  135. return ret;
  136. else if (ret == -EPROBE_DEFER)
  137. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  138. vreg->cfg.name);
  139. else
  140. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  141. vreg->cfg.name, ret);
  142. return ret;
  143. }
  144. vreg->reg = reg;
  145. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  146. vreg->cfg.name);
  147. prop = of_get_property(dt_node, prop_name, &len);
  148. if (!prop || len != (5 * sizeof(__be32))) {
  149. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  150. prop ? "invalid format" : "doesn't exist");
  151. } else {
  152. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  153. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  154. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  155. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  156. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  157. }
  158. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  159. vreg->cfg.name, vreg->cfg.min_uv,
  160. vreg->cfg.max_uv, vreg->cfg.load_ua,
  161. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  162. return 0;
  163. }
  164. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  165. struct cnss_vreg_info *vreg)
  166. {
  167. struct device *dev = &plat_priv->plat_dev->dev;
  168. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  169. devm_regulator_put(vreg->reg);
  170. devm_kfree(dev, vreg);
  171. }
  172. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  173. {
  174. int ret = 0;
  175. if (vreg->enabled) {
  176. cnss_pr_dbg("Regulator %s is already enabled\n",
  177. vreg->cfg.name);
  178. return 0;
  179. }
  180. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  181. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  182. ret = regulator_set_voltage(vreg->reg,
  183. vreg->cfg.min_uv,
  184. vreg->cfg.max_uv);
  185. if (ret) {
  186. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  187. vreg->cfg.name, vreg->cfg.min_uv,
  188. vreg->cfg.max_uv, ret);
  189. goto out;
  190. }
  191. }
  192. if (vreg->cfg.load_ua) {
  193. ret = regulator_set_load(vreg->reg,
  194. vreg->cfg.load_ua);
  195. if (ret < 0) {
  196. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  197. vreg->cfg.name, vreg->cfg.load_ua,
  198. ret);
  199. goto out;
  200. }
  201. }
  202. if (vreg->cfg.delay_us)
  203. udelay(vreg->cfg.delay_us);
  204. ret = regulator_enable(vreg->reg);
  205. if (ret) {
  206. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  207. vreg->cfg.name, ret);
  208. goto out;
  209. }
  210. vreg->enabled = true;
  211. out:
  212. return ret;
  213. }
  214. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  215. {
  216. int ret = 0;
  217. if (!vreg->enabled) {
  218. cnss_pr_dbg("Regulator %s is already disabled\n",
  219. vreg->cfg.name);
  220. return 0;
  221. }
  222. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  223. if (vreg->cfg.load_ua) {
  224. ret = regulator_set_load(vreg->reg, 0);
  225. if (ret < 0)
  226. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  227. vreg->cfg.name, ret);
  228. }
  229. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  230. ret = regulator_set_voltage(vreg->reg, 0,
  231. vreg->cfg.max_uv);
  232. if (ret)
  233. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  234. vreg->cfg.name, ret);
  235. }
  236. return ret;
  237. }
  238. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  239. {
  240. int ret = 0;
  241. if (!vreg->enabled) {
  242. cnss_pr_dbg("Regulator %s is already disabled\n",
  243. vreg->cfg.name);
  244. return 0;
  245. }
  246. cnss_pr_dbg("Regulator %s is being disabled\n",
  247. vreg->cfg.name);
  248. ret = regulator_disable(vreg->reg);
  249. if (ret)
  250. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  251. vreg->cfg.name, ret);
  252. if (vreg->cfg.load_ua) {
  253. ret = regulator_set_load(vreg->reg, 0);
  254. if (ret < 0)
  255. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  256. vreg->cfg.name, ret);
  257. }
  258. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  259. ret = regulator_set_voltage(vreg->reg, 0,
  260. vreg->cfg.max_uv);
  261. if (ret)
  262. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  263. vreg->cfg.name, ret);
  264. }
  265. vreg->enabled = false;
  266. return ret;
  267. }
  268. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  269. enum cnss_vreg_type type)
  270. {
  271. switch (type) {
  272. case CNSS_VREG_PRIM:
  273. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  274. return cnss_vreg_list;
  275. default:
  276. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  277. *vreg_list_size = 0;
  278. return NULL;
  279. }
  280. }
  281. /*
  282. * For multi-exchg dt node, get the required vregs' names from property
  283. * 'wlan_vregs', which is string array;
  284. *
  285. * If the property is not present or present but no value is set, then no
  286. * additional wlan verg is required, function return VREG_NOTFOUND.
  287. * If property is present with valid value, function return 0.
  288. * Other cases a negative value is returned.
  289. *
  290. * For non-multi-exchg dt, go through all vregs in the static array
  291. * 'cnss_vreg_list'.
  292. */
  293. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  294. struct list_head *vreg_list,
  295. struct cnss_vreg_cfg *vreg_cfg,
  296. u32 vreg_list_size)
  297. {
  298. int ret = 0;
  299. int i;
  300. struct cnss_vreg_info *vreg;
  301. struct device *dev = &plat_priv->plat_dev->dev;
  302. int id_n;
  303. struct device_node *dt_node;
  304. if (!list_empty(vreg_list) &&
  305. (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)) {
  306. cnss_pr_dbg("Vregs have already been updated\n");
  307. return 0;
  308. }
  309. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  310. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  311. id_n = of_property_count_strings(dt_node,
  312. WLAN_VREGS_PROP);
  313. if (id_n <= 0) {
  314. if (id_n == -ENODATA || id_n == -EINVAL) {
  315. cnss_pr_dbg("No additional vregs for: %s:%lx\n",
  316. dt_node->name,
  317. plat_priv->device_id);
  318. /* By returning a positive value, give the caller a
  319. * chance to know no additional regulator is needed
  320. * by this device, and shall not treat this case as
  321. * an error.
  322. */
  323. return VREG_NOTFOUND;
  324. }
  325. cnss_pr_err("property %s is invalid: %s:%lx\n",
  326. WLAN_VREGS_PROP, dt_node->name,
  327. plat_priv->device_id);
  328. return -EINVAL;
  329. }
  330. } else {
  331. id_n = vreg_list_size;
  332. }
  333. for (i = 0; i < id_n; i++) {
  334. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  335. if (!vreg)
  336. return -ENOMEM;
  337. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  338. ret = of_property_read_string_index(dt_node,
  339. WLAN_VREGS_PROP, i,
  340. &vreg->cfg.name);
  341. if (ret) {
  342. cnss_pr_err("Failed to read vreg ids\n");
  343. return ret;
  344. }
  345. } else {
  346. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  347. }
  348. ret = cnss_get_vreg_single(plat_priv, vreg);
  349. if (ret != 0) {
  350. if (ret == -ENODEV) {
  351. devm_kfree(dev, vreg);
  352. continue;
  353. } else {
  354. devm_kfree(dev, vreg);
  355. return ret;
  356. }
  357. }
  358. list_add_tail(&vreg->list, vreg_list);
  359. }
  360. return 0;
  361. }
  362. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  363. struct list_head *vreg_list)
  364. {
  365. struct cnss_vreg_info *vreg;
  366. while (!list_empty(vreg_list)) {
  367. vreg = list_first_entry(vreg_list,
  368. struct cnss_vreg_info, list);
  369. list_del(&vreg->list);
  370. if (IS_ERR_OR_NULL(vreg->reg))
  371. continue;
  372. cnss_put_vreg_single(plat_priv, vreg);
  373. }
  374. }
  375. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  376. struct list_head *vreg_list)
  377. {
  378. struct cnss_vreg_info *vreg;
  379. int ret = 0;
  380. list_for_each_entry(vreg, vreg_list, list) {
  381. if (IS_ERR_OR_NULL(vreg->reg))
  382. continue;
  383. ret = cnss_vreg_on_single(vreg);
  384. if (ret)
  385. break;
  386. }
  387. if (!ret)
  388. return 0;
  389. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  390. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  391. continue;
  392. cnss_vreg_off_single(vreg);
  393. }
  394. return ret;
  395. }
  396. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  397. struct list_head *vreg_list)
  398. {
  399. struct cnss_vreg_info *vreg;
  400. list_for_each_entry_reverse(vreg, vreg_list, list) {
  401. if (IS_ERR_OR_NULL(vreg->reg))
  402. continue;
  403. cnss_vreg_off_single(vreg);
  404. }
  405. return 0;
  406. }
  407. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  408. struct list_head *vreg_list)
  409. {
  410. struct cnss_vreg_info *vreg;
  411. list_for_each_entry_reverse(vreg, vreg_list, list) {
  412. if (IS_ERR_OR_NULL(vreg->reg))
  413. continue;
  414. if (vreg->cfg.need_unvote)
  415. cnss_vreg_unvote_single(vreg);
  416. }
  417. return 0;
  418. }
  419. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  420. enum cnss_vreg_type type)
  421. {
  422. struct cnss_vreg_cfg *vreg_cfg;
  423. u32 vreg_list_size = 0;
  424. int ret = 0;
  425. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  426. if (!vreg_cfg)
  427. return -EINVAL;
  428. switch (type) {
  429. case CNSS_VREG_PRIM:
  430. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  431. vreg_cfg, vreg_list_size);
  432. break;
  433. default:
  434. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  435. return -EINVAL;
  436. }
  437. return ret;
  438. }
  439. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  440. enum cnss_vreg_type type)
  441. {
  442. switch (type) {
  443. case CNSS_VREG_PRIM:
  444. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  445. break;
  446. default:
  447. return;
  448. }
  449. }
  450. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  451. enum cnss_vreg_type type)
  452. {
  453. int ret = 0;
  454. switch (type) {
  455. case CNSS_VREG_PRIM:
  456. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  457. break;
  458. default:
  459. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  460. return -EINVAL;
  461. }
  462. return ret;
  463. }
  464. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  465. enum cnss_vreg_type type)
  466. {
  467. int ret = 0;
  468. switch (type) {
  469. case CNSS_VREG_PRIM:
  470. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  471. break;
  472. default:
  473. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  474. return -EINVAL;
  475. }
  476. return ret;
  477. }
  478. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  479. enum cnss_vreg_type type)
  480. {
  481. int ret = 0;
  482. switch (type) {
  483. case CNSS_VREG_PRIM:
  484. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  485. break;
  486. default:
  487. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  488. return -EINVAL;
  489. }
  490. return ret;
  491. }
  492. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  493. struct cnss_clk_info *clk_info)
  494. {
  495. struct device *dev = &plat_priv->plat_dev->dev;
  496. struct clk *clk;
  497. int ret;
  498. clk = devm_clk_get(dev, clk_info->cfg.name);
  499. if (IS_ERR(clk)) {
  500. ret = PTR_ERR(clk);
  501. if (clk_info->cfg.required)
  502. cnss_pr_err("Failed to get clock %s, err = %d\n",
  503. clk_info->cfg.name, ret);
  504. else
  505. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  506. clk_info->cfg.name, ret);
  507. return ret;
  508. }
  509. clk_info->clk = clk;
  510. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  511. clk_info->cfg.name, clk_info->cfg.freq);
  512. return 0;
  513. }
  514. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  515. struct cnss_clk_info *clk_info)
  516. {
  517. struct device *dev = &plat_priv->plat_dev->dev;
  518. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  519. devm_clk_put(dev, clk_info->clk);
  520. }
  521. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  522. {
  523. int ret;
  524. if (clk_info->enabled) {
  525. cnss_pr_dbg("Clock %s is already enabled\n",
  526. clk_info->cfg.name);
  527. return 0;
  528. }
  529. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  530. if (clk_info->cfg.freq) {
  531. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  532. if (ret) {
  533. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  534. clk_info->cfg.freq, clk_info->cfg.name,
  535. ret);
  536. return ret;
  537. }
  538. }
  539. ret = clk_prepare_enable(clk_info->clk);
  540. if (ret) {
  541. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  542. clk_info->cfg.name, ret);
  543. return ret;
  544. }
  545. clk_info->enabled = true;
  546. return 0;
  547. }
  548. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  549. {
  550. if (!clk_info->enabled) {
  551. cnss_pr_dbg("Clock %s is already disabled\n",
  552. clk_info->cfg.name);
  553. return 0;
  554. }
  555. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  556. clk_disable_unprepare(clk_info->clk);
  557. clk_info->enabled = false;
  558. return 0;
  559. }
  560. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  561. {
  562. struct device *dev;
  563. struct list_head *clk_list;
  564. struct cnss_clk_info *clk_info;
  565. int ret, i;
  566. if (!plat_priv)
  567. return -ENODEV;
  568. dev = &plat_priv->plat_dev->dev;
  569. clk_list = &plat_priv->clk_list;
  570. if (!list_empty(clk_list)) {
  571. cnss_pr_dbg("Clocks have already been updated\n");
  572. return 0;
  573. }
  574. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  575. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  576. if (!clk_info) {
  577. ret = -ENOMEM;
  578. goto cleanup;
  579. }
  580. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  581. sizeof(clk_info->cfg));
  582. ret = cnss_get_clk_single(plat_priv, clk_info);
  583. if (ret != 0) {
  584. if (clk_info->cfg.required) {
  585. devm_kfree(dev, clk_info);
  586. goto cleanup;
  587. } else {
  588. devm_kfree(dev, clk_info);
  589. continue;
  590. }
  591. }
  592. list_add_tail(&clk_info->list, clk_list);
  593. }
  594. return 0;
  595. cleanup:
  596. while (!list_empty(clk_list)) {
  597. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  598. list);
  599. list_del(&clk_info->list);
  600. if (IS_ERR_OR_NULL(clk_info->clk))
  601. continue;
  602. cnss_put_clk_single(plat_priv, clk_info);
  603. devm_kfree(dev, clk_info);
  604. }
  605. return ret;
  606. }
  607. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  608. {
  609. struct device *dev;
  610. struct list_head *clk_list;
  611. struct cnss_clk_info *clk_info;
  612. if (!plat_priv)
  613. return;
  614. dev = &plat_priv->plat_dev->dev;
  615. clk_list = &plat_priv->clk_list;
  616. while (!list_empty(clk_list)) {
  617. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  618. list);
  619. list_del(&clk_info->list);
  620. if (IS_ERR_OR_NULL(clk_info->clk))
  621. continue;
  622. cnss_put_clk_single(plat_priv, clk_info);
  623. devm_kfree(dev, clk_info);
  624. }
  625. }
  626. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  627. struct list_head *clk_list)
  628. {
  629. struct cnss_clk_info *clk_info;
  630. int ret = 0;
  631. list_for_each_entry(clk_info, clk_list, list) {
  632. if (IS_ERR_OR_NULL(clk_info->clk))
  633. continue;
  634. ret = cnss_clk_on_single(clk_info);
  635. if (ret)
  636. break;
  637. }
  638. if (!ret)
  639. return 0;
  640. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  641. if (IS_ERR_OR_NULL(clk_info->clk))
  642. continue;
  643. cnss_clk_off_single(clk_info);
  644. }
  645. return ret;
  646. }
  647. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  648. struct list_head *clk_list)
  649. {
  650. struct cnss_clk_info *clk_info;
  651. list_for_each_entry_reverse(clk_info, clk_list, list) {
  652. if (IS_ERR_OR_NULL(clk_info->clk))
  653. continue;
  654. cnss_clk_off_single(clk_info);
  655. }
  656. return 0;
  657. }
  658. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  659. {
  660. int ret = 0;
  661. struct device *dev;
  662. struct cnss_pinctrl_info *pinctrl_info;
  663. u32 gpio_id, i;
  664. int gpio_id_n;
  665. dev = &plat_priv->plat_dev->dev;
  666. pinctrl_info = &plat_priv->pinctrl_info;
  667. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  668. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  669. ret = PTR_ERR(pinctrl_info->pinctrl);
  670. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  671. goto out;
  672. }
  673. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  674. pinctrl_info->bootstrap_active =
  675. pinctrl_lookup_state(pinctrl_info->pinctrl,
  676. BOOTSTRAP_ACTIVE);
  677. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  678. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  679. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  680. ret);
  681. goto out;
  682. }
  683. }
  684. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  685. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  686. pinctrl_info->sol_default =
  687. pinctrl_lookup_state(pinctrl_info->pinctrl,
  688. SOL_DEFAULT);
  689. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  690. ret = PTR_ERR(pinctrl_info->sol_default);
  691. cnss_pr_err("Failed to get sol default state, err = %d\n",
  692. ret);
  693. goto out;
  694. }
  695. cnss_pr_dbg("Got sol default state\n");
  696. }
  697. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  698. pinctrl_info->wlan_en_gpio = of_get_named_gpio(dev->of_node,
  699. WLAN_EN_GPIO, 0);
  700. cnss_pr_dbg("WLAN_EN GPIO: %d\n", pinctrl_info->wlan_en_gpio);
  701. pinctrl_info->wlan_en_active =
  702. pinctrl_lookup_state(pinctrl_info->pinctrl,
  703. WLAN_EN_ACTIVE);
  704. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  705. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  706. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  707. ret);
  708. goto out;
  709. }
  710. pinctrl_info->wlan_en_sleep =
  711. pinctrl_lookup_state(pinctrl_info->pinctrl,
  712. WLAN_EN_SLEEP);
  713. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  714. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  715. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  716. ret);
  717. goto out;
  718. }
  719. cnss_set_feature_list(plat_priv, CNSS_WLAN_EN_SUPPORT_V01);
  720. } else {
  721. pinctrl_info->wlan_en_gpio = -EINVAL;
  722. }
  723. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  724. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  725. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  726. BT_EN_GPIO, 0);
  727. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  728. } else {
  729. pinctrl_info->bt_en_gpio = -EINVAL;
  730. }
  731. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  732. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  733. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  734. XO_CLK_GPIO, 0);
  735. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  736. pinctrl_info->xo_clk_gpio);
  737. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  738. } else {
  739. pinctrl_info->xo_clk_gpio = -EINVAL;
  740. }
  741. if (of_find_property(dev->of_node, SW_CTRL_GPIO, NULL)) {
  742. pinctrl_info->sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  743. SW_CTRL_GPIO,
  744. 0);
  745. cnss_pr_dbg("Switch control GPIO: %d\n",
  746. pinctrl_info->sw_ctrl_gpio);
  747. pinctrl_info->sw_ctrl =
  748. pinctrl_lookup_state(pinctrl_info->pinctrl,
  749. "sw_ctrl");
  750. if (IS_ERR_OR_NULL(pinctrl_info->sw_ctrl)) {
  751. ret = PTR_ERR(pinctrl_info->sw_ctrl);
  752. cnss_pr_dbg("Failed to get sw_ctrl state, err = %d\n",
  753. ret);
  754. } else {
  755. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  756. pinctrl_info->sw_ctrl);
  757. if (ret)
  758. cnss_pr_err("Failed to select sw_ctrl state, err = %d\n",
  759. ret);
  760. }
  761. } else {
  762. pinctrl_info->sw_ctrl_gpio = -EINVAL;
  763. }
  764. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  765. pinctrl_info->sw_ctrl_wl_cx =
  766. pinctrl_lookup_state(pinctrl_info->pinctrl,
  767. "sw_ctrl_wl_cx");
  768. if (IS_ERR_OR_NULL(pinctrl_info->sw_ctrl_wl_cx)) {
  769. ret = PTR_ERR(pinctrl_info->sw_ctrl_wl_cx);
  770. cnss_pr_dbg("Failed to get sw_ctrl_wl_cx state, err = %d\n",
  771. ret);
  772. } else {
  773. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  774. pinctrl_info->sw_ctrl_wl_cx);
  775. if (ret)
  776. cnss_pr_err("Failed to select sw_ctrl_wl_cx state, err = %d\n",
  777. ret);
  778. }
  779. }
  780. /* Find out and configure all those GPIOs which need to be setup
  781. * for interrupt wakeup capable
  782. */
  783. gpio_id_n = of_property_count_u32_elems(dev->of_node, "mpm_wake_set_gpios");
  784. if (gpio_id_n > 0) {
  785. cnss_pr_dbg("Num of GPIOs to be setup for interrupt wakeup capable: %d\n",
  786. gpio_id_n);
  787. for (i = 0; i < gpio_id_n; i++) {
  788. ret = of_property_read_u32_index(dev->of_node,
  789. "mpm_wake_set_gpios",
  790. i, &gpio_id);
  791. if (ret) {
  792. cnss_pr_err("Failed to read gpio_id at index: %d\n", i);
  793. continue;
  794. }
  795. ret = msm_gpio_mpm_wake_set(gpio_id, 1);
  796. if (ret < 0) {
  797. cnss_pr_err("Failed to setup gpio_id: %d as interrupt wakeup capable, ret: %d\n",
  798. ret);
  799. } else {
  800. cnss_pr_dbg("gpio_id: %d successfully setup for interrupt wakeup capable\n",
  801. gpio_id);
  802. }
  803. }
  804. } else {
  805. cnss_pr_dbg("No GPIOs to be setup for interrupt wakeup capable\n");
  806. }
  807. return 0;
  808. out:
  809. return ret;
  810. }
  811. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  812. {
  813. struct device *dev;
  814. struct cnss_pinctrl_info *pinctrl_info;
  815. dev = &plat_priv->plat_dev->dev;
  816. pinctrl_info = &plat_priv->pinctrl_info;
  817. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  818. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  819. WLAN_SW_CTRL_GPIO,
  820. 0);
  821. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  822. pinctrl_info->wlan_sw_ctrl_gpio);
  823. } else {
  824. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  825. }
  826. return 0;
  827. }
  828. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  829. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  830. bool enable)
  831. {
  832. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  833. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  834. return;
  835. retry_gpio_req:
  836. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  837. if (ret) {
  838. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  839. /* wait for ~(10 - 20) ms */
  840. usleep_range(10000, 20000);
  841. goto retry_gpio_req;
  842. }
  843. }
  844. if (ret) {
  845. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  846. return;
  847. }
  848. if (enable) {
  849. gpio_direction_output(xo_clk_gpio, 1);
  850. /*XO CLK must be asserted for some time before WLAN_EN */
  851. usleep_range(100, 200);
  852. } else {
  853. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  854. usleep_range(2000, 5000);
  855. gpio_direction_output(xo_clk_gpio, 0);
  856. }
  857. gpio_free(xo_clk_gpio);
  858. }
  859. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  860. bool state)
  861. {
  862. int ret = 0;
  863. struct cnss_pinctrl_info *pinctrl_info;
  864. if (!plat_priv) {
  865. cnss_pr_err("plat_priv is NULL!\n");
  866. ret = -ENODEV;
  867. goto out;
  868. }
  869. pinctrl_info = &plat_priv->pinctrl_info;
  870. if (state) {
  871. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  872. ret = pinctrl_select_state
  873. (pinctrl_info->pinctrl,
  874. pinctrl_info->bootstrap_active);
  875. if (ret) {
  876. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  877. ret);
  878. goto out;
  879. }
  880. udelay(BOOTSTRAP_DELAY);
  881. }
  882. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  883. ret = pinctrl_select_state
  884. (pinctrl_info->pinctrl,
  885. pinctrl_info->sol_default);
  886. if (ret) {
  887. cnss_pr_err("Failed to select sol default state, err = %d\n",
  888. ret);
  889. goto out;
  890. }
  891. cnss_pr_dbg("Selected sol default state\n");
  892. }
  893. cnss_set_xo_clk_gpio_state(plat_priv, true);
  894. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  895. ret = pinctrl_select_state
  896. (pinctrl_info->pinctrl,
  897. pinctrl_info->wlan_en_active);
  898. if (ret) {
  899. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  900. ret);
  901. goto out;
  902. }
  903. if (plat_priv->device_id == QCA6174_DEVICE_ID ||
  904. plat_priv->device_id == 0)
  905. mdelay(WLAN_ENABLE_DELAY_ROME);
  906. else
  907. udelay(WLAN_ENABLE_DELAY);
  908. cnss_set_xo_clk_gpio_state(plat_priv, false);
  909. } else {
  910. cnss_set_xo_clk_gpio_state(plat_priv, false);
  911. goto out;
  912. }
  913. } else {
  914. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  915. cnss_wlan_hw_disable_check(plat_priv);
  916. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  917. cnss_pr_dbg("Avoid WLAN_EN low. WLAN HW Disbaled");
  918. goto out;
  919. }
  920. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  921. pinctrl_info->wlan_en_sleep);
  922. if (ret) {
  923. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  924. ret);
  925. goto out;
  926. }
  927. } else {
  928. goto out;
  929. }
  930. }
  931. cnss_pr_dbg("WLAN_EN Value: %d\n", gpio_get_value(pinctrl_info->wlan_en_gpio));
  932. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  933. state ? "Assert" : "De-assert");
  934. return 0;
  935. out:
  936. return ret;
  937. }
  938. /**
  939. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  940. * @plat_priv: Platform private data structure pointer
  941. *
  942. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  943. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  944. *
  945. * Return: Status of pinctrl select operation. 0 - Success.
  946. */
  947. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  948. {
  949. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  950. u8 wlan_en_state = 0;
  951. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  952. goto set_wlan_en;
  953. if (gpio_get_value(bt_en_gpio)) {
  954. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  955. ret = cnss_select_pinctrl_state(plat_priv, true);
  956. if (!ret)
  957. return ret;
  958. wlan_en_state = 1;
  959. }
  960. if (!gpio_get_value(bt_en_gpio)) {
  961. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  962. /* check for BT_EN_GPIO down race during above operation */
  963. if (wlan_en_state) {
  964. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  965. cnss_select_pinctrl_state(plat_priv, false);
  966. wlan_en_state = 0;
  967. }
  968. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  969. msleep(100);
  970. }
  971. set_wlan_en:
  972. if (!wlan_en_state)
  973. ret = cnss_select_pinctrl_state(plat_priv, true);
  974. return ret;
  975. }
  976. int cnss_get_input_gpio_value(struct cnss_plat_data *plat_priv, int gpio_num)
  977. {
  978. int ret;
  979. if (gpio_num < 0)
  980. return -EINVAL;
  981. ret = gpio_direction_input(gpio_num);
  982. if (ret) {
  983. cnss_pr_err("Failed to set direction of GPIO(%d), err = %d",
  984. gpio_num, ret);
  985. return -EINVAL;
  986. }
  987. return gpio_get_value(gpio_num);
  988. }
  989. int cnss_power_on_device(struct cnss_plat_data *plat_priv, bool reset)
  990. {
  991. int ret = 0;
  992. if (plat_priv->powered_on) {
  993. cnss_pr_dbg("Already powered up");
  994. return 0;
  995. }
  996. cnss_wlan_hw_disable_check(plat_priv);
  997. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  998. cnss_pr_dbg("Avoid WLAN Power On. WLAN HW Disbaled");
  999. return -EINVAL;
  1000. }
  1001. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  1002. if (ret) {
  1003. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  1004. goto out;
  1005. }
  1006. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  1007. if (ret) {
  1008. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  1009. goto vreg_off;
  1010. }
  1011. #ifdef CONFIG_PULLDOWN_WLANEN
  1012. if (reset) {
  1013. /* The default state of wlan_en maybe not low,
  1014. * according to datasheet, we should put wlan_en
  1015. * to low first, and trigger high.
  1016. * And the default delay for qca6390 is at least 4ms,
  1017. * for qcn7605/qca6174, it is 10us. For safe, set 5ms delay
  1018. * here.
  1019. */
  1020. ret = cnss_select_pinctrl_state(plat_priv, false);
  1021. if (ret) {
  1022. cnss_pr_err("Failed to select pinctrl state, err = %d\n",
  1023. ret);
  1024. goto clk_off;
  1025. }
  1026. usleep_range(4000, 5000);
  1027. }
  1028. #endif
  1029. ret = cnss_select_pinctrl_enable(plat_priv);
  1030. if (ret) {
  1031. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  1032. goto clk_off;
  1033. }
  1034. plat_priv->powered_on = true;
  1035. clear_bit(CNSS_POWER_OFF, &plat_priv->driver_state);
  1036. cnss_enable_dev_sol_irq(plat_priv);
  1037. cnss_set_host_sol_value(plat_priv, 0);
  1038. return 0;
  1039. clk_off:
  1040. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  1041. vreg_off:
  1042. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  1043. out:
  1044. return ret;
  1045. }
  1046. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  1047. {
  1048. if (!plat_priv->powered_on) {
  1049. cnss_pr_dbg("Already powered down");
  1050. return;
  1051. }
  1052. set_bit(CNSS_POWER_OFF, &plat_priv->driver_state);
  1053. cnss_bus_shutdown_cleanup(plat_priv);
  1054. cnss_disable_dev_sol_irq(plat_priv);
  1055. cnss_select_pinctrl_state(plat_priv, false);
  1056. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  1057. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  1058. plat_priv->powered_on = false;
  1059. }
  1060. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  1061. {
  1062. return plat_priv->powered_on;
  1063. }
  1064. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  1065. {
  1066. unsigned long pin_status = 0;
  1067. set_bit(CNSS_WLAN_EN, &pin_status);
  1068. set_bit(CNSS_PCIE_TXN, &pin_status);
  1069. set_bit(CNSS_PCIE_TXP, &pin_status);
  1070. set_bit(CNSS_PCIE_RXN, &pin_status);
  1071. set_bit(CNSS_PCIE_RXP, &pin_status);
  1072. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  1073. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  1074. set_bit(CNSS_PCIE_RST, &pin_status);
  1075. plat_priv->pin_result.host_pin_result = pin_status;
  1076. }
  1077. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  1078. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  1079. {
  1080. return cmd_db_ready();
  1081. }
  1082. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  1083. const char *res_id)
  1084. {
  1085. return cmd_db_read_addr(res_id);
  1086. }
  1087. #else
  1088. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  1089. {
  1090. return -EOPNOTSUPP;
  1091. }
  1092. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  1093. const char *res_id)
  1094. {
  1095. return 0;
  1096. }
  1097. #endif
  1098. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  1099. {
  1100. struct platform_device *plat_dev = plat_priv->plat_dev;
  1101. struct resource *res;
  1102. resource_size_t addr_len;
  1103. void __iomem *tcs_cmd_base_addr;
  1104. int ret = 0;
  1105. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  1106. if (!res) {
  1107. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  1108. goto out;
  1109. }
  1110. plat_priv->tcs_info.cmd_base_addr = res->start;
  1111. addr_len = resource_size(res);
  1112. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  1113. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  1114. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  1115. if (!tcs_cmd_base_addr) {
  1116. ret = -EINVAL;
  1117. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  1118. ret);
  1119. goto out;
  1120. }
  1121. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  1122. return 0;
  1123. out:
  1124. return ret;
  1125. }
  1126. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  1127. {
  1128. struct platform_device *plat_dev = plat_priv->plat_dev;
  1129. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1130. const char *cmd_db_name;
  1131. u32 cpr_pmic_addr = 0;
  1132. int ret = 0;
  1133. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1134. cnss_pr_dbg("TCS CMD not configured\n");
  1135. return 0;
  1136. }
  1137. ret = of_property_read_string(plat_dev->dev.of_node,
  1138. "qcom,cmd_db_name", &cmd_db_name);
  1139. if (ret) {
  1140. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  1141. goto out;
  1142. }
  1143. ret = cnss_cmd_db_ready(plat_priv);
  1144. if (ret) {
  1145. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  1146. goto out;
  1147. }
  1148. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  1149. if (cpr_pmic_addr > 0) {
  1150. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  1151. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  1152. cpr_info->cpr_pmic_addr, cmd_db_name);
  1153. } else {
  1154. cnss_pr_err("CPR PMIC address is not available for %s\n",
  1155. cmd_db_name);
  1156. ret = -EINVAL;
  1157. goto out;
  1158. }
  1159. return 0;
  1160. out:
  1161. return ret;
  1162. }
  1163. #if IS_ENABLED(CONFIG_MSM_QMP)
  1164. /**
  1165. * cnss_mbox_init: Initialize mbox interface
  1166. * @plat_priv: Pointer to cnss platform data
  1167. *
  1168. * Try to get property 'mboxes' from device tree and
  1169. * initialize the interface for AOP configuration.
  1170. *
  1171. * Return: 0 for success, otherwise error code
  1172. */
  1173. static int cnss_mbox_init(struct cnss_plat_data *plat_priv)
  1174. {
  1175. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  1176. struct mbox_chan *chan;
  1177. int ret = 0;
  1178. plat_priv->mbox_chan = NULL;
  1179. mbox->dev = &plat_priv->plat_dev->dev;
  1180. mbox->tx_block = true;
  1181. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  1182. mbox->knows_txdone = false;
  1183. chan = mbox_request_channel(mbox, 0);
  1184. if (IS_ERR(chan)) {
  1185. ret = PTR_ERR(chan);
  1186. cnss_pr_dbg("Failed to get mbox channel[%d]\n", ret);
  1187. } else {
  1188. plat_priv->mbox_chan = chan;
  1189. cnss_pr_dbg("Mbox channel initialized\n");
  1190. }
  1191. return ret;
  1192. }
  1193. /**
  1194. * cnss_mbox_deinit: De-Initialize mbox interface
  1195. * @plat_priv: Pointer to cnss platform data
  1196. *
  1197. * Return: None
  1198. */
  1199. static void cnss_mbox_deinit(struct cnss_plat_data *plat_priv)
  1200. {
  1201. if (!plat_priv->mbox_chan) {
  1202. mbox_free_channel(plat_priv->mbox_chan);
  1203. plat_priv->mbox_chan = NULL;
  1204. }
  1205. }
  1206. /**
  1207. * cnss_mbox_send_msg: Send json message to AOP using mbox channel
  1208. * @plat_priv: Pointer to cnss platform data
  1209. * @msg: String in json format
  1210. *
  1211. * Return: 0 for success, otherwise error code
  1212. */
  1213. static int
  1214. cnss_mbox_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1215. {
  1216. struct qmp_pkt pkt;
  1217. int ret = 0;
  1218. if (!plat_priv->mbox_chan)
  1219. return -ENODEV;
  1220. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1221. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1222. pkt.data = mbox_msg;
  1223. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1224. if (ret < 0)
  1225. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1226. return ret;
  1227. }
  1228. #else
  1229. static inline int cnss_mbox_init(struct cnss_plat_data *plat_priv)
  1230. {
  1231. return -EOPNOTSUPP;
  1232. }
  1233. static inline void cnss_mbox_deinit(struct cnss_plat_data *plat_priv)
  1234. {
  1235. }
  1236. static inline int
  1237. cnss_mbox_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1238. {
  1239. return -EOPNOTSUPP;
  1240. }
  1241. #endif
  1242. /**
  1243. * cnss_qmp_init: Initialize direct QMP interface
  1244. * @plat_priv: Pointer to cnss platform data
  1245. *
  1246. * Try to get property 'qcom,qmp' from device tree and
  1247. * initialize the interface for AOP configuration.
  1248. *
  1249. * Return: 0 for success, otherwise error code
  1250. */
  1251. static int cnss_qmp_init(struct cnss_plat_data *plat_priv)
  1252. {
  1253. struct qmp *qmp;
  1254. plat_priv->qmp = NULL;
  1255. qmp = qmp_get(&plat_priv->plat_dev->dev);
  1256. if (IS_ERR(qmp)) {
  1257. cnss_pr_err("Failed to get qmp: %d\n",
  1258. PTR_ERR(qmp));
  1259. return PTR_ERR(qmp);
  1260. }
  1261. plat_priv->qmp = qmp;
  1262. cnss_pr_dbg("QMP initialized\n");
  1263. return 0;
  1264. }
  1265. /**
  1266. * cnss_qmp_deinit: De-Initialize direct QMP interface
  1267. * @plat_priv: Pointer to cnss platform data
  1268. *
  1269. * Return: None
  1270. */
  1271. static void cnss_qmp_deinit(struct cnss_plat_data *plat_priv)
  1272. {
  1273. if (plat_priv->qmp) {
  1274. qmp_put(plat_priv->qmp);
  1275. plat_priv->qmp = NULL;
  1276. }
  1277. }
  1278. /**
  1279. * cnss_qmp_send_msg: Send json message to AOP using direct QMP
  1280. * @plat_priv: Pointer to cnss platform data
  1281. * @msg: String in json format
  1282. *
  1283. * Return: 0 for success, otherwise error code
  1284. */
  1285. static int
  1286. cnss_qmp_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1287. {
  1288. int ret;
  1289. if (!plat_priv->qmp)
  1290. return -ENODEV;
  1291. cnss_pr_dbg("Sending AOP QMP msg: %s\n", mbox_msg);
  1292. ret = qmp_send(plat_priv->qmp, mbox_msg, CNSS_MBOX_MSG_MAX_LEN);
  1293. if (ret)
  1294. cnss_pr_err("Failed to send AOP QMP msg: %d[%s]\n", ret, mbox_msg);
  1295. return ret;
  1296. }
  1297. /**
  1298. * cnss_aop_interface_init: Initialize AOP interface: either mbox channel or direct QMP
  1299. * @plat_priv: Pointer to cnss platform data
  1300. *
  1301. * Device tree file should have either mbox or qmp configured, but not both.
  1302. * Based on device tree configuration setup mbox channel or QMP
  1303. *
  1304. * Return: 0 for success, otherwise error code
  1305. */
  1306. int cnss_aop_interface_init(struct cnss_plat_data *plat_priv)
  1307. {
  1308. int ret;
  1309. /* First try to get mbox channel, if it fails then try qmp_get
  1310. * In device tree file there should be either mboxes or qmp,
  1311. * cannot have both properties at the same time.
  1312. */
  1313. ret = cnss_mbox_init(plat_priv);
  1314. if (ret) {
  1315. ret = cnss_qmp_init(plat_priv);
  1316. if (ret)
  1317. return ret;
  1318. }
  1319. ret = cnss_aop_pdc_reconfig(plat_priv);
  1320. if (ret)
  1321. cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
  1322. return ret;
  1323. }
  1324. /**
  1325. * cnss_aop_interface_deinit: Cleanup AOP interface
  1326. * @plat_priv: Pointer to cnss platform data
  1327. *
  1328. * Cleanup mbox channel or QMP whichever was configured during initialization.
  1329. *
  1330. * Return: None
  1331. */
  1332. void cnss_aop_interface_deinit(struct cnss_plat_data *plat_priv)
  1333. {
  1334. cnss_mbox_deinit(plat_priv);
  1335. cnss_qmp_deinit(plat_priv);
  1336. }
  1337. /**
  1338. * cnss_aop_send_msg: Sends json message to AOP using either mbox channel or direct QMP
  1339. * @plat_priv: Pointer to cnss platform data
  1340. * @msg: String in json format
  1341. *
  1342. * AOP accepts JSON message to configure WLAN resources. Format as follows:
  1343. * To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
  1344. * res: <VReg_name>.<param>, <seq_param>: <value>}
  1345. * To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
  1346. * enable: <Value>}
  1347. * QMP returns timeout error if format not correct or AOP operation fails.
  1348. *
  1349. * Return: 0 for success
  1350. */
  1351. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1352. {
  1353. int ret;
  1354. ret = cnss_mbox_send_msg(plat_priv, mbox_msg);
  1355. if (ret)
  1356. ret = cnss_qmp_send_msg(plat_priv, mbox_msg);
  1357. if (ret)
  1358. cnss_pr_err("Failed to send AOP msg: %d\n", ret);
  1359. return ret;
  1360. }
  1361. static inline bool cnss_aop_interface_ready(struct cnss_plat_data *plat_priv)
  1362. {
  1363. return (plat_priv->mbox_chan || plat_priv->qmp);
  1364. }
  1365. /* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
  1366. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1367. {
  1368. u32 i;
  1369. int ret;
  1370. if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
  1371. return 0;
  1372. cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
  1373. plat_priv->device_id);
  1374. for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
  1375. ret = cnss_aop_send_msg(plat_priv,
  1376. (char *)plat_priv->pdc_init_table[i]);
  1377. if (ret < 0)
  1378. break;
  1379. }
  1380. return ret;
  1381. }
  1382. /* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
  1383. static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
  1384. const char *vreg_name)
  1385. {
  1386. u32 i;
  1387. static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
  1388. const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
  1389. if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
  1390. goto end;
  1391. for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
  1392. vreg_map_name = plat_priv->vreg_pdc_map[i];
  1393. if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
  1394. pdc = plat_priv->vreg_pdc_map[i + 1];
  1395. break;
  1396. }
  1397. }
  1398. end:
  1399. cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
  1400. return pdc;
  1401. }
  1402. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1403. const char *vreg_name,
  1404. enum cnss_aop_vreg_param param,
  1405. enum cnss_aop_tcs_seq_param seq_param,
  1406. int val)
  1407. {
  1408. char msg[CNSS_MBOX_MSG_MAX_LEN];
  1409. static const char * const aop_vreg_param_str[] = {
  1410. [CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
  1411. [CNSS_VREG_ENABLE] = "e",};
  1412. static const char * const aop_tcs_seq_str[] = {
  1413. [CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
  1414. [CNSS_TCS_ENABLE_SEQ] = "enable",};
  1415. if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
  1416. !vreg_name)
  1417. return -EINVAL;
  1418. snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
  1419. "{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
  1420. cnss_aop_pdc_name_str(plat_priv, vreg_name),
  1421. vreg_name, aop_vreg_param_str[param],
  1422. aop_tcs_seq_str[seq_param], val);
  1423. return cnss_aop_send_msg(plat_priv, msg);
  1424. }
  1425. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1426. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1427. {
  1428. const char *pmu_pin, *vreg;
  1429. struct wlfw_pmu_param_v01 *fw_pmu_param;
  1430. u32 fw_pmu_param_len, i, j, plat_vreg_param_len = 0;
  1431. int ret = 0;
  1432. struct platform_vreg_param {
  1433. char vreg[MAX_PROP_SIZE];
  1434. u32 wake_volt;
  1435. u32 sleep_volt;
  1436. } plat_vreg_param[QMI_WLFW_PMU_PARAMS_MAX_V01] = {0};
  1437. static bool config_done;
  1438. if (config_done)
  1439. return 0;
  1440. if (plat_priv->pmu_vreg_map_len <= 0 ||
  1441. !plat_priv->pmu_vreg_map ||
  1442. (!plat_priv->mbox_chan && !plat_priv->qmp)) {
  1443. cnss_pr_dbg("Mbox channel / QMP / PMU VReg Map not configured\n");
  1444. goto end;
  1445. }
  1446. if (!fw_pmu_cfg)
  1447. return -EINVAL;
  1448. fw_pmu_param = fw_pmu_cfg->pmu_param;
  1449. fw_pmu_param_len = fw_pmu_cfg->pmu_param_len;
  1450. /* Get PMU Pin name to Platfom Vreg Mapping */
  1451. for (i = 0; i < fw_pmu_param_len; i++) {
  1452. cnss_pr_dbg("FW_PMU Data: %s %d %d %d %d\n",
  1453. fw_pmu_param[i].pin_name,
  1454. fw_pmu_param[i].wake_volt_valid,
  1455. fw_pmu_param[i].wake_volt,
  1456. fw_pmu_param[i].sleep_volt_valid,
  1457. fw_pmu_param[i].sleep_volt);
  1458. if (!fw_pmu_param[i].wake_volt_valid &&
  1459. !fw_pmu_param[i].sleep_volt_valid)
  1460. continue;
  1461. vreg = NULL;
  1462. for (j = 0; j < plat_priv->pmu_vreg_map_len; j += 2) {
  1463. pmu_pin = plat_priv->pmu_vreg_map[j];
  1464. if (strnstr(pmu_pin, fw_pmu_param[i].pin_name,
  1465. strlen(pmu_pin))) {
  1466. vreg = plat_priv->pmu_vreg_map[j + 1];
  1467. break;
  1468. }
  1469. }
  1470. if (!vreg) {
  1471. cnss_pr_err("No VREG mapping for %s\n",
  1472. fw_pmu_param[i].pin_name);
  1473. continue;
  1474. } else {
  1475. cnss_pr_dbg("%s mapped to %s\n",
  1476. fw_pmu_param[i].pin_name, vreg);
  1477. }
  1478. for (j = 0; j < QMI_WLFW_PMU_PARAMS_MAX_V01; j++) {
  1479. u32 wake_volt = 0, sleep_volt = 0;
  1480. if (plat_vreg_param[j].vreg[0] == '\0')
  1481. strlcpy(plat_vreg_param[j].vreg, vreg,
  1482. sizeof(plat_vreg_param[j].vreg));
  1483. else if (!strnstr(plat_vreg_param[j].vreg, vreg,
  1484. strlen(plat_vreg_param[j].vreg)))
  1485. continue;
  1486. if (fw_pmu_param[i].wake_volt_valid)
  1487. wake_volt = roundup(fw_pmu_param[i].wake_volt,
  1488. CNSS_PMIC_VOLTAGE_STEP) -
  1489. CNSS_PMIC_AUTO_HEADROOM +
  1490. CNSS_IR_DROP_WAKE;
  1491. if (fw_pmu_param[i].sleep_volt_valid)
  1492. sleep_volt = roundup(fw_pmu_param[i].sleep_volt,
  1493. CNSS_PMIC_VOLTAGE_STEP) -
  1494. CNSS_PMIC_AUTO_HEADROOM +
  1495. CNSS_IR_DROP_SLEEP;
  1496. plat_vreg_param[j].wake_volt =
  1497. (wake_volt > plat_vreg_param[j].wake_volt ?
  1498. wake_volt : plat_vreg_param[j].wake_volt);
  1499. plat_vreg_param[j].sleep_volt =
  1500. (sleep_volt > plat_vreg_param[j].sleep_volt ?
  1501. sleep_volt : plat_vreg_param[j].sleep_volt);
  1502. plat_vreg_param_len = (plat_vreg_param_len > j ?
  1503. plat_vreg_param_len : j);
  1504. cnss_pr_dbg("Plat VReg Data: %s %d %d\n",
  1505. plat_vreg_param[j].vreg,
  1506. plat_vreg_param[j].wake_volt,
  1507. plat_vreg_param[j].sleep_volt);
  1508. break;
  1509. }
  1510. }
  1511. for (i = 0; i <= plat_vreg_param_len; i++) {
  1512. if (plat_vreg_param[i].wake_volt > 0) {
  1513. ret =
  1514. cnss_aop_set_vreg_param(plat_priv,
  1515. plat_vreg_param[i].vreg,
  1516. CNSS_VREG_VOLTAGE,
  1517. CNSS_TCS_UP_SEQ,
  1518. plat_vreg_param[i].wake_volt);
  1519. }
  1520. if (plat_vreg_param[i].sleep_volt > 0) {
  1521. ret =
  1522. cnss_aop_set_vreg_param(plat_priv,
  1523. plat_vreg_param[i].vreg,
  1524. CNSS_VREG_VOLTAGE,
  1525. CNSS_TCS_DOWN_SEQ,
  1526. plat_vreg_param[i].sleep_volt);
  1527. }
  1528. if (ret < 0)
  1529. break;
  1530. }
  1531. end:
  1532. config_done = true;
  1533. return ret;
  1534. }
  1535. void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
  1536. {
  1537. struct device *dev = &plat_priv->plat_dev->dev;
  1538. int ret;
  1539. u32 cfg_arr_size = 0, *cfg_arr = NULL;
  1540. /* common DT Entries */
  1541. plat_priv->pdc_init_table_len =
  1542. of_property_count_strings(dev->of_node,
  1543. "qcom,pdc_init_table");
  1544. if (plat_priv->pdc_init_table_len > 0) {
  1545. plat_priv->pdc_init_table =
  1546. kcalloc(plat_priv->pdc_init_table_len,
  1547. sizeof(char *), GFP_KERNEL);
  1548. if (plat_priv->pdc_init_table) {
  1549. ret = of_property_read_string_array(dev->of_node,
  1550. "qcom,pdc_init_table",
  1551. plat_priv->pdc_init_table,
  1552. plat_priv->pdc_init_table_len);
  1553. if (ret < 0)
  1554. cnss_pr_err("Failed to get PDC Init Table\n");
  1555. } else {
  1556. cnss_pr_err("Failed to alloc PDC Init Table mem\n");
  1557. }
  1558. } else {
  1559. cnss_pr_dbg("PDC Init Table not configured\n");
  1560. }
  1561. plat_priv->vreg_pdc_map_len =
  1562. of_property_count_strings(dev->of_node,
  1563. "qcom,vreg_pdc_map");
  1564. if (plat_priv->vreg_pdc_map_len > 0) {
  1565. plat_priv->vreg_pdc_map =
  1566. kcalloc(plat_priv->vreg_pdc_map_len,
  1567. sizeof(char *), GFP_KERNEL);
  1568. if (plat_priv->vreg_pdc_map) {
  1569. ret = of_property_read_string_array(dev->of_node,
  1570. "qcom,vreg_pdc_map",
  1571. plat_priv->vreg_pdc_map,
  1572. plat_priv->vreg_pdc_map_len);
  1573. if (ret < 0)
  1574. cnss_pr_err("Failed to get VReg PDC Mapping\n");
  1575. } else {
  1576. cnss_pr_err("Failed to alloc VReg PDC mem\n");
  1577. }
  1578. } else {
  1579. cnss_pr_dbg("VReg PDC Mapping not configured\n");
  1580. }
  1581. plat_priv->pmu_vreg_map_len =
  1582. of_property_count_strings(dev->of_node,
  1583. "qcom,pmu_vreg_map");
  1584. if (plat_priv->pmu_vreg_map_len > 0) {
  1585. plat_priv->pmu_vreg_map = kcalloc(plat_priv->pmu_vreg_map_len,
  1586. sizeof(char *), GFP_KERNEL);
  1587. if (plat_priv->pmu_vreg_map) {
  1588. ret = of_property_read_string_array(dev->of_node,
  1589. "qcom,pmu_vreg_map",
  1590. plat_priv->pmu_vreg_map,
  1591. plat_priv->pmu_vreg_map_len);
  1592. if (ret < 0)
  1593. cnss_pr_err("Fail to get PMU VReg Mapping\n");
  1594. } else {
  1595. cnss_pr_err("Failed to alloc PMU VReg mem\n");
  1596. }
  1597. } else {
  1598. cnss_pr_dbg("PMU VReg Mapping not configured\n");
  1599. }
  1600. /* Device DT Specific */
  1601. if (plat_priv->device_id == QCA6390_DEVICE_ID ||
  1602. plat_priv->device_id == QCA6490_DEVICE_ID) {
  1603. ret = of_property_read_string(dev->of_node,
  1604. "qcom,vreg_ol_cpr",
  1605. &plat_priv->vreg_ol_cpr);
  1606. if (ret)
  1607. cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
  1608. ret = of_property_read_string(dev->of_node,
  1609. "qcom,vreg_ipa",
  1610. &plat_priv->vreg_ipa);
  1611. if (ret)
  1612. cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
  1613. }
  1614. ret = of_property_count_u32_elems(plat_priv->plat_dev->dev.of_node,
  1615. "qcom,on-chip-pmic-support");
  1616. if (ret > 0) {
  1617. cfg_arr_size = ret;
  1618. cfg_arr = kcalloc(cfg_arr_size, sizeof(*cfg_arr), GFP_KERNEL);
  1619. if (cfg_arr) {
  1620. ret = of_property_read_u32_array(plat_priv->plat_dev->dev.of_node,
  1621. "qcom,on-chip-pmic-support",
  1622. cfg_arr, cfg_arr_size);
  1623. if (!ret) {
  1624. plat_priv->on_chip_pmic_devices_count = cfg_arr_size;
  1625. plat_priv->on_chip_pmic_board_ids = cfg_arr;
  1626. }
  1627. } else {
  1628. cnss_pr_err("Failed to alloc cfg table mem\n");
  1629. }
  1630. } else {
  1631. cnss_pr_dbg("On chip PMIC device ids not configured\n");
  1632. }
  1633. }
  1634. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1635. {
  1636. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1637. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1638. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1639. int i, j;
  1640. if (cpr_info->voltage == 0) {
  1641. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1642. cpr_info->voltage);
  1643. return -EINVAL;
  1644. }
  1645. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1646. return -EINVAL;
  1647. if (!plat_priv->vreg_ol_cpr ||
  1648. !cnss_aop_interface_ready(plat_priv)) {
  1649. cnss_pr_dbg("AOP interface / OL CPR Vreg not configured\n");
  1650. } else {
  1651. return cnss_aop_set_vreg_param(plat_priv,
  1652. plat_priv->vreg_ol_cpr,
  1653. CNSS_VREG_VOLTAGE,
  1654. CNSS_TCS_DOWN_SEQ,
  1655. cpr_info->voltage);
  1656. }
  1657. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1658. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1659. return 0;
  1660. }
  1661. if (cpr_info->cpr_pmic_addr == 0) {
  1662. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1663. cpr_info->cpr_pmic_addr);
  1664. return -EINVAL;
  1665. }
  1666. if (cpr_info->tcs_cmd_data_addr_io)
  1667. goto update_cpr;
  1668. for (i = 0; i < MAX_TCS_NUM; i++) {
  1669. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1670. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1671. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1672. offset;
  1673. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1674. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1675. tcs_cmd_data_addr = tcs_cmd_addr +
  1676. TCS_CMD_DATA_ADDR_OFFSET;
  1677. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1678. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1679. voltage_tmp, i, j);
  1680. if (voltage_tmp > voltage) {
  1681. voltage = voltage_tmp;
  1682. cpr_info->tcs_cmd_data_addr =
  1683. plat_priv->tcs_info.cmd_base_addr +
  1684. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1685. cpr_info->tcs_cmd_data_addr_io =
  1686. tcs_cmd_data_addr;
  1687. }
  1688. }
  1689. }
  1690. }
  1691. if (!cpr_info->tcs_cmd_data_addr_io) {
  1692. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1693. return -EINVAL;
  1694. }
  1695. update_cpr:
  1696. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1697. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1698. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1699. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1700. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1701. return 0;
  1702. }
  1703. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1704. {
  1705. struct platform_device *plat_dev = plat_priv->plat_dev;
  1706. u32 offset, addr_val, data_val;
  1707. void __iomem *tcs_cmd;
  1708. int ret;
  1709. static bool config_done;
  1710. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1711. return -EINVAL;
  1712. if (config_done) {
  1713. cnss_pr_dbg("IPA Vreg already configured\n");
  1714. return 0;
  1715. }
  1716. if (!plat_priv->vreg_ipa ||
  1717. !cnss_aop_interface_ready(plat_priv)) {
  1718. cnss_pr_dbg("AOP interface / IPA Vreg not configured\n");
  1719. } else {
  1720. ret = cnss_aop_set_vreg_param(plat_priv,
  1721. plat_priv->vreg_ipa,
  1722. CNSS_VREG_ENABLE,
  1723. CNSS_TCS_UP_SEQ, 1);
  1724. if (ret == 0)
  1725. config_done = true;
  1726. return ret;
  1727. }
  1728. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1729. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1730. return -EINVAL;
  1731. }
  1732. ret = of_property_read_u32(plat_dev->dev.of_node,
  1733. "qcom,tcs_offset_int_pow_amp_vreg",
  1734. &offset);
  1735. if (ret) {
  1736. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1737. return -EINVAL;
  1738. }
  1739. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1740. addr_val = readl_relaxed(tcs_cmd);
  1741. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1742. /* 1 = enable Vreg */
  1743. writel_relaxed(1, tcs_cmd);
  1744. data_val = readl_relaxed(tcs_cmd);
  1745. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1746. config_done = true;
  1747. return 0;
  1748. }
  1749. int cnss_dev_specific_power_on(struct cnss_plat_data *plat_priv)
  1750. {
  1751. int ret;
  1752. if (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)
  1753. return 0;
  1754. ret = cnss_get_vreg_type(plat_priv, CNSS_VREG_PRIM);
  1755. if (ret)
  1756. return ret;
  1757. plat_priv->powered_on = false;
  1758. return cnss_power_on_device(plat_priv, false);
  1759. }