lpass-cdc-rx-macro.c 152 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/io.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/clk.h>
  10. #include <linux/pm_runtime.h>
  11. #include <sound/soc.h>
  12. #include <sound/pcm.h>
  13. #include <sound/pcm_params.h>
  14. #include <sound/soc-dapm.h>
  15. #include <sound/tlv.h>
  16. #include <soc/swr-common.h>
  17. #include <soc/swr-wcd.h>
  18. #include <asoc/msm-cdc-pinctrl.h>
  19. #include "lpass-cdc.h"
  20. #include "lpass-cdc-comp.h"
  21. #include "lpass-cdc-registers.h"
  22. #include "lpass-cdc-clk-rsc.h"
  23. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  24. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  25. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  27. SNDRV_PCM_RATE_384000)
  28. /* Fractional Rates */
  29. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  30. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  31. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  32. SNDRV_PCM_FMTBIT_S24_LE |\
  33. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  34. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  35. SNDRV_PCM_RATE_48000)
  36. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  37. SNDRV_PCM_FMTBIT_S24_LE |\
  38. SNDRV_PCM_FMTBIT_S24_3LE)
  39. #define SAMPLING_RATE_44P1KHZ 44100
  40. #define SAMPLING_RATE_88P2KHZ 88200
  41. #define SAMPLING_RATE_176P4KHZ 176400
  42. #define SAMPLING_RATE_352P8KHZ 352800
  43. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  44. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  45. #define RX_SWR_STRING_LEN 80
  46. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  47. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  48. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  49. #define LPASS_CDC_RX_MACRO_FIR_COEFF_MAX 100
  50. #define LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX \
  51. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX + 1)
  52. /* first value represent number of coefficients in each 100 integer group */
  53. #define LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES \
  54. (sizeof(u32) * LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX)
  55. #define STRING(name) #name
  56. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  57. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  58. static const struct snd_kcontrol_new name##_mux = \
  59. SOC_DAPM_ENUM(STRING(name), name##_enum)
  60. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  61. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  62. static const struct snd_kcontrol_new name##_mux = \
  63. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  64. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  65. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  66. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  67. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  68. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  69. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  70. #define MAX_IMPED_PARAMS 6
  71. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  72. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  73. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  74. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  75. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  76. /* Define macros to increase PA Gain by half */
  77. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  78. #define COMP_MAX_COEFF 25
  79. struct wcd_imped_val {
  80. u32 imped_val;
  81. u8 index;
  82. };
  83. static const struct wcd_imped_val imped_index[] = {
  84. {4, 0},
  85. {5, 1},
  86. {6, 2},
  87. {7, 3},
  88. {8, 4},
  89. {9, 5},
  90. {10, 6},
  91. {11, 7},
  92. {12, 8},
  93. {13, 9},
  94. };
  95. enum {
  96. HPH_ULP,
  97. HPH_LOHIFI,
  98. HPH_MODE_MAX,
  99. };
  100. static struct comp_coeff_val
  101. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  102. {
  103. {0x40, 0x00},
  104. {0x4C, 0x00},
  105. {0x5A, 0x00},
  106. {0x6B, 0x00},
  107. {0x7F, 0x00},
  108. {0x97, 0x00},
  109. {0xB3, 0x00},
  110. {0xD5, 0x00},
  111. {0xFD, 0x00},
  112. {0x2D, 0x01},
  113. {0x66, 0x01},
  114. {0xA7, 0x01},
  115. {0xF8, 0x01},
  116. {0x57, 0x02},
  117. {0xC7, 0x02},
  118. {0x4B, 0x03},
  119. {0xE9, 0x03},
  120. {0xA3, 0x04},
  121. {0x7D, 0x05},
  122. {0x90, 0x06},
  123. {0xD1, 0x07},
  124. {0x49, 0x09},
  125. {0x00, 0x0B},
  126. {0x01, 0x0D},
  127. {0x59, 0x0F},
  128. },
  129. {
  130. {0x40, 0x00},
  131. {0x4C, 0x00},
  132. {0x5A, 0x00},
  133. {0x6B, 0x00},
  134. {0x80, 0x00},
  135. {0x98, 0x00},
  136. {0xB4, 0x00},
  137. {0xD5, 0x00},
  138. {0xFE, 0x00},
  139. {0x2E, 0x01},
  140. {0x66, 0x01},
  141. {0xA9, 0x01},
  142. {0xF8, 0x01},
  143. {0x56, 0x02},
  144. {0xC4, 0x02},
  145. {0x4F, 0x03},
  146. {0xF0, 0x03},
  147. {0xAE, 0x04},
  148. {0x8B, 0x05},
  149. {0x8E, 0x06},
  150. {0xBC, 0x07},
  151. {0x56, 0x09},
  152. {0x0F, 0x0B},
  153. {0x13, 0x0D},
  154. {0x6F, 0x0F},
  155. },
  156. };
  157. enum {
  158. RX_MODE_ULP,
  159. RX_MODE_LOHIFI,
  160. RX_MODE_EAR,
  161. RX_MODE_MAX
  162. };
  163. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  164. {
  165. {12, -60, 12},
  166. {0, -60, 12},
  167. {12, -36, 12},
  168. };
  169. struct lpass_cdc_rx_macro_reg_mask_val {
  170. u16 reg;
  171. u8 mask;
  172. u8 val;
  173. };
  174. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  175. {
  176. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  177. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  178. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  179. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  180. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  181. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  182. },
  183. {
  184. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  185. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  186. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  187. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  188. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  189. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  190. },
  191. {
  192. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  193. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  194. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  195. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  196. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  197. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  198. },
  199. {
  200. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  201. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  202. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  203. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  204. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  205. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  206. },
  207. {
  208. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  209. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  210. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  211. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  212. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  213. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  214. },
  215. {
  216. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  217. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  218. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  219. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  220. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  221. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  222. },
  223. {
  224. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  225. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  226. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  227. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  228. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  229. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  230. },
  231. {
  232. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  233. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  234. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  235. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  236. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  237. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  238. },
  239. {
  240. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  241. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  242. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  243. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  244. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  245. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  246. },
  247. };
  248. enum {
  249. INTERP_HPHL,
  250. INTERP_HPHR,
  251. INTERP_AUX,
  252. INTERP_MAX
  253. };
  254. enum {
  255. LPASS_CDC_RX_MACRO_RX0,
  256. LPASS_CDC_RX_MACRO_RX1,
  257. LPASS_CDC_RX_MACRO_RX2,
  258. LPASS_CDC_RX_MACRO_RX3,
  259. LPASS_CDC_RX_MACRO_RX4,
  260. LPASS_CDC_RX_MACRO_RX5,
  261. LPASS_CDC_RX_MACRO_PORTS_MAX
  262. };
  263. enum {
  264. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  265. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  266. LPASS_CDC_RX_MACRO_COMP_MAX
  267. };
  268. enum {
  269. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  270. LPASS_CDC_RX_MACRO_EC1_MUX,
  271. LPASS_CDC_RX_MACRO_EC2_MUX,
  272. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  273. };
  274. enum {
  275. INTn_1_INP_SEL_ZERO = 0,
  276. INTn_1_INP_SEL_DEC0,
  277. INTn_1_INP_SEL_DEC1,
  278. INTn_1_INP_SEL_IIR0,
  279. INTn_1_INP_SEL_IIR1,
  280. INTn_1_INP_SEL_RX0,
  281. INTn_1_INP_SEL_RX1,
  282. INTn_1_INP_SEL_RX2,
  283. INTn_1_INP_SEL_RX3,
  284. INTn_1_INP_SEL_RX4,
  285. INTn_1_INP_SEL_RX5,
  286. };
  287. enum {
  288. INTn_2_INP_SEL_ZERO = 0,
  289. INTn_2_INP_SEL_RX0,
  290. INTn_2_INP_SEL_RX1,
  291. INTn_2_INP_SEL_RX2,
  292. INTn_2_INP_SEL_RX3,
  293. INTn_2_INP_SEL_RX4,
  294. INTn_2_INP_SEL_RX5,
  295. };
  296. enum {
  297. INTERP_MAIN_PATH,
  298. INTERP_MIX_PATH,
  299. };
  300. /* Codec supports 2 IIR filters */
  301. enum {
  302. IIR0 = 0,
  303. IIR1,
  304. IIR_MAX,
  305. };
  306. /* Each IIR has 5 Filter Stages */
  307. enum {
  308. BAND1 = 0,
  309. BAND2,
  310. BAND3,
  311. BAND4,
  312. BAND5,
  313. BAND_MAX,
  314. };
  315. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  316. struct lpass_cdc_rx_macro_iir_filter_ctl {
  317. unsigned int iir_idx;
  318. unsigned int band_idx;
  319. struct soc_bytes_ext bytes_ext;
  320. };
  321. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  322. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  323. .info = lpass_cdc_rx_macro_iir_filter_info, \
  324. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  325. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  326. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  327. .iir_idx = iidx, \
  328. .band_idx = bidx, \
  329. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  330. } \
  331. }
  332. /* Codec supports 2 FIR filters Path */
  333. enum {
  334. RX0_PATH = 0,
  335. RX1_PATH,
  336. FIR_PATH_MAX,
  337. };
  338. /* Each RX Path has 2 group of coefficients */
  339. enum {
  340. GRP0 = 0,
  341. GRP1,
  342. GRP_MAX,
  343. };
  344. struct lpass_cdc_rx_macro_fir_filter_ctl {
  345. unsigned int path_idx;
  346. unsigned int grp_idx;
  347. struct soc_bytes_ext bytes_ext;
  348. };
  349. #define LPASS_CDC_RX_MACRO_FIR_FILTER_CTL(xname, pidx, gidx) \
  350. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  351. .info = lpass_cdc_rx_macro_fir_filter_info, \
  352. .get = lpass_cdc_rx_macro_fir_audio_mixer_get, \
  353. .put = lpass_cdc_rx_macro_fir_audio_mixer_put, \
  354. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_fir_filter_ctl) { \
  355. .path_idx = pidx, \
  356. .grp_idx = gidx, \
  357. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES, }, \
  358. } \
  359. }
  360. struct lpass_cdc_rx_macro_idle_detect_config {
  361. u8 hph_idle_thr;
  362. u8 hph_idle_detect_en;
  363. };
  364. struct interp_sample_rate {
  365. int sample_rate;
  366. int rate_val;
  367. };
  368. static struct interp_sample_rate sr_val_tbl[] = {
  369. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  370. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  371. {176400, 0xB}, {352800, 0xC},
  372. };
  373. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable);
  374. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  375. struct snd_pcm_hw_params *params,
  376. struct snd_soc_dai *dai);
  377. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  378. unsigned int *tx_num, unsigned int *tx_slot,
  379. unsigned int *rx_num, unsigned int *rx_slot);
  380. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  381. struct snd_ctl_elem_value *ucontrol);
  382. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  383. struct snd_ctl_elem_value *ucontrol);
  384. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  385. struct snd_ctl_elem_value *ucontrol);
  386. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  387. int event, int interp_idx);
  388. /* Hold instance to soundwire platform device */
  389. struct rx_swr_ctrl_data {
  390. struct platform_device *rx_swr_pdev;
  391. };
  392. struct rx_swr_ctrl_platform_data {
  393. void *handle; /* holds codec private data */
  394. int (*read)(void *handle, int reg);
  395. int (*write)(void *handle, int reg, int val);
  396. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  397. int (*clk)(void *handle, bool enable);
  398. int (*core_vote)(void *handle, bool enable);
  399. int (*handle_irq)(void *handle,
  400. irqreturn_t (*swrm_irq_handler)(int irq,
  401. void *data),
  402. void *swrm_handle,
  403. int action);
  404. };
  405. enum {
  406. RX_MACRO_AIF_INVALID = 0,
  407. RX_MACRO_AIF1_PB,
  408. RX_MACRO_AIF2_PB,
  409. RX_MACRO_AIF3_PB,
  410. RX_MACRO_AIF4_PB,
  411. RX_MACRO_AIF_ECHO,
  412. RX_MACRO_AIF5_PB,
  413. RX_MACRO_AIF6_PB,
  414. LPASS_CDC_RX_MACRO_MAX_DAIS,
  415. };
  416. enum {
  417. RX_MACRO_AIF1_CAP = 0,
  418. RX_MACRO_AIF2_CAP,
  419. RX_MACRO_AIF3_CAP,
  420. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  421. };
  422. /*
  423. * @dev: rx macro device pointer
  424. * @comp_enabled: compander enable mixer value set
  425. * @prim_int_users: Users of interpolator
  426. * @rx_mclk_users: RX MCLK users count
  427. * @vi_feed_value: VI sense mask
  428. * @swr_clk_lock: to lock swr master clock operations
  429. * @swr_ctrl_data: SoundWire data structure
  430. * @swr_plat_data: Soundwire platform data
  431. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  432. * @rx_swr_gpio_p: used by pinctrl API
  433. * @component: codec handle
  434. */
  435. struct lpass_cdc_rx_macro_priv {
  436. struct device *dev;
  437. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  438. /* Main path clock users count */
  439. int main_clk_users[INTERP_MAX];
  440. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  441. u16 prim_int_users[INTERP_MAX];
  442. int rx_mclk_users;
  443. int swr_clk_users;
  444. bool dapm_mclk_enable;
  445. bool reset_swr;
  446. int clsh_users;
  447. int rx_mclk_cnt;
  448. u8 fir_total_coeff_num[FIR_PATH_MAX];
  449. bool is_native_on;
  450. bool is_ear_mode_on;
  451. bool is_fir_filter_on;
  452. bool is_fir_coeff_written[FIR_PATH_MAX][GRP_MAX];
  453. bool is_fir_capable;
  454. bool dev_up;
  455. bool pre_dev_up;
  456. bool hph_pwr_mode;
  457. bool hph_hd2_mode;
  458. struct mutex mclk_lock;
  459. struct mutex swr_clk_lock;
  460. struct rx_swr_ctrl_data *swr_ctrl_data;
  461. struct rx_swr_ctrl_platform_data swr_plat_data;
  462. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  463. struct device_node *rx_swr_gpio_p;
  464. struct snd_soc_component *component;
  465. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  466. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  467. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  468. char __iomem *rx_io_base;
  469. char __iomem *rx_mclk_mode_muxsel;
  470. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  471. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  472. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  473. /* NOT designed to always reflect the actual hardware value */
  474. u32 fir_coeff_array[FIR_PATH_MAX][GRP_MAX]
  475. [LPASS_CDC_RX_MACRO_FIR_COEFF_MAX];
  476. u32 num_fir_coeff[FIR_PATH_MAX][GRP_MAX];
  477. struct platform_device *pdev_child_devices
  478. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  479. int child_count;
  480. int is_softclip_on;
  481. int is_aux_hpf_on;
  482. int softclip_clk_users;
  483. u16 clk_id;
  484. u16 default_clk_id;
  485. struct clk *hifi_fir_clk;
  486. int8_t rx0_gain_val;
  487. int8_t rx1_gain_val;
  488. };
  489. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  490. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  491. static const char * const rx_int_mix_mux_text[] = {
  492. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  493. };
  494. static const char * const rx_prim_mix_text[] = {
  495. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  496. "RX3", "RX4", "RX5"
  497. };
  498. static const char * const rx_sidetone_mix_text[] = {
  499. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  500. };
  501. static const char * const iir_inp_mux_text[] = {
  502. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  503. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  504. };
  505. static const char * const rx_int_dem_inp_mux_text[] = {
  506. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  507. };
  508. static const char * const rx_int0_1_interp_mux_text[] = {
  509. "ZERO", "RX INT0_1 MIX1",
  510. };
  511. static const char * const rx_int1_1_interp_mux_text[] = {
  512. "ZERO", "RX INT1_1 MIX1",
  513. };
  514. static const char * const rx_int2_1_interp_mux_text[] = {
  515. "ZERO", "RX INT2_1 MIX1",
  516. };
  517. static const char * const rx_int0_2_interp_mux_text[] = {
  518. "ZERO", "RX INT0_2 MUX",
  519. };
  520. static const char * const rx_int1_2_interp_mux_text[] = {
  521. "ZERO", "RX INT1_2 MUX",
  522. };
  523. static const char * const rx_int2_2_interp_mux_text[] = {
  524. "ZERO", "RX INT2_2 MUX",
  525. };
  526. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  527. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  528. };
  529. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  530. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  531. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  532. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  533. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  534. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  535. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  536. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  537. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  538. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  539. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  540. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  541. static const char *const lpass_cdc_rx_macro_fir_filter_text[] = {"OFF", "ON"};
  542. static const struct soc_enum lpass_cdc_rx_macro_fir_filter_enum =
  543. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_fir_filter_text);
  544. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  545. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  546. };
  547. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  548. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  549. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  550. rx_int_mix_mux_text);
  551. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  552. rx_int_mix_mux_text);
  553. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  554. rx_int_mix_mux_text);
  555. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  556. rx_prim_mix_text);
  557. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  558. rx_prim_mix_text);
  559. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  560. rx_prim_mix_text);
  561. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  562. rx_prim_mix_text);
  563. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  564. rx_prim_mix_text);
  565. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  566. rx_prim_mix_text);
  567. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  568. rx_prim_mix_text);
  569. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  570. rx_prim_mix_text);
  571. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  572. rx_prim_mix_text);
  573. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  574. rx_sidetone_mix_text);
  575. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  576. rx_sidetone_mix_text);
  577. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  578. rx_sidetone_mix_text);
  579. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  580. iir_inp_mux_text);
  581. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  582. iir_inp_mux_text);
  583. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  584. iir_inp_mux_text);
  585. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  586. iir_inp_mux_text);
  587. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  588. iir_inp_mux_text);
  589. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  590. iir_inp_mux_text);
  591. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  592. iir_inp_mux_text);
  593. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  594. iir_inp_mux_text);
  595. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  596. rx_int0_1_interp_mux_text);
  597. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  598. rx_int1_1_interp_mux_text);
  599. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  600. rx_int2_1_interp_mux_text);
  601. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  602. rx_int0_2_interp_mux_text);
  603. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  604. rx_int1_2_interp_mux_text);
  605. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  606. rx_int2_2_interp_mux_text);
  607. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  608. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  609. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  610. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  611. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  612. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  613. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  614. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  615. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  616. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  617. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  618. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  619. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  620. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  621. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  622. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  623. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  624. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  625. static const char * const rx_echo_mux_text[] = {
  626. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  627. };
  628. static const struct soc_enum rx_mix_tx2_mux_enum =
  629. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  630. rx_echo_mux_text);
  631. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  632. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  633. static const struct soc_enum rx_mix_tx1_mux_enum =
  634. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  635. rx_echo_mux_text);
  636. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  637. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  638. static const struct soc_enum rx_mix_tx0_mux_enum =
  639. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  640. rx_echo_mux_text);
  641. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  642. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  643. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  644. .hw_params = lpass_cdc_rx_macro_hw_params,
  645. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  646. };
  647. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  648. {
  649. .name = "rx_macro_rx1",
  650. .id = RX_MACRO_AIF1_PB,
  651. .playback = {
  652. .stream_name = "RX_MACRO_AIF1 Playback",
  653. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  654. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  655. .rate_max = 384000,
  656. .rate_min = 8000,
  657. .channels_min = 1,
  658. .channels_max = 2,
  659. },
  660. .ops = &lpass_cdc_rx_macro_dai_ops,
  661. },
  662. {
  663. .name = "rx_macro_rx2",
  664. .id = RX_MACRO_AIF2_PB,
  665. .playback = {
  666. .stream_name = "RX_MACRO_AIF2 Playback",
  667. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  668. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  669. .rate_max = 384000,
  670. .rate_min = 8000,
  671. .channels_min = 1,
  672. .channels_max = 2,
  673. },
  674. .ops = &lpass_cdc_rx_macro_dai_ops,
  675. },
  676. {
  677. .name = "rx_macro_rx3",
  678. .id = RX_MACRO_AIF3_PB,
  679. .playback = {
  680. .stream_name = "RX_MACRO_AIF3 Playback",
  681. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  682. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  683. .rate_max = 384000,
  684. .rate_min = 8000,
  685. .channels_min = 1,
  686. .channels_max = 2,
  687. },
  688. .ops = &lpass_cdc_rx_macro_dai_ops,
  689. },
  690. {
  691. .name = "rx_macro_rx4",
  692. .id = RX_MACRO_AIF4_PB,
  693. .playback = {
  694. .stream_name = "RX_MACRO_AIF4 Playback",
  695. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  696. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  697. .rate_max = 384000,
  698. .rate_min = 8000,
  699. .channels_min = 1,
  700. .channels_max = 2,
  701. },
  702. .ops = &lpass_cdc_rx_macro_dai_ops,
  703. },
  704. {
  705. .name = "rx_macro_echo",
  706. .id = RX_MACRO_AIF_ECHO,
  707. .capture = {
  708. .stream_name = "RX_AIF_ECHO Capture",
  709. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  710. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  711. .rate_max = 48000,
  712. .rate_min = 8000,
  713. .channels_min = 1,
  714. .channels_max = 3,
  715. },
  716. .ops = &lpass_cdc_rx_macro_dai_ops,
  717. },
  718. {
  719. .name = "rx_macro_rx5",
  720. .id = RX_MACRO_AIF5_PB,
  721. .playback = {
  722. .stream_name = "RX_MACRO_AIF5 Playback",
  723. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  724. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  725. .rate_max = 384000,
  726. .rate_min = 8000,
  727. .channels_min = 1,
  728. .channels_max = 4,
  729. },
  730. .ops = &lpass_cdc_rx_macro_dai_ops,
  731. },
  732. {
  733. .name = "rx_macro_rx6",
  734. .id = RX_MACRO_AIF6_PB,
  735. .playback = {
  736. .stream_name = "RX_MACRO_AIF6 Playback",
  737. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  738. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  739. .rate_max = 384000,
  740. .rate_min = 8000,
  741. .channels_min = 1,
  742. .channels_max = 4,
  743. },
  744. .ops = &lpass_cdc_rx_macro_dai_ops,
  745. },
  746. };
  747. static int get_impedance_index(int imped)
  748. {
  749. int i = 0;
  750. if (imped < imped_index[i].imped_val) {
  751. pr_debug("%s, detected impedance is less than %d Ohm\n",
  752. __func__, imped_index[i].imped_val);
  753. i = 0;
  754. goto ret;
  755. }
  756. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  757. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  758. __func__,
  759. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  760. i = ARRAY_SIZE(imped_index) - 1;
  761. goto ret;
  762. }
  763. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  764. if (imped >= imped_index[i].imped_val &&
  765. imped < imped_index[i + 1].imped_val)
  766. break;
  767. }
  768. ret:
  769. pr_debug("%s: selected impedance index = %d\n",
  770. __func__, imped_index[i].index);
  771. return imped_index[i].index;
  772. }
  773. /*
  774. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  775. * This function updates HPHL and HPHR gain settings
  776. * according to the impedance value.
  777. *
  778. * @component: codec pointer handle
  779. * @imped: impedance value of HPHL/R
  780. * @reset: bool variable to reset registers when teardown
  781. */
  782. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  783. int imped, bool reset)
  784. {
  785. int i;
  786. int index = 0;
  787. int table_size;
  788. static const struct lpass_cdc_rx_macro_reg_mask_val
  789. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  790. table_size = ARRAY_SIZE(imped_table);
  791. imped_table_ptr = imped_table;
  792. /* reset = 1, which means request is to reset the register values */
  793. if (reset) {
  794. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  795. snd_soc_component_update_bits(component,
  796. imped_table_ptr[index][i].reg,
  797. imped_table_ptr[index][i].mask, 0);
  798. return;
  799. }
  800. index = get_impedance_index(imped);
  801. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  802. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  803. return;
  804. }
  805. if (index >= table_size) {
  806. pr_debug("%s, impedance index not in range = %d\n", __func__,
  807. index);
  808. return;
  809. }
  810. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  811. snd_soc_component_update_bits(component,
  812. imped_table_ptr[index][i].reg,
  813. imped_table_ptr[index][i].mask,
  814. imped_table_ptr[index][i].val);
  815. }
  816. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  817. struct device **rx_dev,
  818. struct lpass_cdc_rx_macro_priv **rx_priv,
  819. const char *func_name)
  820. {
  821. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  822. if (!(*rx_dev)) {
  823. dev_err_ratelimited(component->dev,
  824. "%s: null device for macro!\n", func_name);
  825. return false;
  826. }
  827. *rx_priv = dev_get_drvdata((*rx_dev));
  828. if (!(*rx_priv)) {
  829. dev_err_ratelimited(component->dev,
  830. "%s: priv is null for macro!\n", func_name);
  831. return false;
  832. }
  833. if (!(*rx_priv)->component) {
  834. dev_err_ratelimited(component->dev,
  835. "%s: rx_priv component is not initialized!\n", func_name);
  836. return false;
  837. }
  838. return true;
  839. }
  840. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  841. u32 usecase, u32 size, void *data)
  842. {
  843. struct device *rx_dev = NULL;
  844. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  845. struct swrm_port_config port_cfg;
  846. int ret = 0;
  847. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  848. return -EINVAL;
  849. memset(&port_cfg, 0, sizeof(port_cfg));
  850. port_cfg.uc = usecase;
  851. port_cfg.size = size;
  852. port_cfg.params = data;
  853. if (rx_priv->swr_ctrl_data)
  854. ret = swrm_wcd_notify(
  855. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  856. SWR_SET_PORT_MAP, &port_cfg);
  857. return ret;
  858. }
  859. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  860. struct snd_ctl_elem_value *ucontrol)
  861. {
  862. struct snd_soc_dapm_widget *widget =
  863. snd_soc_dapm_kcontrol_widget(kcontrol);
  864. struct snd_soc_component *component =
  865. snd_soc_dapm_to_component(widget->dapm);
  866. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  867. unsigned int val = 0;
  868. unsigned short look_ahead_dly_reg =
  869. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  870. val = ucontrol->value.enumerated.item[0];
  871. if (val >= e->items)
  872. return -EINVAL;
  873. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  874. widget->name, val);
  875. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  876. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  877. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  878. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  879. /* Set Look Ahead Delay */
  880. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  881. 0x08, (val ? 0x08 : 0x00));
  882. /* Set DEM INP Select */
  883. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  884. }
  885. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  886. u8 rate_reg_val,
  887. u32 sample_rate)
  888. {
  889. u8 int_1_mix1_inp = 0;
  890. u32 j = 0, port = 0;
  891. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  892. u16 int_fs_reg = 0;
  893. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  894. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  895. struct snd_soc_component *component = dai->component;
  896. struct device *rx_dev = NULL;
  897. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  898. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  899. return -EINVAL;
  900. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  901. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  902. int_1_mix1_inp = port;
  903. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  904. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  905. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  906. __func__, dai->id);
  907. return -EINVAL;
  908. }
  909. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  910. /*
  911. * Loop through all interpolator MUX inputs and find out
  912. * to which interpolator input, the rx port
  913. * is connected
  914. */
  915. for (j = 0; j < INTERP_MAX; j++) {
  916. int_mux_cfg1 = int_mux_cfg0 + 4;
  917. int_mux_cfg0_val = snd_soc_component_read(
  918. component, int_mux_cfg0);
  919. int_mux_cfg1_val = snd_soc_component_read(
  920. component, int_mux_cfg1);
  921. inp0_sel = int_mux_cfg0_val & 0x0F;
  922. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  923. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  924. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  925. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  926. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  927. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  928. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  929. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  930. __func__, dai->id, j);
  931. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  932. __func__, j, sample_rate);
  933. /* sample_rate is in Hz */
  934. snd_soc_component_update_bits(component,
  935. int_fs_reg,
  936. 0x0F, rate_reg_val);
  937. }
  938. int_mux_cfg0 += 8;
  939. }
  940. }
  941. return 0;
  942. }
  943. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  944. u8 rate_reg_val,
  945. u32 sample_rate)
  946. {
  947. u8 int_2_inp = 0;
  948. u32 j = 0, port = 0;
  949. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  950. u8 int_mux_cfg1_val = 0;
  951. struct snd_soc_component *component = dai->component;
  952. struct device *rx_dev = NULL;
  953. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  954. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  955. return -EINVAL;
  956. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  957. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  958. int_2_inp = port;
  959. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  960. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  961. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  962. __func__, dai->id);
  963. return -EINVAL;
  964. }
  965. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  966. for (j = 0; j < INTERP_MAX; j++) {
  967. int_mux_cfg1_val = snd_soc_component_read(
  968. component, int_mux_cfg1) &
  969. 0x0F;
  970. if (int_mux_cfg1_val == int_2_inp +
  971. INTn_2_INP_SEL_RX0) {
  972. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  973. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  974. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  975. __func__, dai->id, j);
  976. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  977. __func__, j, sample_rate);
  978. snd_soc_component_update_bits(
  979. component, int_fs_reg,
  980. 0x0F, rate_reg_val);
  981. }
  982. int_mux_cfg1 += 8;
  983. }
  984. }
  985. return 0;
  986. }
  987. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  988. {
  989. switch (sample_rate) {
  990. case SAMPLING_RATE_44P1KHZ:
  991. case SAMPLING_RATE_88P2KHZ:
  992. case SAMPLING_RATE_176P4KHZ:
  993. case SAMPLING_RATE_352P8KHZ:
  994. return true;
  995. default:
  996. return false;
  997. }
  998. return false;
  999. }
  1000. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  1001. u32 sample_rate)
  1002. {
  1003. struct snd_soc_component *component = dai->component;
  1004. int rate_val = 0;
  1005. int i = 0, ret = 0;
  1006. struct device *rx_dev = NULL;
  1007. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1008. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1009. return -EINVAL;
  1010. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  1011. if (sample_rate == sr_val_tbl[i].sample_rate) {
  1012. rate_val = sr_val_tbl[i].rate_val;
  1013. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  1014. rx_priv->is_native_on = true;
  1015. else
  1016. rx_priv->is_native_on = false;
  1017. break;
  1018. }
  1019. }
  1020. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  1021. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  1022. __func__, sample_rate);
  1023. return -EINVAL;
  1024. }
  1025. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1026. if (ret)
  1027. return ret;
  1028. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1029. if (ret)
  1030. return ret;
  1031. return ret;
  1032. }
  1033. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  1034. struct snd_pcm_hw_params *params,
  1035. struct snd_soc_dai *dai)
  1036. {
  1037. struct snd_soc_component *component = dai->component;
  1038. int ret = 0;
  1039. struct device *rx_dev = NULL;
  1040. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1041. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1042. return -EINVAL;
  1043. dev_dbg(component->dev,
  1044. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1045. dai->name, dai->id, params_rate(params),
  1046. params_channels(params));
  1047. switch (substream->stream) {
  1048. case SNDRV_PCM_STREAM_PLAYBACK:
  1049. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1050. if (ret) {
  1051. pr_err_ratelimited("%s: cannot set sample rate: %u\n",
  1052. __func__, params_rate(params));
  1053. return ret;
  1054. }
  1055. rx_priv->bit_width[dai->id] = params_width(params);
  1056. break;
  1057. case SNDRV_PCM_STREAM_CAPTURE:
  1058. default:
  1059. break;
  1060. }
  1061. return 0;
  1062. }
  1063. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1064. unsigned int *tx_num, unsigned int *tx_slot,
  1065. unsigned int *rx_num, unsigned int *rx_slot)
  1066. {
  1067. struct snd_soc_component *component = dai->component;
  1068. struct device *rx_dev = NULL;
  1069. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1070. unsigned int temp = 0, ch_mask = 0;
  1071. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1072. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1073. return -EINVAL;
  1074. switch (dai->id) {
  1075. case RX_MACRO_AIF1_PB:
  1076. case RX_MACRO_AIF2_PB:
  1077. case RX_MACRO_AIF3_PB:
  1078. case RX_MACRO_AIF4_PB:
  1079. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1080. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1081. ch_mask |= (1 << temp);
  1082. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1083. break;
  1084. }
  1085. /*
  1086. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1087. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1088. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1089. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1090. * AIFn can pair to any CDC_DMA_RX_n port.
  1091. * In general, below convention is used::
  1092. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1093. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1094. * Above is reflected in machine driver BE dailink
  1095. */
  1096. if (ch_mask & 0x0C)
  1097. ch_mask = ch_mask >> 2;
  1098. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1099. ch_mask = 0x1;
  1100. *rx_slot = ch_mask;
  1101. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1102. dev_dbg(rx_priv->dev,
  1103. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1104. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1105. break;
  1106. case RX_MACRO_AIF5_PB:
  1107. *rx_slot = 0x1;
  1108. *rx_num = 0x01;
  1109. dev_dbg(rx_priv->dev,
  1110. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1111. __func__, dai->id, *rx_slot, *rx_num);
  1112. break;
  1113. case RX_MACRO_AIF6_PB:
  1114. *rx_slot = 0x1;
  1115. *rx_num = 0x01;
  1116. dev_dbg(rx_priv->dev,
  1117. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1118. __func__, dai->id, *rx_slot, *rx_num);
  1119. break;
  1120. case RX_MACRO_AIF_ECHO:
  1121. val = snd_soc_component_read(component,
  1122. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1123. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1124. mask |= 0x1;
  1125. cnt++;
  1126. }
  1127. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1128. mask |= 0x2;
  1129. cnt++;
  1130. }
  1131. val = snd_soc_component_read(component,
  1132. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1133. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1134. mask |= 0x4;
  1135. cnt++;
  1136. }
  1137. *tx_slot = mask;
  1138. *tx_num = cnt;
  1139. break;
  1140. default:
  1141. dev_err_ratelimited(rx_dev, "%s: Invalid AIF\n", __func__);
  1142. break;
  1143. }
  1144. return 0;
  1145. }
  1146. static int lpass_cdc_rx_macro_mclk_enable(
  1147. struct lpass_cdc_rx_macro_priv *rx_priv,
  1148. bool mclk_enable, bool dapm)
  1149. {
  1150. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1151. int ret = 0;
  1152. if (regmap == NULL) {
  1153. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1154. return -EINVAL;
  1155. }
  1156. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1157. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1158. mutex_lock(&rx_priv->mclk_lock);
  1159. if (mclk_enable) {
  1160. if (rx_priv->rx_mclk_users == 0) {
  1161. if (rx_priv->is_native_on)
  1162. rx_priv->clk_id = RX_CORE_CLK;
  1163. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1164. if (ret < 0) {
  1165. dev_err_ratelimited(rx_priv->dev,
  1166. "%s: rx request core vote failed\n",
  1167. __func__);
  1168. goto exit;
  1169. }
  1170. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1171. rx_priv->default_clk_id,
  1172. rx_priv->clk_id,
  1173. true);
  1174. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1175. if (ret < 0) {
  1176. dev_err_ratelimited(rx_priv->dev,
  1177. "%s: rx request clock enable failed\n",
  1178. __func__);
  1179. goto exit;
  1180. }
  1181. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1182. true);
  1183. regcache_mark_dirty(regmap);
  1184. regcache_sync_region(regmap,
  1185. RX_START_OFFSET,
  1186. RX_MAX_OFFSET);
  1187. regmap_update_bits(regmap,
  1188. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1189. 0x01, 0x01);
  1190. regmap_update_bits(regmap,
  1191. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1192. 0x02, 0x02);
  1193. regmap_update_bits(regmap,
  1194. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1195. 0x02, 0x00);
  1196. regmap_update_bits(regmap,
  1197. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1198. 0x01, 0x01);
  1199. }
  1200. rx_priv->rx_mclk_users++;
  1201. } else {
  1202. if (rx_priv->rx_mclk_users <= 0) {
  1203. dev_err_ratelimited(rx_priv->dev, "%s: clock already disabled\n",
  1204. __func__);
  1205. rx_priv->rx_mclk_users = 0;
  1206. goto exit;
  1207. }
  1208. rx_priv->rx_mclk_users--;
  1209. if (rx_priv->rx_mclk_users == 0) {
  1210. regmap_update_bits(regmap,
  1211. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1212. 0x01, 0x00);
  1213. regmap_update_bits(regmap,
  1214. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1215. 0x02, 0x02);
  1216. regmap_update_bits(regmap,
  1217. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1218. 0x02, 0x00);
  1219. regmap_update_bits(regmap,
  1220. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1221. 0x01, 0x00);
  1222. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1223. false);
  1224. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1225. if (ret < 0) {
  1226. dev_err_ratelimited(rx_priv->dev,
  1227. "%s: rx request core vote failed\n",
  1228. __func__);
  1229. }
  1230. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1231. rx_priv->default_clk_id,
  1232. rx_priv->clk_id,
  1233. false);
  1234. if (!ret)
  1235. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1236. rx_priv->clk_id = rx_priv->default_clk_id;
  1237. }
  1238. }
  1239. exit:
  1240. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1241. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1242. mutex_unlock(&rx_priv->mclk_lock);
  1243. return ret;
  1244. }
  1245. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1246. struct snd_kcontrol *kcontrol, int event)
  1247. {
  1248. struct snd_soc_component *component =
  1249. snd_soc_dapm_to_component(w->dapm);
  1250. int ret = 0;
  1251. struct device *rx_dev = NULL;
  1252. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1253. int mclk_freq = MCLK_FREQ;
  1254. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1255. return -EINVAL;
  1256. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1257. switch (event) {
  1258. case SND_SOC_DAPM_PRE_PMU:
  1259. if (rx_priv->is_native_on)
  1260. mclk_freq = MCLK_FREQ_NATIVE;
  1261. if (rx_priv->swr_ctrl_data)
  1262. swrm_wcd_notify(
  1263. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1264. SWR_CLK_FREQ, &mclk_freq);
  1265. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1266. if (ret)
  1267. rx_priv->dapm_mclk_enable = false;
  1268. else
  1269. rx_priv->dapm_mclk_enable = true;
  1270. break;
  1271. case SND_SOC_DAPM_POST_PMD:
  1272. if (rx_priv->dapm_mclk_enable)
  1273. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1274. break;
  1275. default:
  1276. dev_err_ratelimited(rx_priv->dev,
  1277. "%s: invalid DAPM event %d\n", __func__, event);
  1278. ret = -EINVAL;
  1279. }
  1280. return ret;
  1281. }
  1282. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1283. u16 event, u32 data)
  1284. {
  1285. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1286. struct device *rx_dev = NULL;
  1287. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1288. int ret = 0;
  1289. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1290. return -EINVAL;
  1291. switch (event) {
  1292. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1293. rx_idx = data >> 0x10;
  1294. mute = data & 0xffff;
  1295. val = mute ? 0x10 : 0x00;
  1296. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1297. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1298. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1299. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1300. snd_soc_component_update_bits(component, reg,
  1301. 0x10, val);
  1302. snd_soc_component_update_bits(component, reg_mix,
  1303. 0x10, val);
  1304. break;
  1305. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1306. rx_idx = data >> 0x10;
  1307. if (rx_idx == INTERP_AUX)
  1308. goto done;
  1309. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1310. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1311. snd_soc_component_write(component, reg,
  1312. snd_soc_component_read(component, reg));
  1313. break;
  1314. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1315. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1316. break;
  1317. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1318. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1319. break;
  1320. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1321. trace_printk("%s, enter SSR down\n", __func__);
  1322. rx_priv->pre_dev_up = false;
  1323. rx_priv->dev_up = false;
  1324. if (rx_priv->swr_ctrl_data) {
  1325. swrm_wcd_notify(
  1326. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1327. SWR_DEVICE_SSR_DOWN, NULL);
  1328. }
  1329. if ((!pm_runtime_enabled(rx_dev) ||
  1330. !pm_runtime_suspended(rx_dev))) {
  1331. ret = lpass_cdc_runtime_suspend(rx_dev);
  1332. if (!ret) {
  1333. pm_runtime_disable(rx_dev);
  1334. pm_runtime_set_suspended(rx_dev);
  1335. pm_runtime_enable(rx_dev);
  1336. }
  1337. }
  1338. break;
  1339. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1340. rx_priv->pre_dev_up = true;
  1341. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1342. if (ret < 0) {
  1343. dev_err_ratelimited(rx_priv->dev,
  1344. "%s: rx request core vote failed\n",
  1345. __func__);
  1346. break;
  1347. }
  1348. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1349. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1350. rx_priv->default_clk_id,
  1351. RX_CORE_CLK, true);
  1352. if (ret < 0)
  1353. dev_err_ratelimited(rx_priv->dev,
  1354. "%s, failed to enable clk, ret:%d\n",
  1355. __func__, ret);
  1356. else
  1357. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1358. rx_priv->default_clk_id,
  1359. RX_CORE_CLK, false);
  1360. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1361. break;
  1362. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1363. trace_printk("%s, enter SSR up\n", __func__);
  1364. rx_priv->dev_up = true;
  1365. /* reset swr after ssr/pdr */
  1366. rx_priv->reset_swr = true;
  1367. if (rx_priv->swr_ctrl_data)
  1368. swrm_wcd_notify(
  1369. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1370. SWR_DEVICE_SSR_UP, NULL);
  1371. break;
  1372. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1373. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1374. lpass_cdc_rsc_clk_reset(rx_dev, RX_TX_CORE_CLK);
  1375. break;
  1376. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1377. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1378. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1379. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1380. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1381. if (data) {
  1382. /* Reduce gain by half only if its greater than -6DB */
  1383. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1384. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1385. snd_soc_component_update_bits(component,
  1386. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1387. (rx_priv->rx0_gain_val -
  1388. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1389. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1390. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1391. snd_soc_component_update_bits(component,
  1392. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1393. (rx_priv->rx1_gain_val -
  1394. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1395. }
  1396. else {
  1397. /* Reset gain value to default */
  1398. if ((rx_priv->rx0_gain_val >=
  1399. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1400. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1401. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1402. snd_soc_component_update_bits(component,
  1403. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1404. (rx_priv->rx0_gain_val +
  1405. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1406. if ((rx_priv->rx1_gain_val >=
  1407. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1408. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1409. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1410. snd_soc_component_update_bits(component,
  1411. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1412. (rx_priv->rx1_gain_val +
  1413. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1414. }
  1415. break;
  1416. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1417. /* Enable hd2 config for hphl*/
  1418. snd_soc_component_update_bits(component,
  1419. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1420. break;
  1421. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1422. /* Enable hd2 config for hphr*/
  1423. snd_soc_component_update_bits(component,
  1424. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1425. break;
  1426. }
  1427. done:
  1428. return ret;
  1429. }
  1430. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1431. struct lpass_cdc_rx_macro_priv *rx_priv)
  1432. {
  1433. int i = 0;
  1434. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1435. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1436. return i;
  1437. }
  1438. return -EINVAL;
  1439. }
  1440. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1441. struct lpass_cdc_rx_macro_priv *rx_priv,
  1442. int interp, int path_type)
  1443. {
  1444. int port_id[4] = { 0, 0, 0, 0 };
  1445. int *port_ptr = NULL;
  1446. int num_ports = 0;
  1447. int bit_width = 0, i = 0;
  1448. int mux_reg = 0, mux_reg_val = 0;
  1449. int dai_id = 0, idle_thr = 0;
  1450. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1451. return 0;
  1452. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1453. return 0;
  1454. port_ptr = &port_id[0];
  1455. num_ports = 0;
  1456. /*
  1457. * Read interpolator MUX input registers and find
  1458. * which cdc_dma port is connected and store the port
  1459. * numbers in port_id array.
  1460. */
  1461. if (path_type == INTERP_MIX_PATH) {
  1462. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1463. 2 * interp;
  1464. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1465. 0x0f;
  1466. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1467. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1468. *port_ptr++ = mux_reg_val - 1;
  1469. num_ports++;
  1470. }
  1471. }
  1472. if (path_type == INTERP_MAIN_PATH) {
  1473. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1474. 2 * (interp - 1);
  1475. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1476. 0x0f;
  1477. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1478. while (i) {
  1479. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1480. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1481. *port_ptr++ = mux_reg_val -
  1482. INTn_1_INP_SEL_RX0;
  1483. num_ports++;
  1484. }
  1485. mux_reg_val =
  1486. (snd_soc_component_read(component, mux_reg) &
  1487. 0xf0) >> 4;
  1488. mux_reg += 1;
  1489. i--;
  1490. }
  1491. }
  1492. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1493. __func__, num_ports, port_id[0], port_id[1],
  1494. port_id[2], port_id[3]);
  1495. i = 0;
  1496. while (num_ports) {
  1497. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1498. rx_priv);
  1499. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1500. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1501. __func__, dai_id,
  1502. rx_priv->bit_width[dai_id]);
  1503. if (rx_priv->bit_width[dai_id] > bit_width)
  1504. bit_width = rx_priv->bit_width[dai_id];
  1505. }
  1506. num_ports--;
  1507. }
  1508. switch (bit_width) {
  1509. case 16:
  1510. idle_thr = 0xff; /* F16 */
  1511. break;
  1512. case 24:
  1513. case 32:
  1514. idle_thr = 0x03; /* F22 */
  1515. break;
  1516. default:
  1517. idle_thr = 0x00;
  1518. break;
  1519. }
  1520. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1521. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1522. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1523. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1524. snd_soc_component_write(component,
  1525. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1526. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1527. }
  1528. return 0;
  1529. }
  1530. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1531. struct snd_kcontrol *kcontrol, int event)
  1532. {
  1533. struct snd_soc_component *component =
  1534. snd_soc_dapm_to_component(w->dapm);
  1535. u16 gain_reg = 0, mix_reg = 0;
  1536. struct device *rx_dev = NULL;
  1537. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1538. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1539. return -EINVAL;
  1540. if (w->shift >= INTERP_MAX) {
  1541. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1542. __func__, w->shift, w->name);
  1543. return -EINVAL;
  1544. }
  1545. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1546. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1547. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1548. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1549. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1550. switch (event) {
  1551. case SND_SOC_DAPM_PRE_PMU:
  1552. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1553. INTERP_MIX_PATH);
  1554. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1555. /* Clk Enable */
  1556. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x20);
  1557. break;
  1558. case SND_SOC_DAPM_POST_PMU:
  1559. snd_soc_component_write(component, gain_reg,
  1560. snd_soc_component_read(component, gain_reg));
  1561. break;
  1562. case SND_SOC_DAPM_POST_PMD:
  1563. /* Clk Disable */
  1564. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1565. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1566. /* Reset enable and disable */
  1567. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1568. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1569. break;
  1570. }
  1571. return 0;
  1572. }
  1573. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1574. int interp_idx)
  1575. {
  1576. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1577. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1578. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1579. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1580. int_mux_cfg1 = int_mux_cfg0 + 4;
  1581. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1582. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1583. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1584. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1585. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1586. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1587. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1588. return true;
  1589. int_n_inp1 = int_mux_cfg0_val >> 4;
  1590. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1591. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1592. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1593. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1594. return true;
  1595. int_n_inp2 = int_mux_cfg1_val >> 4;
  1596. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1597. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1598. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1599. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1600. return true;
  1601. return false;
  1602. }
  1603. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1604. struct snd_kcontrol *kcontrol,
  1605. int event)
  1606. {
  1607. struct snd_soc_component *component =
  1608. snd_soc_dapm_to_component(w->dapm);
  1609. u16 gain_reg = 0;
  1610. u16 reg = 0;
  1611. struct device *rx_dev = NULL;
  1612. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1613. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1614. return -EINVAL;
  1615. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1616. if (w->shift >= INTERP_MAX) {
  1617. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1618. __func__, w->shift, w->name);
  1619. return -EINVAL;
  1620. }
  1621. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1622. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1623. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1624. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1625. switch (event) {
  1626. case SND_SOC_DAPM_PRE_PMU:
  1627. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1628. INTERP_MAIN_PATH);
  1629. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1630. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1631. snd_soc_component_update_bits(component,
  1632. reg, 0x20, 0x20);
  1633. break;
  1634. case SND_SOC_DAPM_POST_PMU:
  1635. snd_soc_component_write(component, gain_reg,
  1636. snd_soc_component_read(component, gain_reg));
  1637. break;
  1638. case SND_SOC_DAPM_POST_PMD:
  1639. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1640. break;
  1641. }
  1642. return 0;
  1643. }
  1644. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1645. int interp_n, int event)
  1646. {
  1647. u8 pcm_rate = 0, val = 0;
  1648. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1649. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1650. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1651. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1652. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1653. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1654. & 0x0F);
  1655. if (pcm_rate < 0x06)
  1656. val = 0x03;
  1657. else if (pcm_rate < 0x08)
  1658. val = 0x01;
  1659. else if (pcm_rate < 0x0B)
  1660. val = 0x02;
  1661. else
  1662. val = 0x00;
  1663. if (SND_SOC_DAPM_EVENT_ON(event))
  1664. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1665. 0x03, val);
  1666. if (SND_SOC_DAPM_EVENT_OFF(event))
  1667. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1668. 0x03, 0x03);
  1669. }
  1670. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1671. struct lpass_cdc_rx_macro_priv *rx_priv,
  1672. int interp_n, int event)
  1673. {
  1674. int comp = 0;
  1675. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1676. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1677. u16 mode = rx_priv->hph_pwr_mode;
  1678. /* AUX does not have compander */
  1679. if (interp_n == INTERP_AUX)
  1680. return 0;
  1681. comp = interp_n;
  1682. if (!rx_priv->comp_enabled[comp])
  1683. return 0;
  1684. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1685. mode = RX_MODE_EAR;
  1686. if (interp_n == INTERP_HPHL) {
  1687. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1688. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1689. } else if (interp_n == INTERP_HPHR) {
  1690. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1691. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1692. } else {
  1693. /* compander coefficients are loaded only for hph path */
  1694. return 0;
  1695. }
  1696. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1697. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1698. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1699. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1700. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1701. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1702. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1703. lpass_cdc_load_compander_coeff(component,
  1704. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1705. comp_coeff_table[rx_priv->hph_pwr_mode],
  1706. COMP_MAX_COEFF);
  1707. lpass_cdc_update_compander_setting(component,
  1708. comp_ctl8_reg,
  1709. &comp_setting_table[mode]);
  1710. /* Enable Compander Clock */
  1711. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1712. 0x01, 0x01);
  1713. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1714. 0x02, 0x02);
  1715. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1716. 0x02, 0x00);
  1717. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1718. 0x02, 0x02);
  1719. }
  1720. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1721. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1722. 0x04, 0x04);
  1723. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1724. 0x02, 0x00);
  1725. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1726. 0x01, 0x00);
  1727. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1728. 0x04, 0x00);
  1729. }
  1730. return 0;
  1731. }
  1732. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1733. struct lpass_cdc_rx_macro_priv *rx_priv,
  1734. bool enable)
  1735. {
  1736. if (enable) {
  1737. if (rx_priv->softclip_clk_users == 0)
  1738. snd_soc_component_update_bits(component,
  1739. LPASS_CDC_RX_SOFTCLIP_CRC,
  1740. 0x01, 0x01);
  1741. rx_priv->softclip_clk_users++;
  1742. } else {
  1743. rx_priv->softclip_clk_users--;
  1744. if (rx_priv->softclip_clk_users == 0)
  1745. snd_soc_component_update_bits(component,
  1746. LPASS_CDC_RX_SOFTCLIP_CRC,
  1747. 0x01, 0x00);
  1748. }
  1749. }
  1750. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1751. struct lpass_cdc_rx_macro_priv *rx_priv,
  1752. int event)
  1753. {
  1754. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1755. __func__, event, rx_priv->is_softclip_on);
  1756. if (!rx_priv->is_softclip_on)
  1757. return 0;
  1758. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1759. /* Enable Softclip clock */
  1760. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1761. /* Enable Softclip control */
  1762. snd_soc_component_update_bits(component,
  1763. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1764. }
  1765. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1766. snd_soc_component_update_bits(component,
  1767. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1768. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1769. }
  1770. return 0;
  1771. }
  1772. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1773. struct lpass_cdc_rx_macro_priv *rx_priv,
  1774. int event)
  1775. {
  1776. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1777. __func__, event, rx_priv->is_aux_hpf_on);
  1778. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1779. /* Update Aux HPF control */
  1780. if (!rx_priv->is_aux_hpf_on)
  1781. snd_soc_component_update_bits(component,
  1782. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1783. }
  1784. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1785. /* Reset to default (HPF=ON) */
  1786. snd_soc_component_update_bits(component,
  1787. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1788. }
  1789. return 0;
  1790. }
  1791. static inline void
  1792. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1793. {
  1794. if ((enable && ++rx_priv->clsh_users == 1) ||
  1795. (!enable && --rx_priv->clsh_users == 0))
  1796. snd_soc_component_update_bits(rx_priv->component,
  1797. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1798. (u8) enable);
  1799. if (rx_priv->clsh_users < 0)
  1800. rx_priv->clsh_users = 0;
  1801. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1802. rx_priv->clsh_users, enable);
  1803. }
  1804. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1805. struct lpass_cdc_rx_macro_priv *rx_priv,
  1806. int interp_n, int event)
  1807. {
  1808. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1809. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1810. return 0;
  1811. }
  1812. if (!SND_SOC_DAPM_EVENT_ON(event))
  1813. return 0;
  1814. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1815. if (interp_n == INTERP_HPHL ||
  1816. interp_n == INTERP_HPHR) {
  1817. /*
  1818. * These K1 values depend on the Headphone Impedance
  1819. * For now it is assumed to be 16 ohm
  1820. */
  1821. snd_soc_component_update_bits(component,
  1822. LPASS_CDC_RX_CLSH_K1_LSB,
  1823. 0xFF, 0xC0);
  1824. snd_soc_component_update_bits(component,
  1825. LPASS_CDC_RX_CLSH_K1_MSB,
  1826. 0x0F, 0x00);
  1827. }
  1828. switch (interp_n) {
  1829. case INTERP_HPHL:
  1830. if (rx_priv->is_ear_mode_on)
  1831. snd_soc_component_update_bits(component,
  1832. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1833. 0x3F, 0x39);
  1834. else
  1835. snd_soc_component_update_bits(component,
  1836. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1837. 0x3F, 0x1C);
  1838. snd_soc_component_update_bits(component,
  1839. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1840. 0x07, 0x00);
  1841. snd_soc_component_update_bits(component,
  1842. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1843. 0x40, 0x40);
  1844. break;
  1845. case INTERP_HPHR:
  1846. if (rx_priv->is_ear_mode_on)
  1847. snd_soc_component_update_bits(component,
  1848. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1849. 0x3F, 0x39);
  1850. else
  1851. snd_soc_component_update_bits(component,
  1852. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1853. 0x3F, 0x1C);
  1854. snd_soc_component_update_bits(component,
  1855. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1856. 0x07, 0x00);
  1857. snd_soc_component_update_bits(component,
  1858. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1859. 0x40, 0x40);
  1860. break;
  1861. case INTERP_AUX:
  1862. snd_soc_component_update_bits(component,
  1863. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1864. 0x08, 0x08);
  1865. snd_soc_component_update_bits(component,
  1866. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1867. 0x10, 0x10);
  1868. break;
  1869. }
  1870. return 0;
  1871. }
  1872. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1873. u16 interp_idx, int event)
  1874. {
  1875. u16 hd2_scale_reg = 0;
  1876. u16 hd2_enable_reg = 0;
  1877. switch (interp_idx) {
  1878. case INTERP_HPHL:
  1879. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1880. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1881. break;
  1882. case INTERP_HPHR:
  1883. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1884. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1885. break;
  1886. }
  1887. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1888. snd_soc_component_update_bits(component, hd2_scale_reg,
  1889. 0x3C, 0x14);
  1890. snd_soc_component_update_bits(component, hd2_enable_reg,
  1891. 0x04, 0x04);
  1892. }
  1893. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1894. snd_soc_component_update_bits(component, hd2_enable_reg,
  1895. 0x04, 0x00);
  1896. snd_soc_component_update_bits(component, hd2_scale_reg,
  1897. 0x3C, 0x00);
  1898. }
  1899. }
  1900. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1901. struct snd_ctl_elem_value *ucontrol)
  1902. {
  1903. struct snd_soc_component *component =
  1904. snd_soc_kcontrol_component(kcontrol);
  1905. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1906. struct device *rx_dev = NULL;
  1907. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1908. return -EINVAL;
  1909. ucontrol->value.integer.value[0] =
  1910. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1911. return 0;
  1912. }
  1913. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1914. struct snd_ctl_elem_value *ucontrol)
  1915. {
  1916. struct snd_soc_component *component =
  1917. snd_soc_kcontrol_component(kcontrol);
  1918. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1919. struct device *rx_dev = NULL;
  1920. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1921. return -EINVAL;
  1922. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1923. ucontrol->value.integer.value[0];
  1924. return 0;
  1925. }
  1926. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1927. struct snd_ctl_elem_value *ucontrol)
  1928. {
  1929. struct snd_soc_component *component =
  1930. snd_soc_kcontrol_component(kcontrol);
  1931. int comp = ((struct soc_multi_mixer_control *)
  1932. kcontrol->private_value)->shift;
  1933. struct device *rx_dev = NULL;
  1934. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1935. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1936. return -EINVAL;
  1937. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1938. return 0;
  1939. }
  1940. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1941. struct snd_ctl_elem_value *ucontrol)
  1942. {
  1943. struct snd_soc_component *component =
  1944. snd_soc_kcontrol_component(kcontrol);
  1945. int comp = ((struct soc_multi_mixer_control *)
  1946. kcontrol->private_value)->shift;
  1947. int value = ucontrol->value.integer.value[0];
  1948. struct device *rx_dev = NULL;
  1949. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1950. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1951. return -EINVAL;
  1952. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1953. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  1954. rx_priv->comp_enabled[comp] = value;
  1955. return 0;
  1956. }
  1957. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  1958. struct snd_ctl_elem_value *ucontrol)
  1959. {
  1960. struct snd_soc_dapm_widget *widget =
  1961. snd_soc_dapm_kcontrol_widget(kcontrol);
  1962. struct snd_soc_component *component =
  1963. snd_soc_dapm_to_component(widget->dapm);
  1964. struct device *rx_dev = NULL;
  1965. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1966. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1967. return -EINVAL;
  1968. ucontrol->value.integer.value[0] =
  1969. rx_priv->rx_port_value[widget->shift];
  1970. return 0;
  1971. }
  1972. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  1973. struct snd_ctl_elem_value *ucontrol)
  1974. {
  1975. struct snd_soc_dapm_widget *widget =
  1976. snd_soc_dapm_kcontrol_widget(kcontrol);
  1977. struct snd_soc_component *component =
  1978. snd_soc_dapm_to_component(widget->dapm);
  1979. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1980. struct snd_soc_dapm_update *update = NULL;
  1981. u32 rx_port_value = ucontrol->value.integer.value[0];
  1982. u32 aif_rst = 0;
  1983. struct device *rx_dev = NULL;
  1984. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1985. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1986. return -EINVAL;
  1987. aif_rst = rx_priv->rx_port_value[widget->shift];
  1988. if (!rx_port_value) {
  1989. if (aif_rst == 0) {
  1990. dev_err_ratelimited(rx_dev, "%s:AIF reset already\n", __func__);
  1991. return 0;
  1992. }
  1993. if (aif_rst > RX_MACRO_AIF4_PB) {
  1994. dev_err_ratelimited(rx_dev, "%s: Invalid AIF reset\n", __func__);
  1995. return 0;
  1996. }
  1997. }
  1998. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  1999. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  2000. __func__, rx_port_value, widget->shift, aif_rst);
  2001. switch (rx_port_value) {
  2002. case 0:
  2003. if (rx_priv->active_ch_cnt[aif_rst]) {
  2004. clear_bit(widget->shift,
  2005. &rx_priv->active_ch_mask[aif_rst]);
  2006. rx_priv->active_ch_cnt[aif_rst]--;
  2007. }
  2008. break;
  2009. case 1:
  2010. case 2:
  2011. case 3:
  2012. case 4:
  2013. set_bit(widget->shift,
  2014. &rx_priv->active_ch_mask[rx_port_value]);
  2015. rx_priv->active_ch_cnt[rx_port_value]++;
  2016. break;
  2017. default:
  2018. dev_err_ratelimited(component->dev,
  2019. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  2020. __func__, rx_port_value);
  2021. goto err;
  2022. }
  2023. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2024. rx_port_value, e, update);
  2025. return 0;
  2026. err:
  2027. return -EINVAL;
  2028. }
  2029. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2030. struct snd_ctl_elem_value *ucontrol)
  2031. {
  2032. struct snd_soc_component *component =
  2033. snd_soc_kcontrol_component(kcontrol);
  2034. struct device *rx_dev = NULL;
  2035. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2036. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2037. return -EINVAL;
  2038. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2039. return 0;
  2040. }
  2041. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2042. struct snd_ctl_elem_value *ucontrol)
  2043. {
  2044. struct snd_soc_component *component =
  2045. snd_soc_kcontrol_component(kcontrol);
  2046. struct device *rx_dev = NULL;
  2047. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2048. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2049. return -EINVAL;
  2050. rx_priv->is_ear_mode_on =
  2051. (!ucontrol->value.integer.value[0] ? false : true);
  2052. return 0;
  2053. }
  2054. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2055. struct snd_ctl_elem_value *ucontrol)
  2056. {
  2057. struct snd_soc_component *component =
  2058. snd_soc_kcontrol_component(kcontrol);
  2059. struct device *rx_dev = NULL;
  2060. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2061. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2062. return -EINVAL;
  2063. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2064. return 0;
  2065. }
  2066. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2067. struct snd_ctl_elem_value *ucontrol)
  2068. {
  2069. struct snd_soc_component *component =
  2070. snd_soc_kcontrol_component(kcontrol);
  2071. struct device *rx_dev = NULL;
  2072. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2073. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2074. return -EINVAL;
  2075. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2076. return 0;
  2077. }
  2078. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2079. struct snd_ctl_elem_value *ucontrol)
  2080. {
  2081. struct snd_soc_component *component =
  2082. snd_soc_kcontrol_component(kcontrol);
  2083. struct device *rx_dev = NULL;
  2084. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2085. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2086. return -EINVAL;
  2087. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2088. return 0;
  2089. }
  2090. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2091. struct snd_ctl_elem_value *ucontrol)
  2092. {
  2093. struct snd_soc_component *component =
  2094. snd_soc_kcontrol_component(kcontrol);
  2095. struct device *rx_dev = NULL;
  2096. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2097. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2098. return -EINVAL;
  2099. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2100. return 0;
  2101. }
  2102. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2103. struct snd_ctl_elem_value *ucontrol)
  2104. {
  2105. struct snd_soc_component *component =
  2106. snd_soc_kcontrol_component(kcontrol);
  2107. ucontrol->value.integer.value[0] =
  2108. ((snd_soc_component_read(
  2109. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2110. 1 : 0);
  2111. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2112. ucontrol->value.integer.value[0]);
  2113. return 0;
  2114. }
  2115. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2116. struct snd_ctl_elem_value *ucontrol)
  2117. {
  2118. struct snd_soc_component *component =
  2119. snd_soc_kcontrol_component(kcontrol);
  2120. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2121. ucontrol->value.integer.value[0]);
  2122. /* Set Vbat register configuration for GSM mode bit based on value */
  2123. if (ucontrol->value.integer.value[0])
  2124. snd_soc_component_update_bits(component,
  2125. LPASS_CDC_RX_BCL_VBAT_CFG,
  2126. 0x04, 0x04);
  2127. else
  2128. snd_soc_component_update_bits(component,
  2129. LPASS_CDC_RX_BCL_VBAT_CFG,
  2130. 0x04, 0x00);
  2131. return 0;
  2132. }
  2133. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2134. struct snd_ctl_elem_value *ucontrol)
  2135. {
  2136. struct snd_soc_component *component =
  2137. snd_soc_kcontrol_component(kcontrol);
  2138. struct device *rx_dev = NULL;
  2139. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2140. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2141. return -EINVAL;
  2142. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2143. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2144. __func__, ucontrol->value.integer.value[0]);
  2145. return 0;
  2146. }
  2147. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2148. struct snd_ctl_elem_value *ucontrol)
  2149. {
  2150. struct snd_soc_component *component =
  2151. snd_soc_kcontrol_component(kcontrol);
  2152. struct device *rx_dev = NULL;
  2153. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2154. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2155. return -EINVAL;
  2156. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2157. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2158. rx_priv->is_softclip_on);
  2159. return 0;
  2160. }
  2161. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2162. struct snd_ctl_elem_value *ucontrol)
  2163. {
  2164. struct snd_soc_component *component =
  2165. snd_soc_kcontrol_component(kcontrol);
  2166. struct device *rx_dev = NULL;
  2167. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2168. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2169. return -EINVAL;
  2170. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2171. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2172. __func__, ucontrol->value.integer.value[0]);
  2173. return 0;
  2174. }
  2175. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2176. struct snd_ctl_elem_value *ucontrol)
  2177. {
  2178. struct snd_soc_component *component =
  2179. snd_soc_kcontrol_component(kcontrol);
  2180. struct device *rx_dev = NULL;
  2181. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2182. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2183. return -EINVAL;
  2184. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2185. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2186. rx_priv->is_aux_hpf_on);
  2187. return 0;
  2188. }
  2189. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2190. struct snd_kcontrol *kcontrol,
  2191. int event)
  2192. {
  2193. struct snd_soc_component *component =
  2194. snd_soc_dapm_to_component(w->dapm);
  2195. struct device *rx_dev = NULL;
  2196. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2197. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2198. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2199. return -EINVAL;
  2200. switch (event) {
  2201. case SND_SOC_DAPM_PRE_PMU:
  2202. /* Enable clock for VBAT block */
  2203. snd_soc_component_update_bits(component,
  2204. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2205. /* Enable VBAT block */
  2206. snd_soc_component_update_bits(component,
  2207. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2208. /* Update interpolator with 384K path */
  2209. snd_soc_component_update_bits(component,
  2210. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2211. /* Update DSM FS rate */
  2212. snd_soc_component_update_bits(component,
  2213. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2214. /* Use attenuation mode */
  2215. snd_soc_component_update_bits(component,
  2216. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2217. /* BCL block needs softclip clock to be enabled */
  2218. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2219. /* Enable VBAT at channel level */
  2220. snd_soc_component_update_bits(component,
  2221. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2222. /* Set the ATTK1 gain */
  2223. snd_soc_component_update_bits(component,
  2224. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2225. 0xFF, 0xFF);
  2226. snd_soc_component_update_bits(component,
  2227. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2228. 0xFF, 0x03);
  2229. snd_soc_component_update_bits(component,
  2230. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2231. 0xFF, 0x00);
  2232. /* Set the ATTK2 gain */
  2233. snd_soc_component_update_bits(component,
  2234. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2235. 0xFF, 0xFF);
  2236. snd_soc_component_update_bits(component,
  2237. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2238. 0xFF, 0x03);
  2239. snd_soc_component_update_bits(component,
  2240. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2241. 0xFF, 0x00);
  2242. /* Set the ATTK3 gain */
  2243. snd_soc_component_update_bits(component,
  2244. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2245. 0xFF, 0xFF);
  2246. snd_soc_component_update_bits(component,
  2247. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2248. 0xFF, 0x03);
  2249. snd_soc_component_update_bits(component,
  2250. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2251. 0xFF, 0x00);
  2252. /* Enable CB decode block clock */
  2253. snd_soc_component_update_bits(component,
  2254. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2255. /* Enable BCL path */
  2256. snd_soc_component_update_bits(component,
  2257. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2258. /* Request for BCL data */
  2259. snd_soc_component_update_bits(component,
  2260. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2261. break;
  2262. case SND_SOC_DAPM_POST_PMD:
  2263. snd_soc_component_update_bits(component,
  2264. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2265. snd_soc_component_update_bits(component,
  2266. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2267. snd_soc_component_update_bits(component,
  2268. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2269. snd_soc_component_update_bits(component,
  2270. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2271. 0x80, 0x00);
  2272. snd_soc_component_update_bits(component,
  2273. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2274. 0x02, 0x00);
  2275. snd_soc_component_update_bits(component,
  2276. LPASS_CDC_RX_BCL_VBAT_CFG,
  2277. 0x02, 0x02);
  2278. snd_soc_component_update_bits(component,
  2279. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2280. 0x02, 0x00);
  2281. snd_soc_component_update_bits(component,
  2282. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2283. 0xFF, 0x00);
  2284. snd_soc_component_update_bits(component,
  2285. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2286. 0xFF, 0x00);
  2287. snd_soc_component_update_bits(component,
  2288. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2289. 0xFF, 0x00);
  2290. snd_soc_component_update_bits(component,
  2291. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2292. 0xFF, 0x00);
  2293. snd_soc_component_update_bits(component,
  2294. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2295. 0xFF, 0x00);
  2296. snd_soc_component_update_bits(component,
  2297. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2298. 0xFF, 0x00);
  2299. snd_soc_component_update_bits(component,
  2300. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2301. 0xFF, 0x00);
  2302. snd_soc_component_update_bits(component,
  2303. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2304. 0xFF, 0x00);
  2305. snd_soc_component_update_bits(component,
  2306. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2307. 0xFF, 0x00);
  2308. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2309. snd_soc_component_update_bits(component,
  2310. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2311. snd_soc_component_update_bits(component,
  2312. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2313. break;
  2314. default:
  2315. dev_err_ratelimited(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2316. break;
  2317. }
  2318. return 0;
  2319. }
  2320. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2321. struct lpass_cdc_rx_macro_priv *rx_priv,
  2322. int interp, int event)
  2323. {
  2324. int reg = 0, mask = 0, val = 0;
  2325. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2326. return;
  2327. if (interp == INTERP_HPHL) {
  2328. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2329. mask = 0x01;
  2330. val = 0x01;
  2331. }
  2332. if (interp == INTERP_HPHR) {
  2333. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2334. mask = 0x02;
  2335. val = 0x02;
  2336. }
  2337. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2338. snd_soc_component_update_bits(component, reg, mask, val);
  2339. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2340. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2341. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2342. snd_soc_component_write(component,
  2343. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2344. }
  2345. }
  2346. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2347. struct lpass_cdc_rx_macro_priv *rx_priv,
  2348. u16 interp_idx, int event)
  2349. {
  2350. u16 hph_lut_bypass_reg = 0;
  2351. u16 hph_comp_ctrl7 = 0;
  2352. switch (interp_idx) {
  2353. case INTERP_HPHL:
  2354. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2355. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2356. break;
  2357. case INTERP_HPHR:
  2358. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2359. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2360. break;
  2361. default:
  2362. break;
  2363. }
  2364. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2365. if (interp_idx == INTERP_HPHL) {
  2366. if (rx_priv->is_ear_mode_on)
  2367. snd_soc_component_update_bits(component,
  2368. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2369. 0x02, 0x02);
  2370. else
  2371. snd_soc_component_update_bits(component,
  2372. hph_lut_bypass_reg,
  2373. 0x80, 0x80);
  2374. } else {
  2375. snd_soc_component_update_bits(component,
  2376. hph_lut_bypass_reg,
  2377. 0x80, 0x80);
  2378. }
  2379. if (rx_priv->hph_pwr_mode)
  2380. snd_soc_component_update_bits(component,
  2381. hph_comp_ctrl7,
  2382. 0x20, 0x00);
  2383. }
  2384. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2385. snd_soc_component_update_bits(component,
  2386. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2387. 0x02, 0x00);
  2388. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2389. 0x80, 0x00);
  2390. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2391. 0x20, 0x20);
  2392. }
  2393. }
  2394. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2395. int event, int interp_idx)
  2396. {
  2397. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2398. struct device *rx_dev = NULL;
  2399. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2400. if (!component) {
  2401. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2402. return -EINVAL;
  2403. }
  2404. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2405. return -EINVAL;
  2406. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2407. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2408. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2409. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2410. if (interp_idx == INTERP_AUX)
  2411. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2412. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2413. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2414. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2415. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2416. /* Main path PGA mute enable */
  2417. snd_soc_component_update_bits(component, main_reg,
  2418. 0x10, 0x10);
  2419. snd_soc_component_update_bits(component, dsm_reg,
  2420. 0x01, 0x01);
  2421. /* Clk Enable */
  2422. snd_soc_component_update_bits(component, main_reg,
  2423. 0x20, 0x20);
  2424. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2425. 0x03, 0x03);
  2426. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2427. interp_idx, event);
  2428. if (rx_priv->hph_hd2_mode)
  2429. lpass_cdc_rx_macro_hd2_control(
  2430. component, interp_idx, event);
  2431. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2432. interp_idx, event);
  2433. lpass_cdc_rx_macro_droop_setting(component,
  2434. interp_idx, event);
  2435. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2436. interp_idx, event);
  2437. if (interp_idx == INTERP_AUX) {
  2438. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2439. event);
  2440. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2441. event);
  2442. }
  2443. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2444. interp_idx, event);
  2445. }
  2446. rx_priv->main_clk_users[interp_idx]++;
  2447. }
  2448. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2449. rx_priv->main_clk_users[interp_idx]--;
  2450. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2451. rx_priv->main_clk_users[interp_idx] = 0;
  2452. /* Main path PGA mute enable */
  2453. snd_soc_component_update_bits(component, main_reg,
  2454. 0x10, 0x10);
  2455. /* Clk Disable */
  2456. snd_soc_component_update_bits(component, dsm_reg,
  2457. 0x01, 0x00);
  2458. snd_soc_component_update_bits(component, main_reg,
  2459. 0x20, 0x00);
  2460. /* Reset enable and disable */
  2461. snd_soc_component_update_bits(component, main_reg,
  2462. 0x40, 0x40);
  2463. snd_soc_component_update_bits(component, main_reg,
  2464. 0x40, 0x00);
  2465. /* Reset rate to 48K*/
  2466. snd_soc_component_update_bits(component, main_reg,
  2467. 0x0F, 0x04);
  2468. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2469. 0x03, 0x00);
  2470. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2471. interp_idx, event);
  2472. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2473. interp_idx, event);
  2474. if (interp_idx == INTERP_AUX) {
  2475. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2476. event);
  2477. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2478. event);
  2479. }
  2480. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2481. interp_idx, event);
  2482. if (rx_priv->hph_hd2_mode)
  2483. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2484. event);
  2485. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2486. interp_idx, event);
  2487. }
  2488. }
  2489. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2490. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2491. return rx_priv->main_clk_users[interp_idx];
  2492. }
  2493. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2494. struct snd_kcontrol *kcontrol, int event)
  2495. {
  2496. struct snd_soc_component *component =
  2497. snd_soc_dapm_to_component(w->dapm);
  2498. u16 sidetone_reg = 0, fs_reg = 0;
  2499. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2500. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2501. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2502. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2503. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2504. switch (event) {
  2505. case SND_SOC_DAPM_PRE_PMU:
  2506. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2507. snd_soc_component_update_bits(component, sidetone_reg,
  2508. 0x10, 0x10);
  2509. snd_soc_component_update_bits(component, fs_reg,
  2510. 0x20, 0x20);
  2511. break;
  2512. case SND_SOC_DAPM_POST_PMD:
  2513. snd_soc_component_update_bits(component, sidetone_reg,
  2514. 0x10, 0x00);
  2515. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2516. break;
  2517. default:
  2518. break;
  2519. };
  2520. return 0;
  2521. }
  2522. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2523. int band_idx)
  2524. {
  2525. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2526. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2527. if (regmap == NULL) {
  2528. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2529. return;
  2530. }
  2531. regmap_write(regmap,
  2532. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2533. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2534. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2535. /* 5 coefficients per band and 4 writes per coefficient */
  2536. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2537. coeff_idx++) {
  2538. /* Four 8 bit values(one 32 bit) per coefficient */
  2539. regmap_write(regmap, reg_add,
  2540. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2541. regmap_write(regmap, reg_add,
  2542. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2543. regmap_write(regmap, reg_add,
  2544. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2545. regmap_write(regmap, reg_add,
  2546. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2547. }
  2548. }
  2549. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2550. struct snd_ctl_elem_value *ucontrol)
  2551. {
  2552. struct snd_soc_component *component =
  2553. snd_soc_kcontrol_component(kcontrol);
  2554. int iir_idx = ((struct soc_multi_mixer_control *)
  2555. kcontrol->private_value)->reg;
  2556. int band_idx = ((struct soc_multi_mixer_control *)
  2557. kcontrol->private_value)->shift;
  2558. /* IIR filter band registers are at integer multiples of 0x80 */
  2559. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2560. ucontrol->value.integer.value[0] = (
  2561. snd_soc_component_read(component, iir_reg) &
  2562. (1 << band_idx)) != 0;
  2563. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2564. iir_idx, band_idx,
  2565. (uint32_t)ucontrol->value.integer.value[0]);
  2566. return 0;
  2567. }
  2568. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2569. struct snd_ctl_elem_value *ucontrol)
  2570. {
  2571. struct snd_soc_component *component =
  2572. snd_soc_kcontrol_component(kcontrol);
  2573. int iir_idx = ((struct soc_multi_mixer_control *)
  2574. kcontrol->private_value)->reg;
  2575. int band_idx = ((struct soc_multi_mixer_control *)
  2576. kcontrol->private_value)->shift;
  2577. bool iir_band_en_status = 0;
  2578. int value = ucontrol->value.integer.value[0];
  2579. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2580. struct device *rx_dev = NULL;
  2581. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2582. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2583. return -EINVAL;
  2584. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2585. /* Mask first 5 bits, 6-8 are reserved */
  2586. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2587. (value << band_idx));
  2588. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2589. (1 << band_idx)) != 0);
  2590. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2591. iir_idx, band_idx, iir_band_en_status);
  2592. return 0;
  2593. }
  2594. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2595. int iir_idx, int band_idx,
  2596. int coeff_idx)
  2597. {
  2598. uint32_t value = 0;
  2599. /* Address does not automatically update if reading */
  2600. snd_soc_component_write(component,
  2601. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2602. ((band_idx * BAND_MAX + coeff_idx)
  2603. * sizeof(uint32_t)) & 0x7F);
  2604. value |= snd_soc_component_read(component,
  2605. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2606. snd_soc_component_write(component,
  2607. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2608. ((band_idx * BAND_MAX + coeff_idx)
  2609. * sizeof(uint32_t) + 1) & 0x7F);
  2610. value |= (snd_soc_component_read(component,
  2611. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2612. 0x80 * iir_idx)) << 8);
  2613. snd_soc_component_write(component,
  2614. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2615. ((band_idx * BAND_MAX + coeff_idx)
  2616. * sizeof(uint32_t) + 2) & 0x7F);
  2617. value |= (snd_soc_component_read(component,
  2618. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2619. 0x80 * iir_idx)) << 16);
  2620. snd_soc_component_write(component,
  2621. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2622. ((band_idx * BAND_MAX + coeff_idx)
  2623. * sizeof(uint32_t) + 3) & 0x7F);
  2624. /* Mask bits top 2 bits since they are reserved */
  2625. value |= ((snd_soc_component_read(component,
  2626. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2627. 0x80 * iir_idx)) & 0x3F) << 24);
  2628. return value;
  2629. }
  2630. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2631. struct snd_ctl_elem_info *ucontrol)
  2632. {
  2633. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2634. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2635. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2636. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2637. ucontrol->count = params->max;
  2638. return 0;
  2639. }
  2640. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2641. struct snd_ctl_elem_value *ucontrol)
  2642. {
  2643. struct snd_soc_component *component =
  2644. snd_soc_kcontrol_component(kcontrol);
  2645. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2646. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2647. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2648. int iir_idx = ctl->iir_idx;
  2649. int band_idx = ctl->band_idx;
  2650. u32 coeff[BAND_MAX];
  2651. int coeff_idx = 0;
  2652. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2653. coeff_idx++) {
  2654. coeff[coeff_idx] =
  2655. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2656. }
  2657. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2658. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2659. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2660. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2661. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2662. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2663. __func__, iir_idx, band_idx, coeff[0],
  2664. __func__, iir_idx, band_idx, coeff[1],
  2665. __func__, iir_idx, band_idx, coeff[2],
  2666. __func__, iir_idx, band_idx, coeff[3],
  2667. __func__, iir_idx, band_idx, coeff[4]);
  2668. return 0;
  2669. }
  2670. static void set_iir_band_coeff(struct snd_soc_component *component,
  2671. int iir_idx, int band_idx,
  2672. uint32_t value)
  2673. {
  2674. snd_soc_component_write(component,
  2675. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2676. (value & 0xFF));
  2677. snd_soc_component_write(component,
  2678. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2679. (value >> 8) & 0xFF);
  2680. snd_soc_component_write(component,
  2681. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2682. (value >> 16) & 0xFF);
  2683. /* Mask top 2 bits, 7-8 are reserved */
  2684. snd_soc_component_write(component,
  2685. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2686. (value >> 24) & 0x3F);
  2687. }
  2688. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2689. struct snd_ctl_elem_value *ucontrol)
  2690. {
  2691. struct snd_soc_component *component =
  2692. snd_soc_kcontrol_component(kcontrol);
  2693. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2694. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2695. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2696. int iir_idx = ctl->iir_idx;
  2697. int band_idx = ctl->band_idx;
  2698. u32 coeff[BAND_MAX];
  2699. int coeff_idx, idx = 0;
  2700. struct device *rx_dev = NULL;
  2701. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2702. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2703. return -EINVAL;
  2704. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2705. /*
  2706. * Mask top bit it is reserved
  2707. * Updates addr automatically for each B2 write
  2708. */
  2709. snd_soc_component_write(component,
  2710. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2711. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2712. /* Store the coefficients in sidetone coeff array */
  2713. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2714. coeff_idx++) {
  2715. uint32_t value = coeff[coeff_idx];
  2716. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2717. /* Four 8 bit values(one 32 bit) per coefficient */
  2718. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2719. (value & 0xFF);
  2720. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2721. (value >> 8) & 0xFF;
  2722. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2723. (value >> 16) & 0xFF;
  2724. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2725. (value >> 24) & 0xFF;
  2726. }
  2727. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2728. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2729. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2730. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2731. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2732. __func__, iir_idx, band_idx,
  2733. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2734. __func__, iir_idx, band_idx,
  2735. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2736. __func__, iir_idx, band_idx,
  2737. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2738. __func__, iir_idx, band_idx,
  2739. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2740. __func__, iir_idx, band_idx,
  2741. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2742. return 0;
  2743. }
  2744. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2745. struct snd_kcontrol *kcontrol, int event)
  2746. {
  2747. struct snd_soc_component *component =
  2748. snd_soc_dapm_to_component(w->dapm);
  2749. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2750. switch (event) {
  2751. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2752. case SND_SOC_DAPM_PRE_PMD:
  2753. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2754. snd_soc_component_write(component,
  2755. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2756. snd_soc_component_read(component,
  2757. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2758. snd_soc_component_write(component,
  2759. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2760. snd_soc_component_read(component,
  2761. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2762. snd_soc_component_write(component,
  2763. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2764. snd_soc_component_read(component,
  2765. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2766. snd_soc_component_write(component,
  2767. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2768. snd_soc_component_read(component,
  2769. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2770. } else {
  2771. snd_soc_component_write(component,
  2772. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2773. snd_soc_component_read(component,
  2774. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2775. snd_soc_component_write(component,
  2776. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2777. snd_soc_component_read(component,
  2778. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2779. snd_soc_component_write(component,
  2780. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2781. snd_soc_component_read(component,
  2782. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2783. snd_soc_component_write(component,
  2784. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2785. snd_soc_component_read(component,
  2786. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2787. }
  2788. break;
  2789. }
  2790. return 0;
  2791. }
  2792. static int lpass_cdc_rx_macro_fir_filter_enable_get(struct snd_kcontrol *kcontrol,
  2793. struct snd_ctl_elem_value *ucontrol)
  2794. {
  2795. struct snd_soc_component *component =
  2796. snd_soc_kcontrol_component(kcontrol);
  2797. struct device *rx_dev = NULL;
  2798. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2799. if (!component) {
  2800. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2801. return -EINVAL;
  2802. }
  2803. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2804. return -EINVAL;
  2805. ucontrol->value.bytes.data[0] = (unsigned char)rx_priv->is_fir_filter_on;
  2806. return 0;
  2807. }
  2808. static int lpass_cdc_rx_macro_fir_filter_enable_put(struct snd_kcontrol *kcontrol,
  2809. struct snd_ctl_elem_value *ucontrol)
  2810. {
  2811. struct snd_soc_component *component =
  2812. snd_soc_kcontrol_component(kcontrol);
  2813. struct device *rx_dev = NULL;
  2814. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2815. int ret = 0;
  2816. if (!component) {
  2817. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2818. return -EINVAL;
  2819. }
  2820. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2821. return -EINVAL;
  2822. if (!rx_priv->hifi_fir_clk) {
  2823. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  2824. __func__);
  2825. return 0;
  2826. }
  2827. if (!rx_priv->is_fir_capable) {
  2828. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  2829. __func__);
  2830. return 0;
  2831. }
  2832. rx_priv->is_fir_filter_on =
  2833. (!ucontrol->value.bytes.data[0] ? false : true);
  2834. dev_dbg(rx_priv->dev, "%s:is_fir_filter_on=%d\n",
  2835. __func__, rx_priv->is_fir_filter_on);
  2836. if (rx_priv->is_fir_filter_on) {
  2837. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2838. if (ret < 0) {
  2839. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2840. __func__);
  2841. return ret;
  2842. }
  2843. snd_soc_component_write(component, LPASS_CDC_RX_RX0_RX_FIR_CFG,
  2844. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2845. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2846. " number written: %d.\n",
  2847. __func__, RX0_PATH,
  2848. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2849. snd_soc_component_write(component, LPASS_CDC_RX_RX1_RX_FIR_CFG,
  2850. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2851. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2852. " number written: %d.\n",
  2853. __func__, RX1_PATH,
  2854. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2855. /* Enable HIFI_FEAT_EN bit */
  2856. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2857. /* Enable FIR_CLK_EN */
  2858. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x80);
  2859. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x80);
  2860. /* Start the FIR filter */
  2861. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x05);
  2862. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x05);
  2863. } else {
  2864. /* Stop the FIR filter */
  2865. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x00);
  2866. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x00);
  2867. /* Disable FIR_CLK_EN */
  2868. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x00);
  2869. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x00);
  2870. /* Disable HIFI_FEAT_EN bit */
  2871. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  2872. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  2873. }
  2874. return 0;
  2875. }
  2876. static int lpass_cdc_rx_macro_fir_filter_info(struct snd_kcontrol *kcontrol,
  2877. struct snd_ctl_elem_info *ucontrol)
  2878. {
  2879. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2880. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2881. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2882. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2883. ucontrol->count = params->max;
  2884. return 0;
  2885. }
  2886. static int lpass_cdc_rx_macro_fir_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2887. struct snd_ctl_elem_value *ucontrol)
  2888. {
  2889. struct snd_soc_component *component =
  2890. snd_soc_kcontrol_component(kcontrol);
  2891. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2892. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2893. unsigned int path_idx = ctl->path_idx;
  2894. unsigned int grp_idx = ctl->grp_idx;
  2895. u32 num_coeff_grp = 0;
  2896. u32 readArray[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  2897. unsigned int coeff_idx = 0, array_idx = 0;
  2898. unsigned int copy_size;
  2899. struct device *rx_dev = NULL;
  2900. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2901. if (!component) {
  2902. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2903. return -EINVAL;
  2904. }
  2905. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2906. return -EINVAL;
  2907. if (path_idx >= FIR_PATH_MAX) {
  2908. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  2909. __func__, path_idx);
  2910. return -EINVAL;
  2911. }
  2912. if (grp_idx >= GRP_MAX) {
  2913. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  2914. __func__, grp_idx);
  2915. return -EINVAL;
  2916. }
  2917. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2918. readArray[array_idx++] = num_coeff_grp;
  2919. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++) {
  2920. readArray[array_idx++] =
  2921. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx];
  2922. }
  2923. copy_size = array_idx;
  2924. memcpy(ucontrol->value.bytes.data, &readArray[0], sizeof(readArray[0]) * copy_size);
  2925. return 0;
  2926. }
  2927. static int set_fir_filter_coeff(struct snd_soc_component *component,
  2928. struct lpass_cdc_rx_macro_priv *rx_priv,
  2929. unsigned int path_idx)
  2930. {
  2931. int grp_idx = 0, coeff_idx = 0;
  2932. unsigned int ret = 0;
  2933. unsigned int max_coeff_num, num_coeff_grp;
  2934. unsigned int path_ctl_addr = 0, wdata0_addr = 0, coeff_addr = 0;
  2935. unsigned int fir_ctl_addr = 0;
  2936. bool all_coeff_written = true;
  2937. switch (path_idx) {
  2938. case RX0_PATH:
  2939. path_ctl_addr = LPASS_CDC_RX_RX0_RX_PATH_CTL;
  2940. wdata0_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_WDATA0;
  2941. coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_ADDR;
  2942. fir_ctl_addr = LPASS_CDC_RX_RX0_RX_FIR_CTL;
  2943. break;
  2944. case RX1_PATH:
  2945. path_ctl_addr = LPASS_CDC_RX_RX1_RX_PATH_CTL;
  2946. wdata0_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_WDATA0;
  2947. coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_ADDR;
  2948. fir_ctl_addr = LPASS_CDC_RX_RX1_RX_FIR_CTL;
  2949. break;
  2950. default:
  2951. dev_err_ratelimited(rx_priv->dev,
  2952. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  2953. ret = -EINVAL;
  2954. goto exit;
  2955. }
  2956. max_coeff_num = LPASS_CDC_RX_MACRO_FIR_COEFF_MAX;
  2957. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  2958. all_coeff_written = all_coeff_written &&
  2959. rx_priv->is_fir_coeff_written[path_idx][grp_idx];
  2960. if (all_coeff_written)
  2961. goto exit;
  2962. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, false);
  2963. if (ret < 0) {
  2964. dev_err_ratelimited(rx_priv->dev, "%s:rx_macro_mclk enable failed\n",
  2965. __func__);
  2966. goto exit;
  2967. }
  2968. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2969. if (ret < 0) {
  2970. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2971. __func__);
  2972. goto disable_mclk_block;
  2973. }
  2974. /* Enable HIFI_FEAT_EN bit */
  2975. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2976. /* Enable FIR_CLK_EN, datapath reset */
  2977. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0xC0);
  2978. /* Enable FIR_CLK_EN, Release Reset */
  2979. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0x80);
  2980. /* wait for data ram initialization after enabling clock */
  2981. usleep_range(10, 11);
  2982. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  2983. unsigned int coeff_idx_start = 0, array_idx = 0;
  2984. /* Skip if this group is written and no futher update */
  2985. if (rx_priv->is_fir_coeff_written[path_idx][grp_idx])
  2986. continue;
  2987. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2988. if (num_coeff_grp > max_coeff_num) {
  2989. dev_err_ratelimited(rx_priv->dev,
  2990. "%s: inavlid number of RX_FIR coefficients:%d"
  2991. " in path:%d, group:%d\n",
  2992. __func__, num_coeff_grp, path_idx, grp_idx);
  2993. ret = -EINVAL;
  2994. goto disable_FIR;
  2995. }
  2996. coeff_idx_start = grp_idx * max_coeff_num;
  2997. for (coeff_idx = coeff_idx_start;
  2998. coeff_idx < coeff_idx_start + num_coeff_grp / 2 * 2;
  2999. coeff_idx += 2) {
  3000. unsigned int addr_offset = coeff_idx / 2;
  3001. /* First coefficient in pair */
  3002. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3003. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3004. __func__, coeff_idx, value);
  3005. snd_soc_component_write(component, wdata0_addr,
  3006. value & 0xFF);
  3007. snd_soc_component_write(component, wdata0_addr + 0x4,
  3008. (value >> 8) & 0xFF);
  3009. snd_soc_component_write(component, wdata0_addr + 0x8,
  3010. (value >> 16) & 0xFF);
  3011. snd_soc_component_write(component, wdata0_addr + 0xC,
  3012. (value >> 24) & 0xFF);
  3013. /* Second coefficient in pair */
  3014. value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3015. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3016. __func__, coeff_idx, value);
  3017. snd_soc_component_write(component, wdata0_addr + 0x10,
  3018. value & 0xFF);
  3019. snd_soc_component_write(component, wdata0_addr + 0x14,
  3020. (value >> 8) & 0xFF);
  3021. snd_soc_component_write(component, wdata0_addr + 0x18,
  3022. (value >> 16) & 0xFF);
  3023. snd_soc_component_write(component, wdata0_addr + 0x1C,
  3024. (value >> 24) & 0xFF);
  3025. snd_soc_component_write(component, coeff_addr, addr_offset);
  3026. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3027. usleep_range(13, 15);
  3028. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3029. }
  3030. /* odd number of coefficients in this group, handle last one */
  3031. if (num_coeff_grp % 2 != 0) {
  3032. int addr_offset = coeff_idx / 2;
  3033. /* First coefficient in pair */
  3034. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3035. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3036. __func__, coeff_idx, value);
  3037. snd_soc_component_write(component, wdata0_addr,
  3038. value & 0xFF);
  3039. snd_soc_component_write(component, wdata0_addr + 0x4,
  3040. (value >> 8) & 0xFF);
  3041. snd_soc_component_write(component, wdata0_addr + 0x8,
  3042. (value >> 16) & 0xFF);
  3043. snd_soc_component_write(component, wdata0_addr + 0xC,
  3044. (value >> 24) & 0xFF);
  3045. /* Second coefficient in pair */
  3046. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3047. __func__, coeff_idx, 0x0);
  3048. snd_soc_component_write(component, wdata0_addr + 0x10, 0x0);
  3049. snd_soc_component_write(component, wdata0_addr + 0x14, 0x0);
  3050. snd_soc_component_write(component, wdata0_addr + 0x18, 0x0);
  3051. snd_soc_component_write(component, wdata0_addr + 0x1C, 0x0);
  3052. snd_soc_component_write(component, coeff_addr, addr_offset);
  3053. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3054. usleep_range(13, 15);
  3055. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3056. }
  3057. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = true;
  3058. dev_dbg(component->dev, "%s: HIFI FIR Path:%d Group:%d coefficients"
  3059. " updated.\n",
  3060. __func__, path_idx, grp_idx);
  3061. }
  3062. disable_FIR:
  3063. /* disable FIR_CLK_EN */
  3064. snd_soc_component_update_bits(component, path_ctl_addr, 0x80, 0x00);
  3065. /* Disable HIFI_FEAT_EN bit */
  3066. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  3067. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  3068. disable_mclk_block:
  3069. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, false);
  3070. exit:
  3071. return ret;
  3072. }
  3073. static int lpass_cdc_rx_macro_fir_audio_mixer_put(struct snd_kcontrol *kcontrol,
  3074. struct snd_ctl_elem_value *ucontrol)
  3075. {
  3076. struct snd_soc_component *component =
  3077. snd_soc_kcontrol_component(kcontrol);
  3078. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  3079. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  3080. unsigned int path_idx = ctl->path_idx;
  3081. unsigned int grp_idx = ctl->grp_idx;
  3082. u32 ele_size = 0, num_coeff_grp = 0;
  3083. u32 coeff[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  3084. int ret = 0;
  3085. unsigned int stored_total_num = 0;
  3086. unsigned int grp_iidx = 0, coeff_idx = 0, array_idx = 0;
  3087. struct device *rx_dev = NULL;
  3088. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3089. if (!component) {
  3090. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3091. return -EINVAL;
  3092. }
  3093. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3094. return -EINVAL;
  3095. if (path_idx >= FIR_PATH_MAX) {
  3096. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3097. __func__, path_idx);
  3098. return -EINVAL;
  3099. }
  3100. if (grp_idx >= GRP_MAX) {
  3101. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  3102. __func__, grp_idx);
  3103. return -EINVAL;
  3104. }
  3105. if (!rx_priv->hifi_fir_clk) {
  3106. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  3107. __func__);
  3108. return 0;
  3109. }
  3110. if (!rx_priv->is_fir_capable) {
  3111. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  3112. __func__);
  3113. return 0;
  3114. }
  3115. ele_size = sizeof(coeff[0]);
  3116. memcpy(&coeff[0], ucontrol->value.bytes.data, ele_size);
  3117. num_coeff_grp = coeff[0];
  3118. dev_dbg(rx_priv->dev, "%s: bytes.data: path:%d, grp:%d, num_coeff_grp:%d\n",
  3119. __func__, path_idx, grp_idx, num_coeff_grp);
  3120. if (num_coeff_grp > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3121. dev_err_ratelimited(rx_priv->dev,
  3122. "%s: inavlid number of RX_FIR coefficients:%d in path:%d, group:%d\n",
  3123. __func__, num_coeff_grp, path_idx, grp_idx);
  3124. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3125. return -EINVAL;
  3126. } else {
  3127. rx_priv->num_fir_coeff[path_idx][grp_idx] = num_coeff_grp;
  3128. }
  3129. memcpy(&coeff[1], &(ucontrol->value.bytes.data[ele_size]), ele_size * num_coeff_grp);
  3130. /* Store the coefficients in FIR coeff array */
  3131. array_idx = 1;
  3132. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++)
  3133. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx] = coeff[array_idx++];
  3134. /* Clear the written flag so this group is ready to be written */
  3135. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = false;
  3136. stored_total_num = 0;
  3137. for (grp_iidx = 0; grp_iidx < GRP_MAX; grp_iidx++) {
  3138. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_iidx];
  3139. }
  3140. /* Only write coeffs if total num matches, otherwise delay the write */
  3141. if (rx_priv->fir_total_coeff_num[path_idx] == stored_total_num)
  3142. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3143. return ret;
  3144. }
  3145. static int lpass_cdc_rx_macro_fir_coeff_num_get(struct snd_kcontrol *kcontrol,
  3146. struct snd_ctl_elem_value *ucontrol)
  3147. {
  3148. struct snd_soc_component *component =
  3149. snd_soc_kcontrol_component(kcontrol);
  3150. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3151. kcontrol->private_value)->shift;
  3152. struct device *rx_dev = NULL;
  3153. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3154. if (!component) {
  3155. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3156. return -EINVAL;
  3157. }
  3158. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3159. return -EINVAL;
  3160. if (path_idx >= FIR_PATH_MAX) {
  3161. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3162. __func__, path_idx);
  3163. return -EINVAL;
  3164. }
  3165. ucontrol->value.bytes.data[0] = rx_priv->fir_total_coeff_num[path_idx];
  3166. return 0;
  3167. }
  3168. static int lpass_cdc_rx_macro_fir_coeff_num_put(struct snd_kcontrol *kcontrol,
  3169. struct snd_ctl_elem_value *ucontrol)
  3170. {
  3171. struct snd_soc_component *component =
  3172. snd_soc_kcontrol_component(kcontrol);
  3173. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3174. kcontrol->private_value)->shift;
  3175. u8 fir_total_coeff_num = ucontrol->value.bytes.data[0];
  3176. struct device *rx_dev = NULL;
  3177. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3178. unsigned int ret = 0;
  3179. unsigned int grp_idx, stored_total_num;
  3180. if (!component) {
  3181. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3182. return -EINVAL;
  3183. }
  3184. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3185. return -EINVAL;
  3186. if (fir_total_coeff_num > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX) {
  3187. dev_err_ratelimited(rx_priv->dev,
  3188. "%s: inavlid total number of RX_FIR coefficients:%d"
  3189. " in path:%d\n",
  3190. __func__, fir_total_coeff_num, path_idx);
  3191. rx_priv->fir_total_coeff_num[path_idx] = 0;
  3192. return -EINVAL;
  3193. } else {
  3194. rx_priv->fir_total_coeff_num[path_idx] = fir_total_coeff_num;
  3195. }
  3196. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  3197. " number updated in private data: %d.\n",
  3198. __func__, path_idx, fir_total_coeff_num);
  3199. stored_total_num = 0;
  3200. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3201. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_idx];
  3202. if (fir_total_coeff_num == stored_total_num)
  3203. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3204. return ret;
  3205. }
  3206. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  3207. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  3208. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  3209. -84, 40, digital_gain),
  3210. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  3211. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  3212. -84, 40, digital_gain),
  3213. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  3214. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  3215. -84, 40, digital_gain),
  3216. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  3217. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  3218. -84, 40, digital_gain),
  3219. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  3220. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  3221. -84, 40, digital_gain),
  3222. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  3223. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  3224. -84, 40, digital_gain),
  3225. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  3226. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3227. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  3228. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3229. SOC_SINGLE_EXT("RX0 FIR Coeff Num", SND_SOC_NOPM, RX0_PATH,
  3230. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3231. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3232. SOC_SINGLE_EXT("RX1 FIR Coeff Num", SND_SOC_NOPM, RX1_PATH,
  3233. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3234. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3235. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  3236. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  3237. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  3238. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  3239. SOC_ENUM_EXT("RX_FIR Filter", lpass_cdc_rx_macro_fir_filter_enum,
  3240. lpass_cdc_rx_macro_fir_filter_enable_get, lpass_cdc_rx_macro_fir_filter_enable_put),
  3241. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  3242. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  3243. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  3244. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  3245. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  3246. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  3247. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  3248. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  3249. lpass_cdc_rx_macro_soft_clip_enable_get,
  3250. lpass_cdc_rx_macro_soft_clip_enable_put),
  3251. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  3252. lpass_cdc_rx_macro_aux_hpf_mode_get,
  3253. lpass_cdc_rx_macro_aux_hpf_mode_put),
  3254. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  3255. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  3256. digital_gain),
  3257. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  3258. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  3259. digital_gain),
  3260. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  3261. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  3262. digital_gain),
  3263. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  3264. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  3265. digital_gain),
  3266. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  3267. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  3268. digital_gain),
  3269. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  3270. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  3271. digital_gain),
  3272. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  3273. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  3274. digital_gain),
  3275. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  3276. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  3277. digital_gain),
  3278. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  3279. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3280. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3281. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  3282. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3283. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3284. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  3285. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3286. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3287. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  3288. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3289. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3290. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  3291. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3292. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3293. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  3294. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3295. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3296. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  3297. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3298. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3299. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  3300. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3301. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3302. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  3303. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3304. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3305. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  3306. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3307. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3308. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  3309. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  3310. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  3311. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  3312. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  3313. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  3314. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  3315. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  3316. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  3317. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  3318. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group0", RX0_PATH, GRP0),
  3319. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group1", RX0_PATH, GRP1),
  3320. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group0", RX1_PATH, GRP0),
  3321. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group1", RX1_PATH, GRP1),
  3322. };
  3323. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  3324. struct snd_kcontrol *kcontrol,
  3325. int event)
  3326. {
  3327. struct snd_soc_component *component =
  3328. snd_soc_dapm_to_component(w->dapm);
  3329. struct device *rx_dev = NULL;
  3330. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3331. u16 val = 0, ec_hq_reg = 0;
  3332. int ec_tx = 0;
  3333. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3334. return -EINVAL;
  3335. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  3336. val = snd_soc_component_read(component,
  3337. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  3338. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  3339. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  3340. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  3341. ec_tx = (val & 0x0f) - 1;
  3342. val = snd_soc_component_read(component,
  3343. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  3344. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  3345. ec_tx = (val & 0x0f) - 1;
  3346. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  3347. dev_err_ratelimited(rx_dev, "%s: EC mix control not set correctly\n",
  3348. __func__);
  3349. return -EINVAL;
  3350. }
  3351. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  3352. 0x40 * ec_tx;
  3353. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  3354. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  3355. 0x40 * ec_tx;
  3356. /* default set to 48k */
  3357. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  3358. return 0;
  3359. }
  3360. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  3361. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  3362. SND_SOC_NOPM, 0, 0),
  3363. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  3364. SND_SOC_NOPM, 0, 0),
  3365. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  3366. SND_SOC_NOPM, 0, 0),
  3367. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  3368. SND_SOC_NOPM, 0, 0),
  3369. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  3370. SND_SOC_NOPM, 0, 0),
  3371. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  3372. SND_SOC_NOPM, 0, 0),
  3373. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  3374. SND_SOC_NOPM, 0, 0),
  3375. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  3376. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  3377. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  3378. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  3379. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  3380. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  3381. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  3382. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3383. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3384. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  3385. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  3386. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  3387. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  3388. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  3389. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  3390. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  3391. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  3392. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  3393. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  3394. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  3395. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  3396. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  3397. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  3398. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3399. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  3400. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  3401. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  3402. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3403. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  3404. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  3405. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  3406. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3407. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  3408. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3409. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3410. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  3411. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3412. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3413. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  3414. 4, 0, NULL, 0),
  3415. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  3416. 4, 0, NULL, 0),
  3417. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  3418. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  3419. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  3420. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3421. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3422. SND_SOC_DAPM_POST_PMD),
  3423. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  3424. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3425. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3426. SND_SOC_DAPM_POST_PMD),
  3427. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  3428. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3429. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3430. SND_SOC_DAPM_POST_PMD),
  3431. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  3432. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  3433. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  3434. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  3435. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  3436. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  3437. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  3438. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  3439. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  3440. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  3441. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3442. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3443. SND_SOC_DAPM_POST_PMD),
  3444. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  3445. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3446. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3447. SND_SOC_DAPM_POST_PMD),
  3448. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  3449. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3450. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3451. SND_SOC_DAPM_POST_PMD),
  3452. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  3453. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  3454. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  3455. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3456. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3457. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3458. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3459. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3460. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3461. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3462. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3463. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3464. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3465. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3466. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3467. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3468. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3469. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3470. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3471. 0, 0, rx_int2_1_vbat_mix_switch,
  3472. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3473. lpass_cdc_rx_macro_enable_vbat,
  3474. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3475. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3476. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3477. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3478. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3479. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3480. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3481. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3482. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3483. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3484. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3485. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3486. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3487. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3488. };
  3489. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3490. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3491. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3492. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3493. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3494. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3495. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3496. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3497. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3498. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3499. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3500. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3501. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3502. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3503. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3504. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3505. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3506. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3507. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3508. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3509. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3510. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3511. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3512. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3513. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3514. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3515. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3516. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3517. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3518. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3519. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3520. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3521. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3522. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3523. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3524. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3525. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3526. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3527. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3528. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3529. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3530. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3531. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3532. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3533. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3534. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3535. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3536. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3537. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3538. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3539. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3540. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3541. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3542. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3543. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3544. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3545. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3546. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3547. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3548. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3549. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3550. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3551. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3552. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3553. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3554. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3555. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3556. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3557. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3558. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3559. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3560. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3561. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3562. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3563. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3564. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3565. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3566. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3567. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3568. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3569. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3570. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3571. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3572. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3573. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3574. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3575. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3576. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3577. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3578. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3579. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3580. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3581. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3582. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3583. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3584. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3585. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3586. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3587. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3588. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3589. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3590. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3591. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3592. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3593. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3594. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3595. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3596. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3597. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3598. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3599. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3600. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3601. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3602. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3603. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3604. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3605. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3606. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3607. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3608. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3609. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3610. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3611. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3612. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3613. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3614. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3615. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3616. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3617. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3618. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3619. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3620. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3621. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3622. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3623. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3624. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3625. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3626. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3627. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3628. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3629. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3630. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3631. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3632. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3633. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3634. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3635. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3636. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3637. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3638. /* Mixing path INT0 */
  3639. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3640. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3641. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3642. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3643. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3644. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3645. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3646. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3647. /* Mixing path INT1 */
  3648. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3649. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3650. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3651. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3652. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3653. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3654. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3655. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3656. /* Mixing path INT2 */
  3657. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3658. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3659. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3660. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3661. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3662. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3663. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3664. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3665. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3666. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3667. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3668. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3669. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3670. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3671. {"HPHL_OUT", NULL, "RX_MCLK"},
  3672. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3673. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3674. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3675. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3676. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3677. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3678. {"HPHR_OUT", NULL, "RX_MCLK"},
  3679. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3680. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3681. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3682. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3683. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3684. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3685. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3686. {"AUX_OUT", NULL, "RX_MCLK"},
  3687. {"IIR0", NULL, "RX_MCLK"},
  3688. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3689. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3690. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3691. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3692. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3693. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3694. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3695. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3696. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3697. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3698. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3699. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3700. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3701. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3702. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3703. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3704. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3705. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3706. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3707. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3708. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3709. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3710. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3711. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3712. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3713. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3714. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3715. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3716. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3717. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3718. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3719. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3720. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3721. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3722. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3723. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3724. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3725. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3726. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3727. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3728. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3729. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3730. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3731. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3732. {"IIR1", NULL, "RX_MCLK"},
  3733. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3734. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3735. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3736. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3737. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3738. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3739. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3740. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3741. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3742. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3743. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3744. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3745. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3746. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3747. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3748. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3749. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3750. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3751. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3752. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3753. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3754. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3755. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3756. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3757. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3758. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3759. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3760. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3761. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3762. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3763. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3764. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3765. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3766. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3767. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3768. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3769. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3770. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3771. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3772. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3773. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3774. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3775. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3776. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3777. {"SRC0", NULL, "IIR0"},
  3778. {"SRC1", NULL, "IIR1"},
  3779. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3780. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3781. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3782. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3783. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3784. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3785. };
  3786. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3787. {
  3788. int rc = 0;
  3789. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3790. if (rx_priv == NULL) {
  3791. pr_err_ratelimited("%s: rx priv data is NULL\n", __func__);
  3792. return -EINVAL;
  3793. }
  3794. if (!rx_priv->pre_dev_up && enable) {
  3795. pr_debug("%s: adsp is not up\n", __func__);
  3796. return -EINVAL;
  3797. }
  3798. if (enable) {
  3799. pm_runtime_get_sync(rx_priv->dev);
  3800. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3801. rc = 0;
  3802. else
  3803. rc = -ENOTSYNC;
  3804. } else {
  3805. pm_runtime_put_autosuspend(rx_priv->dev);
  3806. pm_runtime_mark_last_busy(rx_priv->dev);
  3807. }
  3808. return rc;
  3809. }
  3810. static int rx_swrm_clock(void *handle, bool enable)
  3811. {
  3812. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3813. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3814. int ret = 0;
  3815. if (regmap == NULL) {
  3816. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3817. return -EINVAL;
  3818. }
  3819. mutex_lock(&rx_priv->swr_clk_lock);
  3820. trace_printk("%s: swrm clock %s\n",
  3821. __func__, (enable ? "enable" : "disable"));
  3822. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3823. __func__, (enable ? "enable" : "disable"));
  3824. if (enable) {
  3825. pm_runtime_get_sync(rx_priv->dev);
  3826. if (rx_priv->swr_clk_users == 0) {
  3827. ret = msm_cdc_pinctrl_select_active_state(
  3828. rx_priv->rx_swr_gpio_p);
  3829. if (ret < 0) {
  3830. dev_err_ratelimited(rx_priv->dev,
  3831. "%s: rx swr pinctrl enable failed\n",
  3832. __func__);
  3833. pm_runtime_mark_last_busy(rx_priv->dev);
  3834. pm_runtime_put_autosuspend(rx_priv->dev);
  3835. goto exit;
  3836. }
  3837. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3838. if (ret < 0) {
  3839. msm_cdc_pinctrl_select_sleep_state(
  3840. rx_priv->rx_swr_gpio_p);
  3841. dev_err_ratelimited(rx_priv->dev,
  3842. "%s: rx request clock enable failed\n",
  3843. __func__);
  3844. pm_runtime_mark_last_busy(rx_priv->dev);
  3845. pm_runtime_put_autosuspend(rx_priv->dev);
  3846. goto exit;
  3847. }
  3848. if (rx_priv->reset_swr)
  3849. regmap_update_bits(regmap,
  3850. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3851. 0x02, 0x02);
  3852. regmap_update_bits(regmap,
  3853. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3854. 0x01, 0x01);
  3855. if (rx_priv->reset_swr)
  3856. regmap_update_bits(regmap,
  3857. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3858. 0x02, 0x00);
  3859. rx_priv->reset_swr = false;
  3860. }
  3861. pm_runtime_mark_last_busy(rx_priv->dev);
  3862. pm_runtime_put_autosuspend(rx_priv->dev);
  3863. rx_priv->swr_clk_users++;
  3864. } else {
  3865. if (rx_priv->swr_clk_users <= 0) {
  3866. dev_err_ratelimited(rx_priv->dev,
  3867. "%s: rx swrm clock users already reset\n",
  3868. __func__);
  3869. rx_priv->swr_clk_users = 0;
  3870. goto exit;
  3871. }
  3872. rx_priv->swr_clk_users--;
  3873. if (rx_priv->swr_clk_users == 0) {
  3874. regmap_update_bits(regmap,
  3875. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3876. 0x01, 0x00);
  3877. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3878. ret = msm_cdc_pinctrl_select_sleep_state(
  3879. rx_priv->rx_swr_gpio_p);
  3880. if (ret < 0) {
  3881. dev_err_ratelimited(rx_priv->dev,
  3882. "%s: rx swr pinctrl disable failed\n",
  3883. __func__);
  3884. goto exit;
  3885. }
  3886. }
  3887. }
  3888. trace_printk("%s: swrm clock users %d\n",
  3889. __func__, rx_priv->swr_clk_users);
  3890. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3891. __func__, rx_priv->swr_clk_users);
  3892. exit:
  3893. mutex_unlock(&rx_priv->swr_clk_lock);
  3894. return ret;
  3895. }
  3896. /**
  3897. * lpass_cdc_rx_set_fir_capability - Set RX HIFI FIR Filter capability
  3898. *
  3899. * @component: Codec component ptr.
  3900. * @capable: if the target have RX HIFI FIR available.
  3901. *
  3902. * Set RX HIFI FIR capability, stored the capability into RX macro private data.
  3903. */
  3904. int lpass_cdc_rx_set_fir_capability(struct snd_soc_component *component, bool capable)
  3905. {
  3906. struct device *rx_dev = NULL;
  3907. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3908. if (!component) {
  3909. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3910. return -EINVAL;
  3911. }
  3912. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3913. return -EINVAL;
  3914. rx_priv->is_fir_capable = capable;
  3915. return 0;
  3916. }
  3917. EXPORT_SYMBOL(lpass_cdc_rx_set_fir_capability);
  3918. static const struct lpass_cdc_rx_macro_reg_mask_val
  3919. lpass_cdc_rx_macro_reg_init[] = {
  3920. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3921. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3922. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3923. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3924. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3925. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3926. };
  3927. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3928. {
  3929. struct snd_soc_dapm_context *dapm =
  3930. snd_soc_component_get_dapm(component);
  3931. int ret = 0;
  3932. struct device *rx_dev = NULL;
  3933. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3934. int i;
  3935. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3936. if (!rx_dev) {
  3937. dev_err(component->dev,
  3938. "%s: null device for macro!\n", __func__);
  3939. return -EINVAL;
  3940. }
  3941. rx_priv = dev_get_drvdata(rx_dev);
  3942. if (!rx_priv) {
  3943. dev_err(component->dev,
  3944. "%s: priv is null for macro!\n", __func__);
  3945. return -EINVAL;
  3946. }
  3947. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3948. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3949. if (ret < 0) {
  3950. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3951. return ret;
  3952. }
  3953. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  3954. ARRAY_SIZE(rx_audio_map));
  3955. if (ret < 0) {
  3956. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  3957. return ret;
  3958. }
  3959. ret = snd_soc_dapm_new_widgets(dapm->card);
  3960. if (ret < 0) {
  3961. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  3962. return ret;
  3963. }
  3964. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  3965. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  3966. if (ret < 0) {
  3967. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  3968. return ret;
  3969. }
  3970. rx_priv->dev_up = true;
  3971. rx_priv->rx0_gain_val = 0;
  3972. rx_priv->rx1_gain_val = 0;
  3973. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  3974. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  3975. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  3976. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  3977. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  3978. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  3979. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  3980. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  3981. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  3982. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  3983. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  3984. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  3985. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  3986. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  3987. snd_soc_dapm_sync(dapm);
  3988. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  3989. snd_soc_component_update_bits(component,
  3990. lpass_cdc_rx_macro_reg_init[i].reg,
  3991. lpass_cdc_rx_macro_reg_init[i].mask,
  3992. lpass_cdc_rx_macro_reg_init[i].val);
  3993. rx_priv->component = component;
  3994. return 0;
  3995. }
  3996. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  3997. {
  3998. struct device *rx_dev = NULL;
  3999. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4000. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4001. return -EINVAL;
  4002. rx_priv->component = NULL;
  4003. return 0;
  4004. }
  4005. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  4006. {
  4007. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4008. struct platform_device *pdev = NULL;
  4009. struct device_node *node = NULL;
  4010. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  4011. int ret = 0;
  4012. u16 count = 0, ctrl_num = 0;
  4013. struct rx_swr_ctrl_platform_data *platdata = NULL;
  4014. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  4015. bool rx_swr_master_node = false;
  4016. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  4017. lpass_cdc_rx_macro_add_child_devices_work);
  4018. if (!rx_priv) {
  4019. pr_err("%s: Memory for rx_priv does not exist\n",
  4020. __func__);
  4021. return;
  4022. }
  4023. if (!rx_priv->dev) {
  4024. pr_err("%s: RX device does not exist\n", __func__);
  4025. return;
  4026. }
  4027. if(!rx_priv->dev->of_node) {
  4028. dev_err(rx_priv->dev,
  4029. "%s: DT node for RX dev does not exist\n", __func__);
  4030. return;
  4031. }
  4032. platdata = &rx_priv->swr_plat_data;
  4033. rx_priv->child_count = 0;
  4034. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  4035. rx_swr_master_node = false;
  4036. if (strnstr(node->name, "rx_swr_master",
  4037. strlen("rx_swr_master")) != NULL)
  4038. rx_swr_master_node = true;
  4039. if(rx_swr_master_node)
  4040. strlcpy(plat_dev_name, "rx_swr_ctrl",
  4041. (RX_SWR_STRING_LEN - 1));
  4042. else
  4043. strlcpy(plat_dev_name, node->name,
  4044. (RX_SWR_STRING_LEN - 1));
  4045. pdev = platform_device_alloc(plat_dev_name, -1);
  4046. if (!pdev) {
  4047. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  4048. __func__);
  4049. ret = -ENOMEM;
  4050. goto err;
  4051. }
  4052. pdev->dev.parent = rx_priv->dev;
  4053. pdev->dev.of_node = node;
  4054. if (rx_swr_master_node) {
  4055. ret = platform_device_add_data(pdev, platdata,
  4056. sizeof(*platdata));
  4057. if (ret) {
  4058. dev_err(&pdev->dev,
  4059. "%s: cannot add plat data ctrl:%d\n",
  4060. __func__, ctrl_num);
  4061. goto fail_pdev_add;
  4062. }
  4063. temp = krealloc(swr_ctrl_data,
  4064. (ctrl_num + 1) * sizeof(
  4065. struct rx_swr_ctrl_data),
  4066. GFP_KERNEL);
  4067. if (!temp) {
  4068. ret = -ENOMEM;
  4069. goto fail_pdev_add;
  4070. }
  4071. swr_ctrl_data = temp;
  4072. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  4073. ctrl_num++;
  4074. dev_dbg(&pdev->dev,
  4075. "%s: Adding soundwire ctrl device(s)\n",
  4076. __func__);
  4077. rx_priv->swr_ctrl_data = swr_ctrl_data;
  4078. }
  4079. ret = platform_device_add(pdev);
  4080. if (ret) {
  4081. dev_err(&pdev->dev,
  4082. "%s: Cannot add platform device\n",
  4083. __func__);
  4084. goto fail_pdev_add;
  4085. }
  4086. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  4087. rx_priv->pdev_child_devices[
  4088. rx_priv->child_count++] = pdev;
  4089. else
  4090. goto err;
  4091. }
  4092. return;
  4093. fail_pdev_add:
  4094. for (count = 0; count < rx_priv->child_count; count++)
  4095. platform_device_put(rx_priv->pdev_child_devices[count]);
  4096. err:
  4097. return;
  4098. }
  4099. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  4100. {
  4101. memset(ops, 0, sizeof(struct macro_ops));
  4102. ops->init = lpass_cdc_rx_macro_init;
  4103. ops->exit = lpass_cdc_rx_macro_deinit;
  4104. ops->io_base = rx_io_base;
  4105. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  4106. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  4107. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  4108. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  4109. }
  4110. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  4111. {
  4112. struct macro_ops ops = {0};
  4113. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4114. u32 rx_base_addr = 0, muxsel = 0;
  4115. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  4116. int ret = 0;
  4117. u32 default_clk_id = 0;
  4118. struct clk *hifi_fir_clk = NULL;
  4119. u32 is_used_rx_swr_gpio = 1;
  4120. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  4121. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  4122. dev_err(&pdev->dev,
  4123. "%s: va-macro not registered yet, defer\n", __func__);
  4124. return -EPROBE_DEFER;
  4125. }
  4126. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  4127. GFP_KERNEL);
  4128. if (!rx_priv)
  4129. return -ENOMEM;
  4130. rx_priv->pre_dev_up = true;
  4131. rx_priv->dev = &pdev->dev;
  4132. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  4133. &rx_base_addr);
  4134. if (ret) {
  4135. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4136. __func__, "reg");
  4137. return ret;
  4138. }
  4139. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  4140. &muxsel);
  4141. if (ret) {
  4142. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4143. __func__, "reg");
  4144. return ret;
  4145. }
  4146. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  4147. &default_clk_id);
  4148. if (ret) {
  4149. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4150. __func__, "qcom,default-clk-id");
  4151. default_clk_id = RX_CORE_CLK;
  4152. }
  4153. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  4154. NULL)) {
  4155. ret = of_property_read_u32(pdev->dev.of_node,
  4156. is_used_rx_swr_gpio_dt,
  4157. &is_used_rx_swr_gpio);
  4158. if (ret) {
  4159. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  4160. __func__, is_used_rx_swr_gpio_dt);
  4161. is_used_rx_swr_gpio = 1;
  4162. }
  4163. }
  4164. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  4165. "qcom,rx-swr-gpios", 0);
  4166. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  4167. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  4168. __func__);
  4169. return -EINVAL;
  4170. }
  4171. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  4172. is_used_rx_swr_gpio) {
  4173. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  4174. __func__);
  4175. return -EPROBE_DEFER;
  4176. }
  4177. msm_cdc_pinctrl_set_wakeup_capable(
  4178. rx_priv->rx_swr_gpio_p, false);
  4179. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  4180. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  4181. if (!rx_io_base) {
  4182. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  4183. return -ENOMEM;
  4184. }
  4185. rx_priv->rx_io_base = rx_io_base;
  4186. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  4187. if (!muxsel_io) {
  4188. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  4189. __func__);
  4190. return -ENOMEM;
  4191. }
  4192. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  4193. rx_priv->reset_swr = true;
  4194. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  4195. lpass_cdc_rx_macro_add_child_devices);
  4196. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  4197. rx_priv->swr_plat_data.read = NULL;
  4198. rx_priv->swr_plat_data.write = NULL;
  4199. rx_priv->swr_plat_data.bulk_write = NULL;
  4200. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  4201. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  4202. rx_priv->swr_plat_data.handle_irq = NULL;
  4203. rx_priv->clk_id = default_clk_id;
  4204. rx_priv->default_clk_id = default_clk_id;
  4205. ops.clk_id_req = rx_priv->clk_id;
  4206. ops.default_clk_id = default_clk_id;
  4207. hifi_fir_clk = devm_clk_get(&pdev->dev, "rx_mclk2_2x_clk");
  4208. if (IS_ERR(hifi_fir_clk)) {
  4209. ret = PTR_ERR(hifi_fir_clk);
  4210. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  4211. __func__, "rx_mclk2_2x_clk", ret);
  4212. hifi_fir_clk = NULL;
  4213. }
  4214. rx_priv->hifi_fir_clk = hifi_fir_clk;
  4215. rx_priv->is_aux_hpf_on = 1;
  4216. dev_set_drvdata(&pdev->dev, rx_priv);
  4217. mutex_init(&rx_priv->mclk_lock);
  4218. mutex_init(&rx_priv->swr_clk_lock);
  4219. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  4220. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  4221. if (ret) {
  4222. dev_err(&pdev->dev,
  4223. "%s: register macro failed\n", __func__);
  4224. goto err_reg_macro;
  4225. }
  4226. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  4227. pm_runtime_use_autosuspend(&pdev->dev);
  4228. pm_runtime_set_suspended(&pdev->dev);
  4229. pm_suspend_ignore_children(&pdev->dev, true);
  4230. pm_runtime_enable(&pdev->dev);
  4231. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  4232. return 0;
  4233. err_reg_macro:
  4234. mutex_destroy(&rx_priv->mclk_lock);
  4235. mutex_destroy(&rx_priv->swr_clk_lock);
  4236. return ret;
  4237. }
  4238. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  4239. {
  4240. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4241. u16 count = 0;
  4242. rx_priv = dev_get_drvdata(&pdev->dev);
  4243. if (!rx_priv)
  4244. return -EINVAL;
  4245. for (count = 0; count < rx_priv->child_count &&
  4246. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  4247. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  4248. pm_runtime_disable(&pdev->dev);
  4249. pm_runtime_set_suspended(&pdev->dev);
  4250. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  4251. mutex_destroy(&rx_priv->mclk_lock);
  4252. mutex_destroy(&rx_priv->swr_clk_lock);
  4253. kfree(rx_priv->swr_ctrl_data);
  4254. return 0;
  4255. }
  4256. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  4257. {.compatible = "qcom,lpass-cdc-rx-macro"},
  4258. {}
  4259. };
  4260. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  4261. SET_SYSTEM_SLEEP_PM_OPS(
  4262. pm_runtime_force_suspend,
  4263. pm_runtime_force_resume
  4264. )
  4265. SET_RUNTIME_PM_OPS(
  4266. lpass_cdc_runtime_suspend,
  4267. lpass_cdc_runtime_resume,
  4268. NULL
  4269. )
  4270. };
  4271. static struct platform_driver lpass_cdc_rx_macro_driver = {
  4272. .driver = {
  4273. .name = "lpass_cdc_rx_macro",
  4274. .owner = THIS_MODULE,
  4275. .pm = &lpass_cdc_dev_pm_ops,
  4276. .of_match_table = lpass_cdc_rx_macro_dt_match,
  4277. .suppress_bind_attrs = true,
  4278. },
  4279. .probe = lpass_cdc_rx_macro_probe,
  4280. .remove = lpass_cdc_rx_macro_remove,
  4281. };
  4282. module_platform_driver(lpass_cdc_rx_macro_driver);
  4283. MODULE_DESCRIPTION("RX macro driver");
  4284. MODULE_LICENSE("GPL v2");