hal_srng.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. #include "qdf_ssr_driver_dump.h"
  27. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  28. #ifdef QCA_WIFI_QCA8074
  29. void hal_qca6290_attach(struct hal_soc *hal);
  30. #endif
  31. #ifdef QCA_WIFI_QCA8074
  32. void hal_qca8074_attach(struct hal_soc *hal);
  33. #endif
  34. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  35. defined(QCA_WIFI_QCA9574)
  36. void hal_qca8074v2_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCA6390
  39. void hal_qca6390_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6490
  42. void hal_qca6490_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCN9000
  45. void hal_qcn9000_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCN9224
  48. void hal_qcn9224v2_attach(struct hal_soc *hal);
  49. #endif
  50. #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
  51. void hal_qcn6122_attach(struct hal_soc *hal);
  52. #endif
  53. #ifdef QCA_WIFI_QCN6432
  54. void hal_qcn6432_attach(struct hal_soc *hal);
  55. #endif
  56. #ifdef QCA_WIFI_QCA6750
  57. void hal_qca6750_attach(struct hal_soc *hal);
  58. #endif
  59. #ifdef QCA_WIFI_QCA5018
  60. void hal_qca5018_attach(struct hal_soc *hal);
  61. #endif
  62. #ifdef QCA_WIFI_QCA5332
  63. void hal_qca5332_attach(struct hal_soc *hal);
  64. #endif
  65. #ifdef INCLUDE_HAL_KIWI
  66. void hal_kiwi_attach(struct hal_soc *hal);
  67. #endif
  68. #ifdef INCLUDE_HAL_PEACH
  69. void hal_peach_attach(struct hal_soc *hal);
  70. #endif
  71. #ifdef ENABLE_VERBOSE_DEBUG
  72. bool is_hal_verbose_debug_enabled;
  73. #endif
  74. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  75. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  76. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  77. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  78. #ifdef ENABLE_HAL_REG_WR_HISTORY
  79. struct hal_reg_write_fail_history hal_reg_wr_hist;
  80. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  81. uint32_t offset,
  82. uint32_t wr_val, uint32_t rd_val)
  83. {
  84. struct hal_reg_write_fail_entry *record;
  85. int idx;
  86. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  87. HAL_REG_WRITE_HIST_SIZE);
  88. record = &hal_soc->reg_wr_fail_hist->record[idx];
  89. record->timestamp = qdf_get_log_timestamp();
  90. record->reg_offset = offset;
  91. record->write_val = wr_val;
  92. record->read_val = rd_val;
  93. }
  94. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  95. {
  96. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  97. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  98. }
  99. #else
  100. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  101. {
  102. }
  103. #endif
  104. /**
  105. * hal_get_srng_ring_id() - get the ring id of a described ring
  106. * @hal: hal_soc data structure
  107. * @ring_type: type enum describing the ring
  108. * @ring_num: which ring of the ring type
  109. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  110. *
  111. * Return: the ring id or -EINVAL if the ring does not exist.
  112. */
  113. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  114. int ring_num, int mac_id)
  115. {
  116. struct hal_hw_srng_config *ring_config =
  117. HAL_SRNG_CONFIG(hal, ring_type);
  118. int ring_id;
  119. if (ring_num >= ring_config->max_rings) {
  120. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  121. "%s: ring_num exceeded maximum no. of supported rings",
  122. __func__);
  123. /* TODO: This is a programming error. Assert if this happens */
  124. return -EINVAL;
  125. }
  126. /*
  127. * Some DMAC rings share a common source ring, hence don't provide them
  128. * with separate ring IDs per LMAC.
  129. */
  130. if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
  131. ring_id = (ring_config->start_ring_id + ring_num +
  132. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  133. } else {
  134. ring_id = ring_config->start_ring_id + ring_num;
  135. }
  136. return ring_id;
  137. }
  138. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  139. {
  140. /* TODO: Should we allocate srng structures dynamically? */
  141. return &(hal->srng_list[ring_id]);
  142. }
  143. #ifndef SHADOW_REG_CONFIG_DISABLED
  144. #define HP_OFFSET_IN_REG_START 1
  145. #define OFFSET_FROM_HP_TO_TP 4
  146. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  147. int shadow_config_index,
  148. int ring_type,
  149. int ring_num)
  150. {
  151. struct hal_srng *srng;
  152. int ring_id;
  153. struct hal_hw_srng_config *ring_config =
  154. HAL_SRNG_CONFIG(hal_soc, ring_type);
  155. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  156. if (ring_id < 0)
  157. return;
  158. srng = hal_get_srng(hal_soc, ring_id);
  159. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  160. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  161. + hal_soc->dev_base_addr;
  162. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  163. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  164. shadow_config_index);
  165. } else {
  166. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  167. + hal_soc->dev_base_addr;
  168. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  169. srng->u.src_ring.hp_addr,
  170. hal_soc->dev_base_addr, shadow_config_index);
  171. }
  172. }
  173. #endif
  174. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  175. void hal_set_one_target_reg_config(struct hal_soc *hal,
  176. uint32_t target_reg_offset,
  177. int list_index)
  178. {
  179. int i = list_index;
  180. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  181. hal->list_shadow_reg_config[i].target_register =
  182. target_reg_offset;
  183. hal->num_generic_shadow_regs_configured++;
  184. }
  185. qdf_export_symbol(hal_set_one_target_reg_config);
  186. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  187. #define MAX_REO_REMAP_SHADOW_REGS 4
  188. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  189. {
  190. uint32_t target_reg_offset;
  191. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  192. int i;
  193. struct hal_hw_srng_config *srng_config =
  194. &hal->hw_srng_table[WBM2SW_RELEASE];
  195. uint32_t reo_reg_base;
  196. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  197. target_reg_offset =
  198. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  199. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  200. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  201. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  202. }
  203. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  204. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  205. * HAL_IPA_TX_COMP_RING_IDX);
  206. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  207. return QDF_STATUS_SUCCESS;
  208. }
  209. qdf_export_symbol(hal_set_shadow_regs);
  210. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  211. {
  212. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  213. int shadow_config_index = hal->num_shadow_registers_configured;
  214. int i;
  215. int num_regs = hal->num_generic_shadow_regs_configured;
  216. for (i = 0; i < num_regs; i++) {
  217. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  218. hal->shadow_config[shadow_config_index].addr =
  219. hal->list_shadow_reg_config[i].target_register;
  220. hal->list_shadow_reg_config[i].shadow_config_index =
  221. shadow_config_index;
  222. hal->list_shadow_reg_config[i].va =
  223. SHADOW_REGISTER(shadow_config_index) +
  224. (uintptr_t)hal->dev_base_addr;
  225. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  226. hal->shadow_config[shadow_config_index].addr,
  227. SHADOW_REGISTER(shadow_config_index),
  228. shadow_config_index);
  229. shadow_config_index++;
  230. hal->num_shadow_registers_configured++;
  231. }
  232. return QDF_STATUS_SUCCESS;
  233. }
  234. qdf_export_symbol(hal_construct_shadow_regs);
  235. #endif
  236. #ifndef SHADOW_REG_CONFIG_DISABLED
  237. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  238. int ring_type,
  239. int ring_num)
  240. {
  241. uint32_t target_register;
  242. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  243. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  244. int shadow_config_index = hal->num_shadow_registers_configured;
  245. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  246. QDF_ASSERT(0);
  247. return QDF_STATUS_E_RESOURCES;
  248. }
  249. hal->num_shadow_registers_configured++;
  250. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  251. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  252. *ring_num);
  253. /* if the ring is a dst ring, we need to shadow the tail pointer */
  254. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  255. target_register += OFFSET_FROM_HP_TO_TP;
  256. hal->shadow_config[shadow_config_index].addr = target_register;
  257. /* update hp/tp addr in the hal_soc structure*/
  258. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  259. ring_num);
  260. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  261. target_register,
  262. SHADOW_REGISTER(shadow_config_index),
  263. shadow_config_index,
  264. ring_type, ring_num);
  265. return QDF_STATUS_SUCCESS;
  266. }
  267. qdf_export_symbol(hal_set_one_shadow_config);
  268. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  269. {
  270. int ring_type, ring_num;
  271. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  272. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  273. struct hal_hw_srng_config *srng_config =
  274. &hal->hw_srng_table[ring_type];
  275. if (ring_type == CE_SRC ||
  276. ring_type == CE_DST ||
  277. ring_type == CE_DST_STATUS)
  278. continue;
  279. if (srng_config->lmac_ring)
  280. continue;
  281. for (ring_num = 0; ring_num < srng_config->max_rings;
  282. ring_num++)
  283. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  284. }
  285. return QDF_STATUS_SUCCESS;
  286. }
  287. qdf_export_symbol(hal_construct_srng_shadow_regs);
  288. #else
  289. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  290. {
  291. return QDF_STATUS_SUCCESS;
  292. }
  293. qdf_export_symbol(hal_construct_srng_shadow_regs);
  294. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  295. int ring_num)
  296. {
  297. return QDF_STATUS_SUCCESS;
  298. }
  299. qdf_export_symbol(hal_set_one_shadow_config);
  300. #endif
  301. void hal_get_shadow_config(void *hal_soc,
  302. struct pld_shadow_reg_v2_cfg **shadow_config,
  303. int *num_shadow_registers_configured)
  304. {
  305. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  306. *shadow_config = &hal->shadow_config[0].v2;
  307. *num_shadow_registers_configured =
  308. hal->num_shadow_registers_configured;
  309. }
  310. qdf_export_symbol(hal_get_shadow_config);
  311. #ifdef CONFIG_SHADOW_V3
  312. void hal_get_shadow_v3_config(void *hal_soc,
  313. struct pld_shadow_reg_v3_cfg **shadow_config,
  314. int *num_shadow_registers_configured)
  315. {
  316. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  317. *shadow_config = &hal->shadow_config[0].v3;
  318. *num_shadow_registers_configured =
  319. hal->num_shadow_registers_configured;
  320. }
  321. qdf_export_symbol(hal_get_shadow_v3_config);
  322. #endif
  323. static bool hal_validate_shadow_register(struct hal_soc *hal,
  324. uint32_t *destination,
  325. uint32_t *shadow_address)
  326. {
  327. unsigned int index;
  328. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  329. int destination_ba_offset =
  330. ((char *)destination) - (char *)hal->dev_base_addr;
  331. index = shadow_address - shadow_0_offset;
  332. if (index >= MAX_SHADOW_REGISTERS) {
  333. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  334. "%s: index %x out of bounds", __func__, index);
  335. goto error;
  336. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  337. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  338. "%s: sanity check failure, expected %x, found %x",
  339. __func__, destination_ba_offset,
  340. hal->shadow_config[index].addr);
  341. goto error;
  342. }
  343. return true;
  344. error:
  345. qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
  346. hal->dev_base_addr, destination, shadow_address,
  347. shadow_0_offset, index);
  348. QDF_BUG(0);
  349. return false;
  350. }
  351. static void hal_target_based_configure(struct hal_soc *hal)
  352. {
  353. /*
  354. * Indicate Initialization of srngs to avoid force wake
  355. * as umac power collapse is not enabled yet
  356. */
  357. hal->init_phase = true;
  358. switch (hal->target_type) {
  359. #ifdef QCA_WIFI_QCA6290
  360. case TARGET_TYPE_QCA6290:
  361. hal->use_register_windowing = true;
  362. hal_qca6290_attach(hal);
  363. break;
  364. #endif
  365. #ifdef QCA_WIFI_QCA6390
  366. case TARGET_TYPE_QCA6390:
  367. hal->use_register_windowing = true;
  368. hal_qca6390_attach(hal);
  369. break;
  370. #endif
  371. #ifdef QCA_WIFI_QCA6490
  372. case TARGET_TYPE_QCA6490:
  373. hal->use_register_windowing = true;
  374. hal_qca6490_attach(hal);
  375. break;
  376. #endif
  377. #ifdef QCA_WIFI_QCA6750
  378. case TARGET_TYPE_QCA6750:
  379. hal->use_register_windowing = true;
  380. hal->static_window_map = true;
  381. hal_qca6750_attach(hal);
  382. break;
  383. #endif
  384. #ifdef INCLUDE_HAL_KIWI
  385. case TARGET_TYPE_KIWI:
  386. case TARGET_TYPE_MANGO:
  387. hal->use_register_windowing = true;
  388. hal_kiwi_attach(hal);
  389. break;
  390. #endif
  391. #ifdef INCLUDE_HAL_PEACH
  392. case TARGET_TYPE_PEACH:
  393. hal->use_register_windowing = true;
  394. hal_peach_attach(hal);
  395. break;
  396. #endif
  397. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  398. case TARGET_TYPE_QCA8074:
  399. hal_qca8074_attach(hal);
  400. break;
  401. #endif
  402. #if defined(QCA_WIFI_QCA8074V2)
  403. case TARGET_TYPE_QCA8074V2:
  404. hal_qca8074v2_attach(hal);
  405. break;
  406. #endif
  407. #if defined(QCA_WIFI_QCA6018)
  408. case TARGET_TYPE_QCA6018:
  409. hal_qca8074v2_attach(hal);
  410. break;
  411. #endif
  412. #if defined(QCA_WIFI_QCA9574)
  413. case TARGET_TYPE_QCA9574:
  414. hal_qca8074v2_attach(hal);
  415. break;
  416. #endif
  417. #if defined(QCA_WIFI_QCN6122)
  418. case TARGET_TYPE_QCN6122:
  419. hal->use_register_windowing = true;
  420. /*
  421. * Static window map is enabled for qcn9000 to use 2mb bar
  422. * size and use multiple windows to write into registers.
  423. */
  424. hal->static_window_map = true;
  425. hal_qcn6122_attach(hal);
  426. break;
  427. #endif
  428. #if defined(QCA_WIFI_QCN9160)
  429. case TARGET_TYPE_QCN9160:
  430. hal->use_register_windowing = true;
  431. /*
  432. * Static window map is enabled for qcn9160 to use 2mb bar
  433. * size and use multiple windows to write into registers.
  434. */
  435. hal->static_window_map = true;
  436. hal_qcn6122_attach(hal);
  437. break;
  438. #endif
  439. #if defined(QCA_WIFI_QCN6432)
  440. case TARGET_TYPE_QCN6432:
  441. hal->use_register_windowing = true;
  442. /*
  443. * Static window map is enabled for qcn6432 to use 2mb bar
  444. * size and use multiple windows to write into registers.
  445. */
  446. hal->static_window_map = true;
  447. hal_qcn6432_attach(hal);
  448. break;
  449. #endif
  450. #ifdef QCA_WIFI_QCN9000
  451. case TARGET_TYPE_QCN9000:
  452. hal->use_register_windowing = true;
  453. /*
  454. * Static window map is enabled for qcn9000 to use 2mb bar
  455. * size and use multiple windows to write into registers.
  456. */
  457. hal->static_window_map = true;
  458. hal_qcn9000_attach(hal);
  459. break;
  460. #endif
  461. #ifdef QCA_WIFI_QCA5018
  462. case TARGET_TYPE_QCA5018:
  463. hal->use_register_windowing = true;
  464. hal->static_window_map = true;
  465. hal_qca5018_attach(hal);
  466. break;
  467. #endif
  468. #ifdef QCA_WIFI_QCN9224
  469. case TARGET_TYPE_QCN9224:
  470. hal->use_register_windowing = true;
  471. hal->static_window_map = true;
  472. if (hal->version == 1)
  473. qdf_assert_always(0);
  474. else
  475. hal_qcn9224v2_attach(hal);
  476. break;
  477. #endif
  478. #ifdef QCA_WIFI_QCA5332
  479. case TARGET_TYPE_QCA5332:
  480. hal->use_register_windowing = true;
  481. hal->static_window_map = true;
  482. hal_qca5332_attach(hal);
  483. break;
  484. #endif
  485. #ifdef QCA_WIFI_WCN6450
  486. case TARGET_TYPE_WCN6450:
  487. hal->use_register_windowing = true;
  488. hal->static_window_map = true;
  489. hal_wcn6450_attach(hal);
  490. break;
  491. #endif
  492. default:
  493. break;
  494. }
  495. }
  496. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  497. {
  498. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  499. struct hif_target_info *tgt_info =
  500. hif_get_target_info_handle(hal_soc->hif_handle);
  501. return tgt_info->target_type;
  502. }
  503. qdf_export_symbol(hal_get_target_type);
  504. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  505. /**
  506. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  507. * @hal: hal_soc pointer
  508. *
  509. * Return: true if throughput is high, else false.
  510. */
  511. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  512. {
  513. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  514. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  515. }
  516. static inline
  517. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  518. char *buf, qdf_size_t size)
  519. {
  520. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  521. srng->wstats.enqueues, srng->wstats.dequeues,
  522. srng->wstats.coalesces, srng->wstats.direct);
  523. return buf;
  524. }
  525. /* bytes for local buffer */
  526. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  527. #ifndef WLAN_SOFTUMAC_SUPPORT
  528. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  529. {
  530. struct hal_srng *srng;
  531. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  532. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  533. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  534. hal_debug("SW2TCL1: %s",
  535. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  536. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  537. hal_debug("WBM2SW0: %s",
  538. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  539. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  540. hal_debug("REO2SW1: %s",
  541. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  542. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  543. hal_debug("REO2SW2: %s",
  544. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  545. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  546. hal_debug("REO2SW3: %s",
  547. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  548. }
  549. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  550. {
  551. uint32_t *hist;
  552. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  553. hist = hal->stats.wstats.sched_delay;
  554. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  555. qdf_atomic_read(&hal->stats.wstats.enqueues),
  556. hal->stats.wstats.dequeues,
  557. qdf_atomic_read(&hal->stats.wstats.coalesces),
  558. qdf_atomic_read(&hal->stats.wstats.direct),
  559. qdf_atomic_read(&hal->stats.wstats.q_depth),
  560. hal->stats.wstats.max_q_depth,
  561. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  562. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  563. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  564. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  565. }
  566. #else
  567. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  568. {
  569. }
  570. /* TODO: Need separate logic for Evros */
  571. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  572. {
  573. }
  574. #endif
  575. int hal_get_reg_write_pending_work(void *hal_soc)
  576. {
  577. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  578. return qdf_atomic_read(&hal->active_work_cnt);
  579. }
  580. #endif
  581. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  582. #ifdef MEMORY_DEBUG
  583. /*
  584. * Length of the queue(array) used to hold delayed register writes.
  585. * Must be a multiple of 2.
  586. */
  587. #define HAL_REG_WRITE_QUEUE_LEN 128
  588. #else
  589. #define HAL_REG_WRITE_QUEUE_LEN 32
  590. #endif
  591. #ifdef QCA_WIFI_QCA6750
  592. #define HAL_DEL_WRITE_FORCE_UPDATE_THRES 5
  593. static inline void hal_srng_update_last_hptp(struct hal_srng *srng)
  594. {
  595. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  596. srng->updated_hp = srng->u.src_ring.hp;
  597. else
  598. srng->updated_tp = srng->u.dst_ring.tp;
  599. srng->force_cnt = 0;
  600. }
  601. /* If HP/TP register updates are delayed due to delayed reg
  602. * write work not getting scheduled, hardware would see HP/TP
  603. * delta and will fire interrupts until the HP/TP updates reach
  604. * the hardware.
  605. *
  606. * When system is heavily stressed, this delay in HP/TP updates
  607. * would result in IRQ storm further stressing the system. Force
  608. * update HP/TP to the hardware under such scenarios to avoid this.
  609. */
  610. void hal_srng_check_and_update_hptp(struct hal_soc *hal_soc,
  611. struct hal_srng *srng, bool update)
  612. {
  613. uint32_t value;
  614. if (!update)
  615. return;
  616. SRNG_LOCK(&srng->lock);
  617. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  618. value = srng->u.src_ring.hp;
  619. if (value == srng->updated_hp ||
  620. srng->force_cnt++ < HAL_DEL_WRITE_FORCE_UPDATE_THRES)
  621. goto out_unlock;
  622. hal_write_address_32_mb(hal_soc, srng->u.src_ring.hp_addr,
  623. value, false);
  624. } else {
  625. value = srng->u.dst_ring.tp;
  626. if (value == srng->updated_tp ||
  627. srng->force_cnt++ < HAL_DEL_WRITE_FORCE_UPDATE_THRES)
  628. goto out_unlock;
  629. hal_write_address_32_mb(hal_soc, srng->u.dst_ring.tp_addr,
  630. value, false);
  631. }
  632. hal_srng_update_last_hptp(srng);
  633. hal_srng_reg_his_add(srng, value);
  634. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  635. srng->wstats.direct++;
  636. out_unlock:
  637. SRNG_UNLOCK(&srng->lock);
  638. }
  639. #else
  640. static inline void hal_srng_update_last_hptp(struct hal_srng *srng)
  641. {
  642. }
  643. #endif /* QCA_WIFI_QCA6750 */
  644. /**
  645. * hal_process_reg_write_q_elem() - process a register write queue element
  646. * @hal: hal_soc pointer
  647. * @q_elem: pointer to hal register write queue element
  648. *
  649. * Return: The value which was written to the address
  650. */
  651. static uint32_t
  652. hal_process_reg_write_q_elem(struct hal_soc *hal,
  653. struct hal_reg_write_q_elem *q_elem)
  654. {
  655. struct hal_srng *srng = q_elem->srng;
  656. uint32_t write_val;
  657. SRNG_LOCK(&srng->lock);
  658. srng->reg_write_in_progress = false;
  659. srng->wstats.dequeues++;
  660. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  661. q_elem->dequeue_val = srng->u.src_ring.hp;
  662. hal_write_address_32_mb(hal,
  663. srng->u.src_ring.hp_addr,
  664. srng->u.src_ring.hp, false);
  665. write_val = srng->u.src_ring.hp;
  666. } else {
  667. q_elem->dequeue_val = srng->u.dst_ring.tp;
  668. hal_write_address_32_mb(hal,
  669. srng->u.dst_ring.tp_addr,
  670. srng->u.dst_ring.tp, false);
  671. write_val = srng->u.dst_ring.tp;
  672. }
  673. hal_srng_update_last_hptp(srng);
  674. hal_srng_reg_his_add(srng, write_val);
  675. q_elem->valid = 0;
  676. srng->last_dequeue_time = q_elem->dequeue_time;
  677. SRNG_UNLOCK(&srng->lock);
  678. return write_val;
  679. }
  680. /**
  681. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  682. * @hal: hal_soc pointer
  683. * @delay_us: delay in us
  684. *
  685. * Return: None
  686. */
  687. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  688. uint64_t delay_us)
  689. {
  690. uint32_t *hist;
  691. hist = hal->stats.wstats.sched_delay;
  692. if (delay_us < 100)
  693. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  694. else if (delay_us < 1000)
  695. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  696. else if (delay_us < 5000)
  697. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  698. else
  699. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  700. }
  701. #ifdef SHADOW_WRITE_DELAY
  702. #define SHADOW_WRITE_MIN_DELTA_US 5
  703. #define SHADOW_WRITE_DELAY_US 50
  704. /*
  705. * Never add those srngs which are performance relate.
  706. * The delay itself will hit performance heavily.
  707. */
  708. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  709. (s)->ring_id == HAL_SRNG_CE_1_DST)
  710. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  711. {
  712. struct hal_srng *srng = elem->srng;
  713. struct hal_soc *hal;
  714. qdf_time_t now;
  715. qdf_iomem_t real_addr;
  716. if (qdf_unlikely(!srng))
  717. return false;
  718. hal = srng->hal_soc;
  719. if (qdf_unlikely(!hal))
  720. return false;
  721. /* Check if it is target srng, and valid shadow reg */
  722. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  723. return false;
  724. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  725. real_addr = SRNG_SRC_ADDR(srng, HP);
  726. else
  727. real_addr = SRNG_DST_ADDR(srng, TP);
  728. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  729. return false;
  730. /* Check the time delta from last write of same srng */
  731. now = qdf_get_log_timestamp();
  732. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  733. SHADOW_WRITE_MIN_DELTA_US)
  734. return false;
  735. /* Delay dequeue, and record */
  736. qdf_udelay(SHADOW_WRITE_DELAY_US);
  737. srng->wstats.dequeue_delay++;
  738. hal->stats.wstats.dequeue_delay++;
  739. return true;
  740. }
  741. #else
  742. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  743. {
  744. return false;
  745. }
  746. #endif
  747. #define MAX_DELAYED_REG_WRITE_RETRY 5
  748. /**
  749. * hal_reg_write_work() - Worker to process delayed writes
  750. * @arg: hal_soc pointer
  751. *
  752. * Return: None
  753. */
  754. static void hal_reg_write_work(void *arg)
  755. {
  756. int32_t q_depth, write_val;
  757. struct hal_soc *hal = arg;
  758. struct hal_reg_write_q_elem *q_elem;
  759. uint64_t delta_us;
  760. uint8_t ring_id;
  761. uint32_t *addr;
  762. uint32_t num_processed = 0;
  763. uint8_t retry_count = 0;
  764. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  765. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  766. q_elem->cpu_id = qdf_get_cpu();
  767. /* Make sure q_elem consistent in the memory for multi-cores */
  768. qdf_rmb();
  769. if (!q_elem->valid)
  770. return;
  771. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  772. if (q_depth > hal->stats.wstats.max_q_depth)
  773. hal->stats.wstats.max_q_depth = q_depth;
  774. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  775. hal->stats.wstats.prevent_l1_fails++;
  776. return;
  777. }
  778. while (true) {
  779. qdf_rmb();
  780. if (!q_elem->valid)
  781. break;
  782. qdf_rmb();
  783. /* buy some more time to make sure all fields
  784. * in q_elem is updated per different CPUs, in
  785. * case wmb/rmb is not taken effect
  786. */
  787. if (qdf_unlikely(!q_elem->srng ||
  788. (qdf_atomic_read(&q_elem->ring_id) !=
  789. q_elem->srng->ring_id))) {
  790. hal_err_rl("q_elem fields not up to date 0x%x 0x%x",
  791. q_elem->srng ? q_elem->srng->ring_id : 0xDEAD,
  792. qdf_atomic_read(&q_elem->ring_id));
  793. if (retry_count++ < MAX_DELAYED_REG_WRITE_RETRY) {
  794. /* Sleep for 1ms before retry */
  795. qdf_sleep(1);
  796. continue;
  797. }
  798. qdf_assert_always(0);
  799. }
  800. q_elem->dequeue_time = qdf_get_log_timestamp();
  801. ring_id = q_elem->srng->ring_id;
  802. addr = q_elem->addr;
  803. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  804. q_elem->enqueue_time);
  805. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  806. hal->stats.wstats.dequeues++;
  807. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  808. if (hal_reg_write_need_delay(q_elem))
  809. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  810. q_elem->srng->ring_id, q_elem->addr);
  811. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  812. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  813. hal->read_idx, ring_id, addr, write_val, delta_us);
  814. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  815. q_elem->dequeue_val,
  816. q_elem->enqueue_time,
  817. q_elem->dequeue_time);
  818. num_processed++;
  819. hal->read_idx = (hal->read_idx + 1) &
  820. (HAL_REG_WRITE_QUEUE_LEN - 1);
  821. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  822. retry_count = 0;
  823. }
  824. hif_allow_link_low_power_states(hal->hif_handle);
  825. /*
  826. * Decrement active_work_cnt by the number of elements dequeued after
  827. * hif_allow_link_low_power_states.
  828. * This makes sure that hif_try_complete_tasks will wait till we make
  829. * the bus access in hif_allow_link_low_power_states. This will avoid
  830. * race condition between delayed register worker and bus suspend
  831. * (system suspend or runtime suspend).
  832. *
  833. * The following decrement should be done at the end!
  834. */
  835. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  836. }
  837. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  838. {
  839. qdf_flush_work(&hal->reg_write_work);
  840. qdf_disable_work(&hal->reg_write_work);
  841. }
  842. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  843. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  844. }
  845. /**
  846. * hal_reg_write_enqueue() - enqueue register writes into kworker
  847. * @hal_soc: hal_soc pointer
  848. * @srng: srng pointer
  849. * @addr: iomem address of register
  850. * @value: value to be written to iomem address
  851. *
  852. * This function executes from within the SRNG LOCK
  853. *
  854. * Return: None
  855. */
  856. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  857. struct hal_srng *srng,
  858. void __iomem *addr,
  859. uint32_t value)
  860. {
  861. struct hal_reg_write_q_elem *q_elem;
  862. uint32_t write_idx;
  863. if (srng->reg_write_in_progress) {
  864. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  865. srng->ring_id, addr, value);
  866. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  867. srng->wstats.coalesces++;
  868. return;
  869. }
  870. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  871. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  872. q_elem = &hal_soc->reg_write_queue[write_idx];
  873. if (q_elem->valid) {
  874. hal_err("queue full");
  875. QDF_BUG(0);
  876. return;
  877. }
  878. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  879. srng->wstats.enqueues++;
  880. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  881. q_elem->srng = srng;
  882. q_elem->addr = addr;
  883. qdf_atomic_set(&q_elem->ring_id, srng->ring_id);
  884. q_elem->enqueue_val = value;
  885. q_elem->enqueue_time = qdf_get_log_timestamp();
  886. /*
  887. * Before the valid flag is set to true, all the other
  888. * fields in the q_elem needs to be updated in memory.
  889. * Else there is a chance that the dequeuing worker thread
  890. * might read stale entries and process incorrect srng.
  891. */
  892. qdf_wmb();
  893. q_elem->valid = true;
  894. /*
  895. * After all other fields in the q_elem has been updated
  896. * in memory successfully, the valid flag needs to be updated
  897. * in memory in time too.
  898. * Else there is a chance that the dequeuing worker thread
  899. * might read stale valid flag and the work will be bypassed
  900. * for this round. And if there is no other work scheduled
  901. * later, this hal register writing won't be updated any more.
  902. */
  903. qdf_wmb();
  904. srng->reg_write_in_progress = true;
  905. qdf_atomic_inc(&hal_soc->active_work_cnt);
  906. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  907. write_idx, srng->ring_id, addr, value);
  908. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  909. &hal_soc->reg_write_work);
  910. }
  911. /**
  912. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  913. * @hal: hal_soc pointer
  914. *
  915. * Initialize main data structures to process register writes in a delayed
  916. * workqueue.
  917. *
  918. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  919. */
  920. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  921. {
  922. hal->reg_write_wq =
  923. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  924. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  925. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  926. sizeof(*hal->reg_write_queue));
  927. if (!hal->reg_write_queue) {
  928. hal_err("unable to allocate memory");
  929. QDF_BUG(0);
  930. return QDF_STATUS_E_NOMEM;
  931. }
  932. /* Initial value of indices */
  933. hal->read_idx = 0;
  934. qdf_atomic_set(&hal->write_idx, -1);
  935. return QDF_STATUS_SUCCESS;
  936. }
  937. /**
  938. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  939. * @hal: hal_soc pointer
  940. *
  941. * De-initialize main data structures to process register writes in a delayed
  942. * workqueue.
  943. *
  944. * Return: None
  945. */
  946. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  947. {
  948. __hal_flush_reg_write_work(hal);
  949. qdf_flush_workqueue(0, hal->reg_write_wq);
  950. qdf_destroy_workqueue(0, hal->reg_write_wq);
  951. qdf_mem_free(hal->reg_write_queue);
  952. }
  953. #else
  954. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  955. {
  956. return QDF_STATUS_SUCCESS;
  957. }
  958. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  959. {
  960. }
  961. #endif
  962. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  963. #ifdef HAL_RECORD_SUSPEND_WRITE
  964. static struct hal_suspend_write_history
  965. g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
  966. static
  967. void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
  968. {
  969. uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
  970. (HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
  971. struct hal_suspend_write_record *cur_event =
  972. &hal_suspend_write_event.record[index];
  973. cur_event->ts = qdf_get_log_timestamp();
  974. cur_event->ring_id = ring_id;
  975. cur_event->value = value;
  976. cur_event->direct_wcount = count;
  977. qdf_atomic_inc(g_hal_suspend_write_history.index);
  978. }
  979. static inline
  980. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  981. {
  982. if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
  983. hal_event_suspend_record(ring_id, value, count);
  984. }
  985. #else
  986. static inline
  987. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  988. {
  989. }
  990. #endif
  991. #ifdef QCA_WIFI_QCA6750
  992. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  993. struct hal_srng *srng,
  994. void __iomem *addr,
  995. uint32_t value)
  996. {
  997. uint8_t vote_access;
  998. switch (srng->ring_type) {
  999. case CE_SRC:
  1000. case CE_DST:
  1001. case CE_DST_STATUS:
  1002. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  1003. HIF_EP_VOTE_NONDP_ACCESS);
  1004. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  1005. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  1006. PLD_MHI_STATE_L0 ==
  1007. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  1008. hal_write_address_32_mb(hal_soc, addr, value, false);
  1009. hal_srng_update_last_hptp(srng);
  1010. hal_srng_reg_his_add(srng, value);
  1011. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1012. srng->wstats.direct++;
  1013. } else {
  1014. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1015. }
  1016. break;
  1017. default:
  1018. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  1019. HIF_EP_VOTE_DP_ACCESS) ==
  1020. HIF_EP_VOTE_ACCESS_DISABLE ||
  1021. hal_is_reg_write_tput_level_high(hal_soc) ||
  1022. PLD_MHI_STATE_L0 ==
  1023. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  1024. hal_write_address_32_mb(hal_soc, addr, value, false);
  1025. hal_srng_reg_his_add(srng, value);
  1026. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1027. srng->wstats.direct++;
  1028. } else {
  1029. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1030. }
  1031. break;
  1032. }
  1033. }
  1034. #else
  1035. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1036. struct hal_srng *srng,
  1037. void __iomem *addr,
  1038. uint32_t value)
  1039. {
  1040. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  1041. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  1042. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1043. srng->wstats.direct++;
  1044. hal_write_address_32_mb(hal_soc, addr, value, false);
  1045. hal_srng_update_last_hptp(srng);
  1046. hal_srng_reg_his_add(srng, value);
  1047. } else {
  1048. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1049. }
  1050. hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
  1051. }
  1052. #endif
  1053. #endif
  1054. #ifdef HAL_SRNG_REG_HIS_DEBUG
  1055. inline void hal_free_srng_history(struct hal_soc *hal)
  1056. {
  1057. int i;
  1058. for (i = 0; i < HAL_SRNG_ID_MAX; i++)
  1059. qdf_mem_free(hal->srng_list[i].reg_his_ctx);
  1060. }
  1061. inline bool hal_alloc_srng_history(struct hal_soc *hal)
  1062. {
  1063. int i;
  1064. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1065. hal->srng_list[i].reg_his_ctx =
  1066. qdf_mem_malloc(sizeof(struct hal_srng_reg_his_ctx));
  1067. if (!hal->srng_list[i].reg_his_ctx) {
  1068. hal_err("srng_hist alloc failed");
  1069. hal_free_srng_history(hal);
  1070. return false;
  1071. }
  1072. }
  1073. return true;
  1074. }
  1075. #else
  1076. inline void hal_free_srng_history(struct hal_soc *hal)
  1077. {
  1078. }
  1079. inline bool hal_alloc_srng_history(struct hal_soc *hal)
  1080. {
  1081. return true;
  1082. }
  1083. #endif
  1084. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1085. {
  1086. struct hal_soc *hal;
  1087. int i;
  1088. hal = qdf_mem_common_alloc(sizeof(*hal));
  1089. if (!hal) {
  1090. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1091. "%s: hal_soc allocation failed", __func__);
  1092. goto fail0;
  1093. }
  1094. hal->hif_handle = hif_handle;
  1095. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1096. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1097. hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
  1098. hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */
  1099. hal->qdf_dev = qdf_dev;
  1100. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1101. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1102. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1103. if (!hal->shadow_rdptr_mem_paddr) {
  1104. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1105. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1106. __func__);
  1107. goto fail1;
  1108. }
  1109. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1110. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1111. hal->shadow_wrptr_mem_vaddr =
  1112. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1113. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1114. &(hal->shadow_wrptr_mem_paddr));
  1115. if (!hal->shadow_wrptr_mem_vaddr) {
  1116. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1117. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1118. __func__);
  1119. goto fail2;
  1120. }
  1121. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1122. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1123. if (!hal_alloc_srng_history(hal))
  1124. goto fail2;
  1125. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1126. hal->srng_list[i].initialized = 0;
  1127. hal->srng_list[i].ring_id = i;
  1128. }
  1129. qdf_spinlock_create(&hal->register_access_lock);
  1130. hal->register_window = 0;
  1131. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1132. hal->version = hif_get_soc_version(hif_handle);
  1133. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  1134. if (!hal->ops) {
  1135. hal_err("unable to allocable memory for HAL ops");
  1136. goto fail3;
  1137. }
  1138. hal_target_based_configure(hal);
  1139. hal_reg_write_fail_history_init(hal);
  1140. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1141. qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal));
  1142. qdf_atomic_init(&hal->active_work_cnt);
  1143. if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) {
  1144. hal_err("unable to initialize delayed reg write");
  1145. goto fail4;
  1146. }
  1147. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  1148. return (void *)hal;
  1149. fail4:
  1150. qdf_ssr_driver_dump_unregister_region("hal_soc");
  1151. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1152. qdf_mem_free(hal->ops);
  1153. fail3:
  1154. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1155. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1156. HAL_MAX_LMAC_RINGS,
  1157. hal->shadow_wrptr_mem_vaddr,
  1158. hal->shadow_wrptr_mem_paddr, 0);
  1159. fail2:
  1160. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1161. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1162. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1163. fail1:
  1164. qdf_mem_common_free(hal);
  1165. fail0:
  1166. return NULL;
  1167. }
  1168. qdf_export_symbol(hal_attach);
  1169. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1170. {
  1171. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1172. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1173. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1174. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1175. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1176. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1177. hif_read_phy_mem_base((void *)hal->hif_handle,
  1178. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1179. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1180. return;
  1181. }
  1182. qdf_export_symbol(hal_get_meminfo);
  1183. void hal_detach(void *hal_soc)
  1184. {
  1185. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1186. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1187. hal_delayed_reg_write_deinit(hal);
  1188. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1189. qdf_ssr_driver_dump_unregister_region("hal_soc");
  1190. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1191. qdf_mem_free(hal->ops);
  1192. hal_free_srng_history(hal);
  1193. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1194. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1195. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1196. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1197. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1198. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1199. qdf_mem_common_free(hal);
  1200. return;
  1201. }
  1202. qdf_export_symbol(hal_detach);
  1203. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1204. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1205. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1206. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1207. /**
  1208. * hal_ce_dst_setup() - Initialize CE destination ring registers
  1209. * @hal: HAL SOC handle
  1210. * @srng: SRNG ring pointer
  1211. * @ring_num: ring number
  1212. */
  1213. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1214. int ring_num)
  1215. {
  1216. uint32_t reg_val = 0;
  1217. uint32_t reg_addr;
  1218. struct hal_hw_srng_config *ring_config =
  1219. HAL_SRNG_CONFIG(hal, CE_DST);
  1220. /* set DEST_MAX_LENGTH according to ce assignment */
  1221. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1222. ring_config->reg_start[R0_INDEX] +
  1223. (ring_num * ring_config->reg_size[R0_INDEX]));
  1224. reg_val = HAL_REG_READ(hal, reg_addr);
  1225. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1226. reg_val |= srng->u.dst_ring.max_buffer_length &
  1227. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1228. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1229. if (srng->prefetch_timer) {
  1230. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1231. ring_config->reg_start[R0_INDEX] +
  1232. (ring_num * ring_config->reg_size[R0_INDEX]));
  1233. reg_val = HAL_REG_READ(hal, reg_addr);
  1234. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1235. reg_val |= srng->prefetch_timer;
  1236. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1237. reg_val = HAL_REG_READ(hal, reg_addr);
  1238. }
  1239. }
  1240. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1241. uint32_t *ix0, uint32_t *ix1,
  1242. uint32_t *ix2, uint32_t *ix3)
  1243. {
  1244. uint32_t reg_offset;
  1245. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1246. uint32_t reo_reg_base;
  1247. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1248. if (read) {
  1249. if (ix0) {
  1250. reg_offset =
  1251. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1252. reo_reg_base);
  1253. *ix0 = HAL_REG_READ(hal, reg_offset);
  1254. }
  1255. if (ix1) {
  1256. reg_offset =
  1257. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1258. reo_reg_base);
  1259. *ix1 = HAL_REG_READ(hal, reg_offset);
  1260. }
  1261. if (ix2) {
  1262. reg_offset =
  1263. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1264. reo_reg_base);
  1265. *ix2 = HAL_REG_READ(hal, reg_offset);
  1266. }
  1267. if (ix3) {
  1268. reg_offset =
  1269. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1270. reo_reg_base);
  1271. *ix3 = HAL_REG_READ(hal, reg_offset);
  1272. }
  1273. } else {
  1274. if (ix0) {
  1275. reg_offset =
  1276. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1277. reo_reg_base);
  1278. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1279. *ix0, true);
  1280. }
  1281. if (ix1) {
  1282. reg_offset =
  1283. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1284. reo_reg_base);
  1285. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1286. *ix1, true);
  1287. }
  1288. if (ix2) {
  1289. reg_offset =
  1290. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1291. reo_reg_base);
  1292. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1293. *ix2, true);
  1294. }
  1295. if (ix3) {
  1296. reg_offset =
  1297. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1298. reo_reg_base);
  1299. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1300. *ix3, true);
  1301. }
  1302. }
  1303. }
  1304. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1305. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1306. {
  1307. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1308. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1309. }
  1310. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1311. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1312. struct hal_srng *srng,
  1313. uint32_t *vaddr)
  1314. {
  1315. uint32_t reg_offset;
  1316. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1317. if (!srng)
  1318. return;
  1319. srng->u.dst_ring.hp_addr = vaddr;
  1320. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1321. HAL_REG_WRITE_CONFIRM_RETRY(
  1322. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1323. if (vaddr) {
  1324. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1325. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1326. "hp_addr=%pK, cached_hp=%d",
  1327. (void *)srng->u.dst_ring.hp_addr,
  1328. srng->u.dst_ring.cached_hp);
  1329. }
  1330. }
  1331. qdf_export_symbol(hal_srng_dst_init_hp);
  1332. void hal_srng_dst_update_hp_addr(struct hal_soc_handle *hal_soc,
  1333. hal_ring_handle_t hal_ring_hdl)
  1334. {
  1335. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1336. int32_t hw_hp;
  1337. int32_t hw_tp;
  1338. if (!srng)
  1339. return;
  1340. if (srng->u.dst_ring.hp_addr) {
  1341. hal_get_hw_hptp(hal_soc, hal_ring_hdl, &hw_hp, &hw_tp,
  1342. WBM2SW_RELEASE);
  1343. *srng->u.dst_ring.hp_addr = hw_hp;
  1344. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1345. "hw_hp=%d", hw_hp);
  1346. }
  1347. }
  1348. qdf_export_symbol(hal_srng_dst_update_hp_addr);
  1349. /**
  1350. * hal_srng_hw_init - Private function to initialize SRNG HW
  1351. * @hal: HAL SOC handle
  1352. * @srng: SRNG ring pointer
  1353. * @idle_check: Check if ring is idle
  1354. * @idx: ring index
  1355. */
  1356. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1357. struct hal_srng *srng, bool idle_check, uint32_t idx)
  1358. {
  1359. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1360. hal_srng_src_hw_init(hal, srng, idle_check, idx);
  1361. else
  1362. hal_srng_dst_hw_init(hal, srng, idle_check, idx);
  1363. }
  1364. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1365. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1366. int ring_type, int ring_num)
  1367. {
  1368. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1369. struct hal_hw_srng_config *ring_config =
  1370. HAL_SRNG_CONFIG(hal, ring_type);
  1371. return ring_config->nf_irq_support;
  1372. }
  1373. /**
  1374. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1375. * ring params
  1376. * @srng: SRNG handle
  1377. * @ring_params: ring params for this SRNG
  1378. *
  1379. * Return: None
  1380. */
  1381. static inline void
  1382. hal_srng_set_msi2_params(struct hal_srng *srng,
  1383. struct hal_srng_params *ring_params)
  1384. {
  1385. srng->msi2_addr = ring_params->msi2_addr;
  1386. srng->msi2_data = ring_params->msi2_data;
  1387. }
  1388. /**
  1389. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1390. * @srng: SRNG handle
  1391. * @ring_params: ring params for this SRNG
  1392. *
  1393. * Return: None
  1394. */
  1395. static inline void
  1396. hal_srng_get_nf_params(struct hal_srng *srng,
  1397. struct hal_srng_params *ring_params)
  1398. {
  1399. ring_params->msi2_addr = srng->msi2_addr;
  1400. ring_params->msi2_data = srng->msi2_data;
  1401. }
  1402. /**
  1403. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1404. * @srng: SRNG handle where the params are to be set
  1405. * @ring_params: ring params, from where threshold is to be fetched
  1406. *
  1407. * Return: None
  1408. */
  1409. static inline void
  1410. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1411. struct hal_srng_params *ring_params)
  1412. {
  1413. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1414. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1415. }
  1416. #else
  1417. static inline void
  1418. hal_srng_set_msi2_params(struct hal_srng *srng,
  1419. struct hal_srng_params *ring_params)
  1420. {
  1421. }
  1422. static inline void
  1423. hal_srng_get_nf_params(struct hal_srng *srng,
  1424. struct hal_srng_params *ring_params)
  1425. {
  1426. }
  1427. static inline void
  1428. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1429. struct hal_srng_params *ring_params)
  1430. {
  1431. }
  1432. #endif
  1433. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1434. /**
  1435. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1436. * @srng: Source ring pointer
  1437. *
  1438. * Return: None
  1439. */
  1440. static inline
  1441. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1442. {
  1443. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1444. }
  1445. #else
  1446. static inline
  1447. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1448. {
  1449. }
  1450. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1451. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1452. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1453. {
  1454. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1455. ((srng->num_entries * 90) / 100);
  1456. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1457. ((srng->num_entries * 80) / 100);
  1458. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1459. ((srng->num_entries * 70) / 100);
  1460. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1461. ((srng->num_entries * 60) / 100);
  1462. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1463. ((srng->num_entries * 50) / 100);
  1464. /* Below 50% threshold is not needed */
  1465. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1466. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1467. srng->ring_id,
  1468. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1469. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1470. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1471. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1472. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1473. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1474. }
  1475. #else
  1476. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1477. {
  1478. }
  1479. #endif
  1480. void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id,
  1481. struct hal_srng_params *ring_params, bool idle_check,
  1482. uint32_t idx)
  1483. {
  1484. int ring_id;
  1485. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1486. hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal;
  1487. struct hal_srng *srng;
  1488. struct hal_hw_srng_config *ring_config =
  1489. HAL_SRNG_CONFIG(hal, ring_type);
  1490. void *dev_base_addr;
  1491. int i;
  1492. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1493. if (ring_id < 0)
  1494. return NULL;
  1495. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1496. srng = hal_get_srng(hal_soc, ring_id);
  1497. if (srng->initialized) {
  1498. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1499. return NULL;
  1500. }
  1501. hal_srng_reg_his_init(srng);
  1502. dev_base_addr = hal->dev_base_addr;
  1503. srng->ring_id = ring_id;
  1504. srng->ring_type = ring_type;
  1505. srng->ring_dir = ring_config->ring_dir;
  1506. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1507. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1508. srng->entry_size = ring_config->entry_size;
  1509. srng->num_entries = ring_params->num_entries;
  1510. srng->ring_size = srng->num_entries * srng->entry_size;
  1511. srng->ring_size_mask = srng->ring_size - 1;
  1512. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1513. srng->msi_addr = ring_params->msi_addr;
  1514. srng->msi_data = ring_params->msi_data;
  1515. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1516. srng->intr_batch_cntr_thres_entries =
  1517. ring_params->intr_batch_cntr_thres_entries;
  1518. srng->pointer_timer_threshold =
  1519. ring_params->pointer_timer_threshold;
  1520. srng->pointer_num_threshold =
  1521. ring_params->pointer_num_threshold;
  1522. if (!idle_check)
  1523. srng->prefetch_timer = ring_params->prefetch_timer;
  1524. srng->hal_soc = hal_soc;
  1525. hal_srng_set_msi2_params(srng, ring_params);
  1526. hal_srng_update_high_wm_thresholds(srng);
  1527. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1528. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1529. + (ring_num * ring_config->reg_size[i]);
  1530. }
  1531. /* Zero out the entire ring memory */
  1532. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1533. srng->num_entries) << 2);
  1534. srng->flags = ring_params->flags;
  1535. /* For cached descriptors flush and invalidate the memory*/
  1536. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1537. qdf_nbuf_dma_clean_range(
  1538. srng->ring_base_vaddr,
  1539. srng->ring_base_vaddr +
  1540. ((srng->entry_size * srng->num_entries)));
  1541. qdf_nbuf_dma_inv_range(
  1542. srng->ring_base_vaddr,
  1543. srng->ring_base_vaddr +
  1544. ((srng->entry_size * srng->num_entries)));
  1545. }
  1546. #ifdef BIG_ENDIAN_HOST
  1547. /* TODO: See if we should we get these flags from caller */
  1548. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1549. srng->flags |= HAL_SRNG_MSI_SWAP;
  1550. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1551. #endif
  1552. hal_srng_last_desc_cleared_init(srng);
  1553. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1554. srng->u.src_ring.hp = 0;
  1555. srng->u.src_ring.reap_hp = srng->ring_size -
  1556. srng->entry_size;
  1557. srng->u.src_ring.tp_addr =
  1558. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1559. srng->u.src_ring.low_threshold =
  1560. ring_params->low_threshold * srng->entry_size;
  1561. if (srng->u.src_ring.tp_addr)
  1562. qdf_mem_zero(srng->u.src_ring.tp_addr,
  1563. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1564. if (ring_config->lmac_ring) {
  1565. /* For LMAC rings, head pointer updates will be done
  1566. * through FW by writing to a shared memory location
  1567. */
  1568. srng->u.src_ring.hp_addr =
  1569. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1570. HAL_SRNG_LMAC1_ID_START]);
  1571. srng->flags |= HAL_SRNG_LMAC_RING;
  1572. if (srng->u.src_ring.hp_addr)
  1573. qdf_mem_zero(srng->u.src_ring.hp_addr,
  1574. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1575. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1576. srng->u.src_ring.hp_addr =
  1577. hal_get_window_address(hal,
  1578. SRNG_SRC_ADDR(srng, HP));
  1579. if (CHECK_SHADOW_REGISTERS) {
  1580. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1581. QDF_TRACE_LEVEL_ERROR,
  1582. "%s: Ring (%d, %d) missing shadow config",
  1583. __func__, ring_type, ring_num);
  1584. }
  1585. } else {
  1586. hal_validate_shadow_register(hal,
  1587. SRNG_SRC_ADDR(srng, HP),
  1588. srng->u.src_ring.hp_addr);
  1589. }
  1590. } else {
  1591. /* During initialization loop count in all the descriptors
  1592. * will be set to zero, and HW will set it to 1 on completing
  1593. * descriptor update in first loop, and increments it by 1 on
  1594. * subsequent loops (loop count wraps around after reaching
  1595. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1596. * loop count in descriptors updated by HW (to be processed
  1597. * by SW).
  1598. */
  1599. hal_srng_set_nf_thresholds(srng, ring_params);
  1600. srng->u.dst_ring.loop_cnt = 1;
  1601. srng->u.dst_ring.tp = 0;
  1602. srng->u.dst_ring.hp_addr =
  1603. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1604. if (srng->u.dst_ring.hp_addr)
  1605. qdf_mem_zero(srng->u.dst_ring.hp_addr,
  1606. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1607. if (ring_config->lmac_ring) {
  1608. /* For LMAC rings, tail pointer updates will be done
  1609. * through FW by writing to a shared memory location
  1610. */
  1611. srng->u.dst_ring.tp_addr =
  1612. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1613. HAL_SRNG_LMAC1_ID_START]);
  1614. srng->flags |= HAL_SRNG_LMAC_RING;
  1615. if (srng->u.dst_ring.tp_addr)
  1616. qdf_mem_zero(srng->u.dst_ring.tp_addr,
  1617. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1618. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1619. srng->u.dst_ring.tp_addr =
  1620. hal_get_window_address(hal,
  1621. SRNG_DST_ADDR(srng, TP));
  1622. if (CHECK_SHADOW_REGISTERS) {
  1623. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1624. QDF_TRACE_LEVEL_ERROR,
  1625. "%s: Ring (%d, %d) missing shadow config",
  1626. __func__, ring_type, ring_num);
  1627. }
  1628. } else {
  1629. hal_validate_shadow_register(hal,
  1630. SRNG_DST_ADDR(srng, TP),
  1631. srng->u.dst_ring.tp_addr);
  1632. }
  1633. }
  1634. if (!(ring_config->lmac_ring)) {
  1635. /*
  1636. * UMAC reset has idle check enabled.
  1637. * During UMAC reset Tx ring halt is set
  1638. * by Wi-Fi FW during pre-reset stage,
  1639. * avoid Tx ring halt again.
  1640. */
  1641. if (idle_check && idx) {
  1642. if (!hal->ops->hal_tx_ring_halt_get(hal_hdl)) {
  1643. qdf_print("\nTx ring halt not set:Ring(%d, %d)",
  1644. ring_type, ring_num);
  1645. qdf_assert_always(0);
  1646. }
  1647. hal_srng_hw_init(hal, srng, idle_check, idx);
  1648. goto ce_setup;
  1649. }
  1650. if (idx) {
  1651. hal->ops->hal_tx_ring_halt_set(hal_hdl);
  1652. do {
  1653. hal_info("Waiting for ring reset");
  1654. } while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl)));
  1655. }
  1656. hal_srng_hw_init(hal, srng, idle_check, idx);
  1657. if (idx) {
  1658. hal->ops->hal_tx_ring_halt_reset(hal_hdl);
  1659. }
  1660. ce_setup:
  1661. if (ring_type == CE_DST) {
  1662. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1663. hal_ce_dst_setup(hal, srng, ring_num);
  1664. }
  1665. }
  1666. SRNG_LOCK_INIT(&srng->lock);
  1667. srng->srng_event = 0;
  1668. srng->initialized = true;
  1669. return (void *)srng;
  1670. }
  1671. qdf_export_symbol(hal_srng_setup_idx);
  1672. /**
  1673. * hal_srng_setup - Initialize HW SRNG ring.
  1674. * @hal_soc: Opaque HAL SOC handle
  1675. * @ring_type: one of the types from hal_ring_type
  1676. * @ring_num: Ring number if there are multiple rings of same type (staring
  1677. * from 0)
  1678. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1679. * @ring_params: SRNG ring params in hal_srng_params structure.
  1680. * @idle_check: Check if ring is idle
  1681. *
  1682. * Callers are expected to allocate contiguous ring memory of size
  1683. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1684. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1685. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1686. * and size of each ring entry should be queried using the API
  1687. * hal_srng_get_entrysize
  1688. *
  1689. * Return: Opaque pointer to ring on success
  1690. * NULL on failure (if given ring is not available)
  1691. */
  1692. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1693. int mac_id, struct hal_srng_params *ring_params,
  1694. bool idle_check)
  1695. {
  1696. return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id,
  1697. ring_params, idle_check, 0);
  1698. }
  1699. qdf_export_symbol(hal_srng_setup);
  1700. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
  1701. bool umac_reset_inprogress)
  1702. {
  1703. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1704. SRNG_LOCK_DESTROY(&srng->lock);
  1705. srng->initialized = 0;
  1706. if (umac_reset_inprogress)
  1707. hal_srng_hw_disable(hal_soc, srng);
  1708. }
  1709. qdf_export_symbol(hal_srng_cleanup);
  1710. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1711. {
  1712. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1713. struct hal_hw_srng_config *ring_config =
  1714. HAL_SRNG_CONFIG(hal, ring_type);
  1715. return ring_config->entry_size << 2;
  1716. }
  1717. qdf_export_symbol(hal_srng_get_entrysize);
  1718. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1719. {
  1720. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1721. struct hal_hw_srng_config *ring_config =
  1722. HAL_SRNG_CONFIG(hal, ring_type);
  1723. return ring_config->max_size / ring_config->entry_size;
  1724. }
  1725. qdf_export_symbol(hal_srng_max_entries);
  1726. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1727. {
  1728. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1729. struct hal_hw_srng_config *ring_config =
  1730. HAL_SRNG_CONFIG(hal, ring_type);
  1731. return ring_config->ring_dir;
  1732. }
  1733. void hal_srng_dump(struct hal_srng *srng)
  1734. {
  1735. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1736. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1737. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1738. srng->u.src_ring.hp,
  1739. srng->u.src_ring.reap_hp,
  1740. *srng->u.src_ring.tp_addr,
  1741. srng->u.src_ring.cached_tp);
  1742. } else {
  1743. hal_debug("=== DST RING %d ===", srng->ring_id);
  1744. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1745. srng->u.dst_ring.tp,
  1746. *srng->u.dst_ring.hp_addr,
  1747. srng->u.dst_ring.cached_hp,
  1748. srng->u.dst_ring.loop_cnt);
  1749. }
  1750. }
  1751. void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1752. hal_ring_handle_t hal_ring_hdl,
  1753. struct hal_srng_params *ring_params)
  1754. {
  1755. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1756. int i =0;
  1757. ring_params->ring_id = srng->ring_id;
  1758. ring_params->ring_dir = srng->ring_dir;
  1759. ring_params->entry_size = srng->entry_size;
  1760. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1761. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1762. ring_params->num_entries = srng->num_entries;
  1763. ring_params->msi_addr = srng->msi_addr;
  1764. ring_params->msi_data = srng->msi_data;
  1765. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1766. ring_params->intr_batch_cntr_thres_entries =
  1767. srng->intr_batch_cntr_thres_entries;
  1768. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1769. ring_params->flags = srng->flags;
  1770. ring_params->ring_id = srng->ring_id;
  1771. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1772. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1773. hal_srng_get_nf_params(srng, ring_params);
  1774. }
  1775. qdf_export_symbol(hal_get_srng_params);
  1776. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1777. uint32_t low_threshold)
  1778. {
  1779. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1780. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1781. }
  1782. qdf_export_symbol(hal_set_low_threshold);
  1783. #ifdef FEATURE_RUNTIME_PM
  1784. void
  1785. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1786. hal_ring_handle_t hal_ring_hdl,
  1787. uint32_t rtpm_id)
  1788. {
  1789. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  1790. if (qdf_unlikely(!hal_ring_hdl)) {
  1791. qdf_print("Error: Invalid hal_ring\n");
  1792. return;
  1793. }
  1794. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1795. if (hif_system_pm_state_check(hal_soc->hif_handle)) {
  1796. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1797. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1798. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1799. } else {
  1800. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1801. }
  1802. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1803. } else {
  1804. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1805. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1806. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1807. }
  1808. }
  1809. qdf_export_symbol(hal_srng_rtpm_access_end);
  1810. #endif /* FEATURE_RUNTIME_PM */
  1811. #ifdef FORCE_WAKE
  1812. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1813. {
  1814. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1815. hal_soc->init_phase = init_phase;
  1816. }
  1817. #endif /* FORCE_WAKE */