hal_srng.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCN6122
  42. void hal_qcn6122_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA6750
  45. void hal_qca6750_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCA5018
  48. void hal_qca5018_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef ENABLE_VERBOSE_DEBUG
  51. bool is_hal_verbose_debug_enabled;
  52. #endif
  53. #ifdef ENABLE_HAL_REG_WR_HISTORY
  54. struct hal_reg_write_fail_history hal_reg_wr_hist;
  55. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  56. uint32_t offset,
  57. uint32_t wr_val, uint32_t rd_val)
  58. {
  59. struct hal_reg_write_fail_entry *record;
  60. int idx;
  61. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  62. HAL_REG_WRITE_HIST_SIZE);
  63. record = &hal_soc->reg_wr_fail_hist->record[idx];
  64. record->timestamp = qdf_get_log_timestamp();
  65. record->reg_offset = offset;
  66. record->write_val = wr_val;
  67. record->read_val = rd_val;
  68. }
  69. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  70. {
  71. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  72. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  73. }
  74. #else
  75. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  76. {
  77. }
  78. #endif
  79. /**
  80. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  81. * @hal: hal_soc data structure
  82. * @ring_type: type enum describing the ring
  83. * @ring_num: which ring of the ring type
  84. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  85. *
  86. * Return: the ring id or -EINVAL if the ring does not exist.
  87. */
  88. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  89. int ring_num, int mac_id)
  90. {
  91. struct hal_hw_srng_config *ring_config =
  92. HAL_SRNG_CONFIG(hal, ring_type);
  93. int ring_id;
  94. if (ring_num >= ring_config->max_rings) {
  95. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  96. "%s: ring_num exceeded maximum no. of supported rings",
  97. __func__);
  98. /* TODO: This is a programming error. Assert if this happens */
  99. return -EINVAL;
  100. }
  101. if (ring_config->lmac_ring) {
  102. ring_id = ring_config->start_ring_id + ring_num +
  103. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  104. } else {
  105. ring_id = ring_config->start_ring_id + ring_num;
  106. }
  107. return ring_id;
  108. }
  109. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  110. {
  111. /* TODO: Should we allocate srng structures dynamically? */
  112. return &(hal->srng_list[ring_id]);
  113. }
  114. #define HP_OFFSET_IN_REG_START 1
  115. #define OFFSET_FROM_HP_TO_TP 4
  116. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  117. int shadow_config_index,
  118. int ring_type,
  119. int ring_num)
  120. {
  121. struct hal_srng *srng;
  122. int ring_id;
  123. struct hal_hw_srng_config *ring_config =
  124. HAL_SRNG_CONFIG(hal_soc, ring_type);
  125. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  126. if (ring_id < 0)
  127. return;
  128. srng = hal_get_srng(hal_soc, ring_id);
  129. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  130. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  131. + hal_soc->dev_base_addr;
  132. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  133. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  134. shadow_config_index);
  135. } else {
  136. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  137. + hal_soc->dev_base_addr;
  138. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  139. srng->u.src_ring.hp_addr,
  140. hal_soc->dev_base_addr, shadow_config_index);
  141. }
  142. }
  143. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  144. void hal_set_one_target_reg_config(struct hal_soc *hal,
  145. uint32_t target_reg_offset,
  146. int list_index)
  147. {
  148. int i = list_index;
  149. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  150. hal->list_shadow_reg_config[i].target_register =
  151. target_reg_offset;
  152. hal->num_generic_shadow_regs_configured++;
  153. }
  154. qdf_export_symbol(hal_set_one_target_reg_config);
  155. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  156. #define MAX_REO_REMAP_SHADOW_REGS 4
  157. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  158. {
  159. uint32_t target_reg_offset;
  160. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  161. int i;
  162. struct hal_hw_srng_config *srng_config =
  163. &hal->hw_srng_table[WBM2SW_RELEASE];
  164. target_reg_offset =
  165. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  166. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  167. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  168. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  169. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  170. }
  171. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  172. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  173. * HAL_IPA_TX_COMP_RING_IDX);
  174. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. qdf_export_symbol(hal_set_shadow_regs);
  178. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  179. {
  180. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  181. int shadow_config_index = hal->num_shadow_registers_configured;
  182. int i;
  183. int num_regs = hal->num_generic_shadow_regs_configured;
  184. for (i = 0; i < num_regs; i++) {
  185. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  186. hal->shadow_config[shadow_config_index].addr =
  187. hal->list_shadow_reg_config[i].target_register;
  188. hal->list_shadow_reg_config[i].shadow_config_index =
  189. shadow_config_index;
  190. hal->list_shadow_reg_config[i].va =
  191. SHADOW_REGISTER(shadow_config_index) +
  192. (uintptr_t)hal->dev_base_addr;
  193. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  194. hal->shadow_config[shadow_config_index].addr,
  195. SHADOW_REGISTER(shadow_config_index),
  196. shadow_config_index);
  197. shadow_config_index++;
  198. hal->num_shadow_registers_configured++;
  199. }
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. qdf_export_symbol(hal_construct_shadow_regs);
  203. #endif
  204. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  205. int ring_type,
  206. int ring_num)
  207. {
  208. uint32_t target_register;
  209. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  210. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  211. int shadow_config_index = hal->num_shadow_registers_configured;
  212. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  213. QDF_ASSERT(0);
  214. return QDF_STATUS_E_RESOURCES;
  215. }
  216. hal->num_shadow_registers_configured++;
  217. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  218. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  219. *ring_num);
  220. /* if the ring is a dst ring, we need to shadow the tail pointer */
  221. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  222. target_register += OFFSET_FROM_HP_TO_TP;
  223. hal->shadow_config[shadow_config_index].addr = target_register;
  224. /* update hp/tp addr in the hal_soc structure*/
  225. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  226. ring_num);
  227. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  228. target_register,
  229. SHADOW_REGISTER(shadow_config_index),
  230. shadow_config_index,
  231. ring_type, ring_num);
  232. return QDF_STATUS_SUCCESS;
  233. }
  234. qdf_export_symbol(hal_set_one_shadow_config);
  235. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  236. {
  237. int ring_type, ring_num;
  238. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  239. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  240. struct hal_hw_srng_config *srng_config =
  241. &hal->hw_srng_table[ring_type];
  242. if (ring_type == CE_SRC ||
  243. ring_type == CE_DST ||
  244. ring_type == CE_DST_STATUS)
  245. continue;
  246. if (srng_config->lmac_ring)
  247. continue;
  248. for (ring_num = 0; ring_num < srng_config->max_rings;
  249. ring_num++)
  250. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  251. }
  252. return QDF_STATUS_SUCCESS;
  253. }
  254. qdf_export_symbol(hal_construct_srng_shadow_regs);
  255. void hal_get_shadow_config(void *hal_soc,
  256. struct pld_shadow_reg_v2_cfg **shadow_config,
  257. int *num_shadow_registers_configured)
  258. {
  259. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  260. *shadow_config = hal->shadow_config;
  261. *num_shadow_registers_configured =
  262. hal->num_shadow_registers_configured;
  263. }
  264. qdf_export_symbol(hal_get_shadow_config);
  265. static void hal_validate_shadow_register(struct hal_soc *hal,
  266. uint32_t *destination,
  267. uint32_t *shadow_address)
  268. {
  269. unsigned int index;
  270. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  271. int destination_ba_offset =
  272. ((char *)destination) - (char *)hal->dev_base_addr;
  273. index = shadow_address - shadow_0_offset;
  274. if (index >= MAX_SHADOW_REGISTERS) {
  275. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  276. "%s: index %x out of bounds", __func__, index);
  277. goto error;
  278. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  279. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  280. "%s: sanity check failure, expected %x, found %x",
  281. __func__, destination_ba_offset,
  282. hal->shadow_config[index].addr);
  283. goto error;
  284. }
  285. return;
  286. error:
  287. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  288. hal->dev_base_addr, destination, shadow_address,
  289. shadow_0_offset, index);
  290. QDF_BUG(0);
  291. return;
  292. }
  293. static void hal_target_based_configure(struct hal_soc *hal)
  294. {
  295. /**
  296. * Indicate Initialization of srngs to avoid force wake
  297. * as umac power collapse is not enabled yet
  298. */
  299. hal->init_phase = true;
  300. switch (hal->target_type) {
  301. #ifdef QCA_WIFI_QCA6290
  302. case TARGET_TYPE_QCA6290:
  303. hal->use_register_windowing = true;
  304. hal_qca6290_attach(hal);
  305. break;
  306. #endif
  307. #ifdef QCA_WIFI_QCA6390
  308. case TARGET_TYPE_QCA6390:
  309. hal->use_register_windowing = true;
  310. hal_qca6390_attach(hal);
  311. break;
  312. #endif
  313. #ifdef QCA_WIFI_QCA6490
  314. case TARGET_TYPE_QCA6490:
  315. hal->use_register_windowing = true;
  316. hal_qca6490_attach(hal);
  317. hal->init_phase = false;
  318. break;
  319. #endif
  320. #ifdef QCA_WIFI_QCA6750
  321. case TARGET_TYPE_QCA6750:
  322. hal->use_register_windowing = true;
  323. hal->static_window_map = true;
  324. hal_qca6750_attach(hal);
  325. break;
  326. #endif
  327. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  328. case TARGET_TYPE_QCA8074:
  329. hal_qca8074_attach(hal);
  330. break;
  331. #endif
  332. #if defined(QCA_WIFI_QCA8074V2)
  333. case TARGET_TYPE_QCA8074V2:
  334. hal_qca8074v2_attach(hal);
  335. break;
  336. #endif
  337. #if defined(QCA_WIFI_QCA6018)
  338. case TARGET_TYPE_QCA6018:
  339. hal_qca8074v2_attach(hal);
  340. break;
  341. #endif
  342. #if defined(QCA_WIFI_QCN6122)
  343. case TARGET_TYPE_QCN6122:
  344. hal->use_register_windowing = true;
  345. /*
  346. * Static window map is enabled for qcn9000 to use 2mb bar
  347. * size and use multiple windows to write into registers.
  348. */
  349. hal->static_window_map = true;
  350. hal_qcn6122_attach(hal);
  351. break;
  352. #endif
  353. #ifdef QCA_WIFI_QCN9000
  354. case TARGET_TYPE_QCN9000:
  355. hal->use_register_windowing = true;
  356. /*
  357. * Static window map is enabled for qcn9000 to use 2mb bar
  358. * size and use multiple windows to write into registers.
  359. */
  360. hal->static_window_map = true;
  361. hal_qcn9000_attach(hal);
  362. break;
  363. #endif
  364. #ifdef QCA_WIFI_QCA5018
  365. case TARGET_TYPE_QCA5018:
  366. hal->use_register_windowing = true;
  367. hal->static_window_map = true;
  368. hal_qca5018_attach(hal);
  369. break;
  370. #endif
  371. default:
  372. break;
  373. }
  374. }
  375. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  376. {
  377. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  378. struct hif_target_info *tgt_info =
  379. hif_get_target_info_handle(hal_soc->hif_handle);
  380. return tgt_info->target_type;
  381. }
  382. qdf_export_symbol(hal_get_target_type);
  383. #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  384. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  385. /**
  386. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  387. * @hal: hal_soc pointer
  388. *
  389. * Return: true if throughput is high, else false.
  390. */
  391. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  392. {
  393. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  394. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  395. }
  396. static inline
  397. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  398. char *buf, qdf_size_t size)
  399. {
  400. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  401. srng->wstats.enqueues, srng->wstats.dequeues,
  402. srng->wstats.coalesces, srng->wstats.direct);
  403. return buf;
  404. }
  405. /* bytes for local buffer */
  406. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  407. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  408. {
  409. struct hal_srng *srng;
  410. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  411. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  412. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  413. hal_debug("SW2TCL1: %s",
  414. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  415. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  416. hal_debug("WBM2SW0: %s",
  417. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  418. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  419. hal_debug("REO2SW1: %s",
  420. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  421. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  422. hal_debug("REO2SW2: %s",
  423. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  424. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  425. hal_debug("REO2SW3: %s",
  426. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  427. }
  428. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  429. /**
  430. * hal_dump_tcl_stats() - dump the TCL reg write stats
  431. * @hal: hal_soc pointer
  432. *
  433. * Return: None
  434. */
  435. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  436. {
  437. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  438. uint32_t *hist = hal->tcl_stats.sched_delay;
  439. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  440. hal_debug("TCL: %s sched-delay hist %u %u %u %u",
  441. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)),
  442. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  443. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  444. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  445. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  446. hal_debug("wq_dly %u wq_dir %u tim_enq %u tim_dir %u enq_tim_cnt %u dir_tim_cnt %u rst_tim_cnt %u",
  447. hal->tcl_stats.wq_delayed,
  448. hal->tcl_stats.wq_direct,
  449. hal->tcl_stats.timer_enq,
  450. hal->tcl_stats.timer_direct,
  451. hal->tcl_stats.enq_timer_set,
  452. hal->tcl_stats.direct_timer_set,
  453. hal->tcl_stats.timer_reset);
  454. }
  455. #else
  456. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  457. {
  458. }
  459. #endif
  460. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  461. {
  462. uint32_t *hist;
  463. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  464. hist = hal->stats.wstats.sched_delay;
  465. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  466. qdf_atomic_read(&hal->stats.wstats.enqueues),
  467. hal->stats.wstats.dequeues,
  468. qdf_atomic_read(&hal->stats.wstats.coalesces),
  469. qdf_atomic_read(&hal->stats.wstats.direct),
  470. qdf_atomic_read(&hal->stats.wstats.q_depth),
  471. hal->stats.wstats.max_q_depth,
  472. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  473. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  474. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  475. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  476. hal_dump_tcl_stats(hal);
  477. }
  478. int hal_get_reg_write_pending_work(void *hal_soc)
  479. {
  480. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  481. return qdf_atomic_read(&hal->active_work_cnt);
  482. }
  483. #endif
  484. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  485. #ifdef MEMORY_DEBUG
  486. /*
  487. * Length of the queue(array) used to hold delayed register writes.
  488. * Must be a multiple of 2.
  489. */
  490. #define HAL_REG_WRITE_QUEUE_LEN 128
  491. #else
  492. #define HAL_REG_WRITE_QUEUE_LEN 32
  493. #endif
  494. /**
  495. * hal_process_reg_write_q_elem() - process a regiter write queue element
  496. * @hal: hal_soc pointer
  497. * @q_elem: pointer to hal regiter write queue element
  498. *
  499. * Return: The value which was written to the address
  500. */
  501. static uint32_t
  502. hal_process_reg_write_q_elem(struct hal_soc *hal,
  503. struct hal_reg_write_q_elem *q_elem)
  504. {
  505. struct hal_srng *srng = q_elem->srng;
  506. uint32_t write_val;
  507. SRNG_LOCK(&srng->lock);
  508. srng->reg_write_in_progress = false;
  509. srng->wstats.dequeues++;
  510. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  511. q_elem->dequeue_val = srng->u.src_ring.hp;
  512. hal_write_address_32_mb(hal,
  513. srng->u.src_ring.hp_addr,
  514. srng->u.src_ring.hp, false);
  515. write_val = srng->u.src_ring.hp;
  516. } else {
  517. q_elem->dequeue_val = srng->u.dst_ring.tp;
  518. hal_write_address_32_mb(hal,
  519. srng->u.dst_ring.tp_addr,
  520. srng->u.dst_ring.tp, false);
  521. write_val = srng->u.dst_ring.tp;
  522. }
  523. q_elem->valid = 0;
  524. SRNG_UNLOCK(&srng->lock);
  525. return write_val;
  526. }
  527. /**
  528. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  529. * @hal: hal_soc pointer
  530. * @delay: delay in us
  531. *
  532. * Return: None
  533. */
  534. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  535. uint64_t delay_us)
  536. {
  537. uint32_t *hist;
  538. hist = hal->stats.wstats.sched_delay;
  539. if (delay_us < 100)
  540. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  541. else if (delay_us < 1000)
  542. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  543. else if (delay_us < 5000)
  544. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  545. else
  546. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  547. }
  548. /**
  549. * hal_reg_write_work() - Worker to process delayed writes
  550. * @arg: hal_soc pointer
  551. *
  552. * Return: None
  553. */
  554. static void hal_reg_write_work(void *arg)
  555. {
  556. int32_t q_depth, write_val;
  557. struct hal_soc *hal = arg;
  558. struct hal_reg_write_q_elem *q_elem;
  559. uint64_t delta_us;
  560. uint8_t ring_id;
  561. uint32_t *addr;
  562. uint32_t num_processed = 0;
  563. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  564. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  565. /* Make sure q_elem consistent in the memory for multi-cores */
  566. qdf_rmb();
  567. if (!q_elem->valid)
  568. return;
  569. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  570. if (q_depth > hal->stats.wstats.max_q_depth)
  571. hal->stats.wstats.max_q_depth = q_depth;
  572. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  573. hal->stats.wstats.prevent_l1_fails++;
  574. return;
  575. }
  576. while (true) {
  577. qdf_rmb();
  578. if (!q_elem->valid)
  579. break;
  580. q_elem->dequeue_time = qdf_get_log_timestamp();
  581. ring_id = q_elem->srng->ring_id;
  582. addr = q_elem->addr;
  583. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  584. q_elem->enqueue_time);
  585. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  586. hal->stats.wstats.dequeues++;
  587. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  588. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  589. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  590. hal->read_idx, ring_id, addr, write_val, delta_us);
  591. num_processed++;
  592. hal->read_idx = (hal->read_idx + 1) &
  593. (HAL_REG_WRITE_QUEUE_LEN - 1);
  594. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  595. }
  596. hif_allow_link_low_power_states(hal->hif_handle);
  597. /*
  598. * Decrement active_work_cnt by the number of elements dequeued after
  599. * hif_allow_link_low_power_states.
  600. * This makes sure that hif_try_complete_tasks will wait till we make
  601. * the bus access in hif_allow_link_low_power_states. This will avoid
  602. * race condition between delayed register worker and bus suspend
  603. * (system suspend or runtime suspend).
  604. *
  605. * The following decrement should be done at the end!
  606. */
  607. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  608. }
  609. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  610. {
  611. qdf_cancel_work(&hal->reg_write_work);
  612. }
  613. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  614. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  615. }
  616. /**
  617. * hal_reg_write_enqueue() - enqueue register writes into kworker
  618. * @hal_soc: hal_soc pointer
  619. * @srng: srng pointer
  620. * @addr: iomem address of regiter
  621. * @value: value to be written to iomem address
  622. *
  623. * This function executes from within the SRNG LOCK
  624. *
  625. * Return: None
  626. */
  627. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  628. struct hal_srng *srng,
  629. void __iomem *addr,
  630. uint32_t value)
  631. {
  632. struct hal_reg_write_q_elem *q_elem;
  633. uint32_t write_idx;
  634. if (srng->reg_write_in_progress) {
  635. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  636. srng->ring_id, addr, value);
  637. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  638. srng->wstats.coalesces++;
  639. return;
  640. }
  641. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  642. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  643. q_elem = &hal_soc->reg_write_queue[write_idx];
  644. if (q_elem->valid) {
  645. hal_err("queue full");
  646. QDF_BUG(0);
  647. return;
  648. }
  649. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  650. srng->wstats.enqueues++;
  651. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  652. q_elem->srng = srng;
  653. q_elem->addr = addr;
  654. q_elem->enqueue_val = value;
  655. q_elem->enqueue_time = qdf_get_log_timestamp();
  656. /*
  657. * Before the valid flag is set to true, all the other
  658. * fields in the q_elem needs to be updated in memory.
  659. * Else there is a chance that the dequeuing worker thread
  660. * might read stale entries and process incorrect srng.
  661. */
  662. qdf_wmb();
  663. q_elem->valid = true;
  664. /*
  665. * After all other fields in the q_elem has been updated
  666. * in memory successfully, the valid flag needs to be updated
  667. * in memory in time too.
  668. * Else there is a chance that the dequeuing worker thread
  669. * might read stale valid flag and the work will be bypassed
  670. * for this round. And if there is no other work scheduled
  671. * later, this hal register writing won't be updated any more.
  672. */
  673. qdf_wmb();
  674. srng->reg_write_in_progress = true;
  675. qdf_atomic_inc(&hal_soc->active_work_cnt);
  676. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  677. write_idx, srng->ring_id, addr, value);
  678. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  679. &hal_soc->reg_write_work);
  680. }
  681. /**
  682. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  683. * @hal_soc: hal_soc pointer
  684. *
  685. * Initialize main data structures to process register writes in a delayed
  686. * workqueue.
  687. *
  688. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  689. */
  690. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  691. {
  692. hal->reg_write_wq =
  693. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  694. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  695. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  696. sizeof(*hal->reg_write_queue));
  697. if (!hal->reg_write_queue) {
  698. hal_err("unable to allocate memory");
  699. QDF_BUG(0);
  700. return QDF_STATUS_E_NOMEM;
  701. }
  702. /* Initial value of indices */
  703. hal->read_idx = 0;
  704. qdf_atomic_set(&hal->write_idx, -1);
  705. return QDF_STATUS_SUCCESS;
  706. }
  707. /**
  708. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  709. * @hal_soc: hal_soc pointer
  710. *
  711. * De-initialize main data structures to process register writes in a delayed
  712. * workqueue.
  713. *
  714. * Return: None
  715. */
  716. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  717. {
  718. __hal_flush_reg_write_work(hal);
  719. qdf_flush_workqueue(0, hal->reg_write_wq);
  720. qdf_destroy_workqueue(0, hal->reg_write_wq);
  721. qdf_mem_free(hal->reg_write_queue);
  722. }
  723. #else
  724. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  725. {
  726. return QDF_STATUS_SUCCESS;
  727. }
  728. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  729. {
  730. }
  731. #endif
  732. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  733. #ifdef MEMORY_DEBUG
  734. /**
  735. * hal_reg_write_get_timestamp() - Function to get the timestamp
  736. *
  737. * Return: return present simestamp
  738. */
  739. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  740. {
  741. return qdf_get_log_timestamp();
  742. }
  743. /**
  744. * hal_del_reg_write_ts_usecs() - Convert the timestamp to micro secs
  745. * @ts: timestamp value to be converted
  746. *
  747. * Return: return the timestamp in micro secs
  748. */
  749. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  750. {
  751. return qdf_log_timestamp_to_usecs(ts);
  752. }
  753. /**
  754. * hal_tcl_write_fill_sched_delay_hist() - fill TCL reg write delay histogram
  755. * @hal: hal_soc pointer
  756. * @delay: delay in us
  757. *
  758. * Return: None
  759. */
  760. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  761. {
  762. uint32_t *hist;
  763. uint32_t delay_us;
  764. hal->tcl_stats.deq_time = hal_del_reg_write_get_ts();
  765. delay_us = hal_del_reg_write_ts_usecs(hal->tcl_stats.deq_time -
  766. hal->tcl_stats.enq_time);
  767. hist = hal->tcl_stats.sched_delay;
  768. if (delay_us < 100)
  769. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  770. else if (delay_us < 1000)
  771. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  772. else if (delay_us < 5000)
  773. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  774. else
  775. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  776. }
  777. #else
  778. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  779. {
  780. return 0;
  781. }
  782. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  783. {
  784. return 0;
  785. }
  786. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  787. {
  788. }
  789. #endif
  790. /**
  791. * hal_tcl_reg_write_work() - Worker to process delayed SW2TCL1 writes
  792. * @arg: hal_soc pointer
  793. *
  794. * Return: None
  795. */
  796. static void hal_tcl_reg_write_work(void *arg)
  797. {
  798. struct hal_soc *hal = arg;
  799. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  800. SRNG_LOCK(&srng->lock);
  801. srng->wstats.dequeues++;
  802. hal_tcl_write_fill_sched_delay_hist(hal);
  803. /*
  804. * During the tranition of low to high tput scenario, reg write moves
  805. * from delayed to direct write context, there is a little chance that
  806. * worker thread gets scheduled later than direct context write which
  807. * already wrote the latest HP value. This check can catch that case
  808. * and avoid the repetitive writing of the same HP value.
  809. */
  810. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  811. srng->last_reg_wr_val = srng->u.src_ring.hp;
  812. if (hal->tcl_direct) {
  813. /*
  814. * TCL reg writes have been moved to direct context and
  815. * the assumption is that PCIe bus stays in Active state
  816. * during high tput, hence its fine to write the HP
  817. * while the SRNG_LOCK is being held.
  818. */
  819. hal->tcl_stats.wq_direct++;
  820. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  821. srng->last_reg_wr_val, false);
  822. srng->reg_write_in_progress = false;
  823. SRNG_UNLOCK(&srng->lock);
  824. } else {
  825. /*
  826. * TCL reg write to happen in delayed context,
  827. * write operation might take time due to possibility of
  828. * PCIe bus stays in low power state during low tput,
  829. * Hence release the SRNG_LOCK before writing.
  830. */
  831. hal->tcl_stats.wq_delayed++;
  832. srng->reg_write_in_progress = false;
  833. SRNG_UNLOCK(&srng->lock);
  834. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  835. srng->last_reg_wr_val, false);
  836. }
  837. } else {
  838. srng->reg_write_in_progress = false;
  839. SRNG_UNLOCK(&srng->lock);
  840. }
  841. /*
  842. * Decrement active_work_cnt to make sure that hif_try_complete_tasks
  843. * will wait. This will avoid race condition between delayed register
  844. * worker and bus suspend (system suspend or runtime suspend).
  845. *
  846. * The following decrement should be done at the end!
  847. */
  848. qdf_atomic_dec(&hal->active_work_cnt);
  849. qdf_atomic_set(&hal->tcl_work_active, false);
  850. }
  851. static void __hal_flush_tcl_reg_write_work(struct hal_soc *hal)
  852. {
  853. qdf_cancel_work(&hal->tcl_reg_write_work);
  854. }
  855. /**
  856. * hal_tcl_reg_write_enqueue() - enqueue TCL register writes into kworker
  857. * @hal_soc: hal_soc pointer
  858. * @srng: srng pointer
  859. * @addr: iomem address of regiter
  860. * @value: value to be written to iomem address
  861. *
  862. * This function executes from within the SRNG LOCK
  863. *
  864. * Return: None
  865. */
  866. static void hal_tcl_reg_write_enqueue(struct hal_soc *hal_soc,
  867. struct hal_srng *srng,
  868. void __iomem *addr,
  869. uint32_t value)
  870. {
  871. hal_soc->tcl_stats.enq_time = hal_del_reg_write_get_ts();
  872. if (qdf_queue_work(hal_soc->qdf_dev, hal_soc->tcl_reg_write_wq,
  873. &hal_soc->tcl_reg_write_work)) {
  874. srng->reg_write_in_progress = true;
  875. qdf_atomic_inc(&hal_soc->active_work_cnt);
  876. qdf_atomic_set(&hal_soc->tcl_work_active, true);
  877. srng->wstats.enqueues++;
  878. } else {
  879. hal_soc->tcl_stats.enq_timer_set++;
  880. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  881. }
  882. }
  883. /**
  884. * hal_tcl_reg_write_timer() - timer handler to take care of pending TCL writes
  885. * @arg: srng handle
  886. *
  887. * This function handles the pending TCL reg writes missed due to the previous
  888. * scheduled worker running.
  889. *
  890. * Return: None
  891. */
  892. static void hal_tcl_reg_write_timer(void *arg)
  893. {
  894. hal_ring_handle_t srng_hdl = arg;
  895. struct hal_srng *srng;
  896. struct hal_soc *hal;
  897. srng = (struct hal_srng *)srng_hdl;
  898. hal = srng->hal_soc;
  899. if (hif_pm_runtime_get(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE,
  900. true)) {
  901. hal_srng_set_event(srng_hdl, HAL_SRNG_FLUSH_EVENT);
  902. hal_srng_inc_flush_cnt(srng_hdl);
  903. goto fail;
  904. }
  905. SRNG_LOCK(&srng->lock);
  906. if (hal->tcl_direct) {
  907. /*
  908. * Due to the previous scheduled worker still running,
  909. * direct reg write cannot be performed, so posted the
  910. * pending writes to timer context.
  911. */
  912. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  913. srng->last_reg_wr_val = srng->u.src_ring.hp;
  914. srng->wstats.direct++;
  915. hal->tcl_stats.timer_direct++;
  916. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  917. srng->last_reg_wr_val, false);
  918. }
  919. } else {
  920. /*
  921. * Due to the previous scheduled worker still running,
  922. * queue_work from delayed context would fail,
  923. * so retry from timer context.
  924. */
  925. if (qdf_queue_work(hal->qdf_dev, hal->tcl_reg_write_wq,
  926. &hal->tcl_reg_write_work)) {
  927. srng->reg_write_in_progress = true;
  928. qdf_atomic_inc(&hal->active_work_cnt);
  929. qdf_atomic_set(&hal->tcl_work_active, true);
  930. srng->wstats.enqueues++;
  931. hal->tcl_stats.timer_enq++;
  932. } else {
  933. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  934. hal->tcl_stats.timer_reset++;
  935. qdf_timer_mod(&hal->tcl_reg_write_timer, 1);
  936. }
  937. }
  938. }
  939. SRNG_UNLOCK(&srng->lock);
  940. hif_pm_runtime_put(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE);
  941. fail:
  942. return;
  943. }
  944. /**
  945. * hal_delayed_tcl_reg_write_init() - Initialization for delayed TCL reg writes
  946. * @hal_soc: hal_soc pointer
  947. *
  948. * Initialize main data structures to process TCL register writes in a delayed
  949. * workqueue.
  950. *
  951. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  952. */
  953. static QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  954. {
  955. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  956. QDF_STATUS status;
  957. hal->tcl_reg_write_wq =
  958. qdf_alloc_high_prior_ordered_workqueue("hal_tcl_reg_write_wq");
  959. if (!hal->tcl_reg_write_wq) {
  960. hal_err("hal_tcl_reg_write_wq alloc failed");
  961. return QDF_STATUS_E_NOMEM;
  962. }
  963. status = qdf_create_work(0, &hal->tcl_reg_write_work,
  964. hal_tcl_reg_write_work, hal);
  965. if (status != QDF_STATUS_SUCCESS) {
  966. hal_err("tcl_reg_write_work create failed");
  967. goto fail;
  968. }
  969. status = qdf_timer_init(hal->qdf_dev, &hal->tcl_reg_write_timer,
  970. hal_tcl_reg_write_timer, (void *)srng,
  971. QDF_TIMER_TYPE_WAKE_APPS);
  972. if (status != QDF_STATUS_SUCCESS) {
  973. hal_err("tcl_reg_write_timer init failed");
  974. goto fail;
  975. }
  976. qdf_atomic_init(&hal->tcl_work_active);
  977. return QDF_STATUS_SUCCESS;
  978. fail:
  979. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  980. return status;
  981. }
  982. /**
  983. * hal_delayed_tcl_reg_write_deinit() - De-Initialize delayed TCL reg writes
  984. * @hal_soc: hal_soc pointer
  985. *
  986. * De-initialize main data structures to process TCL register writes in a
  987. * delayed workqueue.
  988. *
  989. * Return: None
  990. */
  991. static void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  992. {
  993. qdf_timer_stop(&hal->tcl_reg_write_timer);
  994. qdf_timer_free(&hal->tcl_reg_write_timer);
  995. __hal_flush_tcl_reg_write_work(hal);
  996. qdf_flush_workqueue(0, hal->tcl_reg_write_wq);
  997. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  998. }
  999. #else
  1000. static inline QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1001. {
  1002. return QDF_STATUS_SUCCESS;
  1003. }
  1004. static inline void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1005. {
  1006. }
  1007. #endif
  1008. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  1009. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1010. struct hal_srng *srng,
  1011. void __iomem *addr,
  1012. uint32_t value)
  1013. {
  1014. switch (srng->ring_type) {
  1015. case TCL_DATA:
  1016. if (hal_is_reg_write_tput_level_high(hal_soc)) {
  1017. hal_soc->tcl_direct = true;
  1018. if (srng->reg_write_in_progress ||
  1019. !qdf_atomic_read(&hal_soc->tcl_work_active)) {
  1020. /*
  1021. * Now the delayed work have either completed
  1022. * the writing or not even scheduled and would
  1023. * be blocked by SRNG_LOCK, hence it is fine to
  1024. * do direct write here.
  1025. */
  1026. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1027. srng->wstats.direct++;
  1028. hal_write_address_32_mb(hal_soc, addr,
  1029. srng->last_reg_wr_val,
  1030. false);
  1031. } else {
  1032. hal_soc->tcl_stats.direct_timer_set++;
  1033. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  1034. }
  1035. } else {
  1036. hal_soc->tcl_direct = false;
  1037. if (srng->reg_write_in_progress) {
  1038. srng->wstats.coalesces++;
  1039. } else {
  1040. hal_tcl_reg_write_enqueue(hal_soc, srng,
  1041. addr, value);
  1042. }
  1043. }
  1044. break;
  1045. default:
  1046. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1047. srng->wstats.direct++;
  1048. hal_write_address_32_mb(hal_soc, addr, value, false);
  1049. break;
  1050. }
  1051. }
  1052. #else
  1053. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1054. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1055. struct hal_srng *srng,
  1056. void __iomem *addr,
  1057. uint32_t value)
  1058. {
  1059. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  1060. hal_is_reg_write_tput_level_high(hal_soc)) {
  1061. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1062. srng->wstats.direct++;
  1063. hal_write_address_32_mb(hal_soc, addr, value, false);
  1064. } else {
  1065. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1066. }
  1067. }
  1068. #endif
  1069. #endif
  1070. /**
  1071. * hal_attach - Initialize HAL layer
  1072. * @hif_handle: Opaque HIF handle
  1073. * @qdf_dev: QDF device
  1074. *
  1075. * Return: Opaque HAL SOC handle
  1076. * NULL on failure (if given ring is not available)
  1077. *
  1078. * This function should be called as part of HIF initialization (for accessing
  1079. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1080. *
  1081. */
  1082. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1083. {
  1084. struct hal_soc *hal;
  1085. int i;
  1086. hal = qdf_mem_malloc(sizeof(*hal));
  1087. if (!hal) {
  1088. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1089. "%s: hal_soc allocation failed", __func__);
  1090. goto fail0;
  1091. }
  1092. hal->hif_handle = hif_handle;
  1093. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1094. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1095. hal->qdf_dev = qdf_dev;
  1096. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1097. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1098. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1099. if (!hal->shadow_rdptr_mem_paddr) {
  1100. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1101. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1102. __func__);
  1103. goto fail1;
  1104. }
  1105. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1106. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1107. hal->shadow_wrptr_mem_vaddr =
  1108. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1109. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1110. &(hal->shadow_wrptr_mem_paddr));
  1111. if (!hal->shadow_wrptr_mem_vaddr) {
  1112. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1113. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1114. __func__);
  1115. goto fail2;
  1116. }
  1117. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1118. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1119. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1120. hal->srng_list[i].initialized = 0;
  1121. hal->srng_list[i].ring_id = i;
  1122. }
  1123. qdf_spinlock_create(&hal->register_access_lock);
  1124. hal->register_window = 0;
  1125. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1126. hal_target_based_configure(hal);
  1127. hal_reg_write_fail_history_init(hal);
  1128. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1129. qdf_atomic_init(&hal->active_work_cnt);
  1130. hal_delayed_reg_write_init(hal);
  1131. hal_delayed_tcl_reg_write_init(hal);
  1132. return (void *)hal;
  1133. fail2:
  1134. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1135. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1136. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1137. fail1:
  1138. qdf_mem_free(hal);
  1139. fail0:
  1140. return NULL;
  1141. }
  1142. qdf_export_symbol(hal_attach);
  1143. /**
  1144. * hal_mem_info - Retrieve hal memory base address
  1145. *
  1146. * @hal_soc: Opaque HAL SOC handle
  1147. * @mem: pointer to structure to be updated with hal mem info
  1148. */
  1149. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1150. {
  1151. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1152. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1153. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1154. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1155. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1156. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1157. hif_read_phy_mem_base((void *)hal->hif_handle,
  1158. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1159. return;
  1160. }
  1161. qdf_export_symbol(hal_get_meminfo);
  1162. /**
  1163. * hal_detach - Detach HAL layer
  1164. * @hal_soc: HAL SOC handle
  1165. *
  1166. * Return: Opaque HAL SOC handle
  1167. * NULL on failure (if given ring is not available)
  1168. *
  1169. * This function should be called as part of HIF initialization (for accessing
  1170. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1171. *
  1172. */
  1173. extern void hal_detach(void *hal_soc)
  1174. {
  1175. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1176. hal_delayed_reg_write_deinit(hal);
  1177. hal_delayed_tcl_reg_write_deinit(hal);
  1178. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1179. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1180. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1181. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1182. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1183. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1184. qdf_minidump_remove(hal);
  1185. qdf_mem_free(hal);
  1186. return;
  1187. }
  1188. qdf_export_symbol(hal_detach);
  1189. /**
  1190. * hal_ce_dst_setup - Initialize CE destination ring registers
  1191. * @hal_soc: HAL SOC handle
  1192. * @srng: SRNG ring pointer
  1193. */
  1194. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1195. int ring_num)
  1196. {
  1197. uint32_t reg_val = 0;
  1198. uint32_t reg_addr;
  1199. struct hal_hw_srng_config *ring_config =
  1200. HAL_SRNG_CONFIG(hal, CE_DST);
  1201. /* set DEST_MAX_LENGTH according to ce assignment */
  1202. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  1203. ring_config->reg_start[R0_INDEX] +
  1204. (ring_num * ring_config->reg_size[R0_INDEX]));
  1205. reg_val = HAL_REG_READ(hal, reg_addr);
  1206. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1207. reg_val |= srng->u.dst_ring.max_buffer_length &
  1208. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1209. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1210. if (srng->prefetch_timer) {
  1211. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1212. ring_config->reg_start[R0_INDEX] +
  1213. (ring_num * ring_config->reg_size[R0_INDEX]));
  1214. reg_val = HAL_REG_READ(hal, reg_addr);
  1215. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1216. reg_val |= srng->prefetch_timer;
  1217. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1218. reg_val = HAL_REG_READ(hal, reg_addr);
  1219. }
  1220. }
  1221. /**
  1222. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1223. * @hal: HAL SOC handle
  1224. * @read: boolean value to indicate if read or write
  1225. * @ix0: pointer to store IX0 reg value
  1226. * @ix1: pointer to store IX1 reg value
  1227. * @ix2: pointer to store IX2 reg value
  1228. * @ix3: pointer to store IX3 reg value
  1229. */
  1230. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1231. uint32_t *ix0, uint32_t *ix1,
  1232. uint32_t *ix2, uint32_t *ix3)
  1233. {
  1234. uint32_t reg_offset;
  1235. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1236. if (read) {
  1237. if (ix0) {
  1238. reg_offset =
  1239. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  1240. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1241. *ix0 = HAL_REG_READ(hal, reg_offset);
  1242. }
  1243. if (ix1) {
  1244. reg_offset =
  1245. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  1246. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1247. *ix1 = HAL_REG_READ(hal, reg_offset);
  1248. }
  1249. if (ix2) {
  1250. reg_offset =
  1251. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  1252. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1253. *ix2 = HAL_REG_READ(hal, reg_offset);
  1254. }
  1255. if (ix3) {
  1256. reg_offset =
  1257. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  1258. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1259. *ix3 = HAL_REG_READ(hal, reg_offset);
  1260. }
  1261. } else {
  1262. if (ix0) {
  1263. reg_offset =
  1264. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  1265. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1266. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1267. *ix0, true);
  1268. }
  1269. if (ix1) {
  1270. reg_offset =
  1271. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  1272. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1273. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1274. *ix1, true);
  1275. }
  1276. if (ix2) {
  1277. reg_offset =
  1278. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  1279. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1280. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1281. *ix2, true);
  1282. }
  1283. if (ix3) {
  1284. reg_offset =
  1285. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  1286. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1287. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1288. *ix3, true);
  1289. }
  1290. }
  1291. }
  1292. /**
  1293. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1294. * pointer and confirm that write went through by reading back the value
  1295. * @srng: sring pointer
  1296. * @paddr: physical address
  1297. *
  1298. * Return: None
  1299. */
  1300. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1301. {
  1302. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1303. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1304. }
  1305. /**
  1306. * hal_srng_dst_init_hp() - Initialize destination ring head
  1307. * pointer
  1308. * @hal_soc: hal_soc handle
  1309. * @srng: sring pointer
  1310. * @vaddr: virtual address
  1311. */
  1312. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1313. struct hal_srng *srng,
  1314. uint32_t *vaddr)
  1315. {
  1316. uint32_t reg_offset;
  1317. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1318. if (!srng)
  1319. return;
  1320. srng->u.dst_ring.hp_addr = vaddr;
  1321. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1322. HAL_REG_WRITE_CONFIRM_RETRY(
  1323. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1324. if (vaddr) {
  1325. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1326. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1327. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1328. (void *)srng->u.dst_ring.hp_addr,
  1329. srng->u.dst_ring.cached_hp,
  1330. *srng->u.dst_ring.hp_addr);
  1331. }
  1332. }
  1333. /**
  1334. * hal_srng_hw_init - Private function to initialize SRNG HW
  1335. * @hal_soc: HAL SOC handle
  1336. * @srng: SRNG ring pointer
  1337. */
  1338. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1339. struct hal_srng *srng)
  1340. {
  1341. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1342. hal_srng_src_hw_init(hal, srng);
  1343. else
  1344. hal_srng_dst_hw_init(hal, srng);
  1345. }
  1346. #ifdef CONFIG_SHADOW_V2
  1347. #define ignore_shadow false
  1348. #define CHECK_SHADOW_REGISTERS true
  1349. #else
  1350. #define ignore_shadow true
  1351. #define CHECK_SHADOW_REGISTERS false
  1352. #endif
  1353. /**
  1354. * hal_srng_setup - Initialize HW SRNG ring.
  1355. * @hal_soc: Opaque HAL SOC handle
  1356. * @ring_type: one of the types from hal_ring_type
  1357. * @ring_num: Ring number if there are multiple rings of same type (staring
  1358. * from 0)
  1359. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1360. * @ring_params: SRNG ring params in hal_srng_params structure.
  1361. * Callers are expected to allocate contiguous ring memory of size
  1362. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1363. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1364. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1365. * and size of each ring entry should be queried using the API
  1366. * hal_srng_get_entrysize
  1367. *
  1368. * Return: Opaque pointer to ring on success
  1369. * NULL on failure (if given ring is not available)
  1370. */
  1371. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1372. int mac_id, struct hal_srng_params *ring_params)
  1373. {
  1374. int ring_id;
  1375. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1376. struct hal_srng *srng;
  1377. struct hal_hw_srng_config *ring_config =
  1378. HAL_SRNG_CONFIG(hal, ring_type);
  1379. void *dev_base_addr;
  1380. int i;
  1381. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1382. if (ring_id < 0)
  1383. return NULL;
  1384. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1385. srng = hal_get_srng(hal_soc, ring_id);
  1386. if (srng->initialized) {
  1387. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1388. return NULL;
  1389. }
  1390. dev_base_addr = hal->dev_base_addr;
  1391. srng->ring_id = ring_id;
  1392. srng->ring_type = ring_type;
  1393. srng->ring_dir = ring_config->ring_dir;
  1394. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1395. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1396. srng->entry_size = ring_config->entry_size;
  1397. srng->num_entries = ring_params->num_entries;
  1398. srng->ring_size = srng->num_entries * srng->entry_size;
  1399. srng->ring_size_mask = srng->ring_size - 1;
  1400. srng->msi_addr = ring_params->msi_addr;
  1401. srng->msi_data = ring_params->msi_data;
  1402. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1403. srng->intr_batch_cntr_thres_entries =
  1404. ring_params->intr_batch_cntr_thres_entries;
  1405. srng->prefetch_timer = ring_params->prefetch_timer;
  1406. srng->hal_soc = hal_soc;
  1407. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1408. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1409. + (ring_num * ring_config->reg_size[i]);
  1410. }
  1411. /* Zero out the entire ring memory */
  1412. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1413. srng->num_entries) << 2);
  1414. srng->flags = ring_params->flags;
  1415. #ifdef BIG_ENDIAN_HOST
  1416. /* TODO: See if we should we get these flags from caller */
  1417. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1418. srng->flags |= HAL_SRNG_MSI_SWAP;
  1419. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1420. #endif
  1421. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1422. srng->u.src_ring.hp = 0;
  1423. srng->u.src_ring.reap_hp = srng->ring_size -
  1424. srng->entry_size;
  1425. srng->u.src_ring.tp_addr =
  1426. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1427. srng->u.src_ring.low_threshold =
  1428. ring_params->low_threshold * srng->entry_size;
  1429. if (ring_config->lmac_ring) {
  1430. /* For LMAC rings, head pointer updates will be done
  1431. * through FW by writing to a shared memory location
  1432. */
  1433. srng->u.src_ring.hp_addr =
  1434. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1435. HAL_SRNG_LMAC1_ID_START]);
  1436. srng->flags |= HAL_SRNG_LMAC_RING;
  1437. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1438. srng->u.src_ring.hp_addr =
  1439. hal_get_window_address(hal,
  1440. SRNG_SRC_ADDR(srng, HP));
  1441. if (CHECK_SHADOW_REGISTERS) {
  1442. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1443. QDF_TRACE_LEVEL_ERROR,
  1444. "%s: Ring (%d, %d) missing shadow config",
  1445. __func__, ring_type, ring_num);
  1446. }
  1447. } else {
  1448. hal_validate_shadow_register(hal,
  1449. SRNG_SRC_ADDR(srng, HP),
  1450. srng->u.src_ring.hp_addr);
  1451. }
  1452. } else {
  1453. /* During initialization loop count in all the descriptors
  1454. * will be set to zero, and HW will set it to 1 on completing
  1455. * descriptor update in first loop, and increments it by 1 on
  1456. * subsequent loops (loop count wraps around after reaching
  1457. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1458. * loop count in descriptors updated by HW (to be processed
  1459. * by SW).
  1460. */
  1461. srng->u.dst_ring.loop_cnt = 1;
  1462. srng->u.dst_ring.tp = 0;
  1463. srng->u.dst_ring.hp_addr =
  1464. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1465. if (ring_config->lmac_ring) {
  1466. /* For LMAC rings, tail pointer updates will be done
  1467. * through FW by writing to a shared memory location
  1468. */
  1469. srng->u.dst_ring.tp_addr =
  1470. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1471. HAL_SRNG_LMAC1_ID_START]);
  1472. srng->flags |= HAL_SRNG_LMAC_RING;
  1473. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1474. srng->u.dst_ring.tp_addr =
  1475. hal_get_window_address(hal,
  1476. SRNG_DST_ADDR(srng, TP));
  1477. if (CHECK_SHADOW_REGISTERS) {
  1478. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1479. QDF_TRACE_LEVEL_ERROR,
  1480. "%s: Ring (%d, %d) missing shadow config",
  1481. __func__, ring_type, ring_num);
  1482. }
  1483. } else {
  1484. hal_validate_shadow_register(hal,
  1485. SRNG_DST_ADDR(srng, TP),
  1486. srng->u.dst_ring.tp_addr);
  1487. }
  1488. }
  1489. if (!(ring_config->lmac_ring)) {
  1490. hal_srng_hw_init(hal, srng);
  1491. if (ring_type == CE_DST) {
  1492. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1493. hal_ce_dst_setup(hal, srng, ring_num);
  1494. }
  1495. }
  1496. SRNG_LOCK_INIT(&srng->lock);
  1497. srng->srng_event = 0;
  1498. srng->initialized = true;
  1499. return (void *)srng;
  1500. }
  1501. qdf_export_symbol(hal_srng_setup);
  1502. /**
  1503. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1504. * @hal_soc: Opaque HAL SOC handle
  1505. * @hal_srng: Opaque HAL SRNG pointer
  1506. */
  1507. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1508. {
  1509. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1510. SRNG_LOCK_DESTROY(&srng->lock);
  1511. srng->initialized = 0;
  1512. }
  1513. qdf_export_symbol(hal_srng_cleanup);
  1514. /**
  1515. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1516. * @hal_soc: Opaque HAL SOC handle
  1517. * @ring_type: one of the types from hal_ring_type
  1518. *
  1519. */
  1520. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1521. {
  1522. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1523. struct hal_hw_srng_config *ring_config =
  1524. HAL_SRNG_CONFIG(hal, ring_type);
  1525. return ring_config->entry_size << 2;
  1526. }
  1527. qdf_export_symbol(hal_srng_get_entrysize);
  1528. /**
  1529. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1530. * @hal_soc: Opaque HAL SOC handle
  1531. * @ring_type: one of the types from hal_ring_type
  1532. *
  1533. * Return: Maximum number of entries for the given ring_type
  1534. */
  1535. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1536. {
  1537. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1538. struct hal_hw_srng_config *ring_config =
  1539. HAL_SRNG_CONFIG(hal, ring_type);
  1540. return ring_config->max_size / ring_config->entry_size;
  1541. }
  1542. qdf_export_symbol(hal_srng_max_entries);
  1543. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1544. {
  1545. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1546. struct hal_hw_srng_config *ring_config =
  1547. HAL_SRNG_CONFIG(hal, ring_type);
  1548. return ring_config->ring_dir;
  1549. }
  1550. /**
  1551. * hal_srng_dump - Dump ring status
  1552. * @srng: hal srng pointer
  1553. */
  1554. void hal_srng_dump(struct hal_srng *srng)
  1555. {
  1556. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1557. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1558. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1559. srng->u.src_ring.hp,
  1560. srng->u.src_ring.reap_hp,
  1561. *srng->u.src_ring.tp_addr,
  1562. srng->u.src_ring.cached_tp);
  1563. } else {
  1564. hal_debug("=== DST RING %d ===", srng->ring_id);
  1565. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1566. srng->u.dst_ring.tp,
  1567. *srng->u.dst_ring.hp_addr,
  1568. srng->u.dst_ring.cached_hp,
  1569. srng->u.dst_ring.loop_cnt);
  1570. }
  1571. }
  1572. /**
  1573. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1574. *
  1575. * @hal_soc: Opaque HAL SOC handle
  1576. * @hal_ring: Ring pointer (Source or Destination ring)
  1577. * @ring_params: SRNG parameters will be returned through this structure
  1578. */
  1579. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1580. hal_ring_handle_t hal_ring_hdl,
  1581. struct hal_srng_params *ring_params)
  1582. {
  1583. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1584. int i =0;
  1585. ring_params->ring_id = srng->ring_id;
  1586. ring_params->ring_dir = srng->ring_dir;
  1587. ring_params->entry_size = srng->entry_size;
  1588. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1589. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1590. ring_params->num_entries = srng->num_entries;
  1591. ring_params->msi_addr = srng->msi_addr;
  1592. ring_params->msi_data = srng->msi_data;
  1593. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1594. ring_params->intr_batch_cntr_thres_entries =
  1595. srng->intr_batch_cntr_thres_entries;
  1596. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1597. ring_params->flags = srng->flags;
  1598. ring_params->ring_id = srng->ring_id;
  1599. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1600. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1601. }
  1602. qdf_export_symbol(hal_get_srng_params);
  1603. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1604. uint32_t low_threshold)
  1605. {
  1606. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1607. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1608. }
  1609. qdf_export_symbol(hal_set_low_threshold);
  1610. #ifdef FORCE_WAKE
  1611. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1612. {
  1613. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1614. hal_soc->init_phase = init_phase;
  1615. }
  1616. #endif /* FORCE_WAKE */