dp_rx.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452
  1. /*
  2. * Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #include <ieee80211.h>
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #ifdef RX_DESC_DEBUG_CHECK
  31. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  32. {
  33. rx_desc->magic = DP_RX_DESC_MAGIC;
  34. rx_desc->nbuf = nbuf;
  35. }
  36. #else
  37. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  38. {
  39. rx_desc->nbuf = nbuf;
  40. }
  41. #endif
  42. #ifdef CONFIG_WIN
  43. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  44. {
  45. return vdev->ap_bridge_enabled;
  46. }
  47. #else
  48. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  49. {
  50. if (vdev->opmode != wlan_op_mode_sta)
  51. return true;
  52. else
  53. return false;
  54. }
  55. #endif
  56. /*
  57. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  58. * called during dp rx initialization
  59. * and at the end of dp_rx_process.
  60. *
  61. * @soc: core txrx main context
  62. * @mac_id: mac_id which is one of 3 mac_ids
  63. * @dp_rxdma_srng: dp rxdma circular ring
  64. * @rx_desc_pool: Poiter to free Rx descriptor pool
  65. * @num_req_buffers: number of buffer to be replenished
  66. * @desc_list: list of descs if called from dp_rx_process
  67. * or NULL during dp rx initialization or out of buffer
  68. * interrupt.
  69. * @tail: tail of descs list
  70. * @owner: who owns the nbuf (host, NSS etc...)
  71. * Return: return success or failure
  72. */
  73. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  74. struct dp_srng *dp_rxdma_srng,
  75. struct rx_desc_pool *rx_desc_pool,
  76. uint32_t num_req_buffers,
  77. union dp_rx_desc_list_elem_t **desc_list,
  78. union dp_rx_desc_list_elem_t **tail,
  79. uint8_t owner)
  80. {
  81. uint32_t num_alloc_desc;
  82. uint16_t num_desc_to_free = 0;
  83. struct dp_pdev *dp_pdev = dp_soc->pdev_list[mac_id];
  84. uint32_t num_entries_avail;
  85. uint32_t count;
  86. int sync_hw_ptr = 1;
  87. qdf_dma_addr_t paddr;
  88. qdf_nbuf_t rx_netbuf;
  89. void *rxdma_ring_entry;
  90. union dp_rx_desc_list_elem_t *next;
  91. QDF_STATUS ret;
  92. void *rxdma_srng;
  93. rxdma_srng = dp_rxdma_srng->hal_srng;
  94. if (!rxdma_srng) {
  95. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  96. "rxdma srng not initialized");
  97. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  98. return QDF_STATUS_E_FAILURE;
  99. }
  100. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  101. "requested %d buffers for replenish", num_req_buffers);
  102. /*
  103. * if desc_list is NULL, allocate the descs from freelist
  104. */
  105. if (!(*desc_list)) {
  106. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  107. rx_desc_pool,
  108. num_req_buffers,
  109. desc_list,
  110. tail);
  111. if (!num_alloc_desc) {
  112. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  113. "no free rx_descs in freelist");
  114. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  115. num_req_buffers);
  116. return QDF_STATUS_E_NOMEM;
  117. }
  118. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  119. "%d rx desc allocated", num_alloc_desc);
  120. num_req_buffers = num_alloc_desc;
  121. }
  122. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  123. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  124. rxdma_srng,
  125. sync_hw_ptr);
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  127. "no of availble entries in rxdma ring: %d",
  128. num_entries_avail);
  129. if (num_entries_avail < num_req_buffers) {
  130. num_desc_to_free = num_req_buffers - num_entries_avail;
  131. num_req_buffers = num_entries_avail;
  132. }
  133. count = 0;
  134. while (count < num_req_buffers) {
  135. rx_netbuf = qdf_nbuf_alloc(dp_pdev->osif_pdev,
  136. RX_BUFFER_SIZE,
  137. RX_BUFFER_RESERVATION,
  138. RX_BUFFER_ALIGNMENT,
  139. FALSE);
  140. if (rx_netbuf == NULL) {
  141. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  142. continue;
  143. }
  144. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  145. QDF_DMA_BIDIRECTIONAL);
  146. if (ret == QDF_STATUS_E_FAILURE) {
  147. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  148. continue;
  149. }
  150. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  151. /*
  152. * check if the physical address of nbuf->data is
  153. * less then 0x50000000 then free the nbuf and try
  154. * allocating new nbuf. We can try for 100 times.
  155. * this is a temp WAR till we fix it properly.
  156. */
  157. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  158. if (ret == QDF_STATUS_E_FAILURE) {
  159. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  160. break;
  161. }
  162. count++;
  163. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  164. rxdma_srng);
  165. next = (*desc_list)->next;
  166. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  167. (*desc_list)->rx_desc.in_use = 1;
  168. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  169. "rx_netbuf=%p, buf=%p, paddr=0x%llx, cookie=%d\n",
  170. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  171. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  172. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  173. (*desc_list)->rx_desc.cookie,
  174. owner);
  175. *desc_list = next;
  176. }
  177. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  178. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  179. "successfully replenished %d buffers", num_req_buffers);
  180. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  181. "%d rx desc added back to free list", num_desc_to_free);
  182. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  183. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  184. (RX_BUFFER_SIZE * num_req_buffers));
  185. /*
  186. * add any available free desc back to the free list
  187. */
  188. if (*desc_list)
  189. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  190. mac_id, rx_desc_pool);
  191. return QDF_STATUS_SUCCESS;
  192. }
  193. /*
  194. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  195. * pkts to RAW mode simulation to
  196. * decapsulate the pkt.
  197. *
  198. * @vdev: vdev on which RAW mode is enabled
  199. * @nbuf_list: list of RAW pkts to process
  200. * @peer: peer object from which the pkt is rx
  201. *
  202. * Return: void
  203. */
  204. void
  205. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  206. struct dp_peer *peer)
  207. {
  208. qdf_nbuf_t deliver_list_head = NULL;
  209. qdf_nbuf_t deliver_list_tail = NULL;
  210. qdf_nbuf_t nbuf;
  211. nbuf = nbuf_list;
  212. while (nbuf) {
  213. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  214. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  215. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  216. /*
  217. * reset the chfrag_start and chfrag_end bits in nbuf cb
  218. * as this is a non-amsdu pkt and RAW mode simulation expects
  219. * these bit s to be 0 for non-amsdu pkt.
  220. */
  221. if (qdf_nbuf_is_chfrag_start(nbuf) &&
  222. qdf_nbuf_is_chfrag_end(nbuf)) {
  223. qdf_nbuf_set_chfrag_start(nbuf, 0);
  224. qdf_nbuf_set_chfrag_end(nbuf, 0);
  225. }
  226. nbuf = next;
  227. }
  228. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  229. &deliver_list_tail, (struct cdp_peer*) peer);
  230. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  231. }
  232. #ifdef DP_LFR
  233. /*
  234. * In case of LFR, data of a new peer might be sent up
  235. * even before peer is added.
  236. */
  237. static inline struct dp_vdev *
  238. dp_get_vdev_from_peer(struct dp_soc *soc,
  239. uint16_t peer_id,
  240. struct dp_peer *peer,
  241. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  242. {
  243. struct dp_vdev *vdev;
  244. uint8_t vdev_id;
  245. if (unlikely(!peer)) {
  246. if (peer_id != HTT_INVALID_PEER) {
  247. vdev_id = DP_PEER_METADATA_ID_GET(
  248. mpdu_desc_info.peer_meta_data);
  249. QDF_TRACE(QDF_MODULE_ID_DP,
  250. QDF_TRACE_LEVEL_ERROR,
  251. FL("PeerID %d not found use vdevID %d"),
  252. peer_id, vdev_id);
  253. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  254. vdev_id);
  255. } else {
  256. QDF_TRACE(QDF_MODULE_ID_DP,
  257. QDF_TRACE_LEVEL_ERROR,
  258. FL("Invalid PeerID %d"),
  259. peer_id);
  260. return NULL;
  261. }
  262. } else {
  263. vdev = peer->vdev;
  264. }
  265. return vdev;
  266. }
  267. /*
  268. * In case of LFR, this is an empty inline function
  269. */
  270. static inline void dp_rx_peer_validity_check(struct dp_peer *peer)
  271. {
  272. }
  273. #else
  274. static inline struct dp_vdev *
  275. dp_get_vdev_from_peer(struct dp_soc *soc,
  276. uint16_t peer_id,
  277. struct dp_peer *peer,
  278. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  279. {
  280. if (unlikely(!peer)) {
  281. QDF_TRACE(QDF_MODULE_ID_DP,
  282. QDF_TRACE_LEVEL_ERROR,
  283. FL("Peer not found for peerID %d"),
  284. peer_id);
  285. return NULL;
  286. } else {
  287. return peer->vdev;
  288. }
  289. }
  290. /*
  291. * Assert if PEER is NULL
  292. */
  293. static inline void dp_rx_peer_validity_check(struct dp_peer *peer)
  294. {
  295. qdf_assert_always(peer);
  296. }
  297. #endif
  298. /**
  299. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  300. *
  301. * @soc: core txrx main context
  302. * @sa_peer : source peer entry
  303. * @rx_tlv_hdr : start address of rx tlvs
  304. * @nbuf : nbuf that has to be intrabss forwarded
  305. *
  306. * Return: bool: true if it is forwarded else false
  307. */
  308. static bool
  309. dp_rx_intrabss_fwd(struct dp_soc *soc,
  310. struct dp_peer *sa_peer,
  311. uint8_t *rx_tlv_hdr,
  312. qdf_nbuf_t nbuf)
  313. {
  314. uint16_t da_idx;
  315. uint16_t len;
  316. struct dp_peer *da_peer;
  317. struct dp_ast_entry *ast_entry;
  318. qdf_nbuf_t nbuf_copy;
  319. /* check if the destination peer is available in peer table
  320. * and also check if the source peer and destination peer
  321. * belong to the same vap and destination peer is not bss peer.
  322. */
  323. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  324. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  325. da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
  326. ast_entry = soc->ast_table[da_idx];
  327. if (!ast_entry)
  328. return false;
  329. da_peer = ast_entry->peer;
  330. if (!da_peer)
  331. return false;
  332. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  333. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  334. len = qdf_nbuf_len(nbuf);
  335. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  336. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  337. 1, len);
  338. return true;
  339. } else {
  340. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  341. len);
  342. return false;
  343. }
  344. }
  345. }
  346. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  347. * source, then clone the pkt and send the cloned pkt for
  348. * intra BSS forwarding and original pkt up the network stack
  349. * Note: how do we handle multicast pkts. do we forward
  350. * all multicast pkts as is or let a higher layer module
  351. * like igmpsnoop decide whether to forward or not with
  352. * Mcast enhancement.
  353. */
  354. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  355. !sa_peer->bss_peer))) {
  356. nbuf_copy = qdf_nbuf_copy(nbuf);
  357. if (!nbuf_copy)
  358. return false;
  359. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  360. len = qdf_nbuf_len(nbuf_copy);
  361. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  362. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  363. qdf_nbuf_free(nbuf_copy);
  364. } else
  365. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  366. }
  367. /* return false as we have to still send the original pkt
  368. * up the stack
  369. */
  370. return false;
  371. }
  372. #ifdef MESH_MODE_SUPPORT
  373. /**
  374. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  375. *
  376. * @vdev: DP Virtual device handle
  377. * @nbuf: Buffer pointer
  378. * @rx_tlv_hdr: start of rx tlv header
  379. * @peer: pointer to peer
  380. *
  381. * This function allocated memory for mesh receive stats and fill the
  382. * required stats. Stores the memory address in skb cb.
  383. *
  384. * Return: void
  385. */
  386. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  387. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  388. {
  389. struct mesh_recv_hdr_s *rx_info = NULL;
  390. uint32_t pkt_type;
  391. uint32_t nss;
  392. uint32_t rate_mcs;
  393. uint32_t bw;
  394. /* fill recv mesh stats */
  395. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  396. /* upper layers are resposible to free this memory */
  397. if (rx_info == NULL) {
  398. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  399. "Memory allocation failed for mesh rx stats");
  400. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  401. return;
  402. }
  403. rx_info->rs_flags = MESH_RXHDR_VER1;
  404. if (qdf_nbuf_is_chfrag_start(nbuf))
  405. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  406. if (qdf_nbuf_is_chfrag_end(nbuf))
  407. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  408. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  409. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  410. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  411. if (vdev->osif_get_key)
  412. vdev->osif_get_key(vdev->osif_vdev,
  413. &rx_info->rs_decryptkey[0],
  414. &peer->mac_addr.raw[0],
  415. rx_info->rs_keyix);
  416. }
  417. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  418. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  419. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  420. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  421. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  422. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  423. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  424. (bw << 24);
  425. qdf_nbuf_set_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  426. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  427. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  428. rx_info->rs_flags,
  429. rx_info->rs_rssi,
  430. rx_info->rs_channel,
  431. rx_info->rs_ratephy1,
  432. rx_info->rs_keyix);
  433. }
  434. /**
  435. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  436. *
  437. * @vdev: DP Virtual device handle
  438. * @nbuf: Buffer pointer
  439. * @rx_tlv_hdr: start of rx tlv header
  440. *
  441. * This checks if the received packet is matching any filter out
  442. * catogery and and drop the packet if it matches.
  443. *
  444. * Return: status(0 indicates drop, 1 indicate to no drop)
  445. */
  446. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  447. uint8_t *rx_tlv_hdr)
  448. {
  449. union dp_align_mac_addr mac_addr;
  450. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  451. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  452. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  453. return QDF_STATUS_SUCCESS;
  454. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  455. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  456. return QDF_STATUS_SUCCESS;
  457. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  458. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  459. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  460. return QDF_STATUS_SUCCESS;
  461. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  462. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  463. &mac_addr.raw[0]))
  464. return QDF_STATUS_E_FAILURE;
  465. if (!qdf_mem_cmp(&mac_addr.raw[0],
  466. &vdev->mac_addr.raw[0],
  467. DP_MAC_ADDR_LEN))
  468. return QDF_STATUS_SUCCESS;
  469. }
  470. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  471. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  472. &mac_addr.raw[0]))
  473. return QDF_STATUS_E_FAILURE;
  474. if (!qdf_mem_cmp(&mac_addr.raw[0],
  475. &vdev->mac_addr.raw[0],
  476. DP_MAC_ADDR_LEN))
  477. return QDF_STATUS_SUCCESS;
  478. }
  479. }
  480. return QDF_STATUS_E_FAILURE;
  481. }
  482. #else
  483. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  484. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  485. {
  486. }
  487. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  488. uint8_t *rx_tlv_hdr)
  489. {
  490. return QDF_STATUS_E_FAILURE;
  491. }
  492. #endif
  493. #ifdef CONFIG_WIN
  494. /**
  495. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  496. * clients
  497. * @pdev: DP pdev handle
  498. * @rx_pkt_hdr: Rx packet Header
  499. *
  500. * return: dp_vdev*
  501. */
  502. static
  503. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  504. uint8_t *rx_pkt_hdr)
  505. {
  506. struct ieee80211_frame *wh;
  507. struct dp_neighbour_peer *peer = NULL;
  508. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  509. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  510. return NULL;
  511. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  512. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  513. neighbour_peer_list_elem) {
  514. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  515. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  516. QDF_TRACE(
  517. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  518. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  519. peer->neighbour_peers_macaddr.raw[0],
  520. peer->neighbour_peers_macaddr.raw[1],
  521. peer->neighbour_peers_macaddr.raw[2],
  522. peer->neighbour_peers_macaddr.raw[3],
  523. peer->neighbour_peers_macaddr.raw[4],
  524. peer->neighbour_peers_macaddr.raw[5]);
  525. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  526. return pdev->monitor_vdev;
  527. }
  528. }
  529. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  530. return NULL;
  531. }
  532. /**
  533. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  534. * @soc: DP SOC handle
  535. * @mpdu: mpdu for which peer is invalid
  536. *
  537. * return: integer type
  538. */
  539. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  540. {
  541. struct dp_invalid_peer_msg msg;
  542. struct dp_vdev *vdev = NULL;
  543. struct dp_pdev *pdev = NULL;
  544. struct ieee80211_frame *wh;
  545. uint8_t i;
  546. uint8_t *rx_pkt_hdr;
  547. rx_pkt_hdr = hal_rx_pkt_hdr_get(qdf_nbuf_data(mpdu));
  548. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  549. if (!DP_FRAME_IS_DATA(wh)) {
  550. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  551. "NAWDS valid only for data frames");
  552. return 1;
  553. }
  554. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  555. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  556. "Invalid nbuf length");
  557. return 1;
  558. }
  559. for (i = 0; i < MAX_PDEV_CNT; i++) {
  560. pdev = soc->pdev_list[i];
  561. if (!pdev) {
  562. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  563. "PDEV not found");
  564. continue;
  565. }
  566. if (pdev->filter_neighbour_peers) {
  567. /* Next Hop scenario not yet handle */
  568. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  569. if (vdev) {
  570. dp_rx_mon_deliver(soc, i,
  571. pdev->invalid_peer_head_msdu,
  572. pdev->invalid_peer_tail_msdu);
  573. return 0;
  574. }
  575. }
  576. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  577. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  578. DP_MAC_ADDR_LEN) == 0) {
  579. goto out;
  580. }
  581. }
  582. }
  583. if (!vdev) {
  584. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  585. "VDEV not found");
  586. return 1;
  587. }
  588. out:
  589. msg.wh = wh;
  590. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  591. msg.nbuf = mpdu;
  592. msg.vdev_id = vdev->vdev_id;
  593. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  594. return pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  595. pdev->osif_pdev, &msg);
  596. return 0;
  597. }
  598. #else
  599. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  600. {
  601. return 0;
  602. }
  603. #endif
  604. #if defined(FEATURE_LRO)
  605. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  606. {
  607. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  608. FL("----------------------RX DESC LRO----------------------\n"));
  609. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  610. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  611. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  612. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  613. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  614. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  615. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  616. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  617. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  618. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  619. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  620. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  621. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  622. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  623. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  624. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  625. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  626. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  627. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  628. FL("---------------------------------------------------------\n"));
  629. }
  630. /**
  631. * dp_rx_lro() - LRO related processing
  632. * @rx_tlv: TLV data extracted from the rx packet
  633. * @peer: destination peer of the msdu
  634. * @msdu: network buffer
  635. * @ctx: LRO context
  636. *
  637. * This function performs the LRO related processing of the msdu
  638. *
  639. * Return: true: LRO enabled false: LRO is not enabled
  640. */
  641. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  642. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  643. {
  644. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  645. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  646. FL("no peer, no vdev or LRO disabled"));
  647. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  648. return;
  649. }
  650. qdf_assert(rx_tlv);
  651. dp_rx_print_lro_info(rx_tlv);
  652. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  653. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  654. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  655. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  656. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  657. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  658. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  659. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  660. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  661. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  662. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  663. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  664. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  665. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  666. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  667. HAL_RX_TLV_GET_IPV6(rx_tlv);
  668. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  669. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  670. QDF_NBUF_CB_RX_FLOW_ID_TOEPLITZ(msdu) =
  671. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  672. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  673. }
  674. #else
  675. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  676. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  677. {
  678. }
  679. #endif
  680. static inline void dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  681. {
  682. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN))
  683. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  684. else
  685. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  686. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  687. }
  688. /**
  689. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  690. * multiple nbufs.
  691. * @nbuf: nbuf which can may be part of frag_list.
  692. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  693. * @mpdu_len: mpdu length.
  694. * @is_first_frag: is this the first nbuf in the fragmented MSDU.
  695. * @frag_list_len: length of all the fragments combined.
  696. * @head_frag_nbuf: parent nbuf
  697. * @frag_list_head: pointer to the first nbuf in the frag_list.
  698. * @frag_list_tail: pointer to the last nbuf in the frag_list.
  699. *
  700. * This function implements the creation of RX frag_list for cases
  701. * where an MSDU is spread across multiple nbufs.
  702. *
  703. */
  704. void dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
  705. uint16_t *mpdu_len, bool *is_first_frag,
  706. uint16_t *frag_list_len, qdf_nbuf_t *head_frag_nbuf,
  707. qdf_nbuf_t *frag_list_head, qdf_nbuf_t *frag_list_tail)
  708. {
  709. if (qdf_unlikely(qdf_nbuf_is_chfrag_cont(nbuf))) {
  710. if (!(*is_first_frag)) {
  711. *is_first_frag = 1;
  712. qdf_nbuf_set_chfrag_start(nbuf, 1);
  713. *mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  714. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  715. *head_frag_nbuf = nbuf;
  716. } else {
  717. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  718. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  719. *frag_list_len += qdf_nbuf_len(nbuf);
  720. DP_RX_LIST_APPEND(*frag_list_head,
  721. *frag_list_tail,
  722. nbuf);
  723. }
  724. } else {
  725. if (qdf_unlikely(*is_first_frag)) {
  726. qdf_nbuf_set_chfrag_start(nbuf, 0);
  727. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  728. qdf_nbuf_pull_head(nbuf,
  729. RX_PKT_TLVS_LEN);
  730. *frag_list_len += qdf_nbuf_len(nbuf);
  731. DP_RX_LIST_APPEND(*frag_list_head,
  732. *frag_list_tail,
  733. nbuf);
  734. qdf_nbuf_append_ext_list(*head_frag_nbuf,
  735. *frag_list_head,
  736. *frag_list_len);
  737. *is_first_frag = 0;
  738. return;
  739. }
  740. *head_frag_nbuf = nbuf;
  741. }
  742. }
  743. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  744. struct dp_peer *peer,
  745. qdf_nbuf_t nbuf_list)
  746. {
  747. /*
  748. * highly unlikely to have a vdev without a registerd rx
  749. * callback function. if so let us free the nbuf_list.
  750. */
  751. if (qdf_unlikely(!vdev->osif_rx)) {
  752. qdf_nbuf_t nbuf;
  753. do {
  754. nbuf = nbuf_list;
  755. nbuf_list = nbuf_list->next;
  756. qdf_nbuf_free(nbuf);
  757. } while (nbuf_list);
  758. return;
  759. }
  760. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  761. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi))
  762. dp_rx_deliver_raw(vdev, nbuf_list, peer);
  763. else
  764. vdev->osif_rx(vdev->osif_vdev, nbuf_list);
  765. }
  766. /**
  767. * dp_rx_process() - Brain of the Rx processing functionality
  768. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  769. * @soc: core txrx main context
  770. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  771. * @quota: No. of units (packets) that can be serviced in one shot.
  772. *
  773. * This function implements the core of Rx functionality. This is
  774. * expected to handle only non-error frames.
  775. *
  776. * Return: uint32_t: No. of elements processed
  777. */
  778. uint32_t
  779. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  780. {
  781. void *hal_soc;
  782. void *ring_desc;
  783. struct dp_rx_desc *rx_desc = NULL;
  784. qdf_nbuf_t nbuf, next;
  785. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  786. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  787. uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset;
  788. uint16_t msdu_len;
  789. uint16_t peer_id;
  790. struct dp_peer *peer = NULL;
  791. struct dp_vdev *vdev = NULL;
  792. uint32_t pkt_len;
  793. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  794. struct hal_rx_msdu_desc_info msdu_desc_info;
  795. enum hal_reo_error_status error;
  796. uint32_t peer_mdata;
  797. uint8_t *rx_tlv_hdr;
  798. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  799. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  800. uint8_t mac_id;
  801. uint32_t ampdu_flag, amsdu_flag;
  802. struct dp_pdev *pdev;
  803. struct dp_srng *dp_rxdma_srng;
  804. struct rx_desc_pool *rx_desc_pool;
  805. struct dp_soc *soc = int_ctx->soc;
  806. uint8_t ring_id;
  807. uint8_t core_id;
  808. bool is_first_frag = 0;
  809. uint16_t mpdu_len = 0;
  810. qdf_nbuf_t head_frag_nbuf = NULL;
  811. qdf_nbuf_t frag_list_head = NULL;
  812. qdf_nbuf_t frag_list_tail = NULL;
  813. uint16_t frag_list_len = 0;
  814. qdf_nbuf_t nbuf_head = NULL;
  815. qdf_nbuf_t nbuf_tail = NULL;
  816. qdf_nbuf_t deliver_list_head = NULL;
  817. qdf_nbuf_t deliver_list_tail = NULL;
  818. DP_HIST_INIT();
  819. /* Debug -- Remove later */
  820. qdf_assert(soc && hal_ring);
  821. hal_soc = soc->hal_soc;
  822. /* Debug -- Remove later */
  823. qdf_assert(hal_soc);
  824. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  825. /*
  826. * Need API to convert from hal_ring pointer to
  827. * Ring Type / Ring Id combo
  828. */
  829. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  830. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  831. FL("HAL RING Access Failed -- %p"), hal_ring);
  832. hal_srng_access_end(hal_soc, hal_ring);
  833. goto done;
  834. }
  835. /*
  836. * start reaping the buffers from reo ring and queue
  837. * them in per vdev queue.
  838. * Process the received pkts in a different per vdev loop.
  839. */
  840. while (qdf_likely((ring_desc =
  841. hal_srng_dst_get_next(hal_soc, hal_ring))
  842. && quota)) {
  843. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  844. ring_id = hal_srng_ring_id_get(hal_ring);
  845. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  846. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  847. FL("HAL RING 0x%p:error %d"), hal_ring, error);
  848. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  849. /* Don't know how to deal with this -- assert */
  850. qdf_assert(0);
  851. }
  852. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  853. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  854. qdf_assert(rx_desc);
  855. rx_bufs_reaped[rx_desc->pool_id]++;
  856. /* TODO */
  857. /*
  858. * Need a separate API for unmapping based on
  859. * phyiscal address
  860. */
  861. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  862. QDF_DMA_BIDIRECTIONAL);
  863. core_id = smp_processor_id();
  864. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  865. /* Get MPDU DESC info */
  866. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  867. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  868. mpdu_desc_info.peer_meta_data);
  869. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  870. mpdu_desc_info.peer_meta_data);
  871. peer = dp_peer_find_by_id(soc, peer_id);
  872. vdev = dp_get_vdev_from_peer(soc, peer_id, peer,
  873. mpdu_desc_info);
  874. if (!vdev) {
  875. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  876. FL("vdev is NULL"));
  877. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  878. qdf_nbuf_free(rx_desc->nbuf);
  879. goto fail;
  880. }
  881. /* Get MSDU DESC info */
  882. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  883. /*
  884. * save msdu flags first, last and continuation msdu in
  885. * nbuf->cb
  886. */
  887. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  888. qdf_nbuf_set_chfrag_start(rx_desc->nbuf, 1);
  889. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  890. qdf_nbuf_set_chfrag_cont(rx_desc->nbuf, 1);
  891. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  892. qdf_nbuf_set_chfrag_end(rx_desc->nbuf, 1);
  893. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1,
  894. qdf_nbuf_len(rx_desc->nbuf));
  895. ampdu_flag = (mpdu_desc_info.mpdu_flags &
  896. HAL_MPDU_F_AMPDU_FLAG);
  897. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, ampdu_flag);
  898. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(ampdu_flag));
  899. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  900. amsdu_flag = ((msdu_desc_info.msdu_flags &
  901. HAL_MSDU_F_FIRST_MSDU_IN_MPDU) &&
  902. (msdu_desc_info.msdu_flags &
  903. HAL_MSDU_F_LAST_MSDU_IN_MPDU));
  904. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1,
  905. amsdu_flag);
  906. DP_STATS_INCC(peer, rx.amsdu_cnt, 1,
  907. !(amsdu_flag));
  908. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  909. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  910. fail:
  911. /*
  912. * if continuation bit is set then we have MSDU spread
  913. * across multiple buffers, let us not decrement quota
  914. * till we reap all buffers of that MSDU.
  915. */
  916. if (qdf_likely(!qdf_nbuf_is_chfrag_cont(rx_desc->nbuf)))
  917. quota -= 1;
  918. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  919. &tail[rx_desc->pool_id],
  920. rx_desc);
  921. }
  922. done:
  923. hal_srng_access_end(hal_soc, hal_ring);
  924. /* Update histogram statistics by looping through pdev's */
  925. DP_RX_HIST_STATS_PER_PDEV();
  926. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  927. /*
  928. * continue with next mac_id if no pkts were reaped
  929. * from that pool
  930. */
  931. if (!rx_bufs_reaped[mac_id])
  932. continue;
  933. pdev = soc->pdev_list[mac_id];
  934. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  935. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  936. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  937. rx_desc_pool, rx_bufs_reaped[mac_id],
  938. &head[mac_id], &tail[mac_id],
  939. HAL_RX_BUF_RBM_SW3_BM);
  940. }
  941. vdev = NULL;
  942. nbuf = nbuf_head;
  943. while (nbuf) {
  944. next = nbuf->next;
  945. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  946. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  947. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  948. peer = dp_peer_find_by_id(soc, peer_id);
  949. if (deliver_list_head && (vdev != peer->vdev)) {
  950. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head);
  951. deliver_list_head = NULL;
  952. deliver_list_tail = NULL;
  953. }
  954. vdev = peer->vdev;
  955. /*
  956. * Check if DMA completed -- msdu_done is the last bit
  957. * to be written
  958. */
  959. if (!hal_rx_attn_msdu_done_get(rx_tlv_hdr)) {
  960. QDF_TRACE(QDF_MODULE_ID_DP,
  961. QDF_TRACE_LEVEL_ERROR,
  962. FL("MSDU DONE failure"));
  963. DP_STATS_INC(vdev->pdev, dropped.msdu_not_done,
  964. 1);
  965. hal_rx_dump_pkt_tlvs(rx_tlv_hdr,
  966. QDF_TRACE_LEVEL_INFO);
  967. qdf_assert(0);
  968. }
  969. /*
  970. * The below condition happens when an MSDU is spread
  971. * across multiple buffers. This can happen in two cases
  972. * 1. The nbuf size is smaller then the received msdu.
  973. * ex: we have set the nbuf size to 2048 during
  974. * nbuf_alloc. but we received an msdu which is
  975. * 2304 bytes in size then this msdu is spread
  976. * across 2 nbufs.
  977. *
  978. * 2. AMSDUs when RAW mode is enabled.
  979. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  980. * across 1st nbuf and 2nd nbuf and last MSDU is
  981. * spread across 2nd nbuf and 3rd nbuf.
  982. *
  983. * for these scenarios let us create a skb frag_list and
  984. * append these buffers till the last MSDU of the AMSDU
  985. */
  986. if (qdf_unlikely(vdev->rx_decap_type ==
  987. htt_cmn_pkt_type_raw)) {
  988. dp_rx_sg_create(nbuf, rx_tlv_hdr, &mpdu_len,
  989. &is_first_frag, &frag_list_len,
  990. &head_frag_nbuf,
  991. &frag_list_head,
  992. &frag_list_tail);
  993. if (is_first_frag) {
  994. nbuf = next;
  995. continue;
  996. } else {
  997. frag_list_head = NULL;
  998. frag_list_tail = NULL;
  999. nbuf = head_frag_nbuf;
  1000. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1001. }
  1002. }
  1003. /*
  1004. * This is a redundant sanity check, Ideally peer
  1005. * should never be NULL here. if for any reason it
  1006. * is NULL we will assert.
  1007. * Do nothing for LFR case.
  1008. */
  1009. dp_rx_peer_validity_check(peer);
  1010. if (qdf_unlikely(peer->bss_peer)) {
  1011. QDF_TRACE(QDF_MODULE_ID_DP,
  1012. QDF_TRACE_LEVEL_ERROR,
  1013. FL("received pkt with same src MAC"));
  1014. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  1015. /* Drop & free packet */
  1016. qdf_nbuf_free(nbuf);
  1017. /* Statistics */
  1018. nbuf = next;
  1019. continue;
  1020. }
  1021. pdev = vdev->pdev;
  1022. if (qdf_likely(
  1023. !hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr)
  1024. &&
  1025. !hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr))) {
  1026. qdf_nbuf_rx_cksum_t cksum = {0};
  1027. cksum.l4_result =
  1028. QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1029. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1030. }
  1031. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1032. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1033. tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
  1034. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1035. "%s: %d, SGI: %d, tid: %d",
  1036. __func__, __LINE__, sgi, tid);
  1037. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1038. reception_type = hal_rx_msdu_start_reception_type_get(
  1039. rx_tlv_hdr);
  1040. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  1041. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1042. DP_STATS_INC(vdev->pdev, rx.bw[bw], 1);
  1043. DP_STATS_INC(vdev->pdev,
  1044. rx.reception_type[reception_type], 1);
  1045. DP_STATS_INCC(vdev->pdev, rx.nss[nss], 1,
  1046. ((reception_type == REPT_MU_MIMO) ||
  1047. (reception_type == REPT_MU_OFDMA_MIMO))
  1048. );
  1049. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1050. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1051. hal_rx_mpdu_end_mic_err_get(
  1052. rx_tlv_hdr));
  1053. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1054. hal_rx_mpdu_end_decrypt_err_get(
  1055. rx_tlv_hdr));
  1056. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)],
  1057. 1);
  1058. DP_STATS_INC(peer, rx.bw[bw], 1);
  1059. DP_STATS_INC(peer, rx.reception_type[reception_type],
  1060. 1);
  1061. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1062. mcs_count[MAX_MCS], 1,
  1063. ((mcs >= MAX_MCS_11A) && (pkt_type
  1064. == DOT11_A)));
  1065. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1066. mcs_count[mcs], 1,
  1067. ((mcs <= MAX_MCS_11A) && (pkt_type
  1068. == DOT11_A)));
  1069. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1070. mcs_count[MAX_MCS], 1,
  1071. ((mcs >= MAX_MCS_11B)
  1072. && (pkt_type == DOT11_B)));
  1073. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1074. mcs_count[mcs], 1,
  1075. ((mcs <= MAX_MCS_11B)
  1076. && (pkt_type == DOT11_B)));
  1077. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1078. mcs_count[MAX_MCS], 1,
  1079. ((mcs >= MAX_MCS_11A)
  1080. && (pkt_type == DOT11_N)));
  1081. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1082. mcs_count[mcs], 1,
  1083. ((mcs <= MAX_MCS_11A)
  1084. && (pkt_type == DOT11_N)));
  1085. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1086. mcs_count[MAX_MCS], 1,
  1087. ((mcs >= MAX_MCS_11AC)
  1088. && (pkt_type == DOT11_AC)));
  1089. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1090. mcs_count[mcs], 1,
  1091. ((mcs <= MAX_MCS_11AC)
  1092. && (pkt_type == DOT11_AC)));
  1093. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1094. mcs_count[MAX_MCS], 1,
  1095. ((mcs >= (MAX_MCS-1))
  1096. && (pkt_type == DOT11_AX)));
  1097. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1098. mcs_count[mcs], 1,
  1099. ((mcs <= (MAX_MCS-1))
  1100. && (pkt_type == DOT11_AX)));
  1101. /*
  1102. * HW structures call this L3 header padding --
  1103. * even though this is actually the offset from
  1104. * the buffer beginning where the L2 header
  1105. * begins.
  1106. */
  1107. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1108. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1109. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1110. l2_hdr_offset =
  1111. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1112. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1113. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1114. if (unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1115. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1116. else {
  1117. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1118. qdf_nbuf_pull_head(nbuf,
  1119. RX_PKT_TLVS_LEN +
  1120. l2_hdr_offset);
  1121. }
  1122. if (qdf_unlikely(vdev->mesh_vdev)) {
  1123. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1124. rx_tlv_hdr)
  1125. == QDF_STATUS_SUCCESS) {
  1126. QDF_TRACE(QDF_MODULE_ID_DP,
  1127. QDF_TRACE_LEVEL_INFO_MED,
  1128. FL("mesh pkt filtered"));
  1129. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1130. 1);
  1131. qdf_nbuf_free(nbuf);
  1132. nbuf = next;
  1133. continue;
  1134. }
  1135. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1136. }
  1137. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1138. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1139. "p_id %d msdu_len %d hdr_off %d",
  1140. peer_id, msdu_len, l2_hdr_offset);
  1141. print_hex_dump(KERN_ERR,
  1142. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1143. qdf_nbuf_data(nbuf), 128, false);
  1144. #endif /* NAPIER_EMULATION */
  1145. if (qdf_likely(vdev->rx_decap_type ==
  1146. htt_cmn_pkt_type_ethernet) &&
  1147. (qdf_likely(!vdev->mesh_vdev))) {
  1148. /* WDS Source Port Learning */
  1149. dp_rx_wds_srcport_learn(soc,
  1150. rx_tlv_hdr,
  1151. peer,
  1152. nbuf);
  1153. /* Intrabss-fwd */
  1154. if (dp_rx_check_ap_bridge(vdev) &&
  1155. !vdev->nawds_enabled)
  1156. if (dp_rx_intrabss_fwd(soc,
  1157. peer,
  1158. rx_tlv_hdr,
  1159. nbuf)) {
  1160. nbuf = next;
  1161. continue; /* Get next desc */
  1162. }
  1163. }
  1164. rx_bufs_used++;
  1165. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1166. DP_RX_LIST_APPEND(deliver_list_head,
  1167. deliver_list_tail,
  1168. nbuf);
  1169. DP_STATS_INCC_PKT(peer, rx.multicast, 1, pkt_len,
  1170. hal_rx_msdu_end_da_is_mcbc_get(
  1171. rx_tlv_hdr));
  1172. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1173. pkt_len);
  1174. if ((pdev->enhanced_stats_en) && likely(peer) &&
  1175. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1176. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1177. soc->cdp_soc.ol_ops->update_dp_stats(
  1178. vdev->pdev->osif_pdev,
  1179. &peer->stats,
  1180. peer_id,
  1181. UPDATE_PEER_STATS);
  1182. dp_aggregate_vdev_stats(peer->vdev);
  1183. soc->cdp_soc.ol_ops->update_dp_stats(
  1184. vdev->pdev->osif_pdev,
  1185. &peer->vdev->stats,
  1186. peer->vdev->vdev_id,
  1187. UPDATE_VDEV_STATS);
  1188. }
  1189. }
  1190. nbuf = next;
  1191. }
  1192. if (deliver_list_head)
  1193. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head);
  1194. return rx_bufs_used; /* Assume no scale factor for now */
  1195. }
  1196. /**
  1197. * dp_rx_detach() - detach dp rx
  1198. * @pdev: core txrx pdev context
  1199. *
  1200. * This function will detach DP RX into main device context
  1201. * will free DP Rx resources.
  1202. *
  1203. * Return: void
  1204. */
  1205. void
  1206. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1207. {
  1208. uint8_t pdev_id = pdev->pdev_id;
  1209. struct dp_soc *soc = pdev->soc;
  1210. struct rx_desc_pool *rx_desc_pool;
  1211. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1212. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1213. qdf_spinlock_destroy(&soc->rx_desc_mutex[pdev_id]);
  1214. return;
  1215. }
  1216. /**
  1217. * dp_rx_attach() - attach DP RX
  1218. * @pdev: core txrx pdev context
  1219. *
  1220. * This function will attach a DP RX instance into the main
  1221. * device (SOC) context. Will allocate dp rx resource and
  1222. * initialize resources.
  1223. *
  1224. * Return: QDF_STATUS_SUCCESS: success
  1225. * QDF_STATUS_E_RESOURCES: Error return
  1226. */
  1227. QDF_STATUS
  1228. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1229. {
  1230. uint8_t pdev_id = pdev->pdev_id;
  1231. struct dp_soc *soc = pdev->soc;
  1232. struct dp_srng rxdma_srng;
  1233. uint32_t rxdma_entries;
  1234. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1235. union dp_rx_desc_list_elem_t *tail = NULL;
  1236. struct dp_srng *dp_rxdma_srng;
  1237. struct rx_desc_pool *rx_desc_pool;
  1238. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1239. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1240. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1241. return QDF_STATUS_SUCCESS;
  1242. }
  1243. qdf_spinlock_create(&soc->rx_desc_mutex[pdev_id]);
  1244. pdev = soc->pdev_list[pdev_id];
  1245. rxdma_srng = pdev->rx_refill_buf_ring;
  1246. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1247. soc->hal_soc, RXDMA_BUF);
  1248. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1249. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1250. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1251. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1252. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1253. rxdma_entries, &desc_list, &tail, HAL_RX_BUF_RBM_SW3_BM);
  1254. return QDF_STATUS_SUCCESS;
  1255. }