msm_cvp_res_parse.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/iommu.h>
  6. #include <linux/of.h>
  7. #include <linux/slab.h>
  8. #include <linux/sort.h>
  9. #include <linux/of_reserved_mem.h>
  10. #include "msm_cvp_debug.h"
  11. #include "msm_cvp_resources.h"
  12. #include "msm_cvp_res_parse.h"
  13. #include "soc/qcom/secure_buffer.h"
  14. enum clock_properties {
  15. CLOCK_PROP_HAS_SCALING = 1 << 0,
  16. CLOCK_PROP_HAS_MEM_RETENTION = 1 << 1,
  17. };
  18. #define PERF_GOV "performance"
  19. static inline struct device *msm_iommu_get_ctx(const char *ctx_name)
  20. {
  21. return NULL;
  22. }
  23. static size_t get_u32_array_num_elements(struct device_node *np,
  24. char *name)
  25. {
  26. int len;
  27. size_t num_elements = 0;
  28. if (!of_get_property(np, name, &len)) {
  29. dprintk(CVP_ERR, "Failed to read %s from device tree\n",
  30. name);
  31. goto fail_read;
  32. }
  33. num_elements = len / sizeof(u32);
  34. if (num_elements <= 0) {
  35. dprintk(CVP_ERR, "%s not specified in device tree\n",
  36. name);
  37. goto fail_read;
  38. }
  39. return num_elements;
  40. fail_read:
  41. return 0;
  42. }
  43. static inline void msm_cvp_free_allowed_clocks_table(
  44. struct msm_cvp_platform_resources *res)
  45. {
  46. res->allowed_clks_tbl = NULL;
  47. }
  48. static inline void msm_cvp_free_cycles_per_mb_table(
  49. struct msm_cvp_platform_resources *res)
  50. {
  51. res->clock_freq_tbl.clk_prof_entries = NULL;
  52. }
  53. static inline void msm_cvp_free_reg_table(
  54. struct msm_cvp_platform_resources *res)
  55. {
  56. res->reg_set.reg_tbl = NULL;
  57. }
  58. static inline void msm_cvp_free_qdss_addr_table(
  59. struct msm_cvp_platform_resources *res)
  60. {
  61. res->qdss_addr_set.addr_tbl = NULL;
  62. }
  63. static inline void msm_cvp_free_bus_vectors(
  64. struct msm_cvp_platform_resources *res)
  65. {
  66. kfree(res->bus_set.bus_tbl);
  67. res->bus_set.bus_tbl = NULL;
  68. res->bus_set.count = 0;
  69. }
  70. static inline void msm_cvp_free_regulator_table(
  71. struct msm_cvp_platform_resources *res)
  72. {
  73. int c = 0;
  74. for (c = 0; c < res->regulator_set.count; ++c) {
  75. struct regulator_info *rinfo =
  76. &res->regulator_set.regulator_tbl[c];
  77. rinfo->name = NULL;
  78. }
  79. res->regulator_set.regulator_tbl = NULL;
  80. res->regulator_set.count = 0;
  81. }
  82. static inline void msm_cvp_free_clock_table(
  83. struct msm_cvp_platform_resources *res)
  84. {
  85. res->clock_set.clock_tbl = NULL;
  86. res->clock_set.count = 0;
  87. }
  88. void msm_cvp_free_platform_resources(
  89. struct msm_cvp_platform_resources *res)
  90. {
  91. msm_cvp_free_clock_table(res);
  92. msm_cvp_free_regulator_table(res);
  93. msm_cvp_free_allowed_clocks_table(res);
  94. msm_cvp_free_reg_table(res);
  95. msm_cvp_free_qdss_addr_table(res);
  96. msm_cvp_free_bus_vectors(res);
  97. }
  98. static int msm_cvp_load_reg_table(struct msm_cvp_platform_resources *res)
  99. {
  100. struct reg_set *reg_set;
  101. struct platform_device *pdev = res->pdev;
  102. int i;
  103. int rc = 0;
  104. if (!of_find_property(pdev->dev.of_node, "qcom,reg-presets", NULL)) {
  105. /*
  106. * qcom,reg-presets is an optional property. It likely won't be
  107. * present if we don't have any register settings to program
  108. */
  109. dprintk(CVP_CORE, "qcom,reg-presets not found\n");
  110. return 0;
  111. }
  112. reg_set = &res->reg_set;
  113. reg_set->count = get_u32_array_num_elements(pdev->dev.of_node,
  114. "qcom,reg-presets");
  115. reg_set->count /= sizeof(*reg_set->reg_tbl) / sizeof(u32);
  116. if (!reg_set->count) {
  117. dprintk(CVP_CORE, "no elements in reg set\n");
  118. return rc;
  119. }
  120. reg_set->reg_tbl = devm_kzalloc(&pdev->dev, reg_set->count *
  121. sizeof(*(reg_set->reg_tbl)), GFP_KERNEL);
  122. if (!reg_set->reg_tbl) {
  123. dprintk(CVP_ERR, "%s Failed to alloc register table\n",
  124. __func__);
  125. return -ENOMEM;
  126. }
  127. if (of_property_read_u32_array(pdev->dev.of_node, "qcom,reg-presets",
  128. (u32 *)reg_set->reg_tbl, reg_set->count * 2)) {
  129. dprintk(CVP_ERR, "Failed to read register table\n");
  130. msm_cvp_free_reg_table(res);
  131. return -EINVAL;
  132. }
  133. for (i = 0; i < reg_set->count; i++) {
  134. dprintk(CVP_CORE,
  135. "reg = %x, value = %x\n",
  136. reg_set->reg_tbl[i].reg,
  137. reg_set->reg_tbl[i].value
  138. );
  139. }
  140. return rc;
  141. }
  142. static int msm_cvp_load_qdss_table(struct msm_cvp_platform_resources *res)
  143. {
  144. struct addr_set *qdss_addr_set;
  145. struct platform_device *pdev = res->pdev;
  146. int i;
  147. int rc = 0;
  148. if (!of_find_property(pdev->dev.of_node, "qcom,qdss-presets", NULL)) {
  149. /*
  150. * qcom,qdss-presets is an optional property. It likely won't be
  151. * present if we don't have any register settings to program
  152. */
  153. dprintk(CVP_CORE, "qcom,qdss-presets not found\n");
  154. return rc;
  155. }
  156. qdss_addr_set = &res->qdss_addr_set;
  157. qdss_addr_set->count = get_u32_array_num_elements(pdev->dev.of_node,
  158. "qcom,qdss-presets");
  159. qdss_addr_set->count /= sizeof(*qdss_addr_set->addr_tbl) / sizeof(u32);
  160. if (!qdss_addr_set->count) {
  161. dprintk(CVP_CORE, "no elements in qdss reg set\n");
  162. return rc;
  163. }
  164. qdss_addr_set->addr_tbl = devm_kzalloc(&pdev->dev,
  165. qdss_addr_set->count * sizeof(*qdss_addr_set->addr_tbl),
  166. GFP_KERNEL);
  167. if (!qdss_addr_set->addr_tbl) {
  168. dprintk(CVP_ERR, "%s Failed to alloc register table\n",
  169. __func__);
  170. rc = -ENOMEM;
  171. goto err_qdss_addr_tbl;
  172. }
  173. rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,qdss-presets",
  174. (u32 *)qdss_addr_set->addr_tbl, qdss_addr_set->count * 2);
  175. if (rc) {
  176. dprintk(CVP_ERR, "Failed to read qdss address table\n");
  177. msm_cvp_free_qdss_addr_table(res);
  178. rc = -EINVAL;
  179. goto err_qdss_addr_tbl;
  180. }
  181. for (i = 0; i < qdss_addr_set->count; i++) {
  182. dprintk(CVP_CORE, "qdss addr = %x, value = %x\n",
  183. qdss_addr_set->addr_tbl[i].start,
  184. qdss_addr_set->addr_tbl[i].size);
  185. }
  186. err_qdss_addr_tbl:
  187. return rc;
  188. }
  189. static int msm_cvp_load_subcache_info(struct msm_cvp_platform_resources *res)
  190. {
  191. int rc = 0, num_subcaches = 0, c;
  192. struct platform_device *pdev = res->pdev;
  193. struct subcache_set *subcaches = &res->subcache_set;
  194. num_subcaches = of_property_count_strings(pdev->dev.of_node,
  195. "cache-slice-names");
  196. if (num_subcaches <= 0) {
  197. dprintk(CVP_CORE, "No subcaches found\n");
  198. goto err_load_subcache_table_fail;
  199. }
  200. subcaches->subcache_tbl = devm_kzalloc(&pdev->dev,
  201. sizeof(*subcaches->subcache_tbl) * num_subcaches, GFP_KERNEL);
  202. if (!subcaches->subcache_tbl) {
  203. dprintk(CVP_ERR,
  204. "Failed to allocate memory for subcache tbl\n");
  205. rc = -ENOMEM;
  206. goto err_load_subcache_table_fail;
  207. }
  208. subcaches->count = num_subcaches;
  209. dprintk(CVP_CORE, "Found %d subcaches\n", num_subcaches);
  210. for (c = 0; c < num_subcaches; ++c) {
  211. struct subcache_info *vsc = &res->subcache_set.subcache_tbl[c];
  212. of_property_read_string_index(pdev->dev.of_node,
  213. "cache-slice-names", c, &vsc->name);
  214. }
  215. res->sys_cache_present = true;
  216. return 0;
  217. err_load_subcache_table_fail:
  218. res->sys_cache_present = false;
  219. subcaches->count = 0;
  220. subcaches->subcache_tbl = NULL;
  221. return rc;
  222. }
  223. /**
  224. * msm_cvp_load_u32_table() - load dtsi table entries
  225. * @pdev: A pointer to the platform device.
  226. * @of_node: A pointer to the device node.
  227. * @table_name: A pointer to the dtsi table entry name.
  228. * @struct_size: The size of the structure which is nothing but
  229. * a single entry in the dtsi table.
  230. * @table: A pointer to the table pointer which needs to be
  231. * filled by the dtsi table entries.
  232. * @num_elements: Number of elements pointer which needs to be filled
  233. * with the number of elements in the table.
  234. *
  235. * This is a generic implementation to load single or multiple array
  236. * table from dtsi. The array elements should be of size equal to u32.
  237. *
  238. * Return: Return '0' for success else appropriate error value.
  239. */
  240. int msm_cvp_load_u32_table(struct platform_device *pdev,
  241. struct device_node *of_node, char *table_name, int struct_size,
  242. u32 **table, u32 *num_elements)
  243. {
  244. int rc = 0, num_elemts = 0;
  245. u32 *ptbl = NULL;
  246. if (!of_find_property(of_node, table_name, NULL)) {
  247. dprintk(CVP_CORE, "%s not found\n", table_name);
  248. return 0;
  249. }
  250. num_elemts = get_u32_array_num_elements(of_node, table_name);
  251. if (!num_elemts) {
  252. dprintk(CVP_ERR, "no elements in %s\n", table_name);
  253. return 0;
  254. }
  255. num_elemts /= struct_size / sizeof(u32);
  256. ptbl = devm_kzalloc(&pdev->dev, num_elemts * struct_size, GFP_KERNEL);
  257. if (!ptbl) {
  258. dprintk(CVP_ERR, "Failed to alloc table %s\n", table_name);
  259. return -ENOMEM;
  260. }
  261. if (of_property_read_u32_array(of_node, table_name, ptbl,
  262. num_elemts * struct_size / sizeof(u32))) {
  263. dprintk(CVP_ERR, "Failed to read %s\n", table_name);
  264. return -EINVAL;
  265. }
  266. *table = ptbl;
  267. if (num_elements)
  268. *num_elements = num_elemts;
  269. return rc;
  270. }
  271. EXPORT_SYMBOL(msm_cvp_load_u32_table);
  272. /* A comparator to compare loads (needed later on) */
  273. static int cmp(const void *a, const void *b)
  274. {
  275. return ((struct allowed_clock_rates_table *)a)->clock_rate -
  276. ((struct allowed_clock_rates_table *)b)->clock_rate;
  277. }
  278. static int msm_cvp_load_allowed_clocks_table(
  279. struct msm_cvp_platform_resources *res)
  280. {
  281. int rc = 0;
  282. struct platform_device *pdev = res->pdev;
  283. if (!of_find_property(pdev->dev.of_node,
  284. "qcom,allowed-clock-rates", NULL)) {
  285. dprintk(CVP_CORE, "qcom,allowed-clock-rates not found\n");
  286. return 0;
  287. }
  288. rc = msm_cvp_load_u32_table(pdev, pdev->dev.of_node,
  289. "qcom,allowed-clock-rates",
  290. sizeof(*res->allowed_clks_tbl),
  291. (u32 **)&res->allowed_clks_tbl,
  292. &res->allowed_clks_tbl_size);
  293. if (rc) {
  294. dprintk(CVP_ERR,
  295. "%s: failed to read allowed clocks table\n", __func__);
  296. return rc;
  297. }
  298. sort(res->allowed_clks_tbl, res->allowed_clks_tbl_size,
  299. sizeof(*res->allowed_clks_tbl), cmp, NULL);
  300. return 0;
  301. }
  302. static int msm_cvp_populate_mem_cdsp(struct device *dev,
  303. struct msm_cvp_platform_resources *res)
  304. {
  305. struct device_node *mem_node;
  306. int ret;
  307. mem_node = of_parse_phandle(dev->of_node, "memory-region", 0);
  308. if (mem_node) {
  309. ret = of_reserved_mem_device_init_by_idx(dev,
  310. dev->of_node, 0);
  311. of_node_put(dev->of_node);
  312. if (ret) {
  313. dprintk(CVP_ERR,
  314. "Failed to initialize reserved mem, ret %d\n",
  315. ret);
  316. return ret;
  317. }
  318. }
  319. res->mem_cdsp.dev = dev;
  320. return 0;
  321. }
  322. static int msm_cvp_populate_bus(struct device *dev,
  323. struct msm_cvp_platform_resources *res)
  324. {
  325. struct bus_set *buses = &res->bus_set;
  326. const char *temp_name = NULL;
  327. struct bus_info *bus = NULL, *temp_table;
  328. u32 range[2];
  329. int rc = 0;
  330. temp_table = krealloc(buses->bus_tbl, sizeof(*temp_table) *
  331. (buses->count + 1), GFP_KERNEL);
  332. if (!temp_table) {
  333. dprintk(CVP_ERR, "%s: Failed to allocate memory", __func__);
  334. rc = -ENOMEM;
  335. goto err_bus;
  336. }
  337. buses->bus_tbl = temp_table;
  338. bus = &buses->bus_tbl[buses->count];
  339. memset(bus, 0x0, sizeof(struct bus_info));
  340. rc = of_property_read_string(dev->of_node, "label", &temp_name);
  341. if (rc) {
  342. dprintk(CVP_ERR, "'label' not found in node\n");
  343. goto err_bus;
  344. }
  345. /* need a non-const version of name, hence copying it over */
  346. bus->name = devm_kstrdup(dev, temp_name, GFP_KERNEL);
  347. if (!bus->name) {
  348. rc = -ENOMEM;
  349. goto err_bus;
  350. }
  351. rc = of_property_read_u32(dev->of_node, "qcom,bus-master",
  352. &bus->master);
  353. if (rc) {
  354. dprintk(CVP_ERR, "'qcom,bus-master' not found in node\n");
  355. goto err_bus;
  356. }
  357. rc = of_property_read_u32(dev->of_node, "qcom,bus-slave", &bus->slave);
  358. if (rc) {
  359. dprintk(CVP_ERR, "'qcom,bus-slave' not found in node\n");
  360. goto err_bus;
  361. }
  362. rc = of_property_read_string(dev->of_node, "qcom,bus-governor",
  363. &bus->governor);
  364. if (rc) {
  365. rc = 0;
  366. dprintk(CVP_CORE,
  367. "'qcom,bus-governor' not found, default to performance governor\n");
  368. bus->governor = PERF_GOV;
  369. }
  370. if (!strcmp(bus->governor, PERF_GOV))
  371. bus->is_prfm_gov_used = true;
  372. rc = of_property_read_u32_array(dev->of_node, "qcom,bus-range-kbps",
  373. range, ARRAY_SIZE(range));
  374. if (rc) {
  375. rc = 0;
  376. dprintk(CVP_CORE,
  377. "'qcom,range' not found defaulting to <0 INT_MAX>\n");
  378. range[0] = 0;
  379. range[1] = INT_MAX;
  380. }
  381. bus->range[0] = range[0]; /* min */
  382. bus->range[1] = range[1]; /* max */
  383. buses->count++;
  384. bus->dev = dev;
  385. dprintk(CVP_CORE, "Found bus %s [%d->%d] with governor %s\n",
  386. bus->name, bus->master, bus->slave, bus->governor);
  387. err_bus:
  388. return rc;
  389. }
  390. static int msm_cvp_load_regulator_table(
  391. struct msm_cvp_platform_resources *res)
  392. {
  393. int rc = 0;
  394. struct platform_device *pdev = res->pdev;
  395. struct regulator_set *regulators = &res->regulator_set;
  396. struct device_node *domains_parent_node = NULL;
  397. struct property *domains_property = NULL;
  398. int reg_count = 0;
  399. regulators->count = 0;
  400. regulators->regulator_tbl = NULL;
  401. domains_parent_node = pdev->dev.of_node;
  402. for_each_property_of_node(domains_parent_node, domains_property) {
  403. const char *search_string = "-supply";
  404. char *supply;
  405. bool matched = false;
  406. /* check if current property is possibly a regulator */
  407. supply = strnstr(domains_property->name, search_string,
  408. strlen(domains_property->name) + 1);
  409. matched = supply && (*(supply + strlen(search_string)) == '\0');
  410. if (!matched)
  411. continue;
  412. reg_count++;
  413. }
  414. regulators->regulator_tbl = devm_kzalloc(&pdev->dev,
  415. sizeof(*regulators->regulator_tbl) *
  416. reg_count, GFP_KERNEL);
  417. if (!regulators->regulator_tbl) {
  418. rc = -ENOMEM;
  419. dprintk(CVP_ERR,
  420. "Failed to alloc memory for regulator table\n");
  421. goto err_reg_tbl_alloc;
  422. }
  423. for_each_property_of_node(domains_parent_node, domains_property) {
  424. const char *search_string = "-supply";
  425. char *supply;
  426. bool matched = false;
  427. struct device_node *regulator_node = NULL;
  428. struct regulator_info *rinfo = NULL;
  429. /* check if current property is possibly a regulator */
  430. supply = strnstr(domains_property->name, search_string,
  431. strlen(domains_property->name) + 1);
  432. matched = supply && (supply[strlen(search_string)] == '\0');
  433. if (!matched)
  434. continue;
  435. /* make sure prop isn't being misused */
  436. regulator_node = of_parse_phandle(domains_parent_node,
  437. domains_property->name, 0);
  438. if (IS_ERR(regulator_node)) {
  439. dprintk(CVP_WARN, "%s is not a phandle\n",
  440. domains_property->name);
  441. continue;
  442. }
  443. regulators->count++;
  444. /* populate regulator info */
  445. rinfo = &regulators->regulator_tbl[regulators->count - 1];
  446. rinfo->name = devm_kzalloc(&pdev->dev,
  447. (supply - domains_property->name) + 1, GFP_KERNEL);
  448. if (!rinfo->name) {
  449. rc = -ENOMEM;
  450. dprintk(CVP_ERR,
  451. "Failed to alloc memory for regulator name\n");
  452. goto err_reg_name_alloc;
  453. }
  454. strlcpy(rinfo->name, domains_property->name,
  455. (supply - domains_property->name) + 1);
  456. rinfo->has_hw_power_collapse = of_property_read_bool(
  457. regulator_node, "qcom,support-hw-trigger");
  458. dprintk(CVP_CORE, "Found regulator %s: h/w collapse = %s\n",
  459. rinfo->name,
  460. rinfo->has_hw_power_collapse ? "yes" : "no");
  461. }
  462. if (!regulators->count)
  463. dprintk(CVP_CORE, "No regulators found");
  464. return 0;
  465. err_reg_name_alloc:
  466. err_reg_tbl_alloc:
  467. msm_cvp_free_regulator_table(res);
  468. return rc;
  469. }
  470. static int msm_cvp_load_clock_table(
  471. struct msm_cvp_platform_resources *res)
  472. {
  473. int rc = 0, num_clocks = 0, c = 0;
  474. struct platform_device *pdev = res->pdev;
  475. int *clock_props = NULL;
  476. struct clock_set *clocks = &res->clock_set;
  477. num_clocks = of_property_count_strings(pdev->dev.of_node,
  478. "clock-names");
  479. if (num_clocks <= 0) {
  480. dprintk(CVP_CORE, "No clocks found\n");
  481. clocks->count = 0;
  482. rc = 0;
  483. goto err_load_clk_table_fail;
  484. }
  485. clock_props = devm_kzalloc(&pdev->dev, num_clocks *
  486. sizeof(*clock_props), GFP_KERNEL);
  487. if (!clock_props) {
  488. dprintk(CVP_ERR, "No memory to read clock properties\n");
  489. rc = -ENOMEM;
  490. goto err_load_clk_table_fail;
  491. }
  492. rc = of_property_read_u32_array(pdev->dev.of_node,
  493. "qcom,clock-configs", clock_props,
  494. num_clocks);
  495. if (rc) {
  496. dprintk(CVP_ERR, "Failed to read clock properties: %d\n", rc);
  497. goto err_load_clk_prop_fail;
  498. }
  499. clocks->clock_tbl = devm_kzalloc(&pdev->dev, sizeof(*clocks->clock_tbl)
  500. * num_clocks, GFP_KERNEL);
  501. if (!clocks->clock_tbl) {
  502. dprintk(CVP_ERR, "Failed to allocate memory for clock tbl\n");
  503. rc = -ENOMEM;
  504. goto err_load_clk_prop_fail;
  505. }
  506. clocks->count = num_clocks;
  507. dprintk(CVP_CORE, "Found %d clocks\n", num_clocks);
  508. for (c = 0; c < num_clocks; ++c) {
  509. struct clock_info *vc = &res->clock_set.clock_tbl[c];
  510. of_property_read_string_index(pdev->dev.of_node,
  511. "clock-names", c, &vc->name);
  512. if (clock_props[c] & CLOCK_PROP_HAS_SCALING) {
  513. vc->has_scaling = true;
  514. } else {
  515. vc->count = 0;
  516. vc->has_scaling = false;
  517. }
  518. if (clock_props[c] & CLOCK_PROP_HAS_MEM_RETENTION)
  519. vc->has_mem_retention = true;
  520. else
  521. vc->has_mem_retention = false;
  522. dprintk(CVP_CORE, "Found clock %s: scale-able = %s\n", vc->name,
  523. vc->count ? "yes" : "no");
  524. }
  525. return 0;
  526. err_load_clk_prop_fail:
  527. err_load_clk_table_fail:
  528. return rc;
  529. }
  530. #define MAX_CLK_RESETS 5
  531. static int msm_cvp_load_reset_table(
  532. struct msm_cvp_platform_resources *res)
  533. {
  534. struct platform_device *pdev = res->pdev;
  535. struct reset_set *rst = &res->reset_set;
  536. int num_clocks = 0, c = 0, ret = 0;
  537. int pwr_stats[MAX_CLK_RESETS];
  538. num_clocks = of_property_count_strings(pdev->dev.of_node,
  539. "reset-names");
  540. if (num_clocks <= 0 || num_clocks > MAX_CLK_RESETS) {
  541. dprintk(CVP_ERR, "Num reset clocks out of range\n");
  542. rst->count = 0;
  543. return 0;
  544. }
  545. rst->reset_tbl = devm_kcalloc(&pdev->dev, num_clocks,
  546. sizeof(*rst->reset_tbl), GFP_KERNEL);
  547. if (!rst->reset_tbl)
  548. return -ENOMEM;
  549. rst->count = num_clocks;
  550. dprintk(CVP_CORE, "Found %d reset clocks\n", num_clocks);
  551. ret = of_property_read_u32_array(pdev->dev.of_node,
  552. "reset-power-status", pwr_stats,
  553. num_clocks);
  554. if (ret) {
  555. dprintk(CVP_ERR, "Failed to read reset pwr state: %d\n", ret);
  556. devm_kfree(&pdev->dev, rst->reset_tbl);
  557. return ret;
  558. }
  559. for (c = 0; c < num_clocks; ++c) {
  560. struct reset_info *rc = &res->reset_set.reset_tbl[c];
  561. of_property_read_string_index(pdev->dev.of_node,
  562. "reset-names", c, &rc->name);
  563. rc->required_state = pwr_stats[c];
  564. }
  565. return 0;
  566. }
  567. static int find_key_value(struct msm_cvp_platform_data *platform_data,
  568. const char *key)
  569. {
  570. int i = 0;
  571. struct msm_cvp_common_data *common_data = platform_data->common_data;
  572. int size = platform_data->common_data_length;
  573. for (i = 0; i < size; i++) {
  574. if (!strcmp(common_data[i].key, key))
  575. return common_data[i].value;
  576. }
  577. return 0;
  578. }
  579. int cvp_read_platform_resources_from_drv_data(
  580. struct msm_cvp_core *core)
  581. {
  582. struct msm_cvp_platform_data *platform_data;
  583. struct msm_cvp_platform_resources *res;
  584. int rc = 0;
  585. if (!core || !core->platform_data) {
  586. dprintk(CVP_ERR, "%s Invalid data\n", __func__);
  587. return -ENOENT;
  588. }
  589. platform_data = core->platform_data;
  590. res = &core->resources;
  591. res->sku_version = platform_data->sku_version;
  592. res->fw_name = "evass";
  593. dprintk(CVP_CORE, "Firmware filename: %s\n", res->fw_name);
  594. res->auto_pil = find_key_value(platform_data,
  595. "qcom,auto-pil");
  596. res->max_load = find_key_value(platform_data,
  597. "qcom,max-hw-load");
  598. res->sw_power_collapsible = find_key_value(platform_data,
  599. "qcom,sw-power-collapse");
  600. res->never_unload_fw = find_key_value(platform_data,
  601. "qcom,never-unload-fw");
  602. res->debug_timeout = find_key_value(platform_data,
  603. "qcom,debug-timeout");
  604. res->pm_qos_latency_us = find_key_value(platform_data,
  605. "qcom,pm-qos-latency-us");
  606. res->max_secure_inst_count = find_key_value(platform_data,
  607. "qcom,max-secure-instances");
  608. res->thermal_mitigable = find_key_value(platform_data,
  609. "qcom,enable-thermal-mitigation");
  610. res->msm_cvp_pwr_collapse_delay = find_key_value(platform_data,
  611. "qcom,power-collapse-delay");
  612. res->msm_cvp_firmware_unload_delay = find_key_value(platform_data,
  613. "qcom,fw-unload-delay");
  614. res->msm_cvp_hw_rsp_timeout = find_key_value(platform_data,
  615. "qcom,hw-resp-timeout");
  616. res->msm_cvp_dsp_rsp_timeout = find_key_value(platform_data,
  617. "qcom,dsp-resp-timeout");
  618. res->non_fatal_pagefaults = find_key_value(platform_data,
  619. "qcom,domain-attr-non-fatal-faults");
  620. res->vpu_ver = platform_data->vpu_ver;
  621. res->ubwc_config = platform_data->ubwc_config;
  622. return rc;
  623. }
  624. int cvp_read_platform_resources_from_dt(
  625. struct msm_cvp_platform_resources *res)
  626. {
  627. struct platform_device *pdev = res->pdev;
  628. struct resource *kres = NULL;
  629. int rc = 0;
  630. uint32_t firmware_base = 0;
  631. if (!pdev->dev.of_node) {
  632. dprintk(CVP_ERR, "DT node not found\n");
  633. return -ENOENT;
  634. }
  635. INIT_LIST_HEAD(&res->context_banks);
  636. res->firmware_base = (phys_addr_t)firmware_base;
  637. kres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  638. res->register_base = kres ? kres->start : -1;
  639. res->register_size = kres ? (kres->end + 1 - kres->start) : -1;
  640. kres = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  641. res->irq = kres ? kres->start : -1;
  642. rc = msm_cvp_load_subcache_info(res);
  643. if (rc)
  644. dprintk(CVP_WARN, "Failed to load subcache info: %d\n", rc);
  645. rc = msm_cvp_load_qdss_table(res);
  646. if (rc)
  647. dprintk(CVP_WARN, "Failed to load qdss reg table: %d\n", rc);
  648. rc = msm_cvp_load_reg_table(res);
  649. if (rc) {
  650. dprintk(CVP_ERR, "Failed to load reg table: %d\n", rc);
  651. goto err_load_reg_table;
  652. }
  653. rc = msm_cvp_load_regulator_table(res);
  654. if (rc) {
  655. dprintk(CVP_ERR, "Failed to load list of regulators %d\n", rc);
  656. goto err_load_regulator_table;
  657. }
  658. rc = msm_cvp_load_clock_table(res);
  659. if (rc) {
  660. dprintk(CVP_ERR,
  661. "Failed to load clock table: %d\n", rc);
  662. goto err_load_clock_table;
  663. }
  664. rc = msm_cvp_load_allowed_clocks_table(res);
  665. if (rc) {
  666. dprintk(CVP_ERR,
  667. "Failed to load allowed clocks table: %d\n", rc);
  668. goto err_load_allowed_clocks_table;
  669. }
  670. rc = msm_cvp_load_reset_table(res);
  671. if (rc) {
  672. dprintk(CVP_ERR,
  673. "Failed to load reset table: %d\n", rc);
  674. goto err_load_reset_table;
  675. }
  676. res->use_non_secure_pil = of_property_read_bool(pdev->dev.of_node,
  677. "qcom,use-non-secure-pil");
  678. if (res->use_non_secure_pil || !is_iommu_present(res)) {
  679. of_property_read_u32(pdev->dev.of_node, "qcom,fw-bias",
  680. &firmware_base);
  681. res->firmware_base = (phys_addr_t)firmware_base;
  682. dprintk(CVP_CORE,
  683. "Using fw-bias : %pa", &res->firmware_base);
  684. }
  685. return rc;
  686. err_load_reset_table:
  687. msm_cvp_free_allowed_clocks_table(res);
  688. err_load_allowed_clocks_table:
  689. msm_cvp_free_clock_table(res);
  690. err_load_clock_table:
  691. msm_cvp_free_regulator_table(res);
  692. err_load_regulator_table:
  693. msm_cvp_free_reg_table(res);
  694. err_load_reg_table:
  695. return rc;
  696. }
  697. static int msm_cvp_setup_context_bank(struct msm_cvp_platform_resources *res,
  698. struct context_bank_info *cb, struct device *dev)
  699. {
  700. int rc = 0;
  701. struct bus_type *bus;
  702. if (!dev || !cb || !res) {
  703. dprintk(CVP_ERR,
  704. "%s: Invalid Input params\n", __func__);
  705. return -EINVAL;
  706. }
  707. cb->dev = dev;
  708. bus = cb->dev->bus;
  709. if (IS_ERR_OR_NULL(bus)) {
  710. dprintk(CVP_ERR, "%s - failed to get bus type\n", __func__);
  711. rc = PTR_ERR(bus) ?: -ENODEV;
  712. goto remove_cb;
  713. }
  714. /*
  715. * configure device segment size and segment boundary to ensure
  716. * iommu mapping returns one mapping (which is required for partial
  717. * cache operations)
  718. */
  719. if (!dev->dma_parms)
  720. dev->dma_parms =
  721. devm_kzalloc(dev, sizeof(*dev->dma_parms), GFP_KERNEL);
  722. dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
  723. dma_set_seg_boundary(dev, DMA_BIT_MASK(64));
  724. dprintk(CVP_CORE, "Attached %s and created mapping\n", dev_name(dev));
  725. dprintk(CVP_CORE,
  726. "Context bank name:%s, buffer_type: %#x, is_secure: %d, address range start: %#x, size: %#x, dev: %pK",
  727. cb->name, cb->buffer_type, cb->is_secure, cb->addr_range.start,
  728. cb->addr_range.size, cb->dev);
  729. return rc;
  730. remove_cb:
  731. return rc;
  732. }
  733. int msm_cvp_smmu_fault_handler(struct iommu_domain *domain,
  734. struct device *dev, unsigned long iova, int flags, void *token)
  735. {
  736. struct msm_cvp_core *core = token;
  737. struct msm_cvp_inst *inst;
  738. u32 *pfaddr = &core->last_fault_addr;
  739. if (!domain || !core) {
  740. dprintk(CVP_ERR, "%s - invalid param %pK %pK\n",
  741. __func__, domain, core);
  742. return -EINVAL;
  743. }
  744. if (core->smmu_fault_handled) {
  745. if (core->resources.non_fatal_pagefaults) {
  746. WARN_ONCE(1, "%s: non-fatal pagefault address: %lx\n",
  747. __func__, iova);
  748. *pfaddr = (*pfaddr == 0) ? iova : (*pfaddr);
  749. return 0;
  750. }
  751. }
  752. dprintk(CVP_ERR, "%s - faulting address: %lx\n", __func__, iova);
  753. mutex_lock(&core->lock);
  754. list_for_each_entry(inst, &core->instances, list) {
  755. msm_cvp_print_inst_bufs(inst);
  756. }
  757. core->smmu_fault_handled = true;
  758. msm_cvp_noc_error_info(core);
  759. mutex_unlock(&core->lock);
  760. /*
  761. * Return -EINVAL to elicit the default behaviour of smmu driver.
  762. * If we return -ENOSYS, then smmu driver assumes page fault handler
  763. * is not installed and prints a list of useful debug information like
  764. * FAR, SID etc. This information is not printed if we return 0.
  765. */
  766. return -EINVAL;
  767. }
  768. static int msm_cvp_populate_context_bank(struct device *dev,
  769. struct msm_cvp_core *core)
  770. {
  771. int rc = 0;
  772. struct context_bank_info *cb = NULL;
  773. struct device_node *np = NULL;
  774. if (!dev || !core) {
  775. dprintk(CVP_ERR, "%s - invalid inputs\n", __func__);
  776. return -EINVAL;
  777. }
  778. np = dev->of_node;
  779. cb = devm_kzalloc(dev, sizeof(*cb), GFP_KERNEL);
  780. if (!cb) {
  781. dprintk(CVP_ERR, "%s - Failed to allocate cb\n", __func__);
  782. return -ENOMEM;
  783. }
  784. INIT_LIST_HEAD(&cb->list);
  785. list_add_tail(&cb->list, &core->resources.context_banks);
  786. rc = of_property_read_string(np, "label", &cb->name);
  787. if (rc) {
  788. dprintk(CVP_CORE,
  789. "Failed to read cb label from device tree\n");
  790. rc = 0;
  791. }
  792. dprintk(CVP_CORE, "%s: context bank has name %s\n", __func__, cb->name);
  793. rc = of_property_read_u32_array(np, "qcom,iommu-dma-addr-pool",
  794. (u32 *)&cb->addr_range, 2);
  795. if (rc) {
  796. dprintk(CVP_ERR,
  797. "Could not read addr pool for context bank : %s %d\n",
  798. cb->name, rc);
  799. goto err_setup_cb;
  800. }
  801. cb->is_secure = of_property_read_bool(np, "qcom,iommu-vmid");
  802. dprintk(CVP_CORE, "context bank %s : secure = %d\n",
  803. cb->name, cb->is_secure);
  804. /* setup buffer type for each sub device*/
  805. rc = of_property_read_u32(np, "buffer-types", &cb->buffer_type);
  806. if (rc) {
  807. dprintk(CVP_ERR, "failed to load buffer_type info %d\n", rc);
  808. rc = -ENOENT;
  809. goto err_setup_cb;
  810. }
  811. dprintk(CVP_CORE,
  812. "context bank %s address start = %x address size = %x buffer_type = %x\n",
  813. cb->name, cb->addr_range.start,
  814. cb->addr_range.size, cb->buffer_type);
  815. cb->domain = iommu_get_domain_for_dev(dev);
  816. if (IS_ERR_OR_NULL(cb->domain)) {
  817. dprintk(CVP_ERR, "Create domain failed\n");
  818. rc = -ENODEV;
  819. goto err_setup_cb;
  820. }
  821. rc = msm_cvp_setup_context_bank(&core->resources, cb, dev);
  822. if (rc) {
  823. dprintk(CVP_ERR, "Cannot setup context bank %d\n", rc);
  824. goto err_setup_cb;
  825. }
  826. iommu_set_fault_handler(cb->domain,
  827. msm_cvp_smmu_fault_handler, (void *)core);
  828. return 0;
  829. err_setup_cb:
  830. list_del(&cb->list);
  831. return rc;
  832. }
  833. int cvp_read_context_bank_resources_from_dt(struct platform_device *pdev)
  834. {
  835. struct msm_cvp_core *core;
  836. int rc = 0;
  837. if (!pdev) {
  838. dprintk(CVP_ERR, "Invalid platform device\n");
  839. return -EINVAL;
  840. } else if (!pdev->dev.parent) {
  841. dprintk(CVP_ERR, "Failed to find a parent for %s\n",
  842. dev_name(&pdev->dev));
  843. return -ENODEV;
  844. }
  845. core = dev_get_drvdata(pdev->dev.parent);
  846. if (!core) {
  847. dprintk(CVP_ERR, "Failed to find cookie in parent device %s",
  848. dev_name(pdev->dev.parent));
  849. return -EINVAL;
  850. }
  851. rc = msm_cvp_populate_context_bank(&pdev->dev, core);
  852. if (rc)
  853. dprintk(CVP_ERR, "Failed to probe context bank\n");
  854. else
  855. dprintk(CVP_CORE, "Successfully probed context bank\n");
  856. return rc;
  857. }
  858. int cvp_read_bus_resources_from_dt(struct platform_device *pdev)
  859. {
  860. struct msm_cvp_core *core;
  861. if (!pdev) {
  862. dprintk(CVP_ERR, "Invalid platform device\n");
  863. return -EINVAL;
  864. } else if (!pdev->dev.parent) {
  865. dprintk(CVP_ERR, "Failed to find a parent for %s\n",
  866. dev_name(&pdev->dev));
  867. return -ENODEV;
  868. }
  869. core = dev_get_drvdata(pdev->dev.parent);
  870. if (!core) {
  871. dprintk(CVP_ERR, "Failed to find cookie in parent device %s",
  872. dev_name(pdev->dev.parent));
  873. return -EINVAL;
  874. }
  875. return msm_cvp_populate_bus(&pdev->dev, &core->resources);
  876. }
  877. int cvp_read_mem_cdsp_resources_from_dt(struct platform_device *pdev)
  878. {
  879. struct msm_cvp_core *core;
  880. if (!pdev) {
  881. dprintk(CVP_ERR, "%s: invalid platform device\n", __func__);
  882. return -EINVAL;
  883. } else if (!pdev->dev.parent) {
  884. dprintk(CVP_ERR, "Failed to find a parent for %s\n",
  885. dev_name(&pdev->dev));
  886. return -ENODEV;
  887. }
  888. core = dev_get_drvdata(pdev->dev.parent);
  889. if (!core) {
  890. dprintk(CVP_ERR, "Failed to find cookie in parent device %s",
  891. dev_name(pdev->dev.parent));
  892. return -EINVAL;
  893. }
  894. return msm_cvp_populate_mem_cdsp(&pdev->dev, &core->resources);
  895. }