synaptics_dsx_i2c.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. * Synaptics DSX touchscreen driver
  3. *
  4. * Copyright (C) 2012-2016 Synaptics Incorporated. All rights reserved.
  5. *
  6. * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
  7. * Copyright (C) 2012 Alexandra Chin <[email protected]>
  8. * Copyright (C) 2012 Scott Lin <[email protected]>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
  21. * EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
  22. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
  23. * AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
  24. * IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  25. * SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
  26. * WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
  27. * AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  28. * NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
  29. * THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
  30. * NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
  31. * TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
  32. * DOLLARS.
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/slab.h>
  37. #include <linux/i2c.h>
  38. #include <linux/delay.h>
  39. #include <linux/input.h>
  40. #include <linux/types.h>
  41. #include <linux/of_gpio.h>
  42. #include <linux/platform_device.h>
  43. #include <linux/input/synaptics_dsx.h>
  44. #include "synaptics_dsx_core.h"
  45. #include "linux/moduleparam.h"
  46. #define SYN_I2C_RETRY_TIMES 10
  47. #define rd_msgs 1
  48. #ifdef CONFIG_DRM
  49. #include <drm/drm_panel.h>
  50. struct drm_panel *active_panel;
  51. #endif
  52. static unsigned char *wr_buf;
  53. static struct synaptics_dsx_hw_interface hw_if;
  54. static struct platform_device *synaptics_dsx_i2c_device;
  55. #ifdef CONFIG_OF
  56. static int parse_dt(struct device *dev, struct synaptics_dsx_board_data *bdata)
  57. {
  58. int retval;
  59. u32 value;
  60. const char *name;
  61. struct property *prop;
  62. struct device_node *np = dev->of_node;
  63. bdata->irq_gpio = of_get_named_gpio_flags(np,
  64. "synaptics,irq-gpio", 0,
  65. (enum of_gpio_flags *)&bdata->irq_flags);
  66. retval = of_property_read_u32(np, "synaptics,irq-on-state",
  67. &value);
  68. if (retval < 0)
  69. bdata->irq_on_state = 0;
  70. else
  71. bdata->irq_on_state = value;
  72. retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);
  73. if (retval < 0)
  74. bdata->pwr_reg_name = NULL;
  75. else
  76. bdata->pwr_reg_name = name;
  77. retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);
  78. if (retval < 0)
  79. bdata->bus_reg_name = NULL;
  80. else
  81. bdata->bus_reg_name = name;
  82. prop = of_find_property(np, "synaptics,power-gpio", NULL);
  83. if (prop && prop->length) {
  84. bdata->power_gpio = of_get_named_gpio_flags(np,
  85. "synaptics,power-gpio", 0, NULL);
  86. retval = of_property_read_u32(np, "synaptics,power-on-state",
  87. &value);
  88. if (retval < 0) {
  89. dev_err(dev, "%s: Unable to read synaptics,power-on-state property\n",
  90. __func__);
  91. return retval;
  92. }
  93. bdata->power_on_state = value;
  94. } else {
  95. bdata->power_gpio = -1;
  96. }
  97. prop = of_find_property(np, "synaptics,power-delay-ms", NULL);
  98. if (prop && prop->length) {
  99. retval = of_property_read_u32(np, "synaptics,power-delay-ms",
  100. &value);
  101. if (retval < 0) {
  102. dev_err(dev, "%s: Unable to read synaptics,power-delay-ms property\n",
  103. __func__);
  104. return retval;
  105. }
  106. bdata->power_delay_ms = value;
  107. } else {
  108. bdata->power_delay_ms = 0;
  109. }
  110. prop = of_find_property(np, "synaptics,reset-gpio", NULL);
  111. if (prop && prop->length) {
  112. bdata->reset_gpio = of_get_named_gpio_flags(np,
  113. "synaptics,reset-gpio", 0, NULL);
  114. retval = of_property_read_u32(np, "synaptics,reset-on-state",
  115. &value);
  116. if (retval < 0) {
  117. dev_err(dev, "%s: Unable to read synaptics,reset-on-state property\n",
  118. __func__);
  119. return retval;
  120. }
  121. bdata->reset_on_state = value;
  122. retval = of_property_read_u32(np, "synaptics,reset-active-ms",
  123. &value);
  124. if (retval < 0) {
  125. dev_err(dev, "%s: Unable to read synaptics,reset-active-ms property\n",
  126. __func__);
  127. return retval;
  128. }
  129. bdata->reset_active_ms = value;
  130. } else {
  131. bdata->reset_gpio = -1;
  132. }
  133. prop = of_find_property(np, "synaptics,reset-delay-ms", NULL);
  134. if (prop && prop->length) {
  135. retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
  136. &value);
  137. if (retval < 0) {
  138. dev_err(dev, "%s: Unable to read synaptics,reset-delay-ms property\n",
  139. __func__);
  140. return retval;
  141. }
  142. bdata->reset_delay_ms = value;
  143. } else {
  144. bdata->reset_delay_ms = 0;
  145. }
  146. prop = of_find_property(np, "synaptics,max-y-for-2d", NULL);
  147. if (prop && prop->length) {
  148. retval = of_property_read_u32(np, "synaptics,max-y-for-2d",
  149. &value);
  150. if (retval < 0) {
  151. dev_err(dev, "%s: Unable to read synaptics,max-y-for-2d property\n",
  152. __func__);
  153. return retval;
  154. }
  155. bdata->max_y_for_2d = value;
  156. } else {
  157. bdata->max_y_for_2d = -1;
  158. }
  159. bdata->swap_axes = of_property_read_bool(np, "synaptics,swap-axes");
  160. bdata->x_flip = of_property_read_bool(np, "synaptics,x-flip");
  161. bdata->y_flip = of_property_read_bool(np, "synaptics,y-flip");
  162. prop = of_find_property(np, "synaptics,ub-i2c-addr", NULL);
  163. if (prop && prop->length) {
  164. retval = of_property_read_u32(np, "synaptics,ub-i2c-addr",
  165. &value);
  166. if (retval < 0) {
  167. dev_err(dev, "%s: Unable to read synaptics,ub-i2c-addr property\n",
  168. __func__);
  169. return retval;
  170. }
  171. bdata->ub_i2c_addr = (unsigned short)value;
  172. } else {
  173. bdata->ub_i2c_addr = -1;
  174. }
  175. prop = of_find_property(np, "synaptics,cap-button-codes", NULL);
  176. if (prop && prop->length) {
  177. bdata->cap_button_map->map = devm_kzalloc(dev,
  178. prop->length,
  179. GFP_KERNEL);
  180. if (!bdata->cap_button_map->map)
  181. return -ENOMEM;
  182. bdata->cap_button_map->nbuttons = prop->length / sizeof(u32);
  183. retval = of_property_read_u32_array(np,
  184. "synaptics,cap-button-codes",
  185. bdata->cap_button_map->map,
  186. bdata->cap_button_map->nbuttons);
  187. if (retval < 0) {
  188. bdata->cap_button_map->nbuttons = 0;
  189. bdata->cap_button_map->map = NULL;
  190. }
  191. } else {
  192. bdata->cap_button_map->nbuttons = 0;
  193. bdata->cap_button_map->map = NULL;
  194. }
  195. prop = of_find_property(np, "synaptics,vir-button-codes", NULL);
  196. if (prop && prop->length) {
  197. bdata->vir_button_map->map = devm_kzalloc(dev,
  198. prop->length,
  199. GFP_KERNEL);
  200. if (!bdata->vir_button_map->map)
  201. return -ENOMEM;
  202. bdata->vir_button_map->nbuttons = prop->length / sizeof(u32);
  203. bdata->vir_button_map->nbuttons /= 5;
  204. retval = of_property_read_u32_array(np,
  205. "synaptics,vir-button-codes",
  206. bdata->vir_button_map->map,
  207. bdata->vir_button_map->nbuttons * 5);
  208. if (retval < 0) {
  209. bdata->vir_button_map->nbuttons = 0;
  210. bdata->vir_button_map->map = NULL;
  211. }
  212. } else {
  213. bdata->vir_button_map->nbuttons = 0;
  214. bdata->vir_button_map->map = NULL;
  215. }
  216. return 0;
  217. }
  218. #endif
  219. static int synaptics_rmi4_i2c_alloc_buf(struct synaptics_rmi4_data *rmi4_data,
  220. unsigned int count)
  221. {
  222. static unsigned int buf_size;
  223. if (count > buf_size) {
  224. if (buf_size)
  225. kfree(wr_buf);
  226. wr_buf = kzalloc(count, GFP_KERNEL);
  227. if (!wr_buf) {
  228. dev_err(rmi4_data->pdev->dev.parent,
  229. "%s: Failed to alloc mem for buffer\n",
  230. __func__);
  231. buf_size = 0;
  232. return -ENOMEM;
  233. }
  234. buf_size = count;
  235. }
  236. return 0;
  237. }
  238. static void synaptics_rmi4_i2c_check_addr(struct synaptics_rmi4_data *rmi4_data,
  239. struct i2c_client *i2c)
  240. {
  241. if (hw_if.board_data->ub_i2c_addr == -1)
  242. return;
  243. if (hw_if.board_data->i2c_addr == i2c->addr)
  244. hw_if.board_data->i2c_addr = hw_if.board_data->ub_i2c_addr;
  245. else
  246. hw_if.board_data->i2c_addr = i2c->addr;
  247. }
  248. static int synaptics_rmi4_i2c_set_page(struct synaptics_rmi4_data *rmi4_data,
  249. unsigned short addr)
  250. {
  251. int retval = 0;
  252. unsigned char retry;
  253. unsigned char buf[PAGE_SELECT_LEN];
  254. unsigned char page;
  255. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  256. struct i2c_msg msg[2];
  257. msg[0].addr = hw_if.board_data->i2c_addr;
  258. msg[0].flags = 0;
  259. msg[0].len = PAGE_SELECT_LEN;
  260. msg[0].buf = buf;
  261. page = ((addr >> 8) & MASK_8BIT);
  262. buf[0] = MASK_8BIT;
  263. buf[1] = page;
  264. if (page != rmi4_data->current_page) {
  265. for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
  266. if (i2c_transfer(i2c->adapter, &msg[0], 1) == 1) {
  267. rmi4_data->current_page = page;
  268. retval = PAGE_SELECT_LEN;
  269. break;
  270. }
  271. dev_err(rmi4_data->pdev->dev.parent,
  272. "%s: I2C retry %d\n",
  273. __func__, retry + 1);
  274. msleep(20);
  275. if (retry == SYN_I2C_RETRY_TIMES / 2) {
  276. synaptics_rmi4_i2c_check_addr(rmi4_data, i2c);
  277. msg[0].addr = hw_if.board_data->i2c_addr;
  278. }
  279. }
  280. } else {
  281. retval = PAGE_SELECT_LEN;
  282. }
  283. return retval;
  284. }
  285. static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
  286. unsigned short addr, unsigned char *data, unsigned int length)
  287. {
  288. int retval = 0;
  289. unsigned char retry;
  290. unsigned char buf;
  291. unsigned char index = 0;
  292. unsigned char xfer_msgs;
  293. unsigned char remaining_msgs;
  294. unsigned short i2c_addr;
  295. unsigned short data_offset = 0;
  296. unsigned int remaining_length = length;
  297. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  298. struct i2c_adapter *adap = i2c->adapter;
  299. struct i2c_msg msg[rd_msgs + 1];
  300. mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
  301. retval = synaptics_rmi4_i2c_set_page(rmi4_data, addr);
  302. if (retval != PAGE_SELECT_LEN) {
  303. retval = -EIO;
  304. goto exit;
  305. }
  306. msg[0].addr = hw_if.board_data->i2c_addr;
  307. msg[0].flags = 0;
  308. msg[0].len = 1;
  309. msg[0].buf = &buf;
  310. msg[rd_msgs].addr = hw_if.board_data->i2c_addr;
  311. msg[rd_msgs].flags = I2C_M_RD;
  312. msg[rd_msgs].len = (unsigned short)remaining_length;
  313. msg[rd_msgs].buf = &data[data_offset];
  314. buf = addr & MASK_8BIT;
  315. remaining_msgs = rd_msgs + 1;
  316. while (remaining_msgs) {
  317. xfer_msgs = remaining_msgs;
  318. for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
  319. retval = i2c_transfer(adap, &msg[index], xfer_msgs);
  320. if (retval == xfer_msgs)
  321. break;
  322. dev_err(rmi4_data->pdev->dev.parent,
  323. "%s: I2C retry %d\n",
  324. __func__, retry + 1);
  325. msleep(20);
  326. if (retry == SYN_I2C_RETRY_TIMES / 2) {
  327. synaptics_rmi4_i2c_check_addr(rmi4_data, i2c);
  328. i2c_addr = hw_if.board_data->i2c_addr;
  329. msg[0].addr = i2c_addr;
  330. msg[rd_msgs].addr = i2c_addr;
  331. }
  332. }
  333. if (retry == SYN_I2C_RETRY_TIMES) {
  334. dev_err(rmi4_data->pdev->dev.parent,
  335. "%s: I2C read over retry limit\n",
  336. __func__);
  337. retval = -EIO;
  338. goto exit;
  339. }
  340. remaining_msgs -= xfer_msgs;
  341. index += xfer_msgs;
  342. }
  343. retval = length;
  344. exit:
  345. mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
  346. return retval;
  347. }
  348. static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
  349. unsigned short addr, unsigned char *data, unsigned int length)
  350. {
  351. int retval;
  352. unsigned char retry;
  353. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  354. struct i2c_msg msg[2];
  355. mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
  356. retval = synaptics_rmi4_i2c_alloc_buf(rmi4_data, length + 1);
  357. if (retval < 0)
  358. goto exit;
  359. retval = synaptics_rmi4_i2c_set_page(rmi4_data, addr);
  360. if (retval != PAGE_SELECT_LEN) {
  361. retval = -EIO;
  362. goto exit;
  363. }
  364. msg[0].addr = hw_if.board_data->i2c_addr;
  365. msg[0].flags = 0;
  366. msg[0].len = (unsigned short)(length + 1);
  367. msg[0].buf = wr_buf;
  368. wr_buf[0] = addr & MASK_8BIT;
  369. retval = secure_memcpy(&wr_buf[1], length, &data[0], length, length);
  370. if (retval < 0) {
  371. dev_err(rmi4_data->pdev->dev.parent,
  372. "%s: Failed to copy data\n",
  373. __func__);
  374. goto exit;
  375. }
  376. for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
  377. if (i2c_transfer(i2c->adapter, &msg[0], 1) == 1) {
  378. retval = length;
  379. break;
  380. }
  381. dev_err(rmi4_data->pdev->dev.parent,
  382. "%s: I2C retry %d\n",
  383. __func__, retry + 1);
  384. msleep(20);
  385. if (retry == SYN_I2C_RETRY_TIMES / 2) {
  386. synaptics_rmi4_i2c_check_addr(rmi4_data, i2c);
  387. msg[0].addr = hw_if.board_data->i2c_addr;
  388. }
  389. }
  390. if (retry == SYN_I2C_RETRY_TIMES) {
  391. dev_err(rmi4_data->pdev->dev.parent,
  392. "%s: I2C write over retry limit\n",
  393. __func__);
  394. retval = -EIO;
  395. }
  396. exit:
  397. mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
  398. return retval;
  399. }
  400. #ifdef CONFIG_DRM
  401. static int check_dt(struct device_node *np)
  402. {
  403. int i;
  404. int count;
  405. struct device_node *node;
  406. struct drm_panel *panel;
  407. count = of_count_phandle_with_args(np, "panel", NULL);
  408. if (count <= 0)
  409. return 0;
  410. for (i = 0; i < count; i++) {
  411. node = of_parse_phandle(np, "panel", i);
  412. panel = of_drm_find_panel(node);
  413. of_node_put(node);
  414. if (!IS_ERR(panel)) {
  415. active_panel = panel;
  416. return 0;
  417. }
  418. }
  419. return PTR_ERR(panel);
  420. }
  421. #endif
  422. static int check_default_tp(struct device_node *dt, const char *prop)
  423. {
  424. const char *active_tp;
  425. const char *compatible;
  426. char *start;
  427. int ret;
  428. ret = of_property_read_string(dt->parent, prop, &active_tp);
  429. if (ret) {
  430. pr_err(" %s:fail to read %s %d\n", __func__, prop, ret);
  431. return -ENODEV;
  432. }
  433. ret = of_property_read_string(dt, "compatible", &compatible);
  434. if (ret < 0) {
  435. pr_err(" %s:fail to read %s %d\n", __func__, "compatible", ret);
  436. return -ENODEV;
  437. }
  438. start = strnstr(active_tp, compatible, strlen(active_tp));
  439. if (start == NULL) {
  440. pr_err(" %s:no match compatible, %s, %s\n",
  441. __func__, compatible, active_tp);
  442. ret = -ENODEV;
  443. }
  444. return ret;
  445. }
  446. static struct synaptics_dsx_bus_access bus_access = {
  447. .type = BUS_I2C,
  448. .read = synaptics_rmi4_i2c_read,
  449. .write = synaptics_rmi4_i2c_write,
  450. };
  451. static void synaptics_rmi4_i2c_dev_release(struct device *dev)
  452. {
  453. kfree(synaptics_dsx_i2c_device);
  454. }
  455. static int synaptics_rmi4_i2c_probe(struct i2c_client *client,
  456. const struct i2c_device_id *dev_id)
  457. {
  458. int retval;
  459. struct device_node *dp = client->dev.of_node;
  460. #ifdef CONFIG_DRM
  461. retval = check_dt(dp);
  462. if (retval == -EPROBE_DEFER)
  463. return retval;
  464. if (retval) {
  465. if (!check_default_tp(dp, "qcom,i2c-touch-active"))
  466. retval = -EPROBE_DEFER;
  467. else
  468. retval = -ENODEV;
  469. return retval;
  470. }
  471. #endif
  472. if (!i2c_check_functionality(client->adapter,
  473. I2C_FUNC_SMBUS_BYTE_DATA)) {
  474. dev_err(&client->dev,
  475. "%s: SMBus byte data commands not supported by host\n",
  476. __func__);
  477. return -EIO;
  478. }
  479. synaptics_dsx_i2c_device = kzalloc(
  480. sizeof(struct platform_device),
  481. GFP_KERNEL);
  482. if (!synaptics_dsx_i2c_device) {
  483. dev_err(&client->dev,
  484. "%s: Failed to allocate memory for synaptics_dsx_i2c_device\n",
  485. __func__);
  486. return -ENOMEM;
  487. }
  488. #ifdef CONFIG_OF
  489. if (client->dev.of_node) {
  490. hw_if.board_data = devm_kzalloc(&client->dev,
  491. sizeof(struct synaptics_dsx_board_data),
  492. GFP_KERNEL);
  493. if (!hw_if.board_data) {
  494. dev_err(&client->dev,
  495. "%s: Failed to allocate memory for board data\n",
  496. __func__);
  497. return -ENOMEM;
  498. }
  499. hw_if.board_data->cap_button_map = devm_kzalloc(&client->dev,
  500. sizeof(struct synaptics_dsx_button_map),
  501. GFP_KERNEL);
  502. if (!hw_if.board_data->cap_button_map) {
  503. dev_err(&client->dev,
  504. "%s: Failed to allocate memory for 0D button map\n",
  505. __func__);
  506. return -ENOMEM;
  507. }
  508. hw_if.board_data->vir_button_map = devm_kzalloc(&client->dev,
  509. sizeof(struct synaptics_dsx_button_map),
  510. GFP_KERNEL);
  511. if (!hw_if.board_data->vir_button_map) {
  512. dev_err(&client->dev,
  513. "%s: Failed to allocate memory for virtual button map\n",
  514. __func__);
  515. return -ENOMEM;
  516. }
  517. parse_dt(&client->dev, hw_if.board_data);
  518. }
  519. #else
  520. hw_if.board_data = client->dev.platform_data;
  521. #endif
  522. hw_if.bus_access = &bus_access;
  523. hw_if.board_data->i2c_addr = client->addr;
  524. synaptics_dsx_i2c_device->name = PLATFORM_DRIVER_NAME;
  525. synaptics_dsx_i2c_device->id = 0;
  526. synaptics_dsx_i2c_device->num_resources = 0;
  527. synaptics_dsx_i2c_device->dev.parent = &client->dev;
  528. synaptics_dsx_i2c_device->dev.platform_data = &hw_if;
  529. synaptics_dsx_i2c_device->dev.release = synaptics_rmi4_i2c_dev_release;
  530. retval = platform_device_register(synaptics_dsx_i2c_device);
  531. if (retval) {
  532. dev_err(&client->dev,
  533. "%s: Failed to register platform device\n",
  534. __func__);
  535. return -ENODEV;
  536. }
  537. return 0;
  538. }
  539. static int synaptics_rmi4_i2c_remove(struct i2c_client *client)
  540. {
  541. platform_device_unregister(synaptics_dsx_i2c_device);
  542. return 0;
  543. }
  544. static const struct i2c_device_id synaptics_rmi4_id_table[] = {
  545. {I2C_DRIVER_NAME, 0},
  546. {},
  547. };
  548. MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table);
  549. #ifdef CONFIG_OF
  550. static const struct of_device_id synaptics_rmi4_of_match_table[] = {
  551. {
  552. .compatible = "synaptics,dsx-i2c",
  553. },
  554. {},
  555. };
  556. MODULE_DEVICE_TABLE(of, synaptics_rmi4_of_match_table);
  557. #else
  558. #define synaptics_rmi4_of_match_table NULL
  559. #endif
  560. static struct i2c_driver synaptics_rmi4_i2c_driver = {
  561. .driver = {
  562. .name = I2C_DRIVER_NAME,
  563. .owner = THIS_MODULE,
  564. .of_match_table = synaptics_rmi4_of_match_table,
  565. },
  566. .probe = synaptics_rmi4_i2c_probe,
  567. .remove = synaptics_rmi4_i2c_remove,
  568. .id_table = synaptics_rmi4_id_table,
  569. };
  570. int synaptics_rmi4_bus_init(void)
  571. {
  572. return i2c_add_driver(&synaptics_rmi4_i2c_driver);
  573. }
  574. EXPORT_SYMBOL(synaptics_rmi4_bus_init);
  575. void synaptics_rmi4_bus_exit(void)
  576. {
  577. kfree(wr_buf);
  578. i2c_del_driver(&synaptics_rmi4_i2c_driver);
  579. }
  580. EXPORT_SYMBOL(synaptics_rmi4_bus_exit);
  581. MODULE_AUTHOR("Synaptics, Inc.");
  582. MODULE_DESCRIPTION("Synaptics DSX I2C Bus Support Module");
  583. MODULE_LICENSE("GPL v2");