hal_srng.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6750
  42. void hal_qca6750_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA5018
  45. void hal_qca5018_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef ENABLE_VERBOSE_DEBUG
  48. bool is_hal_verbose_debug_enabled;
  49. #endif
  50. #ifdef ENABLE_HAL_REG_WR_HISTORY
  51. struct hal_reg_write_fail_history hal_reg_wr_hist;
  52. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  53. uint32_t offset,
  54. uint32_t wr_val, uint32_t rd_val)
  55. {
  56. struct hal_reg_write_fail_entry *record;
  57. int idx;
  58. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  59. HAL_REG_WRITE_HIST_SIZE);
  60. record = &hal_soc->reg_wr_fail_hist->record[idx];
  61. record->timestamp = qdf_get_log_timestamp();
  62. record->reg_offset = offset;
  63. record->write_val = wr_val;
  64. record->read_val = rd_val;
  65. }
  66. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  67. {
  68. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  69. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  70. }
  71. #else
  72. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  73. {
  74. }
  75. #endif
  76. /**
  77. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  78. * @hal: hal_soc data structure
  79. * @ring_type: type enum describing the ring
  80. * @ring_num: which ring of the ring type
  81. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  82. *
  83. * Return: the ring id or -EINVAL if the ring does not exist.
  84. */
  85. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  86. int ring_num, int mac_id)
  87. {
  88. struct hal_hw_srng_config *ring_config =
  89. HAL_SRNG_CONFIG(hal, ring_type);
  90. int ring_id;
  91. if (ring_num >= ring_config->max_rings) {
  92. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  93. "%s: ring_num exceeded maximum no. of supported rings",
  94. __func__);
  95. /* TODO: This is a programming error. Assert if this happens */
  96. return -EINVAL;
  97. }
  98. if (ring_config->lmac_ring) {
  99. ring_id = ring_config->start_ring_id + ring_num +
  100. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  101. } else {
  102. ring_id = ring_config->start_ring_id + ring_num;
  103. }
  104. return ring_id;
  105. }
  106. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  107. {
  108. /* TODO: Should we allocate srng structures dynamically? */
  109. return &(hal->srng_list[ring_id]);
  110. }
  111. #define HP_OFFSET_IN_REG_START 1
  112. #define OFFSET_FROM_HP_TO_TP 4
  113. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  114. int shadow_config_index,
  115. int ring_type,
  116. int ring_num)
  117. {
  118. struct hal_srng *srng;
  119. int ring_id;
  120. struct hal_hw_srng_config *ring_config =
  121. HAL_SRNG_CONFIG(hal_soc, ring_type);
  122. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  123. if (ring_id < 0)
  124. return;
  125. srng = hal_get_srng(hal_soc, ring_id);
  126. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  127. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  128. + hal_soc->dev_base_addr;
  129. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  130. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  131. shadow_config_index);
  132. } else {
  133. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  134. + hal_soc->dev_base_addr;
  135. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  136. srng->u.src_ring.hp_addr,
  137. hal_soc->dev_base_addr, shadow_config_index);
  138. }
  139. }
  140. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  141. int ring_type,
  142. int ring_num)
  143. {
  144. uint32_t target_register;
  145. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  146. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  147. int shadow_config_index = hal->num_shadow_registers_configured;
  148. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  149. QDF_ASSERT(0);
  150. return QDF_STATUS_E_RESOURCES;
  151. }
  152. hal->num_shadow_registers_configured++;
  153. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  154. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  155. *ring_num);
  156. /* if the ring is a dst ring, we need to shadow the tail pointer */
  157. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  158. target_register += OFFSET_FROM_HP_TO_TP;
  159. hal->shadow_config[shadow_config_index].addr = target_register;
  160. /* update hp/tp addr in the hal_soc structure*/
  161. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  162. ring_num);
  163. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  164. target_register,
  165. SHADOW_REGISTER(shadow_config_index),
  166. shadow_config_index,
  167. ring_type, ring_num);
  168. return QDF_STATUS_SUCCESS;
  169. }
  170. qdf_export_symbol(hal_set_one_shadow_config);
  171. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  172. {
  173. int ring_type, ring_num;
  174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  175. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  176. struct hal_hw_srng_config *srng_config =
  177. &hal->hw_srng_table[ring_type];
  178. if (ring_type == CE_SRC ||
  179. ring_type == CE_DST ||
  180. ring_type == CE_DST_STATUS)
  181. continue;
  182. if (srng_config->lmac_ring)
  183. continue;
  184. for (ring_num = 0; ring_num < srng_config->max_rings;
  185. ring_num++)
  186. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  187. }
  188. return QDF_STATUS_SUCCESS;
  189. }
  190. qdf_export_symbol(hal_construct_shadow_config);
  191. void hal_get_shadow_config(void *hal_soc,
  192. struct pld_shadow_reg_v2_cfg **shadow_config,
  193. int *num_shadow_registers_configured)
  194. {
  195. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  196. *shadow_config = hal->shadow_config;
  197. *num_shadow_registers_configured =
  198. hal->num_shadow_registers_configured;
  199. }
  200. qdf_export_symbol(hal_get_shadow_config);
  201. static void hal_validate_shadow_register(struct hal_soc *hal,
  202. uint32_t *destination,
  203. uint32_t *shadow_address)
  204. {
  205. unsigned int index;
  206. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  207. int destination_ba_offset =
  208. ((char *)destination) - (char *)hal->dev_base_addr;
  209. index = shadow_address - shadow_0_offset;
  210. if (index >= MAX_SHADOW_REGISTERS) {
  211. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  212. "%s: index %x out of bounds", __func__, index);
  213. goto error;
  214. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  215. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  216. "%s: sanity check failure, expected %x, found %x",
  217. __func__, destination_ba_offset,
  218. hal->shadow_config[index].addr);
  219. goto error;
  220. }
  221. return;
  222. error:
  223. qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  224. __func__, hal->dev_base_addr, destination, shadow_address,
  225. shadow_0_offset, index);
  226. QDF_BUG(0);
  227. return;
  228. }
  229. static void hal_target_based_configure(struct hal_soc *hal)
  230. {
  231. /**
  232. * Indicate Initialization of srngs to avoid force wake
  233. * as umac power collapse is not enabled yet
  234. */
  235. hal->init_phase = true;
  236. switch (hal->target_type) {
  237. #ifdef QCA_WIFI_QCA6290
  238. case TARGET_TYPE_QCA6290:
  239. hal->use_register_windowing = true;
  240. hal_qca6290_attach(hal);
  241. break;
  242. #endif
  243. #ifdef QCA_WIFI_QCA6390
  244. case TARGET_TYPE_QCA6390:
  245. hal->use_register_windowing = true;
  246. hal_qca6390_attach(hal);
  247. break;
  248. #endif
  249. #ifdef QCA_WIFI_QCA6490
  250. case TARGET_TYPE_QCA6490:
  251. hal->use_register_windowing = true;
  252. hal_qca6490_attach(hal);
  253. hal->init_phase = false;
  254. break;
  255. #endif
  256. #ifdef QCA_WIFI_QCA6750
  257. case TARGET_TYPE_QCA6750:
  258. hal->use_register_windowing = true;
  259. hal->static_window_map = true;
  260. hal_qca6750_attach(hal);
  261. break;
  262. #endif
  263. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  264. case TARGET_TYPE_QCA8074:
  265. hal_qca8074_attach(hal);
  266. break;
  267. #endif
  268. #if defined(QCA_WIFI_QCA8074V2)
  269. case TARGET_TYPE_QCA8074V2:
  270. hal_qca8074v2_attach(hal);
  271. break;
  272. #endif
  273. #if defined(QCA_WIFI_QCA6018)
  274. case TARGET_TYPE_QCA6018:
  275. hal_qca8074v2_attach(hal);
  276. break;
  277. #endif
  278. #ifdef QCA_WIFI_QCN9000
  279. case TARGET_TYPE_QCN9000:
  280. hal->use_register_windowing = true;
  281. /*
  282. * Static window map is enabled for qcn9000 to use 2mb bar
  283. * size and use multiple windows to write into registers.
  284. */
  285. hal->static_window_map = true;
  286. hal_qcn9000_attach(hal);
  287. break;
  288. #endif
  289. #ifdef QCA_WIFI_QCA5018
  290. case TARGET_TYPE_QCA5018:
  291. hal->use_register_windowing = true;
  292. hal->static_window_map = true;
  293. hal_qca5018_attach(hal);
  294. break;
  295. #endif
  296. default:
  297. break;
  298. }
  299. }
  300. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  301. {
  302. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  303. struct hif_target_info *tgt_info =
  304. hif_get_target_info_handle(hal_soc->hif_handle);
  305. return tgt_info->target_type;
  306. }
  307. qdf_export_symbol(hal_get_target_type);
  308. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  309. #ifdef MEMORY_DEBUG
  310. /*
  311. * Length of the queue(array) used to hold delayed register writes.
  312. * Must be a multiple of 2.
  313. */
  314. #define HAL_REG_WRITE_QUEUE_LEN 128
  315. #else
  316. #define HAL_REG_WRITE_QUEUE_LEN 32
  317. #endif
  318. /**
  319. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  320. * @hal: hal_soc pointer
  321. *
  322. * Return: true if throughput is high, else false.
  323. */
  324. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  325. {
  326. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  327. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  328. }
  329. /**
  330. * hal_process_reg_write_q_elem() - process a regiter write queue element
  331. * @hal: hal_soc pointer
  332. * @q_elem: pointer to hal regiter write queue element
  333. *
  334. * Return: The value which was written to the address
  335. */
  336. static uint32_t
  337. hal_process_reg_write_q_elem(struct hal_soc *hal,
  338. struct hal_reg_write_q_elem *q_elem)
  339. {
  340. struct hal_srng *srng = q_elem->srng;
  341. uint32_t write_val;
  342. SRNG_LOCK(&srng->lock);
  343. srng->reg_write_in_progress = false;
  344. srng->wstats.dequeues++;
  345. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  346. q_elem->dequeue_val = srng->u.src_ring.hp;
  347. hal_write_address_32_mb(hal,
  348. srng->u.src_ring.hp_addr,
  349. srng->u.src_ring.hp, false);
  350. write_val = srng->u.src_ring.hp;
  351. } else {
  352. q_elem->dequeue_val = srng->u.dst_ring.tp;
  353. hal_write_address_32_mb(hal,
  354. srng->u.dst_ring.tp_addr,
  355. srng->u.dst_ring.tp, false);
  356. write_val = srng->u.dst_ring.tp;
  357. }
  358. q_elem->valid = 0;
  359. SRNG_UNLOCK(&srng->lock);
  360. return write_val;
  361. }
  362. /**
  363. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  364. * @hal: hal_soc pointer
  365. * @delay: delay in us
  366. *
  367. * Return: None
  368. */
  369. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  370. uint64_t delay_us)
  371. {
  372. uint32_t *hist;
  373. hist = hal->stats.wstats.sched_delay;
  374. if (delay_us < 100)
  375. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  376. else if (delay_us < 1000)
  377. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  378. else if (delay_us < 5000)
  379. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  380. else
  381. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  382. }
  383. /**
  384. * hal_reg_write_work() - Worker to process delayed writes
  385. * @arg: hal_soc pointer
  386. *
  387. * Return: None
  388. */
  389. static void hal_reg_write_work(void *arg)
  390. {
  391. int32_t q_depth, write_val;
  392. struct hal_soc *hal = arg;
  393. struct hal_reg_write_q_elem *q_elem;
  394. uint64_t delta_us;
  395. uint8_t ring_id;
  396. uint32_t *addr;
  397. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  398. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  399. /* Make sure q_elem consistent in the memory for multi-cores */
  400. qdf_rmb();
  401. if (!q_elem->valid)
  402. return;
  403. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  404. if (q_depth > hal->stats.wstats.max_q_depth)
  405. hal->stats.wstats.max_q_depth = q_depth;
  406. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  407. hal->stats.wstats.prevent_l1_fails++;
  408. return;
  409. }
  410. while (true) {
  411. qdf_rmb();
  412. if (!q_elem->valid)
  413. break;
  414. q_elem->dequeue_time = qdf_get_log_timestamp();
  415. ring_id = q_elem->srng->ring_id;
  416. addr = q_elem->addr;
  417. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  418. q_elem->enqueue_time);
  419. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  420. hal->stats.wstats.dequeues++;
  421. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  422. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  423. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  424. hal->read_idx, ring_id, addr, write_val, delta_us);
  425. qdf_atomic_dec(&hal->active_work_cnt);
  426. hal->read_idx = (hal->read_idx + 1) &
  427. (HAL_REG_WRITE_QUEUE_LEN - 1);
  428. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  429. }
  430. hif_allow_link_low_power_states(hal->hif_handle);
  431. }
  432. /**
  433. * hal_flush_reg_write_work() - flush all writes from regiter write queue
  434. * @arg: hal_soc pointer
  435. *
  436. * Return: None
  437. */
  438. static inline void hal_flush_reg_write_work(struct hal_soc *hal)
  439. {
  440. qdf_cancel_work(&hal->reg_write_work);
  441. qdf_flush_work(&hal->reg_write_work);
  442. qdf_flush_workqueue(0, hal->reg_write_wq);
  443. }
  444. /**
  445. * hal_reg_write_enqueue() - enqueue register writes into kworker
  446. * @hal_soc: hal_soc pointer
  447. * @srng: srng pointer
  448. * @addr: iomem address of regiter
  449. * @value: value to be written to iomem address
  450. *
  451. * This function executes from within the SRNG LOCK
  452. *
  453. * Return: None
  454. */
  455. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  456. struct hal_srng *srng,
  457. void __iomem *addr,
  458. uint32_t value)
  459. {
  460. struct hal_reg_write_q_elem *q_elem;
  461. uint32_t write_idx;
  462. if (srng->reg_write_in_progress) {
  463. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  464. srng->ring_id, addr, value);
  465. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  466. srng->wstats.coalesces++;
  467. return;
  468. }
  469. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  470. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  471. q_elem = &hal_soc->reg_write_queue[write_idx];
  472. if (q_elem->valid) {
  473. hal_err("queue full");
  474. QDF_BUG(0);
  475. return;
  476. }
  477. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  478. srng->wstats.enqueues++;
  479. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  480. q_elem->srng = srng;
  481. q_elem->addr = addr;
  482. q_elem->enqueue_val = value;
  483. q_elem->enqueue_time = qdf_get_log_timestamp();
  484. /*
  485. * Before the valid flag is set to true, all the other
  486. * fields in the q_elem needs to be updated in memory.
  487. * Else there is a chance that the dequeuing worker thread
  488. * might read stale entries and process incorrect srng.
  489. */
  490. qdf_wmb();
  491. q_elem->valid = true;
  492. /*
  493. * After all other fields in the q_elem has been updated
  494. * in memory successfully, the valid flag needs to be updated
  495. * in memory in time too.
  496. * Else there is a chance that the dequeuing worker thread
  497. * might read stale valid flag and the work will be bypassed
  498. * for this round. And if there is no other work scheduled
  499. * later, this hal register writing won't be updated any more.
  500. */
  501. qdf_wmb();
  502. srng->reg_write_in_progress = true;
  503. qdf_atomic_inc(&hal_soc->active_work_cnt);
  504. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  505. write_idx, srng->ring_id, addr, value);
  506. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  507. &hal_soc->reg_write_work);
  508. }
  509. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  510. struct hal_srng *srng,
  511. void __iomem *addr,
  512. uint32_t value)
  513. {
  514. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  515. hal_is_reg_write_tput_level_high(hal_soc)) {
  516. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  517. srng->wstats.direct++;
  518. hal_write_address_32_mb(hal_soc, addr, value, false);
  519. } else {
  520. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  521. }
  522. }
  523. /**
  524. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  525. * @hal_soc: hal_soc pointer
  526. *
  527. * Initialize main data structures to process register writes in a delayed
  528. * workqueue.
  529. *
  530. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  531. */
  532. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  533. {
  534. hal->reg_write_wq =
  535. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  536. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  537. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  538. sizeof(*hal->reg_write_queue));
  539. if (!hal->reg_write_queue) {
  540. hal_err("unable to allocate memory");
  541. QDF_BUG(0);
  542. return QDF_STATUS_E_NOMEM;
  543. }
  544. /* Initial value of indices */
  545. hal->read_idx = 0;
  546. qdf_atomic_set(&hal->write_idx, -1);
  547. return QDF_STATUS_SUCCESS;
  548. }
  549. /**
  550. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  551. * @hal_soc: hal_soc pointer
  552. *
  553. * De-initialize main data structures to process register writes in a delayed
  554. * workqueue.
  555. *
  556. * Return: None
  557. */
  558. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  559. {
  560. hal_flush_reg_write_work(hal);
  561. qdf_destroy_workqueue(0, hal->reg_write_wq);
  562. qdf_mem_free(hal->reg_write_queue);
  563. }
  564. static inline
  565. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  566. char *buf, qdf_size_t size)
  567. {
  568. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  569. srng->wstats.enqueues, srng->wstats.dequeues,
  570. srng->wstats.coalesces, srng->wstats.direct);
  571. return buf;
  572. }
  573. /* bytes for local buffer */
  574. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  575. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  576. {
  577. struct hal_srng *srng;
  578. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  579. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  580. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  581. hal_debug("SW2TCL1: %s",
  582. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  583. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  584. hal_debug("WBM2SW0: %s",
  585. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  586. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  587. hal_debug("REO2SW1: %s",
  588. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  589. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  590. hal_debug("REO2SW2: %s",
  591. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  592. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  593. hal_debug("REO2SW3: %s",
  594. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  595. }
  596. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  597. {
  598. uint32_t *hist;
  599. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  600. hist = hal->stats.wstats.sched_delay;
  601. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  602. qdf_atomic_read(&hal->stats.wstats.enqueues),
  603. hal->stats.wstats.dequeues,
  604. qdf_atomic_read(&hal->stats.wstats.coalesces),
  605. qdf_atomic_read(&hal->stats.wstats.direct),
  606. qdf_atomic_read(&hal->stats.wstats.q_depth),
  607. hal->stats.wstats.max_q_depth,
  608. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  609. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  610. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  611. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  612. }
  613. int hal_get_reg_write_pending_work(void *hal_soc)
  614. {
  615. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  616. return qdf_atomic_read(&hal->active_work_cnt);
  617. }
  618. #else
  619. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  620. {
  621. return QDF_STATUS_SUCCESS;
  622. }
  623. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  624. {
  625. }
  626. #endif
  627. /**
  628. * hal_attach - Initialize HAL layer
  629. * @hif_handle: Opaque HIF handle
  630. * @qdf_dev: QDF device
  631. *
  632. * Return: Opaque HAL SOC handle
  633. * NULL on failure (if given ring is not available)
  634. *
  635. * This function should be called as part of HIF initialization (for accessing
  636. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  637. *
  638. */
  639. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  640. {
  641. struct hal_soc *hal;
  642. int i;
  643. hal = qdf_mem_malloc(sizeof(*hal));
  644. if (!hal) {
  645. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  646. "%s: hal_soc allocation failed", __func__);
  647. goto fail0;
  648. }
  649. hal->hif_handle = hif_handle;
  650. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  651. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  652. hal->qdf_dev = qdf_dev;
  653. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  654. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  655. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  656. if (!hal->shadow_rdptr_mem_paddr) {
  657. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  658. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  659. __func__);
  660. goto fail1;
  661. }
  662. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  663. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  664. hal->shadow_wrptr_mem_vaddr =
  665. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  666. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  667. &(hal->shadow_wrptr_mem_paddr));
  668. if (!hal->shadow_wrptr_mem_vaddr) {
  669. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  670. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  671. __func__);
  672. goto fail2;
  673. }
  674. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  675. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  676. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  677. hal->srng_list[i].initialized = 0;
  678. hal->srng_list[i].ring_id = i;
  679. }
  680. qdf_spinlock_create(&hal->register_access_lock);
  681. hal->register_window = 0;
  682. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  683. hal_target_based_configure(hal);
  684. hal_reg_write_fail_history_init(hal);
  685. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  686. qdf_atomic_init(&hal->active_work_cnt);
  687. hal_delayed_reg_write_init(hal);
  688. return (void *)hal;
  689. fail2:
  690. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  691. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  692. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  693. fail1:
  694. qdf_mem_free(hal);
  695. fail0:
  696. return NULL;
  697. }
  698. qdf_export_symbol(hal_attach);
  699. /**
  700. * hal_mem_info - Retrieve hal memory base address
  701. *
  702. * @hal_soc: Opaque HAL SOC handle
  703. * @mem: pointer to structure to be updated with hal mem info
  704. */
  705. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  706. {
  707. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  708. mem->dev_base_addr = (void *)hal->dev_base_addr;
  709. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  710. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  711. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  712. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  713. hif_read_phy_mem_base((void *)hal->hif_handle,
  714. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  715. return;
  716. }
  717. qdf_export_symbol(hal_get_meminfo);
  718. /**
  719. * hal_detach - Detach HAL layer
  720. * @hal_soc: HAL SOC handle
  721. *
  722. * Return: Opaque HAL SOC handle
  723. * NULL on failure (if given ring is not available)
  724. *
  725. * This function should be called as part of HIF initialization (for accessing
  726. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  727. *
  728. */
  729. extern void hal_detach(void *hal_soc)
  730. {
  731. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  732. hal_delayed_reg_write_deinit(hal);
  733. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  734. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  735. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  736. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  737. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  738. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  739. qdf_minidump_remove(hal);
  740. qdf_mem_free(hal);
  741. return;
  742. }
  743. qdf_export_symbol(hal_detach);
  744. /**
  745. * hal_ce_dst_setup - Initialize CE destination ring registers
  746. * @hal_soc: HAL SOC handle
  747. * @srng: SRNG ring pointer
  748. */
  749. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  750. int ring_num)
  751. {
  752. uint32_t reg_val = 0;
  753. uint32_t reg_addr;
  754. struct hal_hw_srng_config *ring_config =
  755. HAL_SRNG_CONFIG(hal, CE_DST);
  756. /* set DEST_MAX_LENGTH according to ce assignment */
  757. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  758. ring_config->reg_start[R0_INDEX] +
  759. (ring_num * ring_config->reg_size[R0_INDEX]));
  760. reg_val = HAL_REG_READ(hal, reg_addr);
  761. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  762. reg_val |= srng->u.dst_ring.max_buffer_length &
  763. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  764. HAL_REG_WRITE(hal, reg_addr, reg_val);
  765. if (srng->prefetch_timer) {
  766. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  767. ring_config->reg_start[R0_INDEX] +
  768. (ring_num * ring_config->reg_size[R0_INDEX]));
  769. reg_val = HAL_REG_READ(hal, reg_addr);
  770. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  771. reg_val |= srng->prefetch_timer;
  772. HAL_REG_WRITE(hal, reg_addr, reg_val);
  773. reg_val = HAL_REG_READ(hal, reg_addr);
  774. }
  775. }
  776. /**
  777. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  778. * @hal: HAL SOC handle
  779. * @read: boolean value to indicate if read or write
  780. * @ix0: pointer to store IX0 reg value
  781. * @ix1: pointer to store IX1 reg value
  782. * @ix2: pointer to store IX2 reg value
  783. * @ix3: pointer to store IX3 reg value
  784. */
  785. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  786. uint32_t *ix0, uint32_t *ix1,
  787. uint32_t *ix2, uint32_t *ix3)
  788. {
  789. uint32_t reg_offset;
  790. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  791. if (read) {
  792. if (ix0) {
  793. reg_offset =
  794. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  795. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  796. *ix0 = HAL_REG_READ(hal, reg_offset);
  797. }
  798. if (ix1) {
  799. reg_offset =
  800. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  801. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  802. *ix1 = HAL_REG_READ(hal, reg_offset);
  803. }
  804. if (ix2) {
  805. reg_offset =
  806. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  807. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  808. *ix2 = HAL_REG_READ(hal, reg_offset);
  809. }
  810. if (ix3) {
  811. reg_offset =
  812. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  813. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  814. *ix3 = HAL_REG_READ(hal, reg_offset);
  815. }
  816. } else {
  817. if (ix0) {
  818. reg_offset =
  819. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  820. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  821. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
  822. }
  823. if (ix1) {
  824. reg_offset =
  825. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  826. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  827. HAL_REG_WRITE(hal, reg_offset, *ix1);
  828. }
  829. if (ix2) {
  830. reg_offset =
  831. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  832. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  833. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
  834. }
  835. if (ix3) {
  836. reg_offset =
  837. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  838. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  839. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
  840. }
  841. }
  842. }
  843. /**
  844. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  845. * @srng: sring pointer
  846. * @paddr: physical address
  847. */
  848. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  849. uint64_t paddr)
  850. {
  851. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  852. paddr & 0xffffffff);
  853. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  854. paddr >> 32);
  855. }
  856. /**
  857. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  858. * @srng: sring pointer
  859. * @vaddr: virtual address
  860. */
  861. void hal_srng_dst_init_hp(struct hal_srng *srng,
  862. uint32_t *vaddr)
  863. {
  864. if (!srng)
  865. return;
  866. srng->u.dst_ring.hp_addr = vaddr;
  867. SRNG_DST_REG_WRITE_CONFIRM(srng, HP, srng->u.dst_ring.cached_hp);
  868. if (vaddr) {
  869. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  870. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  871. "hp_addr=%pK, cached_hp=%d, hp=%d",
  872. (void *)srng->u.dst_ring.hp_addr,
  873. srng->u.dst_ring.cached_hp,
  874. *srng->u.dst_ring.hp_addr);
  875. }
  876. }
  877. /**
  878. * hal_srng_hw_init - Private function to initialize SRNG HW
  879. * @hal_soc: HAL SOC handle
  880. * @srng: SRNG ring pointer
  881. */
  882. static inline void hal_srng_hw_init(struct hal_soc *hal,
  883. struct hal_srng *srng)
  884. {
  885. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  886. hal_srng_src_hw_init(hal, srng);
  887. else
  888. hal_srng_dst_hw_init(hal, srng);
  889. }
  890. #ifdef CONFIG_SHADOW_V2
  891. #define ignore_shadow false
  892. #define CHECK_SHADOW_REGISTERS true
  893. #else
  894. #define ignore_shadow true
  895. #define CHECK_SHADOW_REGISTERS false
  896. #endif
  897. /**
  898. * hal_srng_setup - Initialize HW SRNG ring.
  899. * @hal_soc: Opaque HAL SOC handle
  900. * @ring_type: one of the types from hal_ring_type
  901. * @ring_num: Ring number if there are multiple rings of same type (staring
  902. * from 0)
  903. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  904. * @ring_params: SRNG ring params in hal_srng_params structure.
  905. * Callers are expected to allocate contiguous ring memory of size
  906. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  907. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  908. * hal_srng_params structure. Ring base address should be 8 byte aligned
  909. * and size of each ring entry should be queried using the API
  910. * hal_srng_get_entrysize
  911. *
  912. * Return: Opaque pointer to ring on success
  913. * NULL on failure (if given ring is not available)
  914. */
  915. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  916. int mac_id, struct hal_srng_params *ring_params)
  917. {
  918. int ring_id;
  919. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  920. struct hal_srng *srng;
  921. struct hal_hw_srng_config *ring_config =
  922. HAL_SRNG_CONFIG(hal, ring_type);
  923. void *dev_base_addr;
  924. int i;
  925. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  926. if (ring_id < 0)
  927. return NULL;
  928. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  929. srng = hal_get_srng(hal_soc, ring_id);
  930. if (srng->initialized) {
  931. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  932. return NULL;
  933. }
  934. dev_base_addr = hal->dev_base_addr;
  935. srng->ring_id = ring_id;
  936. srng->ring_dir = ring_config->ring_dir;
  937. srng->ring_base_paddr = ring_params->ring_base_paddr;
  938. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  939. srng->entry_size = ring_config->entry_size;
  940. srng->num_entries = ring_params->num_entries;
  941. srng->ring_size = srng->num_entries * srng->entry_size;
  942. srng->ring_size_mask = srng->ring_size - 1;
  943. srng->msi_addr = ring_params->msi_addr;
  944. srng->msi_data = ring_params->msi_data;
  945. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  946. srng->intr_batch_cntr_thres_entries =
  947. ring_params->intr_batch_cntr_thres_entries;
  948. srng->prefetch_timer = ring_params->prefetch_timer;
  949. srng->hal_soc = hal_soc;
  950. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  951. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  952. + (ring_num * ring_config->reg_size[i]);
  953. }
  954. /* Zero out the entire ring memory */
  955. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  956. srng->num_entries) << 2);
  957. srng->flags = ring_params->flags;
  958. #ifdef BIG_ENDIAN_HOST
  959. /* TODO: See if we should we get these flags from caller */
  960. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  961. srng->flags |= HAL_SRNG_MSI_SWAP;
  962. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  963. #endif
  964. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  965. srng->u.src_ring.hp = 0;
  966. srng->u.src_ring.reap_hp = srng->ring_size -
  967. srng->entry_size;
  968. srng->u.src_ring.tp_addr =
  969. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  970. srng->u.src_ring.low_threshold =
  971. ring_params->low_threshold * srng->entry_size;
  972. if (ring_config->lmac_ring) {
  973. /* For LMAC rings, head pointer updates will be done
  974. * through FW by writing to a shared memory location
  975. */
  976. srng->u.src_ring.hp_addr =
  977. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  978. HAL_SRNG_LMAC1_ID_START]);
  979. srng->flags |= HAL_SRNG_LMAC_RING;
  980. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  981. srng->u.src_ring.hp_addr =
  982. hal_get_window_address(hal,
  983. SRNG_SRC_ADDR(srng, HP));
  984. if (CHECK_SHADOW_REGISTERS) {
  985. QDF_TRACE(QDF_MODULE_ID_TXRX,
  986. QDF_TRACE_LEVEL_ERROR,
  987. "%s: Ring (%d, %d) missing shadow config",
  988. __func__, ring_type, ring_num);
  989. }
  990. } else {
  991. hal_validate_shadow_register(hal,
  992. SRNG_SRC_ADDR(srng, HP),
  993. srng->u.src_ring.hp_addr);
  994. }
  995. } else {
  996. /* During initialization loop count in all the descriptors
  997. * will be set to zero, and HW will set it to 1 on completing
  998. * descriptor update in first loop, and increments it by 1 on
  999. * subsequent loops (loop count wraps around after reaching
  1000. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1001. * loop count in descriptors updated by HW (to be processed
  1002. * by SW).
  1003. */
  1004. srng->u.dst_ring.loop_cnt = 1;
  1005. srng->u.dst_ring.tp = 0;
  1006. srng->u.dst_ring.hp_addr =
  1007. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1008. if (ring_config->lmac_ring) {
  1009. /* For LMAC rings, tail pointer updates will be done
  1010. * through FW by writing to a shared memory location
  1011. */
  1012. srng->u.dst_ring.tp_addr =
  1013. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1014. HAL_SRNG_LMAC1_ID_START]);
  1015. srng->flags |= HAL_SRNG_LMAC_RING;
  1016. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1017. srng->u.dst_ring.tp_addr =
  1018. hal_get_window_address(hal,
  1019. SRNG_DST_ADDR(srng, TP));
  1020. if (CHECK_SHADOW_REGISTERS) {
  1021. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1022. QDF_TRACE_LEVEL_ERROR,
  1023. "%s: Ring (%d, %d) missing shadow config",
  1024. __func__, ring_type, ring_num);
  1025. }
  1026. } else {
  1027. hal_validate_shadow_register(hal,
  1028. SRNG_DST_ADDR(srng, TP),
  1029. srng->u.dst_ring.tp_addr);
  1030. }
  1031. }
  1032. if (!(ring_config->lmac_ring)) {
  1033. hal_srng_hw_init(hal, srng);
  1034. if (ring_type == CE_DST) {
  1035. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1036. hal_ce_dst_setup(hal, srng, ring_num);
  1037. }
  1038. }
  1039. SRNG_LOCK_INIT(&srng->lock);
  1040. srng->srng_event = 0;
  1041. srng->initialized = true;
  1042. return (void *)srng;
  1043. }
  1044. qdf_export_symbol(hal_srng_setup);
  1045. /**
  1046. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1047. * @hal_soc: Opaque HAL SOC handle
  1048. * @hal_srng: Opaque HAL SRNG pointer
  1049. */
  1050. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1051. {
  1052. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1053. SRNG_LOCK_DESTROY(&srng->lock);
  1054. srng->initialized = 0;
  1055. }
  1056. qdf_export_symbol(hal_srng_cleanup);
  1057. /**
  1058. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1059. * @hal_soc: Opaque HAL SOC handle
  1060. * @ring_type: one of the types from hal_ring_type
  1061. *
  1062. */
  1063. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1064. {
  1065. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1066. struct hal_hw_srng_config *ring_config =
  1067. HAL_SRNG_CONFIG(hal, ring_type);
  1068. return ring_config->entry_size << 2;
  1069. }
  1070. qdf_export_symbol(hal_srng_get_entrysize);
  1071. /**
  1072. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1073. * @hal_soc: Opaque HAL SOC handle
  1074. * @ring_type: one of the types from hal_ring_type
  1075. *
  1076. * Return: Maximum number of entries for the given ring_type
  1077. */
  1078. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1079. {
  1080. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1081. struct hal_hw_srng_config *ring_config =
  1082. HAL_SRNG_CONFIG(hal, ring_type);
  1083. return ring_config->max_size / ring_config->entry_size;
  1084. }
  1085. qdf_export_symbol(hal_srng_max_entries);
  1086. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1087. {
  1088. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1089. struct hal_hw_srng_config *ring_config =
  1090. HAL_SRNG_CONFIG(hal, ring_type);
  1091. return ring_config->ring_dir;
  1092. }
  1093. /**
  1094. * hal_srng_dump - Dump ring status
  1095. * @srng: hal srng pointer
  1096. */
  1097. void hal_srng_dump(struct hal_srng *srng)
  1098. {
  1099. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1100. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1101. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1102. srng->u.src_ring.hp,
  1103. srng->u.src_ring.reap_hp,
  1104. *srng->u.src_ring.tp_addr,
  1105. srng->u.src_ring.cached_tp);
  1106. } else {
  1107. hal_debug("=== DST RING %d ===", srng->ring_id);
  1108. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1109. srng->u.dst_ring.tp,
  1110. *srng->u.dst_ring.hp_addr,
  1111. srng->u.dst_ring.cached_hp,
  1112. srng->u.dst_ring.loop_cnt);
  1113. }
  1114. }
  1115. /**
  1116. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1117. *
  1118. * @hal_soc: Opaque HAL SOC handle
  1119. * @hal_ring: Ring pointer (Source or Destination ring)
  1120. * @ring_params: SRNG parameters will be returned through this structure
  1121. */
  1122. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1123. hal_ring_handle_t hal_ring_hdl,
  1124. struct hal_srng_params *ring_params)
  1125. {
  1126. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1127. int i =0;
  1128. ring_params->ring_id = srng->ring_id;
  1129. ring_params->ring_dir = srng->ring_dir;
  1130. ring_params->entry_size = srng->entry_size;
  1131. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1132. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1133. ring_params->num_entries = srng->num_entries;
  1134. ring_params->msi_addr = srng->msi_addr;
  1135. ring_params->msi_data = srng->msi_data;
  1136. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1137. ring_params->intr_batch_cntr_thres_entries =
  1138. srng->intr_batch_cntr_thres_entries;
  1139. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1140. ring_params->flags = srng->flags;
  1141. ring_params->ring_id = srng->ring_id;
  1142. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1143. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1144. }
  1145. qdf_export_symbol(hal_get_srng_params);
  1146. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1147. uint32_t low_threshold)
  1148. {
  1149. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1150. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1151. }
  1152. qdf_export_symbol(hal_set_low_threshold);
  1153. #ifdef FORCE_WAKE
  1154. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1155. {
  1156. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1157. hal_soc->init_phase = init_phase;
  1158. }
  1159. #endif /* FORCE_WAKE */