sde_hw_top.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2019, The Linux Foundation. All rights reserved.
  4. */
  5. #include "sde_hwio.h"
  6. #include "sde_hw_catalog.h"
  7. #include "sde_hw_top.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #define SSPP_SPARE 0x28
  11. #define UBWC_DEC_HW_VERSION 0x058
  12. #define UBWC_STATIC 0x144
  13. #define UBWC_CTRL_2 0x150
  14. #define UBWC_PREDICTION_MODE 0x154
  15. #define FLD_SPLIT_DISPLAY_CMD BIT(1)
  16. #define FLD_SMART_PANEL_FREE_RUN BIT(2)
  17. #define FLD_INTF_1_SW_TRG_MUX BIT(4)
  18. #define FLD_INTF_2_SW_TRG_MUX BIT(8)
  19. #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
  20. #define DANGER_STATUS 0x360
  21. #define SAFE_STATUS 0x364
  22. #define TE_LINE_INTERVAL 0x3F4
  23. #define TRAFFIC_SHAPER_EN BIT(31)
  24. #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
  25. #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
  26. #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
  27. #define MDP_WD_TIMER_0_CTL 0x380
  28. #define MDP_WD_TIMER_0_CTL2 0x384
  29. #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
  30. #define MDP_WD_TIMER_1_CTL 0x390
  31. #define MDP_WD_TIMER_1_CTL2 0x394
  32. #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
  33. #define MDP_WD_TIMER_2_CTL 0x420
  34. #define MDP_WD_TIMER_2_CTL2 0x424
  35. #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
  36. #define MDP_WD_TIMER_3_CTL 0x430
  37. #define MDP_WD_TIMER_3_CTL2 0x434
  38. #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
  39. #define MDP_WD_TIMER_4_CTL 0x440
  40. #define MDP_WD_TIMER_4_CTL2 0x444
  41. #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
  42. #define MDP_TICK_COUNT 16
  43. #define XO_CLK_RATE 19200
  44. #define MS_TICKS_IN_SEC 1000
  45. #define CALCULATE_WD_LOAD_VALUE(fps) \
  46. ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
  47. #define DCE_SEL 0x450
  48. #define ROT_SID_RD 0x20
  49. #define ROT_SID_WR 0x24
  50. #define ROT_SID_ID_VAL 0x1c
  51. static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp,
  52. struct split_pipe_cfg *cfg)
  53. {
  54. struct sde_hw_blk_reg_map *c;
  55. u32 upper_pipe = 0;
  56. u32 lower_pipe = 0;
  57. if (!mdp || !cfg)
  58. return;
  59. c = &mdp->hw;
  60. if (cfg->en) {
  61. if (cfg->mode == INTF_MODE_CMD) {
  62. lower_pipe = FLD_SPLIT_DISPLAY_CMD;
  63. /* interface controlling sw trigger */
  64. if (cfg->intf == INTF_2)
  65. lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
  66. else
  67. lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
  68. /* free run */
  69. if (cfg->pp_split_slave != INTF_MAX)
  70. lower_pipe = FLD_SMART_PANEL_FREE_RUN;
  71. upper_pipe = lower_pipe;
  72. /* smart panel align mode */
  73. lower_pipe |= BIT(mdp->caps->smart_panel_align_mode);
  74. } else {
  75. if (cfg->intf == INTF_2) {
  76. lower_pipe = FLD_INTF_1_SW_TRG_MUX;
  77. upper_pipe = FLD_INTF_2_SW_TRG_MUX;
  78. } else {
  79. lower_pipe = FLD_INTF_2_SW_TRG_MUX;
  80. upper_pipe = FLD_INTF_1_SW_TRG_MUX;
  81. }
  82. }
  83. }
  84. SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
  85. SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
  86. SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
  87. SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
  88. }
  89. static u32 sde_hw_get_split_flush(struct sde_hw_mdp *mdp)
  90. {
  91. struct sde_hw_blk_reg_map *c;
  92. if (!mdp)
  93. return 0;
  94. c = &mdp->hw;
  95. return (SDE_REG_READ(c, SSPP_SPARE) & 0x1);
  96. }
  97. static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp,
  98. struct split_pipe_cfg *cfg)
  99. {
  100. u32 ppb_config = 0x0;
  101. u32 ppb_control = 0x0;
  102. if (!mdp || !cfg)
  103. return;
  104. if (cfg->split_link_en) {
  105. ppb_config |= BIT(16); /* split enable */
  106. ppb_control = BIT(5); /* horz split*/
  107. } else if (cfg->en && cfg->pp_split_slave != INTF_MAX) {
  108. ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20;
  109. ppb_config |= BIT(16); /* split enable */
  110. ppb_control = BIT(5); /* horz split*/
  111. }
  112. if (cfg->pp_split_index && !cfg->split_link_en) {
  113. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0);
  114. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0);
  115. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config);
  116. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control);
  117. } else {
  118. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config);
  119. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control);
  120. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0);
  121. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0);
  122. }
  123. }
  124. static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp,
  125. struct cdm_output_cfg *cfg)
  126. {
  127. struct sde_hw_blk_reg_map *c;
  128. u32 out_ctl = 0;
  129. if (!mdp || !cfg)
  130. return;
  131. c = &mdp->hw;
  132. if (cfg->wb_en)
  133. out_ctl |= BIT(24);
  134. else if (cfg->intf_en)
  135. out_ctl |= BIT(19);
  136. SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
  137. }
  138. static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp,
  139. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  140. {
  141. struct sde_hw_blk_reg_map *c;
  142. u32 reg_off, bit_off;
  143. u32 reg_val, new_val;
  144. bool clk_forced_on;
  145. if (!mdp)
  146. return false;
  147. c = &mdp->hw;
  148. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX)
  149. return false;
  150. reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
  151. bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
  152. reg_val = SDE_REG_READ(c, reg_off);
  153. if (enable)
  154. new_val = reg_val | BIT(bit_off);
  155. else
  156. new_val = reg_val & ~BIT(bit_off);
  157. SDE_REG_WRITE(c, reg_off, new_val);
  158. wmb(); /* ensure write finished before progressing */
  159. clk_forced_on = !(reg_val & BIT(bit_off));
  160. return clk_forced_on;
  161. }
  162. static void sde_hw_get_danger_status(struct sde_hw_mdp *mdp,
  163. struct sde_danger_safe_status *status)
  164. {
  165. struct sde_hw_blk_reg_map *c;
  166. u32 value;
  167. if (!mdp || !status)
  168. return;
  169. c = &mdp->hw;
  170. value = SDE_REG_READ(c, DANGER_STATUS);
  171. status->mdp = (value >> 0) & 0x3;
  172. status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
  173. status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
  174. status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
  175. status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
  176. status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
  177. status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
  178. status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
  179. status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
  180. status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
  181. status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
  182. status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
  183. status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
  184. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
  185. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
  186. status->wb[WB_0] = 0;
  187. status->wb[WB_1] = 0;
  188. status->wb[WB_2] = (value >> 2) & 0x3;
  189. status->wb[WB_3] = 0;
  190. }
  191. static void _update_vsync_source(struct sde_hw_mdp *mdp,
  192. struct sde_vsync_source_cfg *cfg)
  193. {
  194. struct sde_hw_blk_reg_map *c;
  195. u32 reg, wd_load_value, wd_ctl, wd_ctl2;
  196. if (!mdp || !cfg)
  197. return;
  198. c = &mdp->hw;
  199. if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 &&
  200. cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) {
  201. switch (cfg->vsync_source) {
  202. case SDE_VSYNC_SOURCE_WD_TIMER_4:
  203. wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
  204. wd_ctl = MDP_WD_TIMER_4_CTL;
  205. wd_ctl2 = MDP_WD_TIMER_4_CTL2;
  206. break;
  207. case SDE_VSYNC_SOURCE_WD_TIMER_3:
  208. wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
  209. wd_ctl = MDP_WD_TIMER_3_CTL;
  210. wd_ctl2 = MDP_WD_TIMER_3_CTL2;
  211. break;
  212. case SDE_VSYNC_SOURCE_WD_TIMER_2:
  213. wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
  214. wd_ctl = MDP_WD_TIMER_2_CTL;
  215. wd_ctl2 = MDP_WD_TIMER_2_CTL2;
  216. break;
  217. case SDE_VSYNC_SOURCE_WD_TIMER_1:
  218. wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
  219. wd_ctl = MDP_WD_TIMER_1_CTL;
  220. wd_ctl2 = MDP_WD_TIMER_1_CTL2;
  221. break;
  222. case SDE_VSYNC_SOURCE_WD_TIMER_0:
  223. default:
  224. wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
  225. wd_ctl = MDP_WD_TIMER_0_CTL;
  226. wd_ctl2 = MDP_WD_TIMER_0_CTL2;
  227. break;
  228. }
  229. if (cfg->is_dummy) {
  230. SDE_REG_WRITE(c, wd_ctl2, 0x0);
  231. } else {
  232. SDE_REG_WRITE(c, wd_load_value,
  233. CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
  234. SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
  235. reg = SDE_REG_READ(c, wd_ctl2);
  236. reg |= BIT(8); /* enable heartbeat timer */
  237. reg |= BIT(0); /* enable WD timer */
  238. SDE_REG_WRITE(c, wd_ctl2, reg);
  239. }
  240. /* make sure that timers are enabled/disabled for vsync state */
  241. wmb();
  242. }
  243. }
  244. static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp,
  245. struct sde_vsync_source_cfg *cfg)
  246. {
  247. struct sde_hw_blk_reg_map *c;
  248. u32 reg, i;
  249. static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
  250. if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
  251. return;
  252. c = &mdp->hw;
  253. reg = SDE_REG_READ(c, MDP_VSYNC_SEL);
  254. for (i = 0; i < cfg->pp_count; i++) {
  255. int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
  256. if (pp_idx >= ARRAY_SIZE(pp_offset))
  257. continue;
  258. reg &= ~(0xf << pp_offset[pp_idx]);
  259. reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
  260. }
  261. SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg);
  262. _update_vsync_source(mdp, cfg);
  263. }
  264. static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp,
  265. struct sde_vsync_source_cfg *cfg)
  266. {
  267. _update_vsync_source(mdp, cfg);
  268. }
  269. static void sde_hw_get_safe_status(struct sde_hw_mdp *mdp,
  270. struct sde_danger_safe_status *status)
  271. {
  272. struct sde_hw_blk_reg_map *c;
  273. u32 value;
  274. if (!mdp || !status)
  275. return;
  276. c = &mdp->hw;
  277. value = SDE_REG_READ(c, SAFE_STATUS);
  278. status->mdp = (value >> 0) & 0x1;
  279. status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
  280. status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
  281. status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
  282. status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
  283. status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
  284. status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
  285. status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
  286. status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
  287. status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
  288. status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
  289. status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
  290. status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
  291. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
  292. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
  293. status->wb[WB_0] = 0;
  294. status->wb[WB_1] = 0;
  295. status->wb[WB_2] = (value >> 2) & 0x1;
  296. status->wb[WB_3] = 0;
  297. }
  298. static void sde_hw_setup_dce(struct sde_hw_mdp *mdp, u32 dce_sel)
  299. {
  300. struct sde_hw_blk_reg_map *c;
  301. if (!mdp)
  302. return;
  303. c = &mdp->hw;
  304. SDE_REG_WRITE(c, DCE_SEL, dce_sel);
  305. }
  306. void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m)
  307. {
  308. struct sde_hw_blk_reg_map c;
  309. u32 ubwc_version;
  310. if (!mdp || !m)
  311. return;
  312. /* force blk offset to zero to access beginning of register region */
  313. c = mdp->hw;
  314. c.blk_off = 0x0;
  315. ubwc_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION);
  316. if (IS_UBWC_40_SUPPORTED(ubwc_version)) {
  317. u32 ver = 2;
  318. u32 mode = 1;
  319. u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) |
  320. ((m->mdp[0].ubwc_static & 0x1) << 3) |
  321. ((m->mdp[0].highest_bank_bit & 0x7) << 4) |
  322. ((m->macrotile_mode & 0x1) << 12);
  323. if (IS_UBWC_30_SUPPORTED(m->ubwc_version)) {
  324. ver = 1;
  325. mode = 0;
  326. }
  327. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  328. SDE_REG_WRITE(&c, UBWC_CTRL_2, ver);
  329. SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode);
  330. } else if (IS_UBWC_20_SUPPORTED(ubwc_version)) {
  331. SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
  332. } else if (IS_UBWC_30_SUPPORTED(ubwc_version)) {
  333. u32 reg = m->mdp[0].ubwc_static |
  334. (m->mdp[0].ubwc_swizzle & 0x1) |
  335. ((m->mdp[0].highest_bank_bit & 0x3) << 4) |
  336. ((m->macrotile_mode & 0x1) << 12);
  337. if (IS_UBWC_30_SUPPORTED(m->ubwc_version))
  338. reg |= BIT(10);
  339. if (IS_UBWC_10_SUPPORTED(m->ubwc_version))
  340. reg |= BIT(8);
  341. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  342. } else {
  343. SDE_ERROR("Unsupported UBWC version 0x%08x\n", ubwc_version);
  344. }
  345. }
  346. static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp)
  347. {
  348. struct sde_hw_blk_reg_map *c;
  349. if (!mdp)
  350. return;
  351. c = &mdp->hw;
  352. SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
  353. }
  354. static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable)
  355. {
  356. struct sde_hw_blk_reg_map *c;
  357. if (!mdp)
  358. return;
  359. c = &mdp->hw;
  360. SDE_REG_WRITE(c, HW_EVENTS_CTL, enable);
  361. }
  362. struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr,
  363. u32 sid_len, const struct sde_mdss_cfg *m)
  364. {
  365. struct sde_hw_sid *c;
  366. c = kzalloc(sizeof(*c), GFP_KERNEL);
  367. if (!c)
  368. return ERR_PTR(-ENOMEM);
  369. c->hw.base_off = addr;
  370. c->hw.blk_off = 0;
  371. c->hw.length = sid_len;
  372. c->hw.hwversion = m->hwversion;
  373. c->hw.log_mask = SDE_DBG_MASK_SID;
  374. return c;
  375. }
  376. void sde_hw_sid_rotator_set(struct sde_hw_sid *sid)
  377. {
  378. SDE_REG_WRITE(&sid->hw, ROT_SID_RD, ROT_SID_ID_VAL);
  379. SDE_REG_WRITE(&sid->hw, ROT_SID_WR, ROT_SID_ID_VAL);
  380. }
  381. static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp,
  382. bool dual, bool dspp_out)
  383. {
  384. u32 value = dspp_out ? 0x4 : 0x0;
  385. SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value);
  386. if (dual) {
  387. value |= 0x1;
  388. SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value);
  389. }
  390. }
  391. static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp,
  392. u8 *payload, u32 len, u32 stream_id)
  393. {
  394. u32 i;
  395. size_t length = len - 1;
  396. u32 offset = 0, data = 0, byte_idx = 0;
  397. const u32 dword_size = sizeof(u32);
  398. if (!payload || !len) {
  399. SDE_ERROR("invalid payload with length: %d\n", len);
  400. return;
  401. }
  402. if (stream_id)
  403. offset = DP_DHDR_MEM_POOL_1_DATA - DP_DHDR_MEM_POOL_0_DATA;
  404. /* payload[0] is set in VSCEXT header byte 1, skip programming here */
  405. SDE_REG_WRITE(&mdp->hw, DP_DHDR_MEM_POOL_0_NUM_BYTES + offset, length);
  406. for (i = 1; i < len; i++) {
  407. if (byte_idx && !(byte_idx % dword_size)) {
  408. SDE_REG_WRITE(&mdp->hw, DP_DHDR_MEM_POOL_0_DATA +
  409. offset, data);
  410. data = 0;
  411. }
  412. data |= payload[i] << (8 * (byte_idx++ % dword_size));
  413. }
  414. SDE_REG_WRITE(&mdp->hw, DP_DHDR_MEM_POOL_0_DATA + offset, data);
  415. }
  416. static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops,
  417. unsigned long cap)
  418. {
  419. ops->setup_split_pipe = sde_hw_setup_split_pipe;
  420. ops->setup_pp_split = sde_hw_setup_pp_split;
  421. ops->setup_cdm_output = sde_hw_setup_cdm_output;
  422. ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl;
  423. ops->get_danger_status = sde_hw_get_danger_status;
  424. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  425. ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl;
  426. ops->get_safe_status = sde_hw_get_safe_status;
  427. ops->get_split_flush_status = sde_hw_get_split_flush;
  428. ops->setup_dce = sde_hw_setup_dce;
  429. ops->reset_ubwc = sde_hw_reset_ubwc;
  430. ops->intf_audio_select = sde_hw_intf_audio_select;
  431. ops->set_mdp_hw_events = sde_hw_mdp_events;
  432. if (cap & BIT(SDE_MDP_VSYNC_SEL))
  433. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  434. else
  435. ops->setup_vsync_source = sde_hw_setup_vsync_source_v1;
  436. if (cap & BIT(SDE_MDP_DHDR_MEMPOOL))
  437. ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata;
  438. }
  439. static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp,
  440. const struct sde_mdss_cfg *m,
  441. void __iomem *addr,
  442. struct sde_hw_blk_reg_map *b)
  443. {
  444. int i;
  445. if (!m || !addr || !b)
  446. return ERR_PTR(-EINVAL);
  447. for (i = 0; i < m->mdp_count; i++) {
  448. if (mdp == m->mdp[i].id) {
  449. b->base_off = addr;
  450. b->blk_off = m->mdp[i].base;
  451. b->length = m->mdp[i].len;
  452. b->hwversion = m->hwversion;
  453. b->log_mask = SDE_DBG_MASK_TOP;
  454. return &m->mdp[i];
  455. }
  456. }
  457. return ERR_PTR(-EINVAL);
  458. }
  459. static struct sde_hw_blk_ops sde_hw_ops = {
  460. .start = NULL,
  461. .stop = NULL,
  462. };
  463. struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx,
  464. void __iomem *addr,
  465. const struct sde_mdss_cfg *m)
  466. {
  467. struct sde_hw_mdp *mdp;
  468. const struct sde_mdp_cfg *cfg;
  469. int rc;
  470. if (!addr || !m)
  471. return ERR_PTR(-EINVAL);
  472. mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
  473. if (!mdp)
  474. return ERR_PTR(-ENOMEM);
  475. cfg = _top_offset(idx, m, addr, &mdp->hw);
  476. if (IS_ERR_OR_NULL(cfg)) {
  477. kfree(mdp);
  478. return ERR_PTR(-EINVAL);
  479. }
  480. /*
  481. * Assign ops
  482. */
  483. mdp->idx = idx;
  484. mdp->caps = cfg;
  485. _setup_mdp_ops(&mdp->ops, mdp->caps->features);
  486. rc = sde_hw_blk_init(&mdp->base, SDE_HW_BLK_TOP, idx, &sde_hw_ops);
  487. if (rc) {
  488. SDE_ERROR("failed to init hw blk %d\n", rc);
  489. goto blk_init_error;
  490. }
  491. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name,
  492. mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length,
  493. mdp->hw.xin_id);
  494. sde_dbg_set_sde_top_offset(mdp->hw.blk_off);
  495. return mdp;
  496. blk_init_error:
  497. kzfree(mdp);
  498. return ERR_PTR(rc);
  499. }
  500. void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp)
  501. {
  502. if (mdp)
  503. sde_hw_blk_destroy(&mdp->base);
  504. kfree(mdp);
  505. }