wcd939x-mbhc.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/device.h>
  10. #include <linux/printk.h>
  11. #include <linux/ratelimit.h>
  12. #include <linux/kernel.h>
  13. #include <linux/gpio.h>
  14. #include <linux/delay.h>
  15. #include <linux/regmap.h>
  16. #include <linux/timer.h>
  17. #include <sound/pcm.h>
  18. #include <sound/pcm_params.h>
  19. #include <sound/soc.h>
  20. #include <sound/soc-dapm.h>
  21. #include <asoc/wcdcal-hwdep.h>
  22. #include <asoc/wcd-mbhc-v2-api.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/kobject.h>
  25. #include "wcd939x-registers.h"
  26. #include "internal.h"
  27. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  28. #include <linux/soc/qcom/wcd939x-i2c.h>
  29. #endif
  30. #define WCD939X_ZDET_SUPPORTED true
  31. /* Z value defined in milliohm */
  32. #define WCD939X_ZDET_VAL_32 32000
  33. #define WCD939X_ZDET_VAL_400 400000
  34. #define WCD939X_ZDET_VAL_1200 1200000
  35. #define WCD939X_ZDET_VAL_100K 100000000
  36. /* Z floating defined in ohms */
  37. #define WCD939X_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE
  38. #define WCD939X_ZDET_NUM_MEASUREMENTS 900
  39. #define WCD939X_MBHC_GET_C1(c) ((c & 0xC000) >> 14)
  40. #define WCD939X_MBHC_GET_X1(x) (x & 0x3FFF)
  41. /* Z value compared in milliOhm */
  42. #define WCD939X_MBHC_IS_SECOND_RAMP_REQUIRED(z) false
  43. #define WCD939X_MBHC_ZDET_CONST (1071 * 1024)
  44. #define WCD939X_MBHC_MOISTURE_RREF R_24_KOHM
  45. #define OHMS_TO_MILLIOHMS 1000
  46. #define FLOAT_TO_FIXED_XTALK (1UL << 16)
  47. #define MAX_XTALK_ALPHA 255
  48. #define MIN_RL_EFF_MOHMS 1
  49. #define MAX_RL_EFF_MOHMS 900000
  50. #define HD2_CODE_BASE_VALUE 0x1D
  51. #define HD2_CODE_INV_RESOLUTION 4201025
  52. #define FLOAT_TO_FIXED_LINEARIZER (1UL << 12)
  53. #define MIN_TAP_OFFSET -1023
  54. #define MAX_TAP_OFFSET 1023
  55. #define MIN_TAP 0
  56. #define MAX_TAP 1023
  57. #define RDOWN_TIMER_PERIOD_MSEC 100
  58. static struct wcd_mbhc_register
  59. wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = {
  60. WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN",
  61. WCD939X_MBHC_MECH, 0x80, 7, 0),
  62. WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN",
  63. WCD939X_MBHC_MECH, 0x40, 6, 0),
  64. WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE",
  65. WCD939X_MBHC_MECH, 0x20, 5, 0),
  66. WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL",
  67. WCD939X_PLUG_DETECT_CTL, 0x30, 4, 0),
  68. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE",
  69. WCD939X_MBHC_ELECT, 0x08, 3, 0),
  70. WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL",
  71. WCD939X_MECH_DET_CURRENT, 0x1F, 0, 0),
  72. WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL",
  73. WCD939X_MBHC_MECH, 0x04, 2, 0),
  74. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE",
  75. WCD939X_MBHC_MECH, 0x10, 4, 0),
  76. WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE",
  77. WCD939X_MBHC_MECH, 0x08, 3, 0),
  78. WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND",
  79. WCD939X_MBHC_MECH, 0x01, 0, 0),
  80. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC",
  81. WCD939X_MBHC_ELECT, 0x06, 1, 0),
  82. WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN",
  83. WCD939X_MBHC_ELECT, 0x80, 7, 0),
  84. WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC",
  85. WCD939X_PLUG_DETECT_CTL, 0x0F, 0, 0),
  86. WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC",
  87. WCD939X_CTL_1, 0x03, 0, 0),
  88. WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF",
  89. WCD939X_CTL_2, 0x03, 0, 0),
  90. WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT",
  91. WCD939X_MBHC_RESULT_3, 0x08, 3, 0),
  92. WCD_MBHC_REGISTER("WCD_MBHC_IN2P_CLAMP_STATE",
  93. WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
  94. WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT",
  95. WCD939X_MBHC_RESULT_3, 0x20, 5, 0),
  96. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT",
  97. WCD939X_MBHC_RESULT_3, 0x80, 7, 0),
  98. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT",
  99. WCD939X_MBHC_RESULT_3, 0x40, 6, 0),
  100. WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN",
  101. WCD939X_HPH_OCP_CTL, 0x10, 4, 0),
  102. WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT",
  103. WCD939X_MBHC_RESULT_3, 0x07, 0, 0),
  104. WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL",
  105. WCD939X_MBHC_ELECT, 0x70, 4, 0),
  106. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT",
  107. WCD939X_MBHC_RESULT_3, 0xFF, 0, 0),
  108. WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL",
  109. WCD939X_MICB2, 0xC0, 6, 0),
  110. WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME",
  111. WCD939X_CNP_WG_TIME, 0xFF, 0, 0),
  112. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN",
  113. WCD939X_HPH, 0x40, 6, 0),
  114. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN",
  115. WCD939X_HPH, 0x80, 7, 0),
  116. WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN",
  117. WCD939X_HPH, 0xC0, 6, 0),
  118. WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE",
  119. WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
  120. WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL",
  121. 0, 0, 0, 0),
  122. WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN",
  123. WCD939X_CTL_BCS, 0x02, 1, 0),
  124. WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS",
  125. WCD939X_FSM_STATUS, 0x01, 0, 0),
  126. WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL",
  127. WCD939X_CTL_2, 0x70, 4, 0),
  128. WCD_MBHC_REGISTER("WCD_MBHC_MOISTURE_STATUS",
  129. WCD939X_FSM_STATUS, 0x20, 5, 0),
  130. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_GND",
  131. WCD939X_PA_CTL2, 0x40, 6, 0),
  132. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_GND",
  133. WCD939X_PA_CTL2, 0x10, 4, 0),
  134. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_DET_EN",
  135. WCD939X_L_TEST, 0x01, 0, 0),
  136. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_DET_EN",
  137. WCD939X_R_TEST, 0x01, 0, 0),
  138. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_STATUS",
  139. WCD939X_INTR_STATUS_0, 0x80, 7, 0),
  140. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_STATUS",
  141. WCD939X_INTR_STATUS_0, 0x20, 5, 0),
  142. WCD_MBHC_REGISTER("WCD_MBHC_ADC_EN",
  143. WCD939X_CTL_1, 0x08, 3, 0),
  144. WCD_MBHC_REGISTER("WCD_MBHC_ADC_COMPLETE", WCD939X_FSM_STATUS,
  145. 0x40, 6, 0),
  146. WCD_MBHC_REGISTER("WCD_MBHC_ADC_TIMEOUT", WCD939X_FSM_STATUS,
  147. 0x80, 7, 0),
  148. WCD_MBHC_REGISTER("WCD_MBHC_ADC_RESULT", WCD939X_ADC_RESULT,
  149. 0xFF, 0, 0),
  150. WCD_MBHC_REGISTER("WCD_MBHC_MICB2_VOUT", WCD939X_MICB2, 0x3F, 0, 0),
  151. WCD_MBHC_REGISTER("WCD_MBHC_ADC_MODE",
  152. WCD939X_CTL_1, 0x10, 4, 0),
  153. WCD_MBHC_REGISTER("WCD_MBHC_DETECTION_DONE",
  154. WCD939X_CTL_1, 0x04, 2, 0),
  155. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_ISRC_EN",
  156. WCD939X_MBHC_ZDET, 0x02, 1, 0),
  157. };
  158. static const struct wcd_mbhc_intr intr_ids = {
  159. .mbhc_sw_intr = WCD939X_IRQ_MBHC_SW_DET,
  160. .mbhc_btn_press_intr = WCD939X_IRQ_MBHC_BUTTON_PRESS_DET,
  161. .mbhc_btn_release_intr = WCD939X_IRQ_MBHC_BUTTON_RELEASE_DET,
  162. .mbhc_hs_ins_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_LEG_DET,
  163. .mbhc_hs_rem_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_DET,
  164. .hph_left_ocp = WCD939X_IRQ_HPHL_OCP_INT,
  165. .hph_right_ocp = WCD939X_IRQ_HPHR_OCP_INT,
  166. };
  167. struct wcd939x_mbhc_zdet_param {
  168. u16 ldo_ctl;
  169. u16 noff;
  170. u16 nshift;
  171. u16 btn5;
  172. u16 btn6;
  173. u16 btn7;
  174. };
  175. static int wcd939x_mbhc_request_irq(struct snd_soc_component *component,
  176. int irq, irq_handler_t handler,
  177. const char *name, void *data)
  178. {
  179. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  180. return wcd_request_irq(&wcd939x->irq_info, irq, name, handler, data);
  181. }
  182. static void wcd939x_mbhc_irq_control(struct snd_soc_component *component,
  183. int irq, bool enable)
  184. {
  185. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  186. if (enable)
  187. wcd_enable_irq(&wcd939x->irq_info, irq);
  188. else
  189. wcd_disable_irq(&wcd939x->irq_info, irq);
  190. }
  191. static int wcd939x_mbhc_free_irq(struct snd_soc_component *component,
  192. int irq, void *data)
  193. {
  194. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  195. wcd_free_irq(&wcd939x->irq_info, irq, data);
  196. return 0;
  197. }
  198. static void wcd939x_mbhc_clk_setup(struct snd_soc_component *component,
  199. bool enable)
  200. {
  201. if (enable)
  202. snd_soc_component_update_bits(component, WCD939X_CTL_1,
  203. 0x80, 0x80);
  204. else
  205. snd_soc_component_update_bits(component, WCD939X_CTL_1,
  206. 0x80, 0x00);
  207. }
  208. static int wcd939x_mbhc_btn_to_num(struct snd_soc_component *component)
  209. {
  210. return snd_soc_component_read(component, WCD939X_MBHC_RESULT_3) & 0x7;
  211. }
  212. static void wcd939x_mbhc_mbhc_bias_control(struct snd_soc_component *component,
  213. bool enable)
  214. {
  215. if (enable)
  216. snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
  217. 0x01, 0x01);
  218. else
  219. snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
  220. 0x01, 0x00);
  221. }
  222. static void wcd939x_mbhc_program_btn_thr(struct snd_soc_component *component,
  223. s16 *btn_low, s16 *btn_high,
  224. int num_btn, bool is_micbias)
  225. {
  226. int i;
  227. int vth;
  228. if (num_btn > WCD_MBHC_DEF_BUTTONS) {
  229. dev_err_ratelimited(component->dev, "%s: invalid number of buttons: %d\n",
  230. __func__, num_btn);
  231. return;
  232. }
  233. for (i = 0; i < num_btn; i++) {
  234. vth = ((btn_high[i] * 2) / 25) & 0x3F;
  235. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN0 + i,
  236. 0xFC, vth << 2);
  237. dev_dbg(component->dev, "%s: btn_high[%d]: %d, vth: %d\n",
  238. __func__, i, btn_high[i], vth);
  239. }
  240. }
  241. static bool wcd939x_mbhc_lock_sleep(struct wcd_mbhc *mbhc, bool lock)
  242. {
  243. struct snd_soc_component *component = mbhc->component;
  244. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  245. wcd939x->wakeup((void*)wcd939x, lock);
  246. return true;
  247. }
  248. static int wcd939x_mbhc_register_notifier(struct wcd_mbhc *mbhc,
  249. struct notifier_block *nblock,
  250. bool enable)
  251. {
  252. struct wcd939x_mbhc *wcd939x_mbhc;
  253. wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
  254. if (enable)
  255. return blocking_notifier_chain_register(&wcd939x_mbhc->notifier,
  256. nblock);
  257. else
  258. return blocking_notifier_chain_unregister(
  259. &wcd939x_mbhc->notifier, nblock);
  260. }
  261. static bool wcd939x_mbhc_micb_en_status(struct wcd_mbhc *mbhc, int micb_num)
  262. {
  263. u8 val = 0;
  264. if (micb_num == MIC_BIAS_2) {
  265. val = ((snd_soc_component_read(mbhc->component,
  266. WCD939X_MICB2) & 0xC0)
  267. >> 6);
  268. if (val == 0x01)
  269. return true;
  270. }
  271. return false;
  272. }
  273. static bool wcd939x_mbhc_hph_pa_on_status(struct snd_soc_component *component)
  274. {
  275. return (snd_soc_component_read(component, WCD939X_HPH) & 0xC0) ?
  276. true : false;
  277. }
  278. static void wcd939x_mbhc_hph_l_pull_up_control(
  279. struct snd_soc_component *component,
  280. int pull_up_cur)
  281. {
  282. /* Default pull up current to 2uA */
  283. if (pull_up_cur > HS_PULLUP_I_OFF || pull_up_cur < HS_PULLUP_I_3P0_UA ||
  284. pull_up_cur == HS_PULLUP_I_DEFAULT)
  285. pull_up_cur = HS_PULLUP_I_2P0_UA;
  286. dev_dbg(component->dev, "%s: HS pull up current:%d\n",
  287. __func__, pull_up_cur);
  288. snd_soc_component_update_bits(component,
  289. WCD939X_MECH_DET_CURRENT,
  290. 0x1F, pull_up_cur);
  291. }
  292. static int wcd939x_mbhc_request_micbias(struct snd_soc_component *component,
  293. int micb_num, int req)
  294. {
  295. int ret = 0;
  296. ret = wcd939x_micbias_control(component, micb_num, req, false);
  297. return ret;
  298. }
  299. static void wcd939x_mbhc_micb_ramp_control(struct snd_soc_component *component,
  300. bool enable)
  301. {
  302. if (enable) {
  303. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  304. 0x1C, 0x0C);
  305. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  306. 0x80, 0x80);
  307. } else {
  308. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  309. 0x80, 0x00);
  310. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  311. 0x1C, 0x00);
  312. }
  313. }
  314. static struct firmware_cal *wcd939x_get_hwdep_fw_cal(struct wcd_mbhc *mbhc,
  315. enum wcd_cal_type type)
  316. {
  317. struct wcd939x_mbhc *wcd939x_mbhc;
  318. struct firmware_cal *hwdep_cal;
  319. struct snd_soc_component *component = mbhc->component;
  320. wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
  321. if (!component) {
  322. pr_err_ratelimited("%s: NULL component pointer\n", __func__);
  323. return NULL;
  324. }
  325. hwdep_cal = wcdcal_get_fw_cal(wcd939x_mbhc->fw_data, type);
  326. if (!hwdep_cal)
  327. dev_err_ratelimited(component->dev, "%s: cal not sent by %d\n",
  328. __func__, type);
  329. return hwdep_cal;
  330. }
  331. static int wcd939x_mbhc_micb_ctrl_threshold_mic(
  332. struct snd_soc_component *component,
  333. int micb_num, bool req_en)
  334. {
  335. struct wcd939x_pdata *pdata = dev_get_platdata(component->dev);
  336. int rc, micb_mv;
  337. if (micb_num != MIC_BIAS_2)
  338. return -EINVAL;
  339. /*
  340. * If device tree micbias level is already above the minimum
  341. * voltage needed to detect threshold microphone, then do
  342. * not change the micbias, just return.
  343. */
  344. if (pdata->micbias.micb2_mv >= WCD_MBHC_THR_HS_MICB_MV)
  345. return 0;
  346. micb_mv = req_en ? WCD_MBHC_THR_HS_MICB_MV : pdata->micbias.micb2_mv;
  347. rc = wcd939x_mbhc_micb_adjust_voltage(component, micb_mv, MIC_BIAS_2);
  348. return rc;
  349. }
  350. static inline void wcd939x_mbhc_get_result_params(struct wcd939x_priv *wcd939x,
  351. s16 *d1_a, u16 noff,
  352. int32_t *zdet)
  353. {
  354. int i;
  355. int val, val1;
  356. s16 c1;
  357. s32 x1, d1;
  358. int32_t denom;
  359. int minCode_param[] = {
  360. 3277, 1639, 820, 410, 205, 103, 52, 26
  361. };
  362. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x->mbhc;
  363. regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x20);
  364. for (i = 0; i < WCD939X_ZDET_NUM_MEASUREMENTS; i++) {
  365. regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_2, &val);
  366. if (val & 0x80)
  367. break;
  368. }
  369. val = val << 0x8;
  370. regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_1, &val1);
  371. val |= val1;
  372. wcd939x_mbhc->rdown_prev_iter = val;
  373. regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x00);
  374. x1 = WCD939X_MBHC_GET_X1(val);
  375. c1 = WCD939X_MBHC_GET_C1(val);
  376. /* If ramp is not complete, give additional 5ms */
  377. if ((c1 < 2) && x1)
  378. usleep_range(5000, 5050);
  379. if (!c1 || !x1) {
  380. dev_dbg(wcd939x->dev,
  381. "%s: Impedance detect ramp error, c1=%d, x1=0x%x\n",
  382. __func__, c1, x1);
  383. goto ramp_down;
  384. }
  385. d1 = d1_a[c1];
  386. denom = (x1 * d1) - (1 << (14 - noff));
  387. if (denom > 0)
  388. *zdet = (WCD939X_MBHC_ZDET_CONST * 1000) / denom;
  389. else if (x1 < minCode_param[noff])
  390. *zdet = WCD939X_ZDET_FLOATING_IMPEDANCE;
  391. dev_dbg(wcd939x->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n",
  392. __func__, d1, c1, x1, *zdet);
  393. ramp_down:
  394. i = 0;
  395. wcd939x_mbhc->rdown_timer_complete = false;
  396. mod_timer(&wcd939x_mbhc->rdown_timer, jiffies + msecs_to_jiffies(RDOWN_TIMER_PERIOD_MSEC));
  397. while (x1) {
  398. regmap_read(wcd939x->regmap,
  399. WCD939X_MBHC_RESULT_1, &val);
  400. regmap_read(wcd939x->regmap,
  401. WCD939X_MBHC_RESULT_2, &val1);
  402. val = val << 0x08;
  403. val |= val1;
  404. x1 = WCD939X_MBHC_GET_X1(val);
  405. i++;
  406. if (i == WCD939X_ZDET_NUM_MEASUREMENTS)
  407. break;
  408. if (wcd939x_mbhc->rdown_timer_complete && wcd939x_mbhc->rdown_prev_iter == val)
  409. break;
  410. wcd939x_mbhc->rdown_prev_iter = val;
  411. }
  412. del_timer(&wcd939x_mbhc->rdown_timer);
  413. }
  414. static void wcd939x_mbhc_zdet_ramp(struct snd_soc_component *component,
  415. struct wcd939x_mbhc_zdet_param *zdet_param,
  416. int32_t *zl, int32_t *zr, s16 *d1_a)
  417. {
  418. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  419. int32_t zdet = 0;
  420. snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL, 0xF0,
  421. 0x80 | (zdet_param->ldo_ctl << 4));
  422. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN5, 0xFC,
  423. zdet_param->btn5);
  424. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN6, 0xFC,
  425. zdet_param->btn6);
  426. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN7, 0xFC,
  427. zdet_param->btn7);
  428. snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL,
  429. 0x0F, zdet_param->noff);
  430. snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
  431. 0x0F, zdet_param->nshift);
  432. snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
  433. 0x70, 0x60); /*acc1_min_63 */
  434. if (!zl)
  435. goto z_right;
  436. /* Start impedance measurement for HPH_L */
  437. regmap_update_bits(wcd939x->regmap,
  438. WCD939X_MBHC_ZDET, 0x80, 0x80);
  439. dev_dbg(wcd939x->dev, "%s: ramp for HPH_L, noff = %d\n",
  440. __func__, zdet_param->noff);
  441. wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
  442. regmap_update_bits(wcd939x->regmap,
  443. WCD939X_MBHC_ZDET, 0x80, 0x00);
  444. *zl = zdet;
  445. z_right:
  446. if (!zr)
  447. return;
  448. /* Start impedance measurement for HPH_R */
  449. regmap_update_bits(wcd939x->regmap,
  450. WCD939X_MBHC_ZDET, 0x40, 0x40);
  451. dev_dbg(wcd939x->dev, "%s: ramp for HPH_R, noff = %d\n",
  452. __func__, zdet_param->noff);
  453. wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
  454. regmap_update_bits(wcd939x->regmap,
  455. WCD939X_MBHC_ZDET, 0x40, 0x00);
  456. *zr = zdet;
  457. }
  458. static inline void wcd939x_wcd_mbhc_qfuse_cal(
  459. struct snd_soc_component *component,
  460. int32_t *z_val, int flag_l_r)
  461. {
  462. s16 q1;
  463. int q1_cal;
  464. q1 = snd_soc_component_read(component,
  465. WCD939X_EFUSE_REG_21 + flag_l_r);
  466. if (q1 & 0x80)
  467. q1_cal = (10000 - ((q1 & 0x7F) * 10));
  468. else
  469. q1_cal = (10000 + (q1 * 10));
  470. if (q1_cal > 0)
  471. *z_val = ((*z_val) * 10000) / q1_cal;
  472. }
  473. static void rdown_timer_callback(struct timer_list *timer)
  474. {
  475. struct wcd939x_mbhc *wcd939x_mbhc = container_of(timer, struct wcd939x_mbhc, rdown_timer);
  476. wcd939x_mbhc->rdown_timer_complete = true;
  477. }
  478. static void update_hd2_codes(struct regmap *regmap, u32 r_gnd_res_tot_mohms, u32 r_load_eff)
  479. {
  480. u64 hd2_delta = 0;
  481. if (!regmap)
  482. return;
  483. hd2_delta = (HD2_CODE_INV_RESOLUTION * (u64) r_gnd_res_tot_mohms +
  484. FLOAT_TO_FIXED_XTALK * (u64) ((r_gnd_res_tot_mohms + r_load_eff) / 2)) /
  485. (FLOAT_TO_FIXED_XTALK * (u64) (r_gnd_res_tot_mohms + r_load_eff));
  486. if (hd2_delta >= HD2_CODE_BASE_VALUE) {
  487. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F, 0x00);
  488. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F, 0x00);
  489. } else {
  490. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F,
  491. HD2_CODE_BASE_VALUE - hd2_delta);
  492. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F,
  493. HD2_CODE_BASE_VALUE - hd2_delta);
  494. }
  495. }
  496. static u8 get_xtalk_scale(u32 gain)
  497. {
  498. u8 i;
  499. int target, residue;
  500. if (gain == 0)
  501. return MAX_XTALK_SCALE;
  502. target = FLOAT_TO_FIXED_XTALK / ((int) gain);
  503. residue = target;
  504. for (i = 0; i <= MAX_XTALK_SCALE; i++) {
  505. residue = target - (1 << ((int)((u32) i)));
  506. if (residue < 0)
  507. return i;
  508. }
  509. return MAX_XTALK_SCALE;
  510. }
  511. static u8 get_xtalk_alpha(u32 gain, u8 scale)
  512. {
  513. u32 two_exp_scale, round_offset, alpha;
  514. if (gain == 0)
  515. return MIN_XTALK_ALPHA;
  516. two_exp_scale = 1 << ((u32) scale);
  517. round_offset = FLOAT_TO_FIXED_XTALK / 2;
  518. alpha = (((gain * two_exp_scale - FLOAT_TO_FIXED_XTALK) * 255) + round_offset)
  519. / FLOAT_TO_FIXED_XTALK;
  520. return (alpha <= MAX_XTALK_ALPHA) ? ((u8) alpha) : MAX_XTALK_ALPHA;
  521. }
  522. static u32 get_v_common_gnd_factor(u32 r_gnd_res_tot_mohms, u32 r_load_eff_mohms,
  523. u32 r_aud_res_tot_mohms)
  524. {
  525. /* Proof 1: The numerator does not overflow.
  526. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms =
  527. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms +
  528. * r_gnd_par_route2_mohms
  529. *
  530. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route{1,2}_mohms are all less
  531. * than MAX_USBCSS_HS_IMPEDANCE_MOHMS
  532. * -->
  533. * FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms <=
  534. * FLOAT_TO_FIXED_XTALK * 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  535. * (1 << 16) * 4 * 20,000 = 65,536 * 80,000 = 3,932,160,000 <= 2^32 - 1 =
  536. * 4,294,967,295 = U32_MAX
  537. *
  538. * Proof 2: The denominator is greater than 0.
  539. * r_load_eff_mohms >= MIN_RL_EFF_MOHMS = 1 > 0
  540. * -->
  541. * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms > 0
  542. *
  543. * Proof 3: The deonominator does not overflow.
  544. * r_load_eff_mohms <= MAX_RL_EFF_MOHMS
  545. * r_aud_res_tot_mohms and r_gnd_res_tot_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS
  546. * -->
  547. * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms <=
  548. * MAX_RL_EFF_MOHMS + 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 900,000 + 2 * 20,000 = 940,000
  549. * <= U32_MAX = 2^32 - 1 = 4,294,967,295
  550. */
  551. return FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms /
  552. (r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms);
  553. }
  554. static u32 get_v_feedback_tap_factor_digital(u32 r_gnd_int_fet_mohms, u32 r_gnd_par_route1_mohms,
  555. u32 r_load_eff_mohms, u32 r_gnd_res_tot_mohms,
  556. u32 r_aud_res_tot_mohms)
  557. {
  558. /* Proof 4: The numerator does not overflow.
  559. * r_gnd_int_fet_mohms and r_gnd_par_route1_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS
  560. * -->
  561. * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) <=
  562. * FLOAT_TO_FIXED_XTALK * 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  563. * (1 << 16) * 2 * 20,000 = 65,536 * 40,000 = 2,621,440,000 <= 2^32 - 1 =
  564. * 4,294,967,295 = U32_MAX
  565. *
  566. * The denominator is greater than 0: See Proof 2
  567. * The deonominator does not overflow: See Proof 3
  568. */
  569. return FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) /
  570. (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms);
  571. }
  572. static u32 get_v_feedback_tap_factor_analog(u32 r_gnd_par_route2_mohms, u32 r_load_eff_mohms,
  573. u32 r_gnd_res_tot_mohms, u32 r_aud_res_tot_mohms)
  574. {
  575. /* Proof 5: The numerator does not overflow.
  576. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms =
  577. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms +
  578. * r_gnd_par_route2_mohms
  579. *
  580. * r_gnd_res_tot_mohms - r_gnd_par_route2_mohms =
  581. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms
  582. *
  583. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms
  584. * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  585. * -->
  586. * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms +
  587. * r_gnd_par_route1_mohms)
  588. * <= FLOAT_TO_FIXED_XTALK * 3 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  589. * (1 << 16) * 3 * 20,000 = 65,536 * 60,000 = 3,932,160,000 <= 2^32 - 1 =
  590. * 4,294,967,295 = U32_MAX
  591. *
  592. * The denominator is greater than 0: See Proof 2
  593. * The deonominator does not overflow: See Proof 3
  594. */
  595. return FLOAT_TO_FIXED_XTALK * (r_gnd_res_tot_mohms - r_gnd_par_route2_mohms) /
  596. (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms);
  597. }
  598. static u32 get_xtalk_gain(u32 v_common_gnd_factor, u32 v_feedback_tap_factor)
  599. {
  600. return v_common_gnd_factor - v_feedback_tap_factor;
  601. }
  602. static void update_xtalk_scale_and_alpha(struct wcd939x_pdata *pdata, struct regmap *regmap)
  603. {
  604. u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_common_gnd_factor = 0;
  605. u32 v_feedback_tap_factor = 0, xtalk_gain = 0;
  606. if (!pdata || pdata->usbcss_hs.xtalk_config == XTALK_NONE)
  607. return;
  608. /* Orientation-dependent ground impedance parameters */
  609. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  610. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  611. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms;
  612. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  613. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  614. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms;
  615. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  616. } else {
  617. pdata->usbcss_hs.scale_l = MAX_XTALK_SCALE;
  618. pdata->usbcss_hs.alpha_l = MIN_XTALK_ALPHA;
  619. pdata->usbcss_hs.scale_r = MAX_XTALK_SCALE;
  620. pdata->usbcss_hs.alpha_r = MIN_XTALK_ALPHA;
  621. return;
  622. }
  623. #endif
  624. /* Recall assumptions about L and R channel impedance parameters being equivalent */
  625. /* Xtalk gain calculation */
  626. v_common_gnd_factor = get_v_common_gnd_factor(r_gnd_res_tot_mohms,
  627. pdata->usbcss_hs.r_load_eff_l_mohms,
  628. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  629. if (pdata->usbcss_hs.xtalk_config == XTALK_ANALOG) {
  630. v_feedback_tap_factor = get_v_feedback_tap_factor_analog(
  631. pdata->usbcss_hs.r_gnd_par_route2_mohms,
  632. pdata->usbcss_hs.r_load_eff_l_mohms,
  633. r_gnd_res_tot_mohms,
  634. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  635. /* Update HD2 codes for analog xtalk */
  636. update_hd2_codes(regmap, r_gnd_res_tot_mohms, pdata->usbcss_hs.r_load_eff_l_mohms);
  637. } else {
  638. v_feedback_tap_factor = get_v_feedback_tap_factor_digital(
  639. r_gnd_int_fet_mohms,
  640. pdata->usbcss_hs.r_gnd_par_route1_mohms,
  641. pdata->usbcss_hs.r_load_eff_l_mohms,
  642. r_gnd_res_tot_mohms,
  643. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  644. }
  645. xtalk_gain = get_xtalk_gain(v_common_gnd_factor, v_feedback_tap_factor);
  646. /* Store scale and alpha values */
  647. pdata->usbcss_hs.scale_l = get_xtalk_scale(xtalk_gain);
  648. pdata->usbcss_hs.alpha_l = get_xtalk_alpha(xtalk_gain, pdata->usbcss_hs.scale_l);
  649. pdata->usbcss_hs.scale_r = pdata->usbcss_hs.scale_l;
  650. pdata->usbcss_hs.alpha_r = pdata->usbcss_hs.alpha_l;
  651. }
  652. static void update_ext_fet_res(struct wcd939x_pdata *pdata, u32 r_gnd_ext_fet_mohms)
  653. {
  654. if (!pdata)
  655. return;
  656. pdata->usbcss_hs.r_gnd_ext_fet_mohms = (r_gnd_ext_fet_mohms > MAX_USBCSS_HS_IMPEDANCE_MOHMS)
  657. ? MAX_USBCSS_HS_IMPEDANCE_MOHMS
  658. : r_gnd_ext_fet_mohms;
  659. pdata->usbcss_hs.r_aud_ext_fet_l_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms;
  660. pdata->usbcss_hs.r_aud_ext_fet_r_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms;
  661. pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms = get_r_gnd_res_tot_mohms(
  662. pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms,
  663. pdata->usbcss_hs.r_gnd_ext_fet_mohms,
  664. pdata->usbcss_hs.r_gnd_par_tot_mohms);
  665. pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms = get_r_gnd_res_tot_mohms(
  666. pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms,
  667. pdata->usbcss_hs.r_gnd_ext_fet_mohms,
  668. pdata->usbcss_hs.r_gnd_par_tot_mohms);
  669. pdata->usbcss_hs.r_aud_res_tot_l_mohms = get_r_aud_res_tot_mohms(
  670. pdata->usbcss_hs.r_aud_int_fet_l_mohms,
  671. pdata->usbcss_hs.r_aud_ext_fet_l_mohms);
  672. pdata->usbcss_hs.r_aud_res_tot_r_mohms = get_r_aud_res_tot_mohms(
  673. pdata->usbcss_hs.r_aud_int_fet_r_mohms,
  674. pdata->usbcss_hs.r_aud_ext_fet_r_mohms);
  675. }
  676. static void get_linearizer_taps(struct wcd939x_pdata *pdata, u32 *aud_tap, u32 *gnd_tap)
  677. {
  678. u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_aud1 = 0, v_aud2 = 0;
  679. u32 v_gnd_denom = 0, v_gnd1 = 0, v_gnd2 = 0, aud_denom = 0, gnd_denom = 0;
  680. if (!pdata)
  681. goto err_data;
  682. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  683. /* Orientation-dependent ground impedance parameters */
  684. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  685. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms;
  686. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  687. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  688. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms;
  689. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  690. } else {
  691. goto err_data;
  692. }
  693. #endif
  694. /* Proof 6: Neither aud_denom nor gnd_denom is 0 and neither overflows.
  695. * MIN_K_TIMES_100 = -50 <= MAX_K_TIMES_100 <= 10,000 = k_aud_times_100
  696. * -->
  697. * 0 < 410 = 0.1 * 4,096 = 0.1 * FLOAT_TO_FIXED_LINEARIZER < {aud,gnd}_denom <
  698. * 101 * FLOAT_TO_FIXED_LINEARIZER =
  699. * 101 * (1 << 12) < 413,696 <= 4,294,967,295 = U32_MAX
  700. */
  701. aud_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER +
  702. (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_aud_times_100 / 100));
  703. gnd_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER +
  704. (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_gnd_times_100 / 100));
  705. /* Proof 7: v_aud2 does not overflow.
  706. * MIN_RL_EFF_MOHMS = 1 = <= pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS =
  707. * 900,000
  708. *
  709. * pdata->usbcss_hs.r_gnd_par_tot_mohms = r_gnd_par_route1_mohms + r_gnd_par_route2_mohms
  710. * <= 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 4,0000
  711. *
  712. * r_gnd_int_fet_mohms, pdata->usbcss_hs.r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms,
  713. * r_gnd_par_route2_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  714. * -->
  715. * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  716. * 900,000 + 4 * 20,000 = 980,000 <= 4,294,967,295 = U32_MAX
  717. */
  718. v_aud2 = pdata->usbcss_hs.r_load_eff_l_mohms - pdata->usbcss_hs.r3 + r_gnd_int_fet_mohms +
  719. pdata->usbcss_hs.r_gnd_ext_fet_mohms + pdata->usbcss_hs.r_gnd_par_tot_mohms;
  720. /* Proof 8: v_aud1 does not overflow.
  721. * pdata->usbcss_hs.r_aud_ext_fet_l_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  722. * From Proof 7,
  723. * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS <= S32_MAX
  724. * -->
  725. * 1 <= v_aud1 <= MAX_RL_EFF_MOHMS + 5 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  726. * 900,000 + 5 * 20,000 = 1,000,000 <= 2,147,483,647 = S32_MAX
  727. */
  728. v_aud1 = v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms;
  729. /* Proof 9: The numerator of v_aud1 does not overflow.
  730. * From Proof 8, v_aud1 was less than or equal to 1,000,000
  731. * Thus, the new v_aud1 numerator is less than or equal to
  732. * FLOAT_TO_FIXED_LINEARIZER * 1,000,000 =
  733. * 4,096 * 1,000,000 = 4,096,000,000 <= 4,294,967,295 = U32_MAX
  734. *
  735. * Proof 10: The denominator of v_aud1 is not 0.
  736. * From Proof 8, v_aud1 was greater than or equal to 1 > 0
  737. *
  738. * Proof 11: The denominator does not overflow.
  739. * From Proof 8, v_aud1 was less than or equal to 1,000,000
  740. * Thus, the new v_aud1 denominator is less than or equal to
  741. * 1,000,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms = 1,000,000 + 20,000 = 1,020,000 <=
  742. * 4,294,967,295 = U32_MAX
  743. */
  744. v_aud1 = FLOAT_TO_FIXED_LINEARIZER * v_aud1 /
  745. (v_aud1 + pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  746. /* Proof 12: The numerator of v_aud2 does not overflow.
  747. * From Proof 7, v_aud2 was less than or equal to 980,000
  748. * Thus, the new v_aud2 numerator is less than or equal to
  749. * FLOAT_TO_FIXED_LINEARIZER * 980,000 =
  750. * 4,096 * 980,000 = 4,014,080,000 <= 4,294,967,295 = U32_MAX
  751. *
  752. * Proof 13: The denominator of v_aud2 is not 0.
  753. * From Proof 7, v_aud2 was greater than or equal to 1 > 0
  754. *
  755. * Proof 14: The denominator does not overflow.
  756. * From Proof 7, v_aud2 was less than or equal to 980,000
  757. * Thus, the new v_aud2 denominator is less than or equal to
  758. * 980,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms pdata->usbcss_hs.r_aud_int_fet_l_mohms =
  759. * 980,000 + 20,000 + + 20,000 = 1,020,000 <= 4,294,967,295 = U32_MAX
  760. */
  761. v_aud2 = FLOAT_TO_FIXED_LINEARIZER * v_aud2 /
  762. (v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms +
  763. pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  764. /* Proof 15: The numerator of aud_tap does not overflow.
  765. * Looking at the formula for v_aud1 from Proofs 9 to 11, the greatest value of v_aud1 is
  766. * FLOAT_TO_FIXED_LINEARIZER = 4,096
  767. * Looking at the formula for v_aud2 from Proofs 12 to 14, the greatest value of v_aud2 is
  768. * FLOAT_TO_FIXED_LINEARIZER = 4,096
  769. * From Proof 6, aud_denom <= 413,696
  770. * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 =
  771. * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX
  772. *
  773. * Proof 16: The denominator of aud_tap is not 0.
  774. * From Proof 6, aud_denom > 410 > 0
  775. *
  776. * Proof 17: The denominator of aud_tap does not overflow
  777. * From Proof 6, aud_denom <= 413,696 <= 4,294,967,295 = U32_MAX
  778. *
  779. * Proof 18: The result of aud_tap does not overflow.
  780. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410
  781. * Thus, the divsion will be at most 1,009,519.
  782. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023
  783. * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX
  784. * Note: aud_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023
  785. */
  786. *aud_tap = (u32) ((s32) ((1000 * v_aud1 + 10 * pdata->usbcss_hs.k_aud_times_100 * v_aud2
  787. + aud_denom / 2) / aud_denom) + pdata->usbcss_hs.aud_tap_offset);
  788. if (*aud_tap > MAX_TAP)
  789. *aud_tap = MAX_TAP;
  790. else if (*aud_tap < MIN_TAP)
  791. *aud_tap = MIN_TAP;
  792. /* Proof 19: v_gnd_denom does not overflow.
  793. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms
  794. *
  795. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_tot_mohms,
  796. * pdata->usbcss_hs.r_aud_ext_fet_l_mohms, pdata->usbcss_hs.r_aud_int_fet_l_mohms are all
  797. * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  798. *
  799. * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000
  800. *
  801. * --> v_gnd_denom <= 3 * 20,000 + 900,000 + 2 * 20,000 = 60,000 + 900,000 + 40,000 =
  802. * 1,000,000 <= 4,294,967,295 = U32_MAX
  803. *
  804. * Proof 20: v_gnd_denom is not 0.
  805. * pdata->usbcss_hs.r_load_eff_l_mohms >= MIN_RL_EFF_MOHMS = 1
  806. * --> v_gnd_denom >= 1 > 0
  807. */
  808. v_gnd_denom = (r_gnd_res_tot_mohms + pdata->usbcss_hs.r_load_eff_l_mohms -
  809. pdata->usbcss_hs.r3 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms +
  810. pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  811. /* Proof 21: v_gnd1 numerator does not overflow.
  812. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  813. * --> v_gnd1 numerator <= 4,096 * 20,000 = 81,920,000 <= 4,294,967,295 = U32_MAX
  814. *
  815. * v_gnd1 denominator is not 0: See Proof 20
  816. * v_gnd1 denominator does not overflow: See Proof 19
  817. */
  818. v_gnd1 = FLOAT_TO_FIXED_LINEARIZER * r_gnd_int_fet_mohms / v_gnd_denom;
  819. /* Proof 22: v_gnd2 numerator does not overflow.
  820. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  821. * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000
  822. * --> v_gnd2 numerator <= 4,096 * (20,000 + 900,000) = 4,096 * 920,000 = 3,768,320,000
  823. * <= 4,294,967,295 = U32_MAX
  824. *
  825. * v_gnd2 denominator is not 0: See Proof 20
  826. * v_gnd2 denominator does not overflow: See Proof 19
  827. */
  828. v_gnd2 = FLOAT_TO_FIXED_LINEARIZER * (r_gnd_int_fet_mohms +
  829. pdata->usbcss_hs.r_gnd_ext_fet_mohms) / v_gnd_denom;
  830. /* Proof 23: The numerator of gnd_tap does not overflow.
  831. * Looking at the formula for v_gnd1 from Proof 21, and considering that
  832. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms,
  833. * the greatest value of v_gnd1 is FLOAT_TO_FIXED_LINEARIZER = 4,096.
  834. * Looking at the formula for v_aud2 from Proof 22 and again at the definintion of
  835. * r_gnd_res_tot_mohms, the greatest value of v_gnd2 is FLOAT_TO_FIXED_LINEARIZER = 4,096
  836. * From Proof 6, gnd_denom <= 413,696
  837. * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 =
  838. * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX
  839. *
  840. * Proof 24: The denominator of gnd_tap is not 0.
  841. * From Proof 6, gnd_denom > 410 > 0
  842. *
  843. * Proof 25: The denominator of gnd_tap does not overflow
  844. * From Proof 6, gnd_denom <= 413,696 <= 4,294,967,295 = U32_MAX
  845. *
  846. * Proof 26: The result of aud_tap does not overflow.
  847. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410
  848. * Thus, the divsion will be at most 1,009,519.
  849. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023
  850. * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX
  851. * Note: gnd_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023
  852. */
  853. *gnd_tap = (u32) ((s32) ((1000 * v_gnd1 + 10 * pdata->usbcss_hs.k_gnd_times_100 * v_gnd2
  854. + gnd_denom / 2) / gnd_denom) + pdata->usbcss_hs.gnd_tap_offset);
  855. if (*gnd_tap > MAX_TAP)
  856. *gnd_tap = MAX_TAP;
  857. else if (*gnd_tap < MIN_TAP)
  858. *gnd_tap = MIN_TAP;
  859. return;
  860. err_data:
  861. *aud_tap = 0;
  862. *gnd_tap = 0;
  863. }
  864. struct usbcss_hs_attr {
  865. struct wcd939x_priv *priv;
  866. struct kobj_attribute attr;
  867. int index;
  868. };
  869. static char *usbcss_sysfs_files[] = {
  870. "rdson",
  871. "r2",
  872. "r3",
  873. "r4",
  874. "r5",
  875. "r6",
  876. "r7",
  877. "lin-k-aud",
  878. "lin-k-gnd",
  879. "xtalk_config",
  880. };
  881. static ssize_t usbcss_sysfs_store(struct kobject *kobj,
  882. struct kobj_attribute *attr, const char *buf,
  883. size_t count)
  884. {
  885. struct usbcss_hs_attr *usbc_attr;
  886. struct wcd939x_priv *wcd939x;
  887. struct wcd939x_pdata *pdata;
  888. struct wcd939x_usbcss_hs_params *usbcss_hs;
  889. long val;
  890. int rc;
  891. u32 aud_tap = 0, gnd_tap = 0;
  892. bool update_xtalk = false, update_linearizer = false;
  893. usbc_attr = container_of(attr, struct usbcss_hs_attr, attr);
  894. wcd939x = usbc_attr->priv;
  895. pdata = dev_get_platdata(wcd939x->dev);
  896. if (!wcd939x || !pdata)
  897. return -EINVAL;
  898. usbcss_hs = &pdata->usbcss_hs;
  899. rc = kstrtol(buf, 0, &val);
  900. if (rc)
  901. return rc;
  902. if (strcmp(attr->attr.name, "rdson") == 0) {
  903. if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
  904. dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
  905. __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
  906. return count;
  907. }
  908. usbcss_hs->r_gnd_ext_fet_customer_mohms = val;
  909. update_linearizer = usbcss_hs->xtalk_config == XTALK_ANALOG;
  910. } else if (strcmp(attr->attr.name, "r2") == 0) {
  911. if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
  912. dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
  913. __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
  914. return count;
  915. }
  916. usbcss_hs->r_conn_par_load_pos_mohms = val;
  917. } else if (strcmp(attr->attr.name, "r3") == 0) {
  918. if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
  919. dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
  920. __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
  921. return count;
  922. }
  923. usbcss_hs->r3 = val;
  924. update_linearizer = true;
  925. } else if (strcmp(attr->attr.name, "r4") == 0) {
  926. if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
  927. dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
  928. __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
  929. return count;
  930. }
  931. usbcss_hs->r4 = val;
  932. update_xtalk = true;
  933. update_linearizer = true;
  934. switch (usbcss_hs->xtalk_config) {
  935. case XTALK_DIGITAL:
  936. usbcss_hs->r_gnd_par_route2_mohms = usbcss_hs->r6 + val;
  937. break;
  938. case XTALK_ANALOG:
  939. usbcss_hs->r_gnd_par_route1_mohms = usbcss_hs->r5 + val;
  940. break;
  941. case XTALK_NONE:
  942. fallthrough;
  943. default:
  944. return count;
  945. }
  946. } else if (strcmp(attr->attr.name, "r5") == 0) {
  947. if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
  948. dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
  949. __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
  950. return count;
  951. }
  952. usbcss_hs->r5 = val;
  953. switch (usbcss_hs->xtalk_config) {
  954. case XTALK_ANALOG:
  955. update_xtalk = true;
  956. update_linearizer = true;
  957. usbcss_hs->r_gnd_par_route1_mohms = val + usbcss_hs->r4;
  958. break;
  959. case XTALK_DIGITAL:
  960. fallthrough;
  961. case XTALK_NONE:
  962. fallthrough;
  963. default:
  964. return count;
  965. }
  966. } else if (strcmp(attr->attr.name, "r6") == 0) {
  967. if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
  968. dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
  969. __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
  970. return count;
  971. }
  972. usbcss_hs->r6 = val;
  973. switch (usbcss_hs->xtalk_config) {
  974. case XTALK_DIGITAL:
  975. update_xtalk = true;
  976. update_linearizer = true;
  977. usbcss_hs->r_gnd_par_route2_mohms = val + usbcss_hs->r4;
  978. break;
  979. case XTALK_ANALOG:
  980. fallthrough;
  981. case XTALK_NONE:
  982. fallthrough;
  983. default:
  984. return count;
  985. }
  986. } else if (strcmp(attr->attr.name, "r7") == 0) {
  987. if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
  988. dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
  989. __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
  990. return count;
  991. }
  992. usbcss_hs->r7 = val;
  993. switch (usbcss_hs->xtalk_config) {
  994. case XTALK_DIGITAL:
  995. update_xtalk = true;
  996. update_linearizer = true;
  997. usbcss_hs->r_gnd_par_route1_mohms = val;
  998. break;
  999. case XTALK_ANALOG:
  1000. fallthrough;
  1001. case XTALK_NONE:
  1002. fallthrough;
  1003. default:
  1004. return count;
  1005. }
  1006. } else if (strcmp(attr->attr.name, "lin-k-aud") == 0) {
  1007. if (val < MIN_K_TIMES_100 || val > MAX_K_TIMES_100) {
  1008. dev_err(wcd939x->dev, "%s: Value %d out of bounds. Min: %d, Max: %d\n",
  1009. __func__, val, MIN_K_TIMES_100, MAX_K_TIMES_100);
  1010. return count;
  1011. }
  1012. usbcss_hs->k_aud_times_100 = val;
  1013. update_linearizer = true;
  1014. } else if (strcmp(attr->attr.name, "lin-k-gnd") == 0) {
  1015. if (val < MIN_K_TIMES_100 || val > MAX_K_TIMES_100) {
  1016. dev_err(wcd939x->dev, "%s: Value %d out of bounds. Min: %d, Max: %d\n",
  1017. __func__, val, MIN_K_TIMES_100, MAX_K_TIMES_100);
  1018. return count;
  1019. }
  1020. usbcss_hs->k_gnd_times_100 = val;
  1021. update_linearizer = true;
  1022. } else if (strcmp(attr->attr.name, "xtalk_config") == 0) {
  1023. pdata->usbcss_hs.xtalk_config = val;
  1024. update_xtalk = true;
  1025. switch (val) {
  1026. case XTALK_NONE:
  1027. usbcss_hs->scale_l = MAX_XTALK_SCALE;
  1028. usbcss_hs->scale_r = MAX_XTALK_SCALE;
  1029. usbcss_hs->alpha_l = MIN_XTALK_ALPHA;
  1030. usbcss_hs->alpha_r = MIN_XTALK_ALPHA;
  1031. break;
  1032. case XTALK_DIGITAL:
  1033. usbcss_hs->r_gnd_par_route2_mohms = usbcss_hs->r6 + usbcss_hs->r4;
  1034. usbcss_hs->r_gnd_par_route1_mohms = usbcss_hs->r7;
  1035. update_linearizer = true;
  1036. break;
  1037. case XTALK_ANALOG:
  1038. usbcss_hs->r_gnd_par_route1_mohms = usbcss_hs->r5 + usbcss_hs->r4;
  1039. usbcss_hs->r_gnd_par_route2_mohms = 1;
  1040. update_linearizer = true;
  1041. break;
  1042. default:
  1043. return count;
  1044. }
  1045. }
  1046. if (update_xtalk) {
  1047. update_xtalk_scale_and_alpha(pdata, wcd939x->regmap);
  1048. regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC0,
  1049. 0x1F, pdata->usbcss_hs.scale_l);
  1050. regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC1,
  1051. 0xFF, pdata->usbcss_hs.alpha_l);
  1052. regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC0 + 1,
  1053. 0x1F, pdata->usbcss_hs.scale_r);
  1054. regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC1 + 1,
  1055. 0xFF, pdata->usbcss_hs.alpha_r);
  1056. dev_err(wcd939x->dev, "%s: Updated xtalk thru sysfs\n",
  1057. __func__);
  1058. }
  1059. if (update_linearizer) {
  1060. get_linearizer_taps(pdata, &aud_tap, &gnd_tap);
  1061. wcd_usbss_set_linearizer_sw_tap(aud_tap, gnd_tap);
  1062. dev_err(wcd939x->dev, "%s: Updated linearizer thru sysfs\n",
  1063. __func__);
  1064. }
  1065. return count;
  1066. }
  1067. static ssize_t usbcss_sysfs_show(struct kobject *kobj,
  1068. struct kobj_attribute *attr, char *buf)
  1069. {
  1070. struct usbcss_hs_attr *usbc_attr;
  1071. struct wcd939x_priv *wcd939x;
  1072. struct wcd939x_pdata *pdata;
  1073. usbc_attr = container_of(attr, struct usbcss_hs_attr, attr);
  1074. wcd939x = usbc_attr->priv;
  1075. pdata = dev_get_platdata(wcd939x->dev);
  1076. if (strcmp(attr->attr.name, "rdson") == 0)
  1077. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r_gnd_ext_fet_customer_mohms);
  1078. else if (strcmp(attr->attr.name, "r2") == 0)
  1079. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r_conn_par_load_pos_mohms);
  1080. else if (strcmp(attr->attr.name, "r3") == 0)
  1081. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r3);
  1082. else if (strcmp(attr->attr.name, "r4") == 0)
  1083. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r4);
  1084. else if (strcmp(attr->attr.name, "r5") == 0)
  1085. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r5);
  1086. else if (strcmp(attr->attr.name, "r6") == 0)
  1087. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r6);
  1088. else if (strcmp(attr->attr.name, "r7") == 0)
  1089. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r7);
  1090. else if (strcmp(attr->attr.name, "lin-k-aud") == 0)
  1091. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.k_aud_times_100);
  1092. else if (strcmp(attr->attr.name, "lin-k-gnd") == 0)
  1093. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.k_gnd_times_100);
  1094. else if (strcmp(attr->attr.name, "xtalk_config") == 0)
  1095. return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.xtalk_config);
  1096. return 0;
  1097. }
  1098. static int create_sysfs_entry_file(struct wcd939x_priv *wcd939x, char *name, int mode,
  1099. int index, struct kobject *parent)
  1100. {
  1101. struct usbcss_hs_attr *usbc_attr;
  1102. char *name_copy;
  1103. usbc_attr = devm_kmalloc(wcd939x->dev, sizeof(*usbc_attr), GFP_KERNEL);
  1104. if (!usbc_attr)
  1105. return -ENOMEM;
  1106. name_copy = devm_kstrdup(wcd939x->dev, name, GFP_KERNEL);
  1107. if (!name_copy)
  1108. return -ENOMEM;
  1109. usbc_attr->priv = wcd939x;
  1110. usbc_attr->index = index;
  1111. usbc_attr->attr.attr.name = name_copy;
  1112. usbc_attr->attr.attr.mode = mode;
  1113. usbc_attr->attr.show = usbcss_sysfs_show;
  1114. usbc_attr->attr.store = usbcss_sysfs_store;
  1115. sysfs_attr_init(&usbc_attr->attr.attr);
  1116. return sysfs_create_file(parent, &usbc_attr->attr.attr);
  1117. }
  1118. static int usbcss_hs_sysfs_init(struct wcd939x_priv *wcd939x)
  1119. {
  1120. int rc = 0;
  1121. int i = 0;
  1122. struct kobject *kobj = NULL;
  1123. if (!wcd939x || !wcd939x->dev) {
  1124. pr_err("%s: Invalid wcd939x private data.\n", __func__);
  1125. return -EINVAL;
  1126. }
  1127. kobj = kobject_create_and_add("usbcss_hs", kernel_kobj);
  1128. if (!kobj) {
  1129. dev_err(wcd939x->dev, "%s: Could not create the USBC-SS HS kobj.\n", __func__);
  1130. return -ENOMEM;
  1131. }
  1132. for (i = 0; i < ARRAY_SIZE(usbcss_sysfs_files); i++) {
  1133. rc = create_sysfs_entry_file(wcd939x, usbcss_sysfs_files[i],
  1134. 0644, i, kobj);
  1135. }
  1136. return 0;
  1137. }
  1138. static void wcd939x_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl, uint32_t *zr)
  1139. {
  1140. struct snd_soc_component *component = mbhc->component;
  1141. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  1142. struct wcd939x_pdata *pdata = dev_get_platdata(wcd939x->dev);
  1143. s16 reg0, reg1, reg2, reg3, reg4;
  1144. uint32_t zdiff_val = 0, r_gnd_int_fet_mohms = 0, rl_eff_mohms = 0, r_gnd_ext_fet_mohms = 0;
  1145. uint32_t aud_tap = 0, gnd_tap = 0;
  1146. uint32_t *zdiff = &zdiff_val;
  1147. int32_t z1L, z1R, z1Ls, z1Diff;
  1148. int zMono, z_diff1, z_diff2;
  1149. bool is_fsm_disable = false;
  1150. struct wcd939x_mbhc_zdet_param zdet_param = {4, 0, 6, 0x18, 0x60, 0x78};
  1151. struct wcd939x_mbhc_zdet_param *zdet_param_ptr = &zdet_param;
  1152. s16 d1[] = {0, 30, 30, 6};
  1153. WCD_MBHC_RSC_ASSERT_LOCKED(mbhc);
  1154. /* Turn on RX supplies */
  1155. if (wcd939x->version == WCD939X_VERSION_2_0) {
  1156. /* Start up Buck/Flyback, Enable RX bias, Use MBHC RCO for MBHC Zdet, Enable Vneg */
  1157. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x4C, 0x4C);
  1158. /* Wait 100us for settling */
  1159. usleep_range(100, 110);
  1160. /* Enable VNEGDAC_LDO */
  1161. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x10, 0x10);
  1162. /* Wait 100us for settling */
  1163. usleep_range(100, 110);
  1164. /* Keep PA left/right channels disabled */
  1165. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x01, 0x01);
  1166. /* Enable VPOS */
  1167. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x20);
  1168. /* Wait 500us for settling */
  1169. usleep_range(500, 510);
  1170. }
  1171. /* Store register values */
  1172. reg0 = snd_soc_component_read(component, WCD939X_MBHC_BTN5);
  1173. reg1 = snd_soc_component_read(component, WCD939X_MBHC_BTN6);
  1174. reg2 = snd_soc_component_read(component, WCD939X_MBHC_BTN7);
  1175. reg3 = snd_soc_component_read(component, WCD939X_CTL_CLK);
  1176. reg4 = snd_soc_component_read(component, WCD939X_ZDET_ANA_CTL);
  1177. /* Disable the detection FSM */
  1178. if (snd_soc_component_read(component, WCD939X_MBHC_ELECT) & 0x80) {
  1179. is_fsm_disable = true;
  1180. regmap_update_bits(wcd939x->regmap,
  1181. WCD939X_MBHC_ELECT, 0x80, 0x00);
  1182. }
  1183. /* For NO-jack, disable L_DET_EN before Z-det measurements */
  1184. if (mbhc->hphl_swh)
  1185. regmap_update_bits(wcd939x->regmap,
  1186. WCD939X_MBHC_MECH, 0x80, 0x00);
  1187. /* Turn off 100k pull down on HPHL */
  1188. regmap_update_bits(wcd939x->regmap,
  1189. WCD939X_MBHC_MECH, 0x01, 0x00);
  1190. /* Disable surge protection before impedance detection.
  1191. * This is done to give correct value for high impedance.
  1192. */
  1193. regmap_update_bits(wcd939x->regmap,
  1194. WCD939X_HPHLR_SURGE_EN, 0xC0, 0x00);
  1195. /* 1ms delay needed after disable surge protection */
  1196. usleep_range(1000, 1010);
  1197. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1198. /* Disable sense switch and MIC for USB-C analog platforms */
  1199. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  1200. wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_DISABLE);
  1201. wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_DISABLE);
  1202. }
  1203. #endif
  1204. /* L-channel impedance */
  1205. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
  1206. if ((z1L == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1L > WCD939X_ZDET_VAL_100K)) {
  1207. *zl = WCD939X_ZDET_FLOATING_IMPEDANCE;
  1208. } else {
  1209. *zl = z1L;
  1210. wcd939x_wcd_mbhc_qfuse_cal(component, zl, 0);
  1211. }
  1212. /* Differential measurement for USB-C analog platforms */
  1213. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  1214. dev_dbg(component->dev, "%s: effective impedance on HPH_L = %d(mohms)\n",
  1215. __func__, *zl);
  1216. goto diff_impedance;
  1217. }
  1218. dev_dbg(component->dev, "%s: impedance on HPH_L = %d(mohms)\n",
  1219. __func__, *zl);
  1220. /* R-channel impedance */
  1221. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1);
  1222. if ((z1R == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1R > WCD939X_ZDET_VAL_100K)) {
  1223. *zr = WCD939X_ZDET_FLOATING_IMPEDANCE;
  1224. } else {
  1225. *zr = z1R;
  1226. wcd939x_wcd_mbhc_qfuse_cal(component, zr, 4);
  1227. }
  1228. dev_dbg(component->dev, "%s: impedance on HPH_R = %d(mohms)\n",
  1229. __func__, *zr);
  1230. /* Convert from mohms to ohms (rounded) */
  1231. *zl = (*zl + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  1232. *zr = (*zr + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  1233. goto mono_stereo_detection;
  1234. diff_impedance:
  1235. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1236. /* Disable AGND switch */
  1237. wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_DISABLE);
  1238. #endif
  1239. /* Enable HPHR NCLAMP */
  1240. regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x08);
  1241. /* Diffrential impedance */
  1242. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Diff, NULL, d1);
  1243. if ((z1Diff == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1Diff > WCD939X_ZDET_VAL_100K)) {
  1244. *zdiff = WCD939X_ZDET_FLOATING_IMPEDANCE;
  1245. } else {
  1246. *zdiff = z1Diff;
  1247. wcd939x_wcd_mbhc_qfuse_cal(component, zdiff, 0);
  1248. }
  1249. dev_dbg(component->dev, "%s: effective impedance on HPH_diff after calib = %d(mohms)\n",
  1250. __func__, *zdiff);
  1251. /* Disable HPHR NCLAMP */
  1252. regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x00);
  1253. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1254. /* Enable AGND switch */
  1255. wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_ENABLE);
  1256. /* Get ground internal resistance based on orientation */
  1257. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  1258. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  1259. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  1260. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  1261. } else {
  1262. *zl = 0;
  1263. *zr = 0;
  1264. dev_dbg(component->dev, "%s: Invalid SBU switch orientation\n", __func__);
  1265. goto zdet_complete;
  1266. }
  1267. #endif
  1268. /* Compute external fet and effective load impedance */
  1269. r_gnd_ext_fet_mohms = *zl - *zdiff / 2 + pdata->usbcss_hs.r_surge_mohms / 2 -
  1270. pdata->usbcss_hs.r_gnd_par_tot_mohms - r_gnd_int_fet_mohms;
  1271. rl_eff_mohms = *zdiff / 2 - pdata->usbcss_hs.r_aud_int_fet_r_mohms -
  1272. pdata->usbcss_hs.r_gnd_ext_fet_mohms - pdata->usbcss_hs.r_surge_mohms / 2 -
  1273. pdata->usbcss_hs.r_gnd_par_tot_mohms;
  1274. /* Store values */
  1275. *zl = (rl_eff_mohms - pdata->usbcss_hs.r_conn_par_load_pos_mohms - pdata->usbcss_hs.r3 +
  1276. OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  1277. *zr = *zl;
  1278. /* Update USBC-SS HS params */
  1279. if (rl_eff_mohms > MAX_RL_EFF_MOHMS)
  1280. rl_eff_mohms = MAX_RL_EFF_MOHMS;
  1281. else if (rl_eff_mohms == 0)
  1282. rl_eff_mohms = MIN_RL_EFF_MOHMS;
  1283. pdata->usbcss_hs.r_load_eff_l_mohms = rl_eff_mohms;
  1284. pdata->usbcss_hs.r_load_eff_r_mohms = rl_eff_mohms;
  1285. update_ext_fet_res(pdata, r_gnd_ext_fet_mohms);
  1286. update_xtalk_scale_and_alpha(pdata, wcd939x->regmap);
  1287. dev_dbg(component->dev, "%s: Xtalk scale is 0x%x and alpha is 0x%x\n",
  1288. __func__, pdata->usbcss_hs.scale_l, pdata->usbcss_hs.alpha_l);
  1289. get_linearizer_taps(pdata, &aud_tap, &gnd_tap);
  1290. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1291. wcd_usbss_set_linearizer_sw_tap(aud_tap, gnd_tap);
  1292. #endif
  1293. dev_dbg(component->dev, "%s: Linearizer aud_tap is 0x%x and gnd_tap is 0x%x\n",
  1294. __func__, aud_tap, gnd_tap);
  1295. mono_stereo_detection:
  1296. /* Mono/stereo detection */
  1297. if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) && (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE)) {
  1298. dev_dbg(component->dev,
  1299. "%s: plug type is invalid or extension cable\n",
  1300. __func__);
  1301. goto zdet_complete;
  1302. }
  1303. if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
  1304. (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
  1305. ((*zl < WCD_MONO_HS_MIN_THR) && (*zr > WCD_MONO_HS_MIN_THR)) ||
  1306. ((*zl > WCD_MONO_HS_MIN_THR) && (*zr < WCD_MONO_HS_MIN_THR))) {
  1307. dev_dbg(component->dev,
  1308. "%s: Mono plug type with one ch floating or shorted to GND\n",
  1309. __func__);
  1310. mbhc->hph_type = WCD_MBHC_HPH_MONO;
  1311. goto zdet_complete;
  1312. }
  1313. snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x02);
  1314. snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x01);
  1315. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Ls, NULL, d1);
  1316. snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x00);
  1317. snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x00);
  1318. z1Ls /= 1000;
  1319. wcd939x_wcd_mbhc_qfuse_cal(component, &z1Ls, 0);
  1320. /* Parallel of left Z and 9 ohm pull down resistor */
  1321. zMono = ((*zl) * 9) / ((*zl) + 9);
  1322. z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls);
  1323. z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl));
  1324. if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) {
  1325. dev_dbg(component->dev, "%s: stereo plug type detected\n",
  1326. __func__);
  1327. mbhc->hph_type = WCD_MBHC_HPH_STEREO;
  1328. } else {
  1329. dev_dbg(component->dev, "%s: MONO plug type detected\n",
  1330. __func__);
  1331. mbhc->hph_type = WCD_MBHC_HPH_MONO;
  1332. }
  1333. zdet_complete:
  1334. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1335. /* Enable sense switch and MIC for USB-C analog platforms */
  1336. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  1337. wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_ENABLE);
  1338. wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_ENABLE);
  1339. }
  1340. #endif
  1341. /* Enable surge protection again after impedance detection */
  1342. regmap_update_bits(wcd939x->regmap,
  1343. WCD939X_HPHLR_SURGE_EN, 0xC0, 0xC0);
  1344. snd_soc_component_write(component, WCD939X_MBHC_BTN5, reg0);
  1345. snd_soc_component_write(component, WCD939X_MBHC_BTN6, reg1);
  1346. snd_soc_component_write(component, WCD939X_MBHC_BTN7, reg2);
  1347. /* Turn on 100k pull down on HPHL */
  1348. regmap_update_bits(wcd939x->regmap,
  1349. WCD939X_MBHC_MECH, 0x01, 0x01);
  1350. /* For NO-jack, re-enable L_DET_EN after Z-det measurements */
  1351. if (mbhc->hphl_swh)
  1352. regmap_update_bits(wcd939x->regmap,
  1353. WCD939X_MBHC_MECH, 0x80, 0x80);
  1354. snd_soc_component_write(component, WCD939X_ZDET_ANA_CTL, reg4);
  1355. snd_soc_component_write(component, WCD939X_CTL_CLK, reg3);
  1356. if (is_fsm_disable)
  1357. regmap_update_bits(wcd939x->regmap,
  1358. WCD939X_MBHC_ELECT, 0x80, 0x80);
  1359. /* Turn off RX supplies */
  1360. if (wcd939x->version == WCD939X_VERSION_2_0) {
  1361. /* Set VPOS to be controlled by RX */
  1362. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x00);
  1363. /* Wait 500us for settling */
  1364. usleep_range(500, 510);
  1365. /* Set PA Left/Right channels and VNEGDAC_LDO to be controlled by RX */
  1366. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x11, 0x00);
  1367. /* Wait 100us for settling */
  1368. usleep_range(100, 110);
  1369. /* Set Vneg mode and enable to be controlled by RX */
  1370. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x06, 0x00);
  1371. /* Wait 100us for settling */
  1372. usleep_range(100, 110);
  1373. /* Set RX bias to be controlled by RX and set Buck/Flyback back to SWR Rx clock */
  1374. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x48, 0x00);
  1375. }
  1376. }
  1377. static void wcd939x_mbhc_gnd_det_ctrl(struct snd_soc_component *component,
  1378. bool enable)
  1379. {
  1380. if (enable) {
  1381. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1382. 0x02, 0x02);
  1383. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1384. 0x40, 0x40);
  1385. } else {
  1386. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1387. 0x40, 0x00);
  1388. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1389. 0x02, 0x00);
  1390. }
  1391. }
  1392. static void wcd939x_mbhc_hph_pull_down_ctrl(struct snd_soc_component *component,
  1393. bool enable)
  1394. {
  1395. if (enable) {
  1396. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1397. 0x40, 0x40);
  1398. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1399. 0x10, 0x10);
  1400. } else {
  1401. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1402. 0x40, 0x00);
  1403. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1404. 0x10, 0x00);
  1405. }
  1406. }
  1407. static void wcd939x_mbhc_moisture_config(struct wcd_mbhc *mbhc)
  1408. {
  1409. struct snd_soc_component *component = mbhc->component;
  1410. if ((mbhc->moist_rref == R_OFF) ||
  1411. (mbhc->mbhc_cfg->enable_usbc_analog)) {
  1412. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1413. 0x0C, R_OFF << 2);
  1414. return;
  1415. }
  1416. /* Do not enable moisture detection if jack type is NC */
  1417. if (!mbhc->hphl_swh) {
  1418. dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
  1419. __func__);
  1420. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1421. 0x0C, R_OFF << 2);
  1422. return;
  1423. }
  1424. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1425. 0x0C, mbhc->moist_rref << 2);
  1426. }
  1427. static void wcd939x_mbhc_moisture_detect_en(struct wcd_mbhc *mbhc, bool enable)
  1428. {
  1429. struct snd_soc_component *component = mbhc->component;
  1430. if (enable)
  1431. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1432. 0x0C, mbhc->moist_rref << 2);
  1433. else
  1434. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1435. 0x0C, R_OFF << 2);
  1436. }
  1437. static bool wcd939x_mbhc_get_moisture_status(struct wcd_mbhc *mbhc)
  1438. {
  1439. struct snd_soc_component *component = mbhc->component;
  1440. bool ret = false;
  1441. if ((mbhc->moist_rref == R_OFF) ||
  1442. (mbhc->mbhc_cfg->enable_usbc_analog)) {
  1443. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1444. 0x0C, R_OFF << 2);
  1445. goto done;
  1446. }
  1447. /* Do not enable moisture detection if jack type is NC */
  1448. if (!mbhc->hphl_swh) {
  1449. dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
  1450. __func__);
  1451. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1452. 0x0C, R_OFF << 2);
  1453. goto done;
  1454. }
  1455. /*
  1456. * If moisture_en is already enabled, then skip to plug type
  1457. * detection.
  1458. */
  1459. if ((snd_soc_component_read(component, WCD939X_CTL_2) & 0x0C))
  1460. goto done;
  1461. wcd939x_mbhc_moisture_detect_en(mbhc, true);
  1462. /* Read moisture comparator status */
  1463. ret = ((snd_soc_component_read(component, WCD939X_FSM_STATUS)
  1464. & 0x20) ? 0 : 1);
  1465. done:
  1466. return ret;
  1467. }
  1468. static void wcd939x_mbhc_moisture_polling_ctrl(struct wcd_mbhc *mbhc,
  1469. bool enable)
  1470. {
  1471. struct snd_soc_component *component = mbhc->component;
  1472. snd_soc_component_update_bits(component,
  1473. WCD939X_MOISTURE_DET_POLLING_CTRL,
  1474. 0x04, (enable << 2));
  1475. }
  1476. static void wcd939x_mbhc_bcs_enable(struct wcd_mbhc *mbhc,
  1477. bool bcs_enable)
  1478. {
  1479. if (bcs_enable)
  1480. wcd939x_disable_bcs_before_slow_insert(mbhc->component, false);
  1481. else
  1482. wcd939x_disable_bcs_before_slow_insert(mbhc->component, true);
  1483. }
  1484. static void wcd939x_surge_reset_routine(struct wcd_mbhc *mbhc)
  1485. {
  1486. struct wcd939x_priv *wcd939x = snd_soc_component_get_drvdata(mbhc->component);
  1487. regcache_mark_dirty(wcd939x->regmap);
  1488. regcache_sync(wcd939x->regmap);
  1489. }
  1490. static const struct wcd_mbhc_cb mbhc_cb = {
  1491. .request_irq = wcd939x_mbhc_request_irq,
  1492. .irq_control = wcd939x_mbhc_irq_control,
  1493. .free_irq = wcd939x_mbhc_free_irq,
  1494. .clk_setup = wcd939x_mbhc_clk_setup,
  1495. .map_btn_code_to_num = wcd939x_mbhc_btn_to_num,
  1496. .mbhc_bias = wcd939x_mbhc_mbhc_bias_control,
  1497. .set_btn_thr = wcd939x_mbhc_program_btn_thr,
  1498. .lock_sleep = wcd939x_mbhc_lock_sleep,
  1499. .register_notifier = wcd939x_mbhc_register_notifier,
  1500. .micbias_enable_status = wcd939x_mbhc_micb_en_status,
  1501. .hph_pa_on_status = wcd939x_mbhc_hph_pa_on_status,
  1502. .hph_pull_up_control_v2 = wcd939x_mbhc_hph_l_pull_up_control,
  1503. .mbhc_micbias_control = wcd939x_mbhc_request_micbias,
  1504. .mbhc_micb_ramp_control = wcd939x_mbhc_micb_ramp_control,
  1505. .get_hwdep_fw_cal = wcd939x_get_hwdep_fw_cal,
  1506. .mbhc_micb_ctrl_thr_mic = wcd939x_mbhc_micb_ctrl_threshold_mic,
  1507. .compute_impedance = wcd939x_wcd_mbhc_calc_impedance,
  1508. .mbhc_gnd_det_ctrl = wcd939x_mbhc_gnd_det_ctrl,
  1509. .hph_pull_down_ctrl = wcd939x_mbhc_hph_pull_down_ctrl,
  1510. .mbhc_moisture_config = wcd939x_mbhc_moisture_config,
  1511. .mbhc_get_moisture_status = wcd939x_mbhc_get_moisture_status,
  1512. .mbhc_moisture_polling_ctrl = wcd939x_mbhc_moisture_polling_ctrl,
  1513. .mbhc_moisture_detect_en = wcd939x_mbhc_moisture_detect_en,
  1514. .bcs_enable = wcd939x_mbhc_bcs_enable,
  1515. .surge_reset_routine = wcd939x_surge_reset_routine,
  1516. };
  1517. static int wcd939x_get_hph_type(struct snd_kcontrol *kcontrol,
  1518. struct snd_ctl_elem_value *ucontrol)
  1519. {
  1520. struct snd_soc_component *component =
  1521. snd_soc_kcontrol_component(kcontrol);
  1522. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
  1523. struct wcd_mbhc *mbhc;
  1524. if (!wcd939x_mbhc) {
  1525. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1526. return -EINVAL;
  1527. }
  1528. mbhc = &wcd939x_mbhc->wcd_mbhc;
  1529. ucontrol->value.integer.value[0] = (u32) mbhc->hph_type;
  1530. dev_dbg(component->dev, "%s: hph_type = %u\n", __func__, mbhc->hph_type);
  1531. return 0;
  1532. }
  1533. static int wcd939x_hph_impedance_get(struct snd_kcontrol *kcontrol,
  1534. struct snd_ctl_elem_value *ucontrol)
  1535. {
  1536. uint32_t zl, zr;
  1537. bool hphr;
  1538. struct soc_multi_mixer_control *mc;
  1539. struct snd_soc_component *component =
  1540. snd_soc_kcontrol_component(kcontrol);
  1541. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
  1542. if (!wcd939x_mbhc) {
  1543. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1544. return -EINVAL;
  1545. }
  1546. mc = (struct soc_multi_mixer_control *)(kcontrol->private_value);
  1547. hphr = mc->shift;
  1548. wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, &zl, &zr);
  1549. dev_dbg(component->dev, "%s: zl=%u(ohms), zr=%u(ohms)\n", __func__, zl, zr);
  1550. ucontrol->value.integer.value[0] = hphr ? zr : zl;
  1551. return 0;
  1552. }
  1553. static const struct snd_kcontrol_new hph_type_detect_controls[] = {
  1554. SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0,
  1555. wcd939x_get_hph_type, NULL),
  1556. };
  1557. static const struct snd_kcontrol_new impedance_detect_controls[] = {
  1558. SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0,
  1559. wcd939x_hph_impedance_get, NULL),
  1560. SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0,
  1561. wcd939x_hph_impedance_get, NULL),
  1562. };
  1563. /*
  1564. * wcd939x_mbhc_get_impedance: get impedance of headphone
  1565. * left and right channels
  1566. * @wcd939x_mbhc: handle to struct wcd939x_mbhc *
  1567. * @zl: handle to left-ch impedance
  1568. * @zr: handle to right-ch impedance
  1569. * return 0 for success or error code in case of failure
  1570. */
  1571. int wcd939x_mbhc_get_impedance(struct wcd939x_mbhc *wcd939x_mbhc,
  1572. uint32_t *zl, uint32_t *zr)
  1573. {
  1574. if (!wcd939x_mbhc) {
  1575. pr_err_ratelimited("%s: mbhc not initialized!\n", __func__);
  1576. return -EINVAL;
  1577. }
  1578. if (!zl || !zr) {
  1579. pr_err_ratelimited("%s: zl or zr null!\n", __func__);
  1580. return -EINVAL;
  1581. }
  1582. return wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, zl, zr);
  1583. }
  1584. EXPORT_SYMBOL(wcd939x_mbhc_get_impedance);
  1585. /*
  1586. * wcd939x_mbhc_hs_detect: starts mbhc insertion/removal functionality
  1587. * @codec: handle to snd_soc_component *
  1588. * @mbhc_cfg: handle to mbhc configuration structure
  1589. * return 0 if mbhc_start is success or error code in case of failure
  1590. */
  1591. int wcd939x_mbhc_hs_detect(struct snd_soc_component *component,
  1592. struct wcd_mbhc_config *mbhc_cfg)
  1593. {
  1594. struct wcd939x_priv *wcd939x = NULL;
  1595. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1596. if (!component) {
  1597. pr_err_ratelimited("%s: component is NULL\n", __func__);
  1598. return -EINVAL;
  1599. }
  1600. wcd939x = snd_soc_component_get_drvdata(component);
  1601. if (!wcd939x) {
  1602. pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
  1603. return -EINVAL;
  1604. }
  1605. wcd939x_mbhc = wcd939x->mbhc;
  1606. if (!wcd939x_mbhc) {
  1607. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1608. return -EINVAL;
  1609. }
  1610. return wcd_mbhc_start(&wcd939x_mbhc->wcd_mbhc, mbhc_cfg);
  1611. }
  1612. EXPORT_SYMBOL(wcd939x_mbhc_hs_detect);
  1613. /*
  1614. * wcd939x_mbhc_hs_detect_exit: stop mbhc insertion/removal functionality
  1615. * @component: handle to snd_soc_component *
  1616. */
  1617. void wcd939x_mbhc_hs_detect_exit(struct snd_soc_component *component)
  1618. {
  1619. struct wcd939x_priv *wcd939x = NULL;
  1620. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1621. if (!component) {
  1622. pr_err_ratelimited("%s: component is NULL\n", __func__);
  1623. return;
  1624. }
  1625. wcd939x = snd_soc_component_get_drvdata(component);
  1626. if (!wcd939x) {
  1627. pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
  1628. return;
  1629. }
  1630. wcd939x_mbhc = wcd939x->mbhc;
  1631. if (!wcd939x_mbhc) {
  1632. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1633. return;
  1634. }
  1635. wcd_mbhc_stop(&wcd939x_mbhc->wcd_mbhc);
  1636. }
  1637. EXPORT_SYMBOL(wcd939x_mbhc_hs_detect_exit);
  1638. /*
  1639. * wcd939x_mbhc_ssr_down: stop mbhc during
  1640. * wcd939x subsystem restart
  1641. * mbhc: pointer to wcd937x_mbhc structure
  1642. * component: handle to snd_soc_component *
  1643. */
  1644. void wcd939x_mbhc_ssr_down(struct wcd939x_mbhc *mbhc,
  1645. struct snd_soc_component *component)
  1646. {
  1647. struct wcd_mbhc *wcd_mbhc = NULL;
  1648. if (!mbhc || !component)
  1649. return;
  1650. wcd_mbhc = &mbhc->wcd_mbhc;
  1651. if (!wcd_mbhc) {
  1652. dev_err_ratelimited(component->dev, "%s: wcd_mbhc is NULL\n", __func__);
  1653. return;
  1654. }
  1655. wcd939x_mbhc_hs_detect_exit(component);
  1656. wcd_mbhc_deinit(wcd_mbhc);
  1657. }
  1658. EXPORT_SYMBOL(wcd939x_mbhc_ssr_down);
  1659. /*
  1660. * wcd939x_mbhc_post_ssr_init: initialize mbhc for
  1661. * wcd939x post subsystem restart
  1662. * @mbhc: poniter to wcd939x_mbhc structure
  1663. * @component: handle to snd_soc_component *
  1664. *
  1665. * return 0 if mbhc_init is success or error code in case of failure
  1666. */
  1667. int wcd939x_mbhc_post_ssr_init(struct wcd939x_mbhc *mbhc,
  1668. struct snd_soc_component *component)
  1669. {
  1670. int ret = 0;
  1671. struct wcd_mbhc *wcd_mbhc = NULL;
  1672. if (!mbhc || !component)
  1673. return -EINVAL;
  1674. wcd_mbhc = &mbhc->wcd_mbhc;
  1675. if (wcd_mbhc == NULL) {
  1676. pr_err("%s: wcd_mbhc is NULL\n", __func__);
  1677. return -EINVAL;
  1678. }
  1679. /* Reset detection type to insertion after SSR recovery */
  1680. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1681. 0x20, 0x20);
  1682. ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids,
  1683. wcd_mbhc_registers, WCD939X_ZDET_SUPPORTED);
  1684. if (ret) {
  1685. dev_err(component->dev, "%s: mbhc initialization failed\n",
  1686. __func__);
  1687. goto done;
  1688. }
  1689. done:
  1690. return ret;
  1691. }
  1692. EXPORT_SYMBOL(wcd939x_mbhc_post_ssr_init);
  1693. /*
  1694. * wcd939x_mbhc_init: initialize mbhc for wcd939x
  1695. * @mbhc: poniter to wcd939x_mbhc struct pointer to store the configs
  1696. * @codec: handle to snd_soc_component *
  1697. * @fw_data: handle to firmware data
  1698. *
  1699. * return 0 if mbhc_init is success or error code in case of failure
  1700. */
  1701. int wcd939x_mbhc_init(struct wcd939x_mbhc **mbhc,
  1702. struct snd_soc_component *component,
  1703. struct fw_info *fw_data)
  1704. {
  1705. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1706. struct wcd_mbhc *wcd_mbhc = NULL;
  1707. int ret = 0;
  1708. struct wcd939x_pdata *pdata;
  1709. struct wcd939x_priv *wcd939x;
  1710. if (!component) {
  1711. pr_err("%s: component is NULL\n", __func__);
  1712. return -EINVAL;
  1713. }
  1714. wcd939x_mbhc = devm_kzalloc(component->dev, sizeof(struct wcd939x_mbhc),
  1715. GFP_KERNEL);
  1716. if (!wcd939x_mbhc)
  1717. return -ENOMEM;
  1718. wcd939x_mbhc->fw_data = fw_data;
  1719. BLOCKING_INIT_NOTIFIER_HEAD(&wcd939x_mbhc->notifier);
  1720. wcd_mbhc = &wcd939x_mbhc->wcd_mbhc;
  1721. if (wcd_mbhc == NULL) {
  1722. pr_err("%s: wcd_mbhc is NULL\n", __func__);
  1723. ret = -EINVAL;
  1724. goto err;
  1725. }
  1726. /* Setting default mbhc detection logic to ADC */
  1727. wcd_mbhc->mbhc_detection_logic = WCD_DETECTION_ADC;
  1728. /* Down ramp timer set-up */
  1729. timer_setup(&wcd939x_mbhc->rdown_timer, rdown_timer_callback, 0);
  1730. wcd939x_mbhc->rdown_prev_iter = 0;
  1731. wcd939x_mbhc->rdown_timer_complete = false;
  1732. pdata = dev_get_platdata(component->dev);
  1733. if (!pdata) {
  1734. dev_err(component->dev, "%s: pdata pointer is NULL\n",
  1735. __func__);
  1736. ret = -EINVAL;
  1737. goto err;
  1738. }
  1739. wcd_mbhc->micb_mv = pdata->micbias.micb2_mv;
  1740. ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb,
  1741. &intr_ids, wcd_mbhc_registers,
  1742. WCD939X_ZDET_SUPPORTED);
  1743. if (ret) {
  1744. dev_err(component->dev, "%s: mbhc initialization failed\n",
  1745. __func__);
  1746. goto err;
  1747. }
  1748. (*mbhc) = wcd939x_mbhc;
  1749. snd_soc_add_component_controls(component, impedance_detect_controls,
  1750. ARRAY_SIZE(impedance_detect_controls));
  1751. snd_soc_add_component_controls(component, hph_type_detect_controls,
  1752. ARRAY_SIZE(hph_type_detect_controls));
  1753. wcd939x = dev_get_drvdata(component->dev);
  1754. if (!wcd939x) {
  1755. dev_err(component->dev, "%s: wcd939x pointer is NULL\n", __func__);
  1756. ret = -EINVAL;
  1757. goto err;
  1758. }
  1759. usbcss_hs_sysfs_init(wcd939x);
  1760. return 0;
  1761. err:
  1762. if (wcd939x_mbhc)
  1763. del_timer(&wcd939x_mbhc->rdown_timer);
  1764. devm_kfree(component->dev, wcd939x_mbhc);
  1765. return ret;
  1766. }
  1767. EXPORT_SYMBOL(wcd939x_mbhc_init);
  1768. /*
  1769. * wcd939x_mbhc_deinit: deinitialize mbhc for wcd939x
  1770. * @codec: handle to snd_soc_component *
  1771. */
  1772. void wcd939x_mbhc_deinit(struct snd_soc_component *component)
  1773. {
  1774. struct wcd939x_priv *wcd939x;
  1775. struct wcd939x_mbhc *wcd939x_mbhc;
  1776. if (!component) {
  1777. pr_err("%s: component is NULL\n", __func__);
  1778. return;
  1779. }
  1780. wcd939x = snd_soc_component_get_drvdata(component);
  1781. if (!wcd939x) {
  1782. pr_err("%s: wcd939x is NULL\n", __func__);
  1783. return;
  1784. }
  1785. wcd939x_mbhc = wcd939x->mbhc;
  1786. if (wcd939x_mbhc) {
  1787. del_timer(&wcd939x_mbhc->rdown_timer);
  1788. wcd_mbhc_deinit(&wcd939x_mbhc->wcd_mbhc);
  1789. devm_kfree(component->dev, wcd939x_mbhc);
  1790. }
  1791. }
  1792. EXPORT_SYMBOL(wcd939x_mbhc_deinit);