power.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/pinctrl/consumer.h>
  13. #include <linux/regulator/consumer.h>
  14. #include <soc/qcom/cmd-db.h>
  15. #include "main.h"
  16. #include "qmi.h"
  17. #include "debug.h"
  18. #include "power.h"
  19. static struct icnss_vreg_cfg icnss_wcn6750_vreg_list[] = {
  20. {"vdd-cx-mx", 824000, 952000, 0, 0, 0, false, true},
  21. {"vdd-1.8-xo", 1872000, 1872000, 0, 0, 0, false, true},
  22. {"vdd-1.3-rfa", 1256000, 1352000, 0, 0, 0, false, true},
  23. };
  24. static struct icnss_vreg_cfg icnss_adrestea_vreg_list[] = {
  25. {"vdd-cx-mx", 752000, 752000, 0, 0, 0, false, true},
  26. {"vdd-1.8-xo", 1800000, 1800000, 0, 0, 0, false, true},
  27. {"vdd-1.3-rfa", 1304000, 1304000, 0, 0, 0, false, true},
  28. {"vdd-3.3-ch1", 3312000, 3312000, 0, 0, 0, false, true},
  29. {"vdd-3.3-ch0", 3312000, 3312000, 0, 0, 0, false, true},
  30. };
  31. static struct icnss_battery_level icnss_battery_level[] = {
  32. {70, 3300000},
  33. {60, 3200000},
  34. {50, 3100000},
  35. {25, 3000000},
  36. {0, 2850000},
  37. };
  38. static struct icnss_vreg_cfg icnss_wcn6450_vreg_list[] = {
  39. {"vdd-cx-mx", 824000, 952000, 0, 0, 0, false, true},
  40. {"vdd-1.8-xo", 1872000, 1872000, 0, 0, 0, false, true},
  41. {"vdd-1.3-rfa", 1256000, 1352000, 0, 0, 0, false, true},
  42. {"vdd-aon", 1256000, 1352000, 0, 0, 0, false, true},
  43. };
  44. static struct icnss_clk_cfg icnss_clk_list[] = {
  45. {"rf_clk", 0, 0},
  46. };
  47. static struct icnss_clk_cfg icnss_adrestea_clk_list[] = {
  48. {"cxo_ref_clk_pin", 0, 0},
  49. };
  50. #define ICNSS_VREG_LIST_SIZE ARRAY_SIZE(icnss_wcn6750_vreg_list)
  51. #define ICNSS_VREG_ADRESTEA_LIST_SIZE ARRAY_SIZE(icnss_adrestea_vreg_list)
  52. #define ICNSS_VREG_EVROS_LIST_SIZE ARRAY_SIZE(icnss_wcn6450_vreg_list)
  53. #define ICNSS_CLK_LIST_SIZE ARRAY_SIZE(icnss_clk_list)
  54. #define ICNSS_CLK_ADRESTEA_LIST_SIZE ARRAY_SIZE(icnss_adrestea_clk_list)
  55. #define ICNSS_CHAIN1_REGULATOR "vdd-3.3-ch1"
  56. #define MAX_PROP_SIZE 32
  57. #define BT_CXMX_VOLTAGE_MV 950
  58. #define ICNSS_MBOX_MSG_MAX_LEN 64
  59. #define ICNSS_MBOX_TIMEOUT_MS 1000
  60. #define ICNSS_BATTERY_LEVEL_COUNT ARRAY_SIZE(icnss_battery_level)
  61. #define ICNSS_MAX_BATTERY_LEVEL 100
  62. /**
  63. * enum icnss_vreg_param: Voltage regulator TCS param
  64. * @ICNSS_VREG_VOLTAGE: Provides voltage level to be configured in TCS
  65. * @ICNSS_VREG_MODE: Regulator mode
  66. * @ICNSS_VREG_ENABLE: Set Voltage regulator enable config in TCS
  67. */
  68. enum icnss_vreg_param {
  69. ICNSS_VREG_VOLTAGE,
  70. ICNSS_VREG_MODE,
  71. ICNSS_VREG_ENABLE,
  72. };
  73. /**
  74. * enum icnss_tcs_seq: TCS sequence ID for trigger
  75. * ICNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  76. * ICNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  77. * ICNSS_TCS_ALL_SEQ: Update for both up and down triggers
  78. */
  79. enum icnss_tcs_seq {
  80. ICNSS_TCS_UP_SEQ,
  81. ICNSS_TCS_DOWN_SEQ,
  82. ICNSS_TCS_ALL_SEQ,
  83. };
  84. static int icnss_get_vreg_single(struct icnss_priv *priv,
  85. struct icnss_vreg_info *vreg)
  86. {
  87. int ret = 0;
  88. struct device *dev = NULL;
  89. struct regulator *reg = NULL;
  90. const __be32 *prop = NULL;
  91. char prop_name[MAX_PROP_SIZE] = {0};
  92. int len = 0;
  93. int i;
  94. dev = &priv->pdev->dev;
  95. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  96. if (IS_ERR(reg)) {
  97. ret = PTR_ERR(reg);
  98. if (ret == -ENODEV) {
  99. return ret;
  100. } else if (ret == -EPROBE_DEFER) {
  101. icnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  102. vreg->cfg.name);
  103. goto out;
  104. } else if (priv->device_id == ADRASTEA_DEVICE_ID) {
  105. if (vreg->cfg.required) {
  106. icnss_pr_err("Regulator %s doesn't exist: %d\n",
  107. vreg->cfg.name, ret);
  108. goto out;
  109. } else {
  110. icnss_pr_dbg("Optional regulator %s doesn't exist: %d\n",
  111. vreg->cfg.name, ret);
  112. goto done;
  113. }
  114. } else {
  115. icnss_pr_err("Failed to get regulator %s, err = %d\n",
  116. vreg->cfg.name, ret);
  117. goto out;
  118. }
  119. }
  120. vreg->reg = reg;
  121. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  122. vreg->cfg.name);
  123. prop = of_get_property(dev->of_node, prop_name, &len);
  124. icnss_pr_dbg("Got regulator config, prop: %s, len: %d\n",
  125. prop_name, len);
  126. if (!prop || len < (2 * sizeof(__be32))) {
  127. icnss_pr_dbg("Property %s %s, use default\n", prop_name,
  128. prop ? "invalid format" : "doesn't exist");
  129. goto done;
  130. }
  131. for (i = 0; (i * sizeof(__be32)) < len; i++) {
  132. switch (i) {
  133. case 0:
  134. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  135. break;
  136. case 1:
  137. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  138. break;
  139. case 2:
  140. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  141. break;
  142. case 3:
  143. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  144. break;
  145. case 4:
  146. if (priv->device_id == WCN6750_DEVICE_ID)
  147. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  148. else
  149. vreg->cfg.need_unvote = 0;
  150. break;
  151. default:
  152. icnss_pr_dbg("Property %s, ignoring value at %d\n",
  153. prop_name, i);
  154. break;
  155. }
  156. }
  157. done:
  158. icnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  159. vreg->cfg.name, vreg->cfg.min_uv,
  160. vreg->cfg.max_uv, vreg->cfg.load_ua,
  161. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  162. return 0;
  163. out:
  164. return ret;
  165. }
  166. static int icnss_vreg_on_single(struct icnss_vreg_info *vreg)
  167. {
  168. int ret = 0;
  169. if (vreg->enabled) {
  170. icnss_pr_dbg("Regulator %s is already enabled\n",
  171. vreg->cfg.name);
  172. return 0;
  173. }
  174. icnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  175. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  176. ret = regulator_set_voltage(vreg->reg,
  177. vreg->cfg.min_uv,
  178. vreg->cfg.max_uv);
  179. if (ret) {
  180. icnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  181. vreg->cfg.name, vreg->cfg.min_uv,
  182. vreg->cfg.max_uv, ret);
  183. goto out;
  184. }
  185. }
  186. if (vreg->cfg.load_ua) {
  187. ret = regulator_set_load(vreg->reg,
  188. vreg->cfg.load_ua);
  189. if (ret < 0) {
  190. icnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  191. vreg->cfg.name, vreg->cfg.load_ua,
  192. ret);
  193. goto out;
  194. }
  195. }
  196. if (vreg->cfg.delay_us)
  197. udelay(vreg->cfg.delay_us);
  198. ret = regulator_enable(vreg->reg);
  199. if (ret) {
  200. icnss_pr_err("Failed to enable regulator %s, err = %d\n",
  201. vreg->cfg.name, ret);
  202. goto out;
  203. }
  204. vreg->enabled = true;
  205. out:
  206. return ret;
  207. }
  208. static int icnss_vreg_unvote_single(struct icnss_vreg_info *vreg)
  209. {
  210. int ret = 0;
  211. if (!vreg->enabled) {
  212. icnss_pr_dbg("Regulator %s is already disabled\n",
  213. vreg->cfg.name);
  214. return 0;
  215. }
  216. icnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  217. if (vreg->cfg.load_ua) {
  218. ret = regulator_set_load(vreg->reg, 0);
  219. if (ret < 0)
  220. icnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  221. vreg->cfg.name, ret);
  222. }
  223. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  224. ret = regulator_set_voltage(vreg->reg, 0,
  225. vreg->cfg.max_uv);
  226. if (ret)
  227. icnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  228. vreg->cfg.name, ret);
  229. }
  230. return ret;
  231. }
  232. static int icnss_vreg_off_single(struct icnss_vreg_info *vreg)
  233. {
  234. int ret = 0;
  235. if (!vreg->enabled) {
  236. icnss_pr_dbg("Regulator %s is already disabled\n",
  237. vreg->cfg.name);
  238. return 0;
  239. }
  240. icnss_pr_dbg("Regulator %s is being disabled\n",
  241. vreg->cfg.name);
  242. ret = regulator_disable(vreg->reg);
  243. if (ret)
  244. icnss_pr_err("Failed to disable regulator %s, err = %d\n",
  245. vreg->cfg.name, ret);
  246. if (vreg->cfg.load_ua) {
  247. ret = regulator_set_load(vreg->reg, 0);
  248. if (ret < 0)
  249. icnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  250. vreg->cfg.name, ret);
  251. }
  252. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  253. ret = regulator_set_voltage(vreg->reg, 0,
  254. vreg->cfg.max_uv);
  255. if (ret)
  256. icnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  257. vreg->cfg.name, ret);
  258. }
  259. vreg->enabled = false;
  260. return ret;
  261. }
  262. static struct icnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  263. unsigned long device_id)
  264. {
  265. switch (device_id) {
  266. case WCN6750_DEVICE_ID:
  267. *vreg_list_size = ICNSS_VREG_LIST_SIZE;
  268. return icnss_wcn6750_vreg_list;
  269. case ADRASTEA_DEVICE_ID:
  270. *vreg_list_size = ICNSS_VREG_ADRESTEA_LIST_SIZE;
  271. return icnss_adrestea_vreg_list;
  272. case WCN6450_DEVICE_ID:
  273. *vreg_list_size = ICNSS_VREG_EVROS_LIST_SIZE;
  274. return icnss_wcn6450_vreg_list;
  275. default:
  276. icnss_pr_err("Unsupported device_id 0x%x\n", device_id);
  277. *vreg_list_size = 0;
  278. return NULL;
  279. }
  280. }
  281. int icnss_get_vreg(struct icnss_priv *priv)
  282. {
  283. int ret = 0;
  284. int i;
  285. struct icnss_vreg_info *vreg;
  286. struct icnss_vreg_cfg *vreg_cfg = NULL;
  287. struct list_head *vreg_list = &priv->vreg_list;
  288. struct device *dev = &priv->pdev->dev;
  289. u32 vreg_list_size = 0;
  290. vreg_cfg = get_vreg_list(&vreg_list_size, priv->device_id);
  291. if (!vreg_cfg)
  292. return -EINVAL;
  293. for (i = 0; i < vreg_list_size; i++) {
  294. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  295. if (!vreg)
  296. return -ENOMEM;
  297. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  298. ret = icnss_get_vreg_single(priv, vreg);
  299. if (ret != 0) {
  300. if (ret == -ENODEV)
  301. continue;
  302. else
  303. return ret;
  304. }
  305. list_add_tail(&vreg->list, vreg_list);
  306. }
  307. return 0;
  308. }
  309. void icnss_put_vreg(struct icnss_priv *priv)
  310. {
  311. struct list_head *vreg_list = &priv->vreg_list;
  312. struct icnss_vreg_info *vreg = NULL;
  313. while (!list_empty(vreg_list)) {
  314. vreg = list_first_entry(vreg_list,
  315. struct icnss_vreg_info, list);
  316. list_del(&vreg->list);
  317. }
  318. }
  319. static int icnss_vreg_on(struct icnss_priv *priv)
  320. {
  321. struct list_head *vreg_list = &priv->vreg_list;
  322. struct icnss_vreg_info *vreg = NULL;
  323. int ret = 0;
  324. list_for_each_entry(vreg, vreg_list, list) {
  325. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->cfg.is_supported)
  326. continue;
  327. if (!priv->chain_reg_info_updated &&
  328. !strcmp(ICNSS_CHAIN1_REGULATOR, vreg->cfg.name)) {
  329. priv->chain_reg_info_updated = true;
  330. if (!priv->is_chain1_supported) {
  331. vreg->cfg.is_supported = false;
  332. continue;
  333. }
  334. }
  335. ret = icnss_vreg_on_single(vreg);
  336. if (ret)
  337. break;
  338. }
  339. if (!ret)
  340. return 0;
  341. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  342. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  343. continue;
  344. icnss_vreg_off_single(vreg);
  345. }
  346. return ret;
  347. }
  348. static int icnss_vreg_off(struct icnss_priv *priv)
  349. {
  350. struct list_head *vreg_list = &priv->vreg_list;
  351. struct icnss_vreg_info *vreg = NULL;
  352. list_for_each_entry_reverse(vreg, vreg_list, list) {
  353. if (IS_ERR_OR_NULL(vreg->reg))
  354. continue;
  355. icnss_vreg_off_single(vreg);
  356. }
  357. return 0;
  358. }
  359. int icnss_vreg_unvote(struct icnss_priv *priv)
  360. {
  361. struct list_head *vreg_list = &priv->vreg_list;
  362. struct icnss_vreg_info *vreg = NULL;
  363. list_for_each_entry_reverse(vreg, vreg_list, list) {
  364. if (IS_ERR_OR_NULL(vreg->reg))
  365. continue;
  366. if (vreg->cfg.need_unvote)
  367. icnss_vreg_unvote_single(vreg);
  368. }
  369. return 0;
  370. }
  371. int icnss_get_clk_single(struct icnss_priv *priv,
  372. struct icnss_clk_info *clk_info)
  373. {
  374. struct device *dev = &priv->pdev->dev;
  375. struct clk *clk;
  376. int ret;
  377. clk = devm_clk_get(dev, clk_info->cfg.name);
  378. if (IS_ERR(clk)) {
  379. ret = PTR_ERR(clk);
  380. if (clk_info->cfg.required)
  381. icnss_pr_err("Failed to get clock %s, err = %d\n",
  382. clk_info->cfg.name, ret);
  383. else
  384. icnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  385. clk_info->cfg.name, ret);
  386. return ret;
  387. }
  388. clk_info->clk = clk;
  389. icnss_pr_dbg("Got clock: %s, freq: %u\n",
  390. clk_info->cfg.name, clk_info->cfg.freq);
  391. return 0;
  392. }
  393. static int icnss_clk_on_single(struct icnss_clk_info *clk_info)
  394. {
  395. int ret;
  396. if (clk_info->enabled) {
  397. icnss_pr_dbg("Clock %s is already enabled\n",
  398. clk_info->cfg.name);
  399. return 0;
  400. }
  401. icnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  402. if (clk_info->cfg.freq) {
  403. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  404. if (ret) {
  405. icnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  406. clk_info->cfg.freq, clk_info->cfg.name,
  407. ret);
  408. return ret;
  409. }
  410. }
  411. ret = clk_prepare_enable(clk_info->clk);
  412. if (ret) {
  413. icnss_pr_err("Failed to enable clock %s, err = %d\n",
  414. clk_info->cfg.name, ret);
  415. return ret;
  416. }
  417. clk_info->enabled = true;
  418. return 0;
  419. }
  420. static int icnss_clk_off_single(struct icnss_clk_info *clk_info)
  421. {
  422. if (!clk_info->enabled) {
  423. icnss_pr_dbg("Clock %s is already disabled\n",
  424. clk_info->cfg.name);
  425. return 0;
  426. }
  427. icnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  428. clk_disable_unprepare(clk_info->clk);
  429. clk_info->enabled = false;
  430. return 0;
  431. }
  432. int icnss_get_clk(struct icnss_priv *priv)
  433. {
  434. struct device *dev;
  435. struct list_head *clk_list;
  436. struct icnss_clk_info *clk_info;
  437. struct icnss_clk_cfg *clk_cfg;
  438. int ret, i;
  439. u32 clk_list_size = 0;
  440. if (!priv)
  441. return -ENODEV;
  442. dev = &priv->pdev->dev;
  443. clk_list = &priv->clk_list;
  444. if (priv->device_id == ADRASTEA_DEVICE_ID) {
  445. clk_cfg = icnss_adrestea_clk_list;
  446. clk_list_size = ICNSS_CLK_ADRESTEA_LIST_SIZE;
  447. } else if (priv->device_id == WCN6750_DEVICE_ID ||
  448. priv->device_id == WCN6450_DEVICE_ID) {
  449. clk_cfg = icnss_clk_list;
  450. clk_list_size = ICNSS_CLK_LIST_SIZE;
  451. }
  452. if (!list_empty(clk_list)) {
  453. icnss_pr_dbg("Clocks have already been updated\n");
  454. return 0;
  455. }
  456. for (i = 0; i < clk_list_size; i++) {
  457. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  458. if (!clk_info) {
  459. ret = -ENOMEM;
  460. goto cleanup;
  461. }
  462. memcpy(&clk_info->cfg, &clk_cfg[i],
  463. sizeof(clk_info->cfg));
  464. ret = icnss_get_clk_single(priv, clk_info);
  465. if (ret != 0) {
  466. if (clk_info->cfg.required)
  467. goto cleanup;
  468. else
  469. continue;
  470. }
  471. list_add_tail(&clk_info->list, clk_list);
  472. }
  473. return 0;
  474. cleanup:
  475. while (!list_empty(clk_list)) {
  476. clk_info = list_first_entry(clk_list, struct icnss_clk_info,
  477. list);
  478. list_del(&clk_info->list);
  479. }
  480. return ret;
  481. }
  482. void icnss_put_clk(struct icnss_priv *priv)
  483. {
  484. struct device *dev;
  485. struct list_head *clk_list;
  486. struct icnss_clk_info *clk_info;
  487. if (!priv)
  488. return;
  489. dev = &priv->pdev->dev;
  490. clk_list = &priv->clk_list;
  491. while (!list_empty(clk_list)) {
  492. clk_info = list_first_entry(clk_list, struct icnss_clk_info,
  493. list);
  494. list_del(&clk_info->list);
  495. }
  496. }
  497. static int icnss_clk_on(struct list_head *clk_list)
  498. {
  499. struct icnss_clk_info *clk_info;
  500. int ret = 0;
  501. list_for_each_entry(clk_info, clk_list, list) {
  502. if (IS_ERR_OR_NULL(clk_info->clk))
  503. continue;
  504. ret = icnss_clk_on_single(clk_info);
  505. if (ret)
  506. break;
  507. }
  508. if (!ret)
  509. return 0;
  510. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  511. if (IS_ERR_OR_NULL(clk_info->clk))
  512. continue;
  513. icnss_clk_off_single(clk_info);
  514. }
  515. return ret;
  516. }
  517. static int icnss_clk_off(struct list_head *clk_list)
  518. {
  519. struct icnss_clk_info *clk_info;
  520. list_for_each_entry_reverse(clk_info, clk_list, list) {
  521. if (IS_ERR_OR_NULL(clk_info->clk))
  522. continue;
  523. icnss_clk_off_single(clk_info);
  524. }
  525. return 0;
  526. }
  527. int icnss_hw_power_on(struct icnss_priv *priv)
  528. {
  529. int ret = 0;
  530. icnss_pr_dbg("HW Power on: state: 0x%lx\n", priv->state);
  531. spin_lock(&priv->on_off_lock);
  532. if (test_bit(ICNSS_POWER_ON, &priv->state)) {
  533. spin_unlock(&priv->on_off_lock);
  534. return ret;
  535. }
  536. set_bit(ICNSS_POWER_ON, &priv->state);
  537. spin_unlock(&priv->on_off_lock);
  538. ret = icnss_vreg_on(priv);
  539. if (ret) {
  540. icnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  541. goto out;
  542. }
  543. ret = icnss_clk_on(&priv->clk_list);
  544. if (ret)
  545. goto vreg_off;
  546. return ret;
  547. vreg_off:
  548. icnss_vreg_off(priv);
  549. out:
  550. clear_bit(ICNSS_POWER_ON, &priv->state);
  551. return ret;
  552. }
  553. int icnss_hw_power_off(struct icnss_priv *priv)
  554. {
  555. int ret = 0;
  556. if (test_bit(HW_ALWAYS_ON, &priv->ctrl_params.quirks))
  557. return 0;
  558. if (test_bit(ICNSS_FW_DOWN, &priv->state))
  559. return 0;
  560. icnss_pr_dbg("HW Power off: 0x%lx\n", priv->state);
  561. spin_lock(&priv->on_off_lock);
  562. if (!test_bit(ICNSS_POWER_ON, &priv->state)) {
  563. spin_unlock(&priv->on_off_lock);
  564. return ret;
  565. }
  566. clear_bit(ICNSS_POWER_ON, &priv->state);
  567. spin_unlock(&priv->on_off_lock);
  568. icnss_clk_off(&priv->clk_list);
  569. ret = icnss_vreg_off(priv);
  570. return ret;
  571. }
  572. int icnss_power_on(struct device *dev)
  573. {
  574. struct icnss_priv *priv = dev_get_drvdata(dev);
  575. if (!priv) {
  576. icnss_pr_err("Invalid drvdata: dev %pK, data %pK\n",
  577. dev, priv);
  578. return -EINVAL;
  579. }
  580. icnss_pr_dbg("Power On: 0x%lx\n", priv->state);
  581. return icnss_hw_power_on(priv);
  582. }
  583. EXPORT_SYMBOL(icnss_power_on);
  584. int icnss_power_off(struct device *dev)
  585. {
  586. struct icnss_priv *priv = dev_get_drvdata(dev);
  587. if (!priv) {
  588. icnss_pr_err("Invalid drvdata: dev %pK, data %pK\n",
  589. dev, priv);
  590. return -EINVAL;
  591. }
  592. icnss_pr_dbg("Power Off: 0x%lx\n", priv->state);
  593. return icnss_hw_power_off(priv);
  594. }
  595. EXPORT_SYMBOL(icnss_power_off);
  596. void icnss_put_resources(struct icnss_priv *priv)
  597. {
  598. icnss_put_clk(priv);
  599. icnss_put_vreg(priv);
  600. }
  601. int icnss_aop_mbox_init(struct icnss_priv *priv)
  602. {
  603. struct mbox_client *mbox = &priv->mbox_client_data;
  604. struct mbox_chan *chan;
  605. int ret = 0;
  606. ret = of_property_read_string(priv->pdev->dev.of_node,
  607. "qcom,vreg_ol_cpr",
  608. &priv->cpr_info.vreg_ol_cpr);
  609. if (ret) {
  610. icnss_pr_dbg("Vreg for OL CPR not configured\n");
  611. return -EINVAL;
  612. }
  613. mbox->dev = &priv->pdev->dev;
  614. mbox->tx_block = true;
  615. mbox->tx_tout = ICNSS_MBOX_TIMEOUT_MS;
  616. mbox->knows_txdone = false;
  617. priv->mbox_chan = NULL;
  618. chan = mbox_request_channel(mbox, 0);
  619. if (IS_ERR(chan)) {
  620. ret = PTR_ERR(chan);
  621. icnss_pr_err("Failed to get mbox channel with err %d\n", ret);
  622. return ret;
  623. }
  624. priv->mbox_chan = chan;
  625. icnss_pr_dbg("Mbox channel initialized\n");
  626. return 0;
  627. }
  628. #if IS_ENABLED(CONFIG_MSM_QMP)
  629. static int icnss_aop_set_vreg_param(struct icnss_priv *priv,
  630. const char *vreg_name,
  631. enum icnss_vreg_param param,
  632. enum icnss_tcs_seq seq, int val)
  633. {
  634. struct qmp_pkt pkt;
  635. char mbox_msg[ICNSS_MBOX_MSG_MAX_LEN];
  636. static const char * const vreg_param_str[] = {"v", "m", "e"};
  637. static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"};
  638. int ret = 0;
  639. if (param > ICNSS_VREG_ENABLE || seq > ICNSS_TCS_ALL_SEQ || !vreg_name)
  640. return -EINVAL;
  641. snprintf(mbox_msg, ICNSS_MBOX_MSG_MAX_LEN,
  642. "{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name,
  643. vreg_param_str[param], tcs_seq_str[seq], val);
  644. icnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  645. pkt.size = ICNSS_MBOX_MSG_MAX_LEN;
  646. pkt.data = mbox_msg;
  647. ret = mbox_send_message(priv->mbox_chan, &pkt);
  648. if (ret < 0)
  649. icnss_pr_err("Failed to send AOP mbox msg: %s,ret: %d\n",
  650. mbox_msg, ret);
  651. else
  652. ret = 0;
  653. return ret;
  654. }
  655. #else
  656. static int icnss_aop_set_vreg_param(struct icnss_priv *priv,
  657. const char *vreg_name,
  658. enum icnss_vreg_param param,
  659. enum icnss_tcs_seq seq, int val)
  660. {
  661. return 0;
  662. }
  663. #endif
  664. int icnss_update_cpr_info(struct icnss_priv *priv)
  665. {
  666. struct icnss_cpr_info *cpr_info = &priv->cpr_info;
  667. if (!cpr_info->vreg_ol_cpr || !priv->mbox_chan) {
  668. icnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  669. return 0;
  670. }
  671. if (cpr_info->voltage == 0) {
  672. icnss_pr_err("Voltage %dmV is not valid\n", cpr_info->voltage);
  673. return -EINVAL;
  674. }
  675. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  676. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  677. return icnss_aop_set_vreg_param(priv,
  678. cpr_info->vreg_ol_cpr,
  679. ICNSS_VREG_VOLTAGE,
  680. ICNSS_TCS_UP_SEQ,
  681. cpr_info->voltage);
  682. }
  683. static int icnss_get_battery_level(struct icnss_priv *priv)
  684. {
  685. int err = 0, battery_percentage = 0;
  686. union power_supply_propval psp = {0,};
  687. if (!priv->batt_psy)
  688. priv->batt_psy = power_supply_get_by_name("battery");
  689. if (priv->batt_psy) {
  690. err = power_supply_get_property(priv->batt_psy,
  691. POWER_SUPPLY_PROP_CAPACITY,
  692. &psp);
  693. if (err) {
  694. icnss_pr_err("battery percentage read error:%d\n", err);
  695. goto out;
  696. }
  697. battery_percentage = psp.intval;
  698. }
  699. icnss_pr_info("Battery Percentage: %d\n", battery_percentage);
  700. out:
  701. return battery_percentage;
  702. }
  703. static void icnss_update_soc_level(struct work_struct *work)
  704. {
  705. int battery_percentage = 0, current_updated_voltage = 0, err = 0;
  706. int level_count;
  707. struct icnss_priv *priv = container_of(work, struct icnss_priv, soc_update_work);
  708. battery_percentage = icnss_get_battery_level(priv);
  709. if (!battery_percentage ||
  710. battery_percentage > ICNSS_MAX_BATTERY_LEVEL) {
  711. icnss_pr_err("Battery percentage read failure\n");
  712. return;
  713. }
  714. for (level_count = 0; level_count < ICNSS_BATTERY_LEVEL_COUNT;
  715. level_count++) {
  716. if (battery_percentage >=
  717. icnss_battery_level[level_count].lower_battery_threshold) {
  718. current_updated_voltage =
  719. icnss_battery_level[level_count].ldo_voltage;
  720. break;
  721. }
  722. }
  723. if (level_count != ICNSS_BATTERY_LEVEL_COUNT &&
  724. priv->last_updated_voltage != current_updated_voltage) {
  725. err = icnss_send_vbatt_update(priv, current_updated_voltage);
  726. if (err < 0) {
  727. icnss_pr_err("Unable to update ldo voltage");
  728. return;
  729. }
  730. priv->last_updated_voltage = current_updated_voltage;
  731. }
  732. }
  733. static int icnss_battery_supply_callback(struct notifier_block *nb,
  734. unsigned long event, void *data)
  735. {
  736. struct power_supply *psy = data;
  737. struct icnss_priv *priv = container_of(nb, struct icnss_priv,
  738. psf_nb);
  739. if (strcmp(psy->desc->name, "battery"))
  740. return NOTIFY_OK;
  741. if (test_bit(ICNSS_WLFW_CONNECTED, &priv->state) &&
  742. !test_bit(ICNSS_FW_DOWN, &priv->state))
  743. queue_work(priv->soc_update_wq, &priv->soc_update_work);
  744. return NOTIFY_OK;
  745. }
  746. int icnss_get_psf_info(struct icnss_priv *priv)
  747. {
  748. int ret = 0;
  749. priv->soc_update_wq = alloc_workqueue("icnss_soc_update",
  750. WQ_UNBOUND, 1);
  751. if (!priv->soc_update_wq) {
  752. icnss_pr_err("Workqueue creation failed for soc update\n");
  753. ret = -EFAULT;
  754. goto out;
  755. }
  756. priv->psf_nb.notifier_call = icnss_battery_supply_callback;
  757. ret = power_supply_reg_notifier(&priv->psf_nb);
  758. if (ret < 0) {
  759. icnss_pr_err("Power supply framework registration err: %d\n",
  760. ret);
  761. goto err_psf_registration;
  762. }
  763. INIT_WORK(&priv->soc_update_work, icnss_update_soc_level);
  764. return 0;
  765. err_psf_registration:
  766. destroy_workqueue(priv->soc_update_wq);
  767. out:
  768. return ret;
  769. }