hal_api_mon.h 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #include <target_type.h>
  23. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  24. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  25. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  26. #define HAL_RX_GET(_ptr, block, field) \
  27. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  28. HAL_RX_MASk(block, field)) >> \
  29. HAL_RX_LSB(block, field))
  30. #define HAL_RX_PHY_DATA_RADAR 0x01
  31. #define HAL_SU_MU_CODING_LDPC 0x01
  32. #define HAL_RX_FCS_LEN (4)
  33. #define KEY_EXTIV 0x20
  34. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  35. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  36. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  37. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  38. #define HAL_RX_USER_TLV32_LEN_LSB 10
  39. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  40. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  41. #define HAL_RX_USER_TLV32_USERID_LSB 26
  42. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  43. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  44. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  45. #define HAL_RX_TLV32_HDR_SIZE 4
  46. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  47. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  48. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  49. HAL_RX_USER_TLV32_TYPE_LSB)
  50. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  51. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  52. HAL_RX_USER_TLV32_LEN_MASK) >> \
  53. HAL_RX_USER_TLV32_LEN_LSB)
  54. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  55. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  56. HAL_RX_USER_TLV32_USERID_MASK) >> \
  57. HAL_RX_USER_TLV32_USERID_LSB)
  58. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  59. #define HAL_TLV_STATUS_PPDU_DONE 1
  60. #define HAL_TLV_STATUS_BUF_DONE 2
  61. #define HAL_TLV_STATUS_PPDU_NON_STD_DONE 3
  62. #define HAL_MAX_UL_MU_USERS 8
  63. #define HAL_RX_PKT_TYPE_11A 0
  64. #define HAL_RX_PKT_TYPE_11B 1
  65. #define HAL_RX_PKT_TYPE_11N 2
  66. #define HAL_RX_PKT_TYPE_11AC 3
  67. #define HAL_RX_PKT_TYPE_11AX 4
  68. #define HAL_RX_RECEPTION_TYPE_SU 0
  69. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  70. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  71. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  72. /* Multiply rate by 2 to avoid float point
  73. * and get rate in units of 500kbps
  74. */
  75. #define HAL_11B_RATE_0MCS 11*2
  76. #define HAL_11B_RATE_1MCS 5.5*2
  77. #define HAL_11B_RATE_2MCS 2*2
  78. #define HAL_11B_RATE_3MCS 1*2
  79. #define HAL_11B_RATE_4MCS 11*2
  80. #define HAL_11B_RATE_5MCS 5.5*2
  81. #define HAL_11B_RATE_6MCS 2*2
  82. #define HAL_11A_RATE_0MCS 48*2
  83. #define HAL_11A_RATE_1MCS 24*2
  84. #define HAL_11A_RATE_2MCS 12*2
  85. #define HAL_11A_RATE_3MCS 6*2
  86. #define HAL_11A_RATE_4MCS 54*2
  87. #define HAL_11A_RATE_5MCS 36*2
  88. #define HAL_11A_RATE_6MCS 18*2
  89. #define HAL_11A_RATE_7MCS 9*2
  90. #define HE_GI_0_8 0
  91. #define HE_GI_1_6 1
  92. #define HE_GI_3_2 2
  93. #define HT_SGI_PRESENT 0x80
  94. #define HE_LTF_1_X 0
  95. #define HE_LTF_2_X 1
  96. #define HE_LTF_4_X 2
  97. #define VHT_SIG_SU_NSS_MASK 0x7
  98. #define HAL_TID_INVALID 31
  99. #define HAL_AST_IDX_INVALID 0xFFFF
  100. #ifdef GET_MSDU_AGGREGATION
  101. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)\
  102. {\
  103. struct rx_msdu_end *rx_msdu_end;\
  104. bool first_msdu, last_msdu; \
  105. rx_msdu_end = &rx_desc->msdu_end_tlv.rx_msdu_end;\
  106. first_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, FIRST_MSDU);\
  107. last_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, LAST_MSDU);\
  108. if (first_msdu && last_msdu)\
  109. rs->rs_flags &= (~IEEE80211_AMSDU_FLAG);\
  110. else\
  111. rs->rs_flags |= (IEEE80211_AMSDU_FLAG); \
  112. } \
  113. #else
  114. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)
  115. #endif
  116. #define HAL_MAC_ADDR_LEN 6
  117. enum {
  118. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  119. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  120. HAL_HW_RX_DECAP_FORMAT_ETH2,
  121. HAL_HW_RX_DECAP_FORMAT_8023,
  122. };
  123. enum {
  124. DP_PPDU_STATUS_START,
  125. DP_PPDU_STATUS_DONE,
  126. };
  127. static inline
  128. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  129. {
  130. /* return the HW_RX_DESC size */
  131. return sizeof(struct rx_pkt_tlvs);
  132. }
  133. static inline
  134. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  135. {
  136. return data;
  137. }
  138. static inline
  139. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  140. {
  141. struct rx_attention *rx_attn;
  142. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  143. rx_attn = &rx_desc->attn_tlv.rx_attn;
  144. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  145. }
  146. static inline
  147. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  148. {
  149. struct rx_attention *rx_attn;
  150. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  151. rx_attn = &rx_desc->attn_tlv.rx_attn;
  152. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  153. }
  154. static inline
  155. uint32_t
  156. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  157. struct rx_msdu_start *rx_msdu_start;
  158. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  159. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  160. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  161. }
  162. static inline
  163. uint8_t *
  164. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  165. uint8_t *rx_pkt_hdr;
  166. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  167. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  168. return rx_pkt_hdr;
  169. }
  170. /*
  171. * HAL_RX_HW_DESC_MPDU_VALID() - check MPDU start TLV tag in MPDU
  172. * start TLV of Hardware TLV descriptor
  173. * @hw_desc_addr: Hardware desciptor address
  174. *
  175. * Return: bool: if TLV tag match
  176. */
  177. static inline
  178. bool HAL_RX_HW_DESC_MPDU_VALID(void *hw_desc_addr)
  179. {
  180. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  181. uint32_t tlv_tag;
  182. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(
  183. &rx_desc->mpdu_start_tlv);
  184. return tlv_tag == WIFIRX_MPDU_START_E ? true : false;
  185. }
  186. static inline
  187. uint32_t HAL_RX_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  188. {
  189. struct rx_mpdu_info *rx_mpdu_info;
  190. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  191. rx_mpdu_info =
  192. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  193. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  194. }
  195. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  196. static inline
  197. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  198. {
  199. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  200. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  201. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  202. }
  203. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  204. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  205. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  206. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  207. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  208. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  209. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  210. (((struct reo_entrance_ring *)reo_ent_desc) \
  211. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  212. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  213. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  214. (((struct reo_entrance_ring *)reo_ent_desc) \
  215. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  216. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  217. (HAL_RX_BUF_COOKIE_GET(& \
  218. (((struct reo_entrance_ring *)reo_ent_desc) \
  219. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  220. /**
  221. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  222. * cookie from the REO entrance ring element
  223. *
  224. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  225. * the current descriptor
  226. * @ buf_info: structure to return the buffer information
  227. * @ msdu_cnt: pointer to msdu count in MPDU
  228. * Return: void
  229. */
  230. static inline
  231. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  232. struct hal_buf_info *buf_info,
  233. void **pp_buf_addr_info,
  234. uint32_t *msdu_cnt
  235. )
  236. {
  237. struct reo_entrance_ring *reo_ent_ring =
  238. (struct reo_entrance_ring *)rx_desc;
  239. struct buffer_addr_info *buf_addr_info;
  240. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  241. uint32_t loop_cnt;
  242. rx_mpdu_desc_info_details =
  243. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  244. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  245. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  246. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  247. buf_addr_info =
  248. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  249. buf_info->paddr =
  250. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  251. ((uint64_t)
  252. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  253. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  254. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  255. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d",
  256. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  257. (unsigned long long)buf_info->paddr, loop_cnt);
  258. *pp_buf_addr_info = (void *)buf_addr_info;
  259. }
  260. static inline
  261. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  262. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  263. {
  264. struct rx_msdu_link *msdu_link =
  265. (struct rx_msdu_link *)rx_msdu_link_desc;
  266. struct buffer_addr_info *buf_addr_info;
  267. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  268. buf_info->paddr =
  269. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  270. ((uint64_t)
  271. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  272. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  273. *pp_buf_addr_info = (void *)buf_addr_info;
  274. }
  275. /**
  276. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  277. *
  278. * @ soc : HAL version of the SOC pointer
  279. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  280. * @ buf_addr_info : void pointer to the buffer_addr_info
  281. *
  282. * Return: void
  283. */
  284. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  285. void *src_srng_desc, void *buf_addr_info)
  286. {
  287. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  288. (struct buffer_addr_info *)src_srng_desc;
  289. uint64_t paddr;
  290. struct buffer_addr_info *p_buffer_addr_info =
  291. (struct buffer_addr_info *)buf_addr_info;
  292. paddr =
  293. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  294. ((uint64_t)
  295. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  296. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  297. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx",
  298. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  299. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  300. /* Structure copy !!! */
  301. *wbm_srng_buffer_addr_info =
  302. *((struct buffer_addr_info *)buf_addr_info);
  303. }
  304. static inline
  305. uint32 hal_get_rx_msdu_link_desc_size(void)
  306. {
  307. return sizeof(struct rx_msdu_link);
  308. }
  309. enum {
  310. HAL_PKT_TYPE_OFDM = 0,
  311. HAL_PKT_TYPE_CCK,
  312. HAL_PKT_TYPE_HT,
  313. HAL_PKT_TYPE_VHT,
  314. HAL_PKT_TYPE_HE,
  315. };
  316. enum {
  317. HAL_SGI_0_8_US,
  318. HAL_SGI_0_4_US,
  319. HAL_SGI_1_6_US,
  320. HAL_SGI_3_2_US,
  321. };
  322. enum {
  323. HAL_FULL_RX_BW_20,
  324. HAL_FULL_RX_BW_40,
  325. HAL_FULL_RX_BW_80,
  326. HAL_FULL_RX_BW_160,
  327. };
  328. enum {
  329. HAL_RX_TYPE_SU,
  330. HAL_RX_TYPE_MU_MIMO,
  331. HAL_RX_TYPE_MU_OFDMA,
  332. HAL_RX_TYPE_MU_OFDMA_MIMO,
  333. };
  334. /**
  335. * enum
  336. * @HAL_RX_MON_PPDU_START: PPDU start TLV is decoded in HAL
  337. * @HAL_RX_MON_PPDU_END: PPDU end TLV is decided in HAL
  338. */
  339. enum {
  340. HAL_RX_MON_PPDU_START = 0,
  341. HAL_RX_MON_PPDU_END,
  342. };
  343. struct hal_rx_ppdu_user_info {
  344. };
  345. struct hal_rx_ppdu_common_info {
  346. uint32_t ppdu_id;
  347. uint32_t ppdu_timestamp;
  348. uint32_t mpdu_cnt_fcs_ok;
  349. uint32_t mpdu_cnt_fcs_err;
  350. };
  351. struct hal_rx_msdu_payload_info {
  352. uint8_t *first_msdu_payload;
  353. uint32_t payload_len;
  354. };
  355. /**
  356. * struct hal_rx_nac_info - struct for neighbour info
  357. * @fc_valid: flag indicate if it has valid frame control information
  358. * @to_ds_flag: flag indicate to_ds bit
  359. * @mac_addr2_valid: flag indicate if mac_addr2 is valid
  360. * @mac_addr2: mac address2 in wh
  361. */
  362. struct hal_rx_nac_info {
  363. uint8_t fc_valid;
  364. uint8_t to_ds_flag;
  365. uint8_t mac_addr2_valid;
  366. uint8_t mac_addr2[HAL_MAC_ADDR_LEN];
  367. };
  368. struct hal_rx_ppdu_info {
  369. struct hal_rx_ppdu_common_info com_info;
  370. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  371. struct mon_rx_status rx_status;
  372. struct hal_rx_msdu_payload_info msdu_info;
  373. struct hal_rx_nac_info nac_info;
  374. /* status ring PPDU start and end state */
  375. uint32_t rx_state;
  376. };
  377. static inline uint32_t
  378. hal_get_rx_status_buf_size(void) {
  379. /* RX status buffer size is hard coded for now */
  380. return 2048;
  381. }
  382. static inline uint8_t*
  383. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  384. uint32_t tlv_len, tlv_tag;
  385. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  386. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  387. /* The actual length of PPDU_END is the combined length of many PHY
  388. * TLVs that follow. Skip the TLV header and
  389. * rx_rxpcu_classification_overview that follows the header to get to
  390. * next TLV.
  391. */
  392. if (tlv_tag == WIFIRX_PPDU_END_E)
  393. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  394. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  395. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  396. }
  397. static void hal_rx_proc_phyrx_other_receive_info_tlv(struct hal_soc *hal_soc,
  398. void *rx_tlv_hdr,
  399. struct hal_rx_ppdu_info
  400. *ppdu_info)
  401. {
  402. hal_soc->ops->hal_rx_proc_phyrx_other_receive_info_tlv(rx_tlv_hdr,
  403. (void *)ppdu_info);
  404. }
  405. /**
  406. * hal_rx_status_get_tlv_info() - process receive info TLV
  407. * @rx_tlv_hdr: pointer to TLV header
  408. * @ppdu_info: pointer to ppdu_info
  409. *
  410. * Return: HAL_TLV_STATUS_PPDU_NOT_DONE or HAL_TLV_STATUS_PPDU_DONE from tlv
  411. */
  412. static inline uint32_t
  413. hal_rx_status_get_tlv_info(void *rx_tlv_hdr, struct hal_rx_ppdu_info *ppdu_info,
  414. struct hal_soc *hal)
  415. {
  416. uint32_t tlv_tag, user_id, tlv_len, value;
  417. uint8_t group_id = 0;
  418. uint8_t he_dcm = 0;
  419. uint8_t he_stbc = 0;
  420. uint16_t he_gi = 0;
  421. uint16_t he_ltf = 0;
  422. void *rx_tlv;
  423. bool unhandled = false;
  424. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv_hdr);
  425. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv_hdr);
  426. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv_hdr);
  427. rx_tlv = (uint8_t *)rx_tlv_hdr + HAL_RX_TLV32_HDR_SIZE;
  428. switch (tlv_tag) {
  429. case WIFIRX_PPDU_START_E:
  430. ppdu_info->com_info.ppdu_id =
  431. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  432. PHY_PPDU_ID);
  433. /* channel number is set in PHY meta data */
  434. ppdu_info->rx_status.chan_num =
  435. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  436. SW_PHY_META_DATA);
  437. ppdu_info->com_info.ppdu_timestamp =
  438. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  439. PPDU_START_TIMESTAMP);
  440. ppdu_info->rx_status.ppdu_timestamp =
  441. ppdu_info->com_info.ppdu_timestamp;
  442. ppdu_info->rx_state = HAL_RX_MON_PPDU_START;
  443. break;
  444. case WIFIRX_PPDU_START_USER_INFO_E:
  445. break;
  446. case WIFIRX_PPDU_END_E:
  447. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  448. "[%s][%d] ppdu_end_e len=%d",
  449. __func__, __LINE__, tlv_len);
  450. /* This is followed by sub-TLVs of PPDU_END */
  451. ppdu_info->rx_state = HAL_RX_MON_PPDU_END;
  452. break;
  453. case WIFIRXPCU_PPDU_END_INFO_E:
  454. ppdu_info->rx_status.tsft =
  455. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  456. WB_TIMESTAMP_UPPER_32);
  457. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  458. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  459. WB_TIMESTAMP_LOWER_32);
  460. ppdu_info->rx_status.duration =
  461. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  462. RX_PPDU_DURATION);
  463. break;
  464. case WIFIRX_PPDU_END_USER_STATS_E:
  465. {
  466. unsigned long tid = 0;
  467. uint16_t seq = 0;
  468. ppdu_info->rx_status.ast_index =
  469. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  470. AST_INDEX);
  471. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  472. RECEIVED_QOS_DATA_TID_BITMAP);
  473. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  474. if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
  475. ppdu_info->rx_status.tid = HAL_TID_INVALID;
  476. ppdu_info->rx_status.tcp_msdu_count =
  477. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  478. TCP_MSDU_COUNT) +
  479. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  480. TCP_ACK_MSDU_COUNT);
  481. ppdu_info->rx_status.udp_msdu_count =
  482. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  483. UDP_MSDU_COUNT);
  484. ppdu_info->rx_status.other_msdu_count =
  485. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  486. OTHER_MSDU_COUNT);
  487. ppdu_info->rx_status.frame_control_info_valid =
  488. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  489. DATA_SEQUENCE_CONTROL_INFO_VALID);
  490. seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
  491. FIRST_DATA_SEQ_CTRL);
  492. if (ppdu_info->rx_status.frame_control_info_valid)
  493. ppdu_info->rx_status.first_data_seq_ctrl = seq;
  494. ppdu_info->rx_status.preamble_type =
  495. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  496. HT_CONTROL_FIELD_PKT_TYPE);
  497. switch (ppdu_info->rx_status.preamble_type) {
  498. case HAL_RX_PKT_TYPE_11N:
  499. ppdu_info->rx_status.ht_flags = 1;
  500. ppdu_info->rx_status.rtap_flags |= HT_SGI_PRESENT;
  501. break;
  502. case HAL_RX_PKT_TYPE_11AC:
  503. ppdu_info->rx_status.vht_flags = 1;
  504. break;
  505. case HAL_RX_PKT_TYPE_11AX:
  506. ppdu_info->rx_status.he_flags = 1;
  507. break;
  508. default:
  509. break;
  510. }
  511. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  512. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  513. MPDU_CNT_FCS_OK);
  514. ppdu_info->com_info.mpdu_cnt_fcs_err =
  515. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  516. MPDU_CNT_FCS_ERR);
  517. if ((ppdu_info->com_info.mpdu_cnt_fcs_ok |
  518. ppdu_info->com_info.mpdu_cnt_fcs_err) > 1)
  519. ppdu_info->rx_status.rs_flags |= IEEE80211_AMPDU_FLAG;
  520. else
  521. ppdu_info->rx_status.rs_flags &=
  522. (~IEEE80211_AMPDU_FLAG);
  523. break;
  524. }
  525. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  526. break;
  527. case WIFIRX_PPDU_END_STATUS_DONE_E:
  528. return HAL_TLV_STATUS_PPDU_DONE;
  529. case WIFIDUMMY_E:
  530. return HAL_TLV_STATUS_BUF_DONE;
  531. case WIFIPHYRX_HT_SIG_E:
  532. {
  533. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  534. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  535. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  536. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  537. FEC_CODING);
  538. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  539. 1 : 0;
  540. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  541. HT_SIG_INFO_0, MCS);
  542. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  543. HT_SIG_INFO_0, CBW);
  544. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  545. HT_SIG_INFO_1, SHORT_GI);
  546. break;
  547. }
  548. case WIFIPHYRX_L_SIG_B_E:
  549. {
  550. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  551. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  552. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  553. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  554. ppdu_info->rx_status.l_sig_b_info = *((uint32_t *)l_sig_b_info);
  555. switch (value) {
  556. case 1:
  557. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  558. break;
  559. case 2:
  560. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  561. break;
  562. case 3:
  563. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  564. break;
  565. case 4:
  566. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  567. break;
  568. case 5:
  569. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  570. break;
  571. case 6:
  572. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  573. break;
  574. case 7:
  575. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  576. break;
  577. default:
  578. break;
  579. }
  580. ppdu_info->rx_status.cck_flag = 1;
  581. break;
  582. }
  583. case WIFIPHYRX_L_SIG_A_E:
  584. {
  585. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  586. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  587. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  588. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  589. ppdu_info->rx_status.l_sig_a_info = *((uint32_t *)l_sig_a_info);
  590. switch (value) {
  591. case 8:
  592. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  593. break;
  594. case 9:
  595. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  596. break;
  597. case 10:
  598. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  599. break;
  600. case 11:
  601. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  602. break;
  603. case 12:
  604. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  605. break;
  606. case 13:
  607. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  608. break;
  609. case 14:
  610. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  611. break;
  612. case 15:
  613. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  614. break;
  615. default:
  616. break;
  617. }
  618. ppdu_info->rx_status.ofdm_flag = 1;
  619. break;
  620. }
  621. case WIFIPHYRX_VHT_SIG_A_E:
  622. {
  623. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  624. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  625. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  626. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  627. SU_MU_CODING);
  628. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  629. 1 : 0;
  630. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  631. ppdu_info->rx_status.vht_flag_values5 = group_id;
  632. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  633. VHT_SIG_A_INFO_1, MCS);
  634. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  635. VHT_SIG_A_INFO_1, GI_SETTING);
  636. switch (hal->target_type) {
  637. case TARGET_TYPE_QCA8074:
  638. case TARGET_TYPE_QCA8074V2:
  639. ppdu_info->rx_status.is_stbc =
  640. HAL_RX_GET(vht_sig_a_info,
  641. VHT_SIG_A_INFO_0, STBC);
  642. value = HAL_RX_GET(vht_sig_a_info,
  643. VHT_SIG_A_INFO_0, N_STS);
  644. if (ppdu_info->rx_status.is_stbc && (value > 0))
  645. value = ((value + 1) >> 1) - 1;
  646. ppdu_info->rx_status.nss =
  647. ((value & VHT_SIG_SU_NSS_MASK) + 1);
  648. break;
  649. case TARGET_TYPE_QCA6290:
  650. #if !defined(QCA_WIFI_QCA6290_11AX)
  651. ppdu_info->rx_status.is_stbc =
  652. HAL_RX_GET(vht_sig_a_info,
  653. VHT_SIG_A_INFO_0, STBC);
  654. value = HAL_RX_GET(vht_sig_a_info,
  655. VHT_SIG_A_INFO_0, N_STS);
  656. if (ppdu_info->rx_status.is_stbc && (value > 0))
  657. value = ((value + 1) >> 1) - 1;
  658. ppdu_info->rx_status.nss =
  659. ((value & VHT_SIG_SU_NSS_MASK) + 1);
  660. #else
  661. ppdu_info->rx_status.nss = 0;
  662. #endif
  663. break;
  664. #ifdef QCA_WIFI_QCA6390
  665. case TARGET_TYPE_QCA6390:
  666. ppdu_info->rx_status.nss = 0;
  667. break;
  668. #endif
  669. default:
  670. break;
  671. }
  672. ppdu_info->rx_status.vht_flag_values3[0] =
  673. (((ppdu_info->rx_status.mcs) << 4)
  674. | ppdu_info->rx_status.nss);
  675. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  676. VHT_SIG_A_INFO_0, BANDWIDTH);
  677. ppdu_info->rx_status.vht_flag_values2 =
  678. ppdu_info->rx_status.bw;
  679. ppdu_info->rx_status.vht_flag_values4 =
  680. HAL_RX_GET(vht_sig_a_info,
  681. VHT_SIG_A_INFO_1, SU_MU_CODING);
  682. ppdu_info->rx_status.beamformed = HAL_RX_GET(vht_sig_a_info,
  683. VHT_SIG_A_INFO_1, BEAMFORMED);
  684. break;
  685. }
  686. case WIFIPHYRX_HE_SIG_A_SU_E:
  687. {
  688. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  689. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  690. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  691. ppdu_info->rx_status.he_flags = 1;
  692. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  693. FORMAT_INDICATION);
  694. if (value == 0) {
  695. ppdu_info->rx_status.he_data1 =
  696. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  697. } else {
  698. ppdu_info->rx_status.he_data1 =
  699. QDF_MON_STATUS_HE_SU_FORMAT_TYPE;
  700. }
  701. /* data1 */
  702. ppdu_info->rx_status.he_data1 |=
  703. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  704. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  705. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  706. QDF_MON_STATUS_HE_MCS_KNOWN |
  707. QDF_MON_STATUS_HE_DCM_KNOWN |
  708. QDF_MON_STATUS_HE_CODING_KNOWN |
  709. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  710. QDF_MON_STATUS_HE_STBC_KNOWN |
  711. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  712. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  713. /* data2 */
  714. ppdu_info->rx_status.he_data2 =
  715. QDF_MON_STATUS_HE_GI_KNOWN;
  716. ppdu_info->rx_status.he_data2 |=
  717. QDF_MON_STATUS_TXBF_KNOWN |
  718. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  719. QDF_MON_STATUS_TXOP_KNOWN |
  720. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  721. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  722. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  723. /* data3 */
  724. value = HAL_RX_GET(he_sig_a_su_info,
  725. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  726. ppdu_info->rx_status.he_data3 = value;
  727. value = HAL_RX_GET(he_sig_a_su_info,
  728. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  729. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  730. ppdu_info->rx_status.he_data3 |= value;
  731. value = HAL_RX_GET(he_sig_a_su_info,
  732. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  733. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  734. ppdu_info->rx_status.he_data3 |= value;
  735. value = HAL_RX_GET(he_sig_a_su_info,
  736. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  737. ppdu_info->rx_status.mcs = value;
  738. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  739. ppdu_info->rx_status.he_data3 |= value;
  740. value = HAL_RX_GET(he_sig_a_su_info,
  741. HE_SIG_A_SU_INFO_0, DCM);
  742. he_dcm = value;
  743. value = value << QDF_MON_STATUS_DCM_SHIFT;
  744. ppdu_info->rx_status.he_data3 |= value;
  745. value = HAL_RX_GET(he_sig_a_su_info,
  746. HE_SIG_A_SU_INFO_1, CODING);
  747. value = value << QDF_MON_STATUS_CODING_SHIFT;
  748. ppdu_info->rx_status.he_data3 |= value;
  749. value = HAL_RX_GET(he_sig_a_su_info,
  750. HE_SIG_A_SU_INFO_1,
  751. LDPC_EXTRA_SYMBOL);
  752. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  753. ppdu_info->rx_status.he_data3 |= value;
  754. value = HAL_RX_GET(he_sig_a_su_info,
  755. HE_SIG_A_SU_INFO_1, STBC);
  756. he_stbc = value;
  757. value = value << QDF_MON_STATUS_STBC_SHIFT;
  758. ppdu_info->rx_status.he_data3 |= value;
  759. /* data4 */
  760. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  761. SPATIAL_REUSE);
  762. ppdu_info->rx_status.he_data4 = value;
  763. /* data5 */
  764. value = HAL_RX_GET(he_sig_a_su_info,
  765. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  766. ppdu_info->rx_status.he_data5 = value;
  767. ppdu_info->rx_status.bw = value;
  768. value = HAL_RX_GET(he_sig_a_su_info,
  769. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  770. switch (value) {
  771. case 0:
  772. he_gi = HE_GI_0_8;
  773. he_ltf = HE_LTF_1_X;
  774. break;
  775. case 1:
  776. he_gi = HE_GI_0_8;
  777. he_ltf = HE_LTF_2_X;
  778. break;
  779. case 2:
  780. he_gi = HE_GI_1_6;
  781. he_ltf = HE_LTF_2_X;
  782. break;
  783. case 3:
  784. if (he_dcm && he_stbc) {
  785. he_gi = HE_GI_0_8;
  786. he_ltf = HE_LTF_4_X;
  787. } else {
  788. he_gi = HE_GI_3_2;
  789. he_ltf = HE_LTF_4_X;
  790. }
  791. break;
  792. }
  793. ppdu_info->rx_status.sgi = he_gi;
  794. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  795. ppdu_info->rx_status.he_data5 |= value;
  796. value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
  797. ppdu_info->rx_status.he_data5 |= value;
  798. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  799. value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
  800. ppdu_info->rx_status.he_data5 |= value;
  801. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  802. PACKET_EXTENSION_A_FACTOR);
  803. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  804. ppdu_info->rx_status.he_data5 |= value;
  805. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  806. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  807. ppdu_info->rx_status.he_data5 |= value;
  808. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  809. PACKET_EXTENSION_PE_DISAMBIGUITY);
  810. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  811. ppdu_info->rx_status.he_data5 |= value;
  812. /* data6 */
  813. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  814. value++;
  815. ppdu_info->rx_status.nss = value;
  816. ppdu_info->rx_status.he_data6 = value;
  817. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  818. DOPPLER_INDICATION);
  819. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  820. ppdu_info->rx_status.he_data6 |= value;
  821. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  822. TXOP_DURATION);
  823. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  824. ppdu_info->rx_status.he_data6 |= value;
  825. ppdu_info->rx_status.beamformed = HAL_RX_GET(he_sig_a_su_info,
  826. HE_SIG_A_SU_INFO_1, TXBF);
  827. break;
  828. }
  829. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  830. {
  831. uint8_t *he_sig_a_mu_dl_info = (uint8_t *)rx_tlv +
  832. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  833. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS);
  834. ppdu_info->rx_status.he_mu_flags = 1;
  835. /* HE Flags */
  836. /*data1*/
  837. ppdu_info->rx_status.he_data1 =
  838. QDF_MON_STATUS_HE_MU_FORMAT_TYPE;
  839. ppdu_info->rx_status.he_data1 |=
  840. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  841. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  842. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  843. QDF_MON_STATUS_HE_STBC_KNOWN |
  844. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  845. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  846. /* data2 */
  847. ppdu_info->rx_status.he_data2 =
  848. QDF_MON_STATUS_HE_GI_KNOWN;
  849. ppdu_info->rx_status.he_data2 |=
  850. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  851. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  852. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  853. QDF_MON_STATUS_TXOP_KNOWN |
  854. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  855. /*data3*/
  856. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  857. HE_SIG_A_MU_DL_INFO_0, BSS_COLOR_ID);
  858. ppdu_info->rx_status.he_data3 = value;
  859. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  860. HE_SIG_A_MU_DL_INFO_0, DL_UL_FLAG);
  861. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  862. ppdu_info->rx_status.he_data3 |= value;
  863. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  864. HE_SIG_A_MU_DL_INFO_1,
  865. LDPC_EXTRA_SYMBOL);
  866. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  867. ppdu_info->rx_status.he_data3 |= value;
  868. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  869. HE_SIG_A_MU_DL_INFO_1, STBC);
  870. he_stbc = value;
  871. value = value << QDF_MON_STATUS_STBC_SHIFT;
  872. ppdu_info->rx_status.he_data3 |= value;
  873. /*data4*/
  874. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
  875. SPATIAL_REUSE);
  876. ppdu_info->rx_status.he_data4 = value;
  877. /*data5*/
  878. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  879. HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
  880. ppdu_info->rx_status.he_data5 = value;
  881. ppdu_info->rx_status.bw = value;
  882. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  883. HE_SIG_A_MU_DL_INFO_0, CP_LTF_SIZE);
  884. switch (value) {
  885. case 0:
  886. he_gi = HE_GI_0_8;
  887. he_ltf = HE_LTF_4_X;
  888. break;
  889. case 1:
  890. he_gi = HE_GI_0_8;
  891. he_ltf = HE_LTF_2_X;
  892. break;
  893. case 2:
  894. he_gi = HE_GI_1_6;
  895. he_ltf = HE_LTF_2_X;
  896. break;
  897. case 3:
  898. he_gi = HE_GI_3_2;
  899. he_ltf = HE_LTF_4_X;
  900. break;
  901. }
  902. ppdu_info->rx_status.sgi = he_gi;
  903. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  904. ppdu_info->rx_status.he_data5 |= value;
  905. value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
  906. ppdu_info->rx_status.he_data5 |= value;
  907. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  908. HE_SIG_A_MU_DL_INFO_1, NUM_LTF_SYMBOLS);
  909. value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
  910. ppdu_info->rx_status.he_data5 |= value;
  911. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  912. PACKET_EXTENSION_A_FACTOR);
  913. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  914. ppdu_info->rx_status.he_data5 |= value;
  915. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  916. PACKET_EXTENSION_PE_DISAMBIGUITY);
  917. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  918. ppdu_info->rx_status.he_data5 |= value;
  919. /*data6*/
  920. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
  921. DOPPLER_INDICATION);
  922. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  923. ppdu_info->rx_status.he_data6 |= value;
  924. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  925. TXOP_DURATION);
  926. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  927. ppdu_info->rx_status.he_data6 |= value;
  928. /* HE-MU Flags */
  929. /* HE-MU-flags1 */
  930. ppdu_info->rx_status.he_flags1 =
  931. QDF_MON_STATUS_SIG_B_MCS_KNOWN |
  932. QDF_MON_STATUS_SIG_B_DCM_KNOWN |
  933. QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_1_KNOWN |
  934. QDF_MON_STATUS_SIG_B_SYM_NUM_KNOWN |
  935. QDF_MON_STATUS_RU_0_KNOWN;
  936. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  937. HE_SIG_A_MU_DL_INFO_0, MCS_OF_SIG_B);
  938. ppdu_info->rx_status.he_flags1 |= value;
  939. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  940. HE_SIG_A_MU_DL_INFO_0, DCM_OF_SIG_B);
  941. value = value << QDF_MON_STATUS_DCM_FLAG_1_SHIFT;
  942. ppdu_info->rx_status.he_flags1 |= value;
  943. /* HE-MU-flags2 */
  944. ppdu_info->rx_status.he_flags2 =
  945. QDF_MON_STATUS_BW_KNOWN;
  946. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  947. HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
  948. ppdu_info->rx_status.he_flags2 |= value;
  949. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  950. HE_SIG_A_MU_DL_INFO_0, COMP_MODE_SIG_B);
  951. value = value << QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_2_SHIFT;
  952. ppdu_info->rx_status.he_flags2 |= value;
  953. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  954. HE_SIG_A_MU_DL_INFO_0, NUM_SIG_B_SYMBOLS);
  955. value = value - 1;
  956. value = value << QDF_MON_STATUS_NUM_SIG_B_SYMBOLS_SHIFT;
  957. ppdu_info->rx_status.he_flags2 |= value;
  958. break;
  959. }
  960. case WIFIPHYRX_HE_SIG_B1_MU_E:
  961. {
  962. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  963. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  964. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS);
  965. ppdu_info->rx_status.he_sig_b_common_known |=
  966. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  967. /* TODO: Check on the availability of other fields in
  968. * sig_b_common
  969. */
  970. value = HAL_RX_GET(he_sig_b1_mu_info,
  971. HE_SIG_B1_MU_INFO_0, RU_ALLOCATION);
  972. ppdu_info->rx_status.he_RU[0] = value;
  973. break;
  974. }
  975. case WIFIPHYRX_HE_SIG_B2_MU_E:
  976. {
  977. uint8_t *he_sig_b2_mu_info = (uint8_t *)rx_tlv +
  978. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  979. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS);
  980. /*
  981. * Not all "HE" fields can be updated from
  982. * WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
  983. * to populate rest of the "HE" fields for MU scenarios.
  984. */
  985. /* HE-data1 */
  986. ppdu_info->rx_status.he_data1 |=
  987. QDF_MON_STATUS_HE_MCS_KNOWN |
  988. QDF_MON_STATUS_HE_CODING_KNOWN;
  989. /* HE-data2 */
  990. /* HE-data3 */
  991. value = HAL_RX_GET(he_sig_b2_mu_info,
  992. HE_SIG_B2_MU_INFO_0, STA_MCS);
  993. ppdu_info->rx_status.mcs = value;
  994. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  995. ppdu_info->rx_status.he_data3 |= value;
  996. value = HAL_RX_GET(he_sig_b2_mu_info,
  997. HE_SIG_B2_MU_INFO_0, STA_CODING);
  998. value = value << QDF_MON_STATUS_CODING_SHIFT;
  999. ppdu_info->rx_status.he_data3 |= value;
  1000. /* HE-data4 */
  1001. value = HAL_RX_GET(he_sig_b2_mu_info,
  1002. HE_SIG_B2_MU_INFO_0, STA_ID);
  1003. value = value << QDF_MON_STATUS_STA_ID_SHIFT;
  1004. ppdu_info->rx_status.he_data4 |= value;
  1005. /* HE-data5 */
  1006. /* HE-data6 */
  1007. value = HAL_RX_GET(he_sig_b2_mu_info,
  1008. HE_SIG_B2_MU_INFO_0, NSTS);
  1009. /* value n indicates n+1 spatial streams */
  1010. value++;
  1011. ppdu_info->rx_status.nss = value;
  1012. ppdu_info->rx_status.he_data6 |= value;
  1013. break;
  1014. }
  1015. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  1016. {
  1017. uint8_t *he_sig_b2_ofdma_info =
  1018. (uint8_t *)rx_tlv +
  1019. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  1020. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS);
  1021. /*
  1022. * Not all "HE" fields can be updated from
  1023. * WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
  1024. * to populate rest of "HE" fields for MU OFDMA scenarios.
  1025. */
  1026. /* HE-data1 */
  1027. ppdu_info->rx_status.he_data1 |=
  1028. QDF_MON_STATUS_HE_MCS_KNOWN |
  1029. QDF_MON_STATUS_HE_DCM_KNOWN |
  1030. QDF_MON_STATUS_HE_CODING_KNOWN;
  1031. /* HE-data2 */
  1032. ppdu_info->rx_status.he_data2 |=
  1033. QDF_MON_STATUS_TXBF_KNOWN;
  1034. /* HE-data3 */
  1035. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1036. HE_SIG_B2_OFDMA_INFO_0, STA_MCS);
  1037. ppdu_info->rx_status.mcs = value;
  1038. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  1039. ppdu_info->rx_status.he_data3 |= value;
  1040. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1041. HE_SIG_B2_OFDMA_INFO_0, STA_DCM);
  1042. he_dcm = value;
  1043. value = value << QDF_MON_STATUS_DCM_SHIFT;
  1044. ppdu_info->rx_status.he_data3 |= value;
  1045. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1046. HE_SIG_B2_OFDMA_INFO_0, STA_CODING);
  1047. value = value << QDF_MON_STATUS_CODING_SHIFT;
  1048. ppdu_info->rx_status.he_data3 |= value;
  1049. /* HE-data4 */
  1050. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1051. HE_SIG_B2_OFDMA_INFO_0, STA_ID);
  1052. value = value << QDF_MON_STATUS_STA_ID_SHIFT;
  1053. ppdu_info->rx_status.he_data4 |= value;
  1054. /* HE-data5 */
  1055. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1056. HE_SIG_B2_OFDMA_INFO_0, TXBF);
  1057. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  1058. ppdu_info->rx_status.he_data5 |= value;
  1059. /* HE-data6 */
  1060. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1061. HE_SIG_B2_OFDMA_INFO_0, NSTS);
  1062. /* value n indicates n+1 spatial streams */
  1063. value++;
  1064. ppdu_info->rx_status.nss = value;
  1065. ppdu_info->rx_status.he_data6 |= value;
  1066. break;
  1067. }
  1068. case WIFIPHYRX_RSSI_LEGACY_E:
  1069. {
  1070. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  1071. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  1072. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  1073. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  1074. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  1075. ppdu_info->rx_status.bw = hal->ops->hal_rx_get_tlv(rx_tlv);
  1076. ppdu_info->rx_status.he_re = 0;
  1077. ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
  1078. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  1079. value = HAL_RX_GET(rssi_info_tlv,
  1080. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  1081. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1082. "RSSI_PRI20_CHAIN0: %d", value);
  1083. value = HAL_RX_GET(rssi_info_tlv,
  1084. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  1085. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1086. "RSSI_EXT20_CHAIN0: %d", value);
  1087. value = HAL_RX_GET(rssi_info_tlv,
  1088. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  1089. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1090. "RSSI_EXT40_LOW20_CHAIN0: %d", value);
  1091. value = HAL_RX_GET(rssi_info_tlv,
  1092. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  1093. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1094. "RSSI_EXT40_HIGH20_CHAIN0: %d", value);
  1095. value = HAL_RX_GET(rssi_info_tlv,
  1096. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  1097. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1098. "RSSI_EXT80_LOW20_CHAIN0: %d", value);
  1099. value = HAL_RX_GET(rssi_info_tlv,
  1100. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  1101. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1102. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d", value);
  1103. value = HAL_RX_GET(rssi_info_tlv,
  1104. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  1105. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1106. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d", value);
  1107. value = HAL_RX_GET(rssi_info_tlv,
  1108. RECEIVE_RSSI_INFO_1,
  1109. RSSI_EXT80_HIGH20_CHAIN0);
  1110. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1111. "RSSI_EXT80_HIGH20_CHAIN0: %d", value);
  1112. break;
  1113. }
  1114. case WIFIPHYRX_OTHER_RECEIVE_INFO_E:
  1115. hal_rx_proc_phyrx_other_receive_info_tlv(hal, rx_tlv_hdr,
  1116. ppdu_info);
  1117. break;
  1118. case WIFIRX_HEADER_E:
  1119. ppdu_info->msdu_info.first_msdu_payload = rx_tlv;
  1120. ppdu_info->msdu_info.payload_len = tlv_len;
  1121. break;
  1122. case WIFIRX_MPDU_START_E:
  1123. {
  1124. uint8_t *rx_mpdu_start =
  1125. (uint8_t *)rx_tlv + HAL_RX_OFFSET(RX_MPDU_START_0,
  1126. RX_MPDU_INFO_RX_MPDU_INFO_DETAILS);
  1127. uint32_t ppdu_id = HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_0,
  1128. PHY_PPDU_ID);
  1129. ppdu_info->nac_info.fc_valid =
  1130. HAL_RX_GET(rx_mpdu_start,
  1131. RX_MPDU_INFO_2,
  1132. MPDU_FRAME_CONTROL_VALID);
  1133. ppdu_info->nac_info.to_ds_flag =
  1134. HAL_RX_GET(rx_mpdu_start,
  1135. RX_MPDU_INFO_2,
  1136. TO_DS);
  1137. ppdu_info->nac_info.mac_addr2_valid =
  1138. HAL_RX_GET(rx_mpdu_start,
  1139. RX_MPDU_INFO_2,
  1140. MAC_ADDR_AD2_VALID);
  1141. *(uint16_t *)&ppdu_info->nac_info.mac_addr2[0] =
  1142. HAL_RX_GET(rx_mpdu_start,
  1143. RX_MPDU_INFO_16,
  1144. MAC_ADDR_AD2_15_0);
  1145. *(uint32_t *)&ppdu_info->nac_info.mac_addr2[2] =
  1146. HAL_RX_GET(rx_mpdu_start,
  1147. RX_MPDU_INFO_17,
  1148. MAC_ADDR_AD2_47_16);
  1149. if (ppdu_info->rx_status.prev_ppdu_id != ppdu_id) {
  1150. ppdu_info->rx_status.prev_ppdu_id = ppdu_id;
  1151. ppdu_info->rx_status.ppdu_len =
  1152. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  1153. MPDU_LENGTH);
  1154. } else {
  1155. ppdu_info->rx_status.ppdu_len +=
  1156. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  1157. MPDU_LENGTH);
  1158. }
  1159. break;
  1160. }
  1161. case 0:
  1162. return HAL_TLV_STATUS_PPDU_DONE;
  1163. default:
  1164. unhandled = true;
  1165. break;
  1166. }
  1167. if (!unhandled)
  1168. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1169. "%s TLV type: %d, TLV len:%d %s",
  1170. __func__, tlv_tag, tlv_len,
  1171. unhandled == true ? "unhandled" : "");
  1172. qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, rx_tlv, tlv_len);
  1173. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  1174. }
  1175. static inline
  1176. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  1177. {
  1178. return HAL_RX_TLV32_HDR_SIZE;
  1179. }
  1180. static inline QDF_STATUS
  1181. hal_get_rx_status_done(uint8_t *rx_tlv)
  1182. {
  1183. uint32_t tlv_tag;
  1184. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  1185. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  1186. return QDF_STATUS_SUCCESS;
  1187. else
  1188. return QDF_STATUS_E_EMPTY;
  1189. }
  1190. static inline QDF_STATUS
  1191. hal_clear_rx_status_done(uint8_t *rx_tlv)
  1192. {
  1193. *(uint32_t *)rx_tlv = 0;
  1194. return QDF_STATUS_SUCCESS;
  1195. }
  1196. #endif