hal_api_mon.h 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. /* Multiply rate by 2 to avoid float point
  71. * and get rate in units of 500kbps
  72. */
  73. #define HAL_11B_RATE_0MCS 11*2
  74. #define HAL_11B_RATE_1MCS 5.5*2
  75. #define HAL_11B_RATE_2MCS 2*2
  76. #define HAL_11B_RATE_3MCS 1*2
  77. #define HAL_11B_RATE_4MCS 11*2
  78. #define HAL_11B_RATE_5MCS 5.5*2
  79. #define HAL_11B_RATE_6MCS 2*2
  80. #define HAL_11A_RATE_0MCS 48*2
  81. #define HAL_11A_RATE_1MCS 24*2
  82. #define HAL_11A_RATE_2MCS 12*2
  83. #define HAL_11A_RATE_3MCS 6*2
  84. #define HAL_11A_RATE_4MCS 54*2
  85. #define HAL_11A_RATE_5MCS 36*2
  86. #define HAL_11A_RATE_6MCS 18*2
  87. #define HAL_11A_RATE_7MCS 9*2
  88. #define HE_GI_0_8 0
  89. #define HE_GI_1_6 1
  90. #define HE_GI_3_2 2
  91. #define HT_SGI_PRESENT 0x80
  92. #define HE_LTF_1_X 0
  93. #define HE_LTF_2_X 1
  94. #define HE_LTF_4_X 2
  95. #define VHT_SIG_SU_NSS_MASK 0x7
  96. #define HAL_TID_INVALID 31
  97. #define HAL_AST_IDX_INVALID 0xFFFF
  98. #ifdef GET_MSDU_AGGREGATION
  99. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)\
  100. {\
  101. struct rx_msdu_end *rx_msdu_end;\
  102. bool first_msdu, last_msdu; \
  103. rx_msdu_end = &rx_desc->msdu_end_tlv.rx_msdu_end;\
  104. first_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, FIRST_MSDU);\
  105. last_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, LAST_MSDU);\
  106. if (first_msdu && last_msdu)\
  107. rs->rs_flags &= (~IEEE80211_AMSDU_FLAG);\
  108. else\
  109. rs->rs_flags |= (IEEE80211_AMSDU_FLAG); \
  110. } \
  111. #else
  112. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)
  113. #endif
  114. enum {
  115. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  116. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  117. HAL_HW_RX_DECAP_FORMAT_ETH2,
  118. HAL_HW_RX_DECAP_FORMAT_8023,
  119. };
  120. enum {
  121. DP_PPDU_STATUS_START,
  122. DP_PPDU_STATUS_DONE,
  123. };
  124. static inline
  125. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  126. {
  127. /* return the HW_RX_DESC size */
  128. return sizeof(struct rx_pkt_tlvs);
  129. }
  130. static inline
  131. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  132. {
  133. return data;
  134. }
  135. static inline
  136. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  137. {
  138. struct rx_attention *rx_attn;
  139. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  140. rx_attn = &rx_desc->attn_tlv.rx_attn;
  141. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  142. }
  143. static inline
  144. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  145. {
  146. struct rx_attention *rx_attn;
  147. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  148. rx_attn = &rx_desc->attn_tlv.rx_attn;
  149. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  150. }
  151. static inline
  152. uint32_t
  153. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  154. struct rx_msdu_start *rx_msdu_start;
  155. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  156. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  157. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  158. }
  159. static inline
  160. uint8_t *
  161. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  162. uint8_t *rx_pkt_hdr;
  163. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  164. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  165. return rx_pkt_hdr;
  166. }
  167. static inline
  168. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  169. {
  170. struct rx_mpdu_info *rx_mpdu_info;
  171. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  172. rx_mpdu_info =
  173. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  174. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  175. }
  176. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  177. static inline
  178. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  179. {
  180. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  181. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  182. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  183. }
  184. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  185. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  186. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  187. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  188. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  189. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  190. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  191. (((struct reo_entrance_ring *)reo_ent_desc) \
  192. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  193. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  194. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  195. (((struct reo_entrance_ring *)reo_ent_desc) \
  196. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  197. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  198. (HAL_RX_BUF_COOKIE_GET(& \
  199. (((struct reo_entrance_ring *)reo_ent_desc) \
  200. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  201. /**
  202. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  203. * cookie from the REO entrance ring element
  204. *
  205. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  206. * the current descriptor
  207. * @ buf_info: structure to return the buffer information
  208. * @ msdu_cnt: pointer to msdu count in MPDU
  209. * Return: void
  210. */
  211. static inline
  212. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  213. struct hal_buf_info *buf_info,
  214. void **pp_buf_addr_info,
  215. uint32_t *msdu_cnt
  216. )
  217. {
  218. struct reo_entrance_ring *reo_ent_ring =
  219. (struct reo_entrance_ring *)rx_desc;
  220. struct buffer_addr_info *buf_addr_info;
  221. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  222. uint32_t loop_cnt;
  223. rx_mpdu_desc_info_details =
  224. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  225. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  226. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  227. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  228. buf_addr_info =
  229. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  230. buf_info->paddr =
  231. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  232. ((uint64_t)
  233. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  234. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  235. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  236. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  237. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  238. (unsigned long long)buf_info->paddr, loop_cnt);
  239. *pp_buf_addr_info = (void *)buf_addr_info;
  240. }
  241. static inline
  242. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  243. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  244. {
  245. struct rx_msdu_link *msdu_link =
  246. (struct rx_msdu_link *)rx_msdu_link_desc;
  247. struct buffer_addr_info *buf_addr_info;
  248. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  249. buf_info->paddr =
  250. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  251. ((uint64_t)
  252. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  253. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  254. *pp_buf_addr_info = (void *)buf_addr_info;
  255. }
  256. /**
  257. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  258. *
  259. * @ soc : HAL version of the SOC pointer
  260. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  261. * @ buf_addr_info : void pointer to the buffer_addr_info
  262. *
  263. * Return: void
  264. */
  265. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  266. void *src_srng_desc, void *buf_addr_info)
  267. {
  268. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  269. (struct buffer_addr_info *)src_srng_desc;
  270. uint64_t paddr;
  271. struct buffer_addr_info *p_buffer_addr_info =
  272. (struct buffer_addr_info *)buf_addr_info;
  273. paddr =
  274. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  275. ((uint64_t)
  276. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  277. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  278. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  279. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  280. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  281. /* Structure copy !!! */
  282. *wbm_srng_buffer_addr_info =
  283. *((struct buffer_addr_info *)buf_addr_info);
  284. }
  285. static inline
  286. uint32 hal_get_rx_msdu_link_desc_size(void)
  287. {
  288. return sizeof(struct rx_msdu_link);
  289. }
  290. enum {
  291. HAL_PKT_TYPE_OFDM = 0,
  292. HAL_PKT_TYPE_CCK,
  293. HAL_PKT_TYPE_HT,
  294. HAL_PKT_TYPE_VHT,
  295. HAL_PKT_TYPE_HE,
  296. };
  297. enum {
  298. HAL_SGI_0_8_US,
  299. HAL_SGI_0_4_US,
  300. HAL_SGI_1_6_US,
  301. HAL_SGI_3_2_US,
  302. };
  303. enum {
  304. HAL_FULL_RX_BW_20,
  305. HAL_FULL_RX_BW_40,
  306. HAL_FULL_RX_BW_80,
  307. HAL_FULL_RX_BW_160,
  308. };
  309. enum {
  310. HAL_RX_TYPE_SU,
  311. HAL_RX_TYPE_MU_MIMO,
  312. HAL_RX_TYPE_MU_OFDMA,
  313. HAL_RX_TYPE_MU_OFDMA_MIMO,
  314. };
  315. /**
  316. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  317. *
  318. * @ hw_desc_addr: Start address of Rx HW TLVs
  319. * @ rs: Status for monitor mode
  320. *
  321. * Return: void
  322. */
  323. static inline
  324. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  325. struct mon_rx_status *rs)
  326. {
  327. struct rx_msdu_start *rx_msdu_start;
  328. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  329. uint32_t reg_value;
  330. static uint32_t sgi_hw_to_cdp[] = {
  331. CDP_SGI_0_8_US,
  332. CDP_SGI_0_4_US,
  333. CDP_SGI_1_6_US,
  334. CDP_SGI_3_2_US,
  335. };
  336. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  337. HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs);
  338. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  339. RX_MSDU_START_5, USER_RSSI);
  340. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  341. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  342. rs->sgi = sgi_hw_to_cdp[reg_value];
  343. #if !defined(QCA_WIFI_QCA6290_11AX)
  344. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  345. #endif
  346. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  347. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  348. /* TODO: rs->beamformed should be set for SU beamforming also */
  349. }
  350. struct hal_rx_ppdu_user_info {
  351. };
  352. struct hal_rx_ppdu_common_info {
  353. uint32_t ppdu_id;
  354. uint32_t last_ppdu_id;
  355. uint32_t ppdu_timestamp;
  356. uint32_t mpdu_cnt_fcs_ok;
  357. uint32_t mpdu_cnt_fcs_err;
  358. };
  359. struct hal_rx_ppdu_info {
  360. struct hal_rx_ppdu_common_info com_info;
  361. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  362. struct mon_rx_status rx_status;
  363. uint8_t *first_msdu_payload;
  364. };
  365. static inline uint32_t
  366. hal_get_rx_status_buf_size(void) {
  367. /* RX status buffer size is hard coded for now */
  368. return 2048;
  369. }
  370. static inline uint8_t*
  371. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  372. uint32_t tlv_len, tlv_tag;
  373. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  374. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  375. /* The actual length of PPDU_END is the combined lenght of many PHY
  376. * TLVs that follow. Skip the TLV header and
  377. * rx_rxpcu_classification_overview that follows the header to get to
  378. * next TLV.
  379. */
  380. if (tlv_tag == WIFIRX_PPDU_END_E)
  381. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  382. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  383. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  384. }
  385. static inline uint32_t
  386. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  387. {
  388. uint32_t tlv_tag, user_id, tlv_len, value;
  389. uint8_t group_id = 0;
  390. uint8_t he_dcm = 0;
  391. uint8_t he_stbc = 0;
  392. uint16_t he_gi = 0;
  393. uint16_t he_ltf = 0;
  394. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  395. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  396. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  397. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  398. switch (tlv_tag) {
  399. case WIFIRX_PPDU_START_E:
  400. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  401. "[%s][%d] ppdu_start_e len=%d",
  402. __func__, __LINE__, tlv_len);
  403. ppdu_info->com_info.ppdu_id =
  404. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  405. PHY_PPDU_ID);
  406. /* channel number is set in PHY meta data */
  407. ppdu_info->rx_status.chan_num =
  408. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  409. SW_PHY_META_DATA);
  410. ppdu_info->com_info.ppdu_timestamp =
  411. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  412. PPDU_START_TIMESTAMP);
  413. break;
  414. case WIFIRX_PPDU_START_USER_INFO_E:
  415. break;
  416. case WIFIRX_PPDU_END_E:
  417. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  418. "[%s][%d] ppdu_end_e len=%d",
  419. __func__, __LINE__, tlv_len);
  420. /* This is followed by sub-TLVs of PPDU_END */
  421. break;
  422. case WIFIRXPCU_PPDU_END_INFO_E:
  423. ppdu_info->rx_status.tsft =
  424. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  425. WB_TIMESTAMP_UPPER_32);
  426. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  427. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  428. WB_TIMESTAMP_LOWER_32);
  429. ppdu_info->rx_status.duration =
  430. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  431. RX_PPDU_DURATION);
  432. break;
  433. case WIFIRX_PPDU_END_USER_STATS_E:
  434. {
  435. unsigned long tid = 0;
  436. uint16_t seq = 0;
  437. ppdu_info->rx_status.ast_index =
  438. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  439. AST_INDEX);
  440. ppdu_info->rx_status.mcs =
  441. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, MCS);
  442. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  443. RECEIVED_QOS_DATA_TID_BITMAP);
  444. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  445. if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
  446. ppdu_info->rx_status.tid = HAL_TID_INVALID;
  447. ppdu_info->rx_status.tcp_msdu_count =
  448. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  449. TCP_MSDU_COUNT) +
  450. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  451. TCP_ACK_MSDU_COUNT);
  452. ppdu_info->rx_status.udp_msdu_count =
  453. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  454. UDP_MSDU_COUNT);
  455. ppdu_info->rx_status.other_msdu_count =
  456. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  457. OTHER_MSDU_COUNT);
  458. ppdu_info->rx_status.frame_control_info_valid =
  459. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  460. DATA_SEQUENCE_CONTROL_INFO_VALID);
  461. seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
  462. FIRST_DATA_SEQ_CTRL);
  463. if (ppdu_info->rx_status.frame_control_info_valid)
  464. ppdu_info->rx_status.first_data_seq_ctrl = seq;
  465. ppdu_info->rx_status.preamble_type =
  466. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  467. HT_CONTROL_FIELD_PKT_TYPE);
  468. switch (ppdu_info->rx_status.preamble_type) {
  469. case HAL_RX_PKT_TYPE_11N:
  470. ppdu_info->rx_status.ht_flags = 1;
  471. ppdu_info->rx_status.rtap_flags |= HT_SGI_PRESENT;
  472. break;
  473. case HAL_RX_PKT_TYPE_11AC:
  474. ppdu_info->rx_status.vht_flags = 1;
  475. break;
  476. case HAL_RX_PKT_TYPE_11AX:
  477. ppdu_info->rx_status.he_flags = 1;
  478. break;
  479. default:
  480. break;
  481. }
  482. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  483. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  484. MPDU_CNT_FCS_OK);
  485. ppdu_info->com_info.mpdu_cnt_fcs_err =
  486. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  487. MPDU_CNT_FCS_ERR);
  488. if ((ppdu_info->com_info.mpdu_cnt_fcs_ok |
  489. ppdu_info->com_info.mpdu_cnt_fcs_err) > 1)
  490. ppdu_info->rx_status.rs_flags |= IEEE80211_AMPDU_FLAG;
  491. else
  492. ppdu_info->rx_status.rs_flags &=
  493. (~IEEE80211_AMPDU_FLAG);
  494. break;
  495. }
  496. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  497. break;
  498. case WIFIRX_PPDU_END_STATUS_DONE_E:
  499. return HAL_TLV_STATUS_PPDU_DONE;
  500. case WIFIDUMMY_E:
  501. return HAL_TLV_STATUS_BUF_DONE;
  502. case WIFIPHYRX_HT_SIG_E:
  503. {
  504. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  505. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  506. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  507. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  508. FEC_CODING);
  509. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  510. 1 : 0;
  511. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  512. HT_SIG_INFO_0, MCS);
  513. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  514. HT_SIG_INFO_0, CBW);
  515. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  516. HT_SIG_INFO_1, SHORT_GI);
  517. break;
  518. }
  519. case WIFIPHYRX_L_SIG_B_E:
  520. {
  521. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  522. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  523. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  524. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  525. switch (value) {
  526. case 1:
  527. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  528. break;
  529. case 2:
  530. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  531. break;
  532. case 3:
  533. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  534. break;
  535. case 4:
  536. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  537. break;
  538. case 5:
  539. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  540. break;
  541. case 6:
  542. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  543. break;
  544. case 7:
  545. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  546. break;
  547. default:
  548. break;
  549. }
  550. break;
  551. }
  552. case WIFIPHYRX_L_SIG_A_E:
  553. {
  554. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  555. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  556. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  557. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  558. switch (value) {
  559. case 8:
  560. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  561. break;
  562. case 9:
  563. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  564. break;
  565. case 10:
  566. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  567. break;
  568. case 11:
  569. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  570. break;
  571. case 12:
  572. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  573. break;
  574. case 13:
  575. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  576. break;
  577. case 14:
  578. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  579. break;
  580. case 15:
  581. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  582. break;
  583. default:
  584. break;
  585. }
  586. break;
  587. }
  588. case WIFIPHYRX_VHT_SIG_A_E:
  589. {
  590. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  591. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  592. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  593. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  594. SU_MU_CODING);
  595. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  596. 1 : 0;
  597. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  598. ppdu_info->rx_status.vht_flag_values5 = group_id;
  599. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  600. VHT_SIG_A_INFO_1, MCS);
  601. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  602. VHT_SIG_A_INFO_1, GI_SETTING);
  603. #if !defined(QCA_WIFI_QCA6290_11AX)
  604. value = HAL_RX_GET(vht_sig_a_info,
  605. VHT_SIG_A_INFO_0, N_STS);
  606. ppdu_info->rx_status.nss = ((value & VHT_SIG_SU_NSS_MASK) + 1);
  607. #else
  608. ppdu_info->rx_status.nss = 0;
  609. #endif
  610. ppdu_info->rx_status.vht_flag_values3[0] =
  611. (((ppdu_info->rx_status.mcs) << 4)
  612. | ppdu_info->rx_status.nss);
  613. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  614. VHT_SIG_A_INFO_0, BANDWIDTH);
  615. ppdu_info->rx_status.vht_flag_values2 =
  616. ppdu_info->rx_status.bw;
  617. ppdu_info->rx_status.vht_flag_values4 =
  618. HAL_RX_GET(vht_sig_a_info,
  619. VHT_SIG_A_INFO_1, SU_MU_CODING);
  620. break;
  621. }
  622. case WIFIPHYRX_HE_SIG_A_SU_E:
  623. {
  624. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  625. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  626. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  627. ppdu_info->rx_status.he_flags = 1;
  628. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  629. FORMAT_INDICATION);
  630. if (value == 0) {
  631. ppdu_info->rx_status.he_data1 =
  632. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  633. } else {
  634. ppdu_info->rx_status.he_data1 =
  635. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  636. }
  637. /*data1*/
  638. ppdu_info->rx_status.he_data1 |=
  639. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  640. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  641. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  642. QDF_MON_STATUS_HE_MCS_KNOWN |
  643. QDF_MON_STATUS_HE_DCM_KNOWN |
  644. QDF_MON_STATUS_HE_CODING_KNOWN |
  645. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  646. QDF_MON_STATUS_HE_STBC_KNOWN |
  647. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  648. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  649. /*data2*/
  650. ppdu_info->rx_status.he_data2 =
  651. QDF_MON_STATUS_HE_GI_KNOWN;
  652. ppdu_info->rx_status.he_data2 |=
  653. QDF_MON_STATUS_TXBF_KNOWN |
  654. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  655. QDF_MON_STATUS_TXOP_KNOWN |
  656. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  657. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  658. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  659. /*data3*/
  660. value = HAL_RX_GET(he_sig_a_su_info,
  661. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  662. ppdu_info->rx_status.he_data3 = value;
  663. value = HAL_RX_GET(he_sig_a_su_info,
  664. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  665. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  666. ppdu_info->rx_status.he_data3 |= value;
  667. value = HAL_RX_GET(he_sig_a_su_info,
  668. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  669. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  670. ppdu_info->rx_status.he_data3 |= value;
  671. value = HAL_RX_GET(he_sig_a_su_info,
  672. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  673. ppdu_info->rx_status.mcs = value;
  674. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  675. ppdu_info->rx_status.he_data3 |= value;
  676. value = HAL_RX_GET(he_sig_a_su_info,
  677. HE_SIG_A_SU_INFO_0, DCM);
  678. he_dcm = value;
  679. value = value << QDF_MON_STATUS_DCM_SHIFT;
  680. ppdu_info->rx_status.he_data3 |= value;
  681. value = HAL_RX_GET(he_sig_a_su_info,
  682. HE_SIG_A_SU_INFO_1, CODING);
  683. value = value << QDF_MON_STATUS_CODING_SHIFT;
  684. ppdu_info->rx_status.he_data3 |= value;
  685. value = HAL_RX_GET(he_sig_a_su_info,
  686. HE_SIG_A_SU_INFO_1,
  687. LDPC_EXTRA_SYMBOL);
  688. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  689. ppdu_info->rx_status.he_data3 |= value;
  690. value = HAL_RX_GET(he_sig_a_su_info,
  691. HE_SIG_A_SU_INFO_1, STBC);
  692. he_stbc = value;
  693. value = value << QDF_MON_STATUS_STBC_SHIFT;
  694. ppdu_info->rx_status.he_data3 |= value;
  695. /*data4*/
  696. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  697. SPATIAL_REUSE);
  698. ppdu_info->rx_status.he_data4 = value;
  699. /*data5*/
  700. value = HAL_RX_GET(he_sig_a_su_info,
  701. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  702. ppdu_info->rx_status.he_data5 = value;
  703. ppdu_info->rx_status.bw = value;
  704. value = HAL_RX_GET(he_sig_a_su_info,
  705. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  706. switch (value) {
  707. case 0:
  708. he_gi = HE_GI_0_8;
  709. he_ltf = HE_LTF_1_X;
  710. break;
  711. case 1:
  712. he_gi = HE_GI_0_8;
  713. he_ltf = HE_LTF_2_X;
  714. break;
  715. case 2:
  716. he_gi = HE_GI_1_6;
  717. he_ltf = HE_LTF_2_X;
  718. break;
  719. case 3:
  720. if (he_dcm && he_stbc) {
  721. he_gi = HE_GI_0_8;
  722. he_ltf = HE_LTF_4_X;
  723. } else {
  724. he_gi = HE_GI_3_2;
  725. he_ltf = HE_LTF_4_X;
  726. }
  727. break;
  728. }
  729. ppdu_info->rx_status.sgi = he_gi;
  730. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  731. ppdu_info->rx_status.he_data5 |= value;
  732. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  733. ppdu_info->rx_status.he_data5 |= value;
  734. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  735. PACKET_EXTENSION_A_FACTOR);
  736. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  737. ppdu_info->rx_status.he_data5 |= value;
  738. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  739. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  740. ppdu_info->rx_status.he_data5 |= value;
  741. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  742. PACKET_EXTENSION_PE_DISAMBIGUITY);
  743. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  744. ppdu_info->rx_status.he_data5 |= value;
  745. /*data6*/
  746. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  747. value++;
  748. ppdu_info->rx_status.nss = value;
  749. ppdu_info->rx_status.he_data6 = value;
  750. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  751. DOPPLER_INDICATION);
  752. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  753. ppdu_info->rx_status.he_data6 |= value;
  754. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  755. TXOP_DURATION);
  756. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  757. ppdu_info->rx_status.he_data6 |= value;
  758. break;
  759. }
  760. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  761. ppdu_info->rx_status.he_sig_A1 =
  762. *((uint32_t *)((uint8_t *)rx_tlv +
  763. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  764. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  765. ppdu_info->rx_status.he_sig_A1 |=
  766. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  767. ppdu_info->rx_status.he_sig_A1_known =
  768. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  769. ppdu_info->rx_status.he_sig_A2 =
  770. *((uint32_t *)((uint8_t *)rx_tlv +
  771. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  772. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  773. ppdu_info->rx_status.he_sig_A2_known =
  774. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  775. break;
  776. case WIFIPHYRX_HE_SIG_B1_MU_E:
  777. {
  778. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  779. *((uint32_t *)((uint8_t *)rx_tlv +
  780. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  781. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  782. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  783. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  784. RU_ALLOCATION);
  785. ppdu_info->rx_status.he_sig_b_common_known =
  786. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  787. /* TODO: Check on the availability of other fields in
  788. * sig_b_common
  789. */
  790. break;
  791. }
  792. case WIFIPHYRX_HE_SIG_B2_MU_E:
  793. ppdu_info->rx_status.he_sig_b_user =
  794. *((uint32_t *)((uint8_t *)rx_tlv +
  795. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  796. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  797. ppdu_info->rx_status.he_sig_b_user_known =
  798. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  799. break;
  800. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  801. ppdu_info->rx_status.he_sig_b_user =
  802. *((uint32_t *)((uint8_t *)rx_tlv +
  803. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  804. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  805. ppdu_info->rx_status.he_sig_b_user_known =
  806. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  807. break;
  808. case WIFIPHYRX_RSSI_LEGACY_E:
  809. {
  810. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  811. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  812. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  813. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  814. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  815. ppdu_info->rx_status.bw = HAL_RX_GET(rx_tlv,
  816. #if !defined(QCA_WIFI_QCA6290_11AX)
  817. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  818. #else
  819. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  820. #endif
  821. ppdu_info->rx_status.he_re = 0;
  822. ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
  823. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  824. value = HAL_RX_GET(rssi_info_tlv,
  825. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  826. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  827. "RSSI_PRI20_CHAIN0: %d\n", value);
  828. value = HAL_RX_GET(rssi_info_tlv,
  829. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  830. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  831. "RSSI_EXT20_CHAIN0: %d\n", value);
  832. value = HAL_RX_GET(rssi_info_tlv,
  833. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  834. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  835. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  836. value = HAL_RX_GET(rssi_info_tlv,
  837. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  838. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  839. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  840. value = HAL_RX_GET(rssi_info_tlv,
  841. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  842. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  843. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  844. value = HAL_RX_GET(rssi_info_tlv,
  845. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  846. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  847. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  848. value = HAL_RX_GET(rssi_info_tlv,
  849. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  850. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  851. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  852. value = HAL_RX_GET(rssi_info_tlv,
  853. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  854. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  855. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  856. break;
  857. }
  858. case WIFIRX_HEADER_E:
  859. ppdu_info->first_msdu_payload = rx_tlv;
  860. break;
  861. case 0:
  862. return HAL_TLV_STATUS_PPDU_DONE;
  863. default:
  864. break;
  865. }
  866. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  867. "%s TLV type: %d, TLV len:%d",
  868. __func__, tlv_tag, tlv_len);
  869. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  870. }
  871. static inline
  872. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  873. {
  874. return HAL_RX_TLV32_HDR_SIZE;
  875. }
  876. static inline QDF_STATUS
  877. hal_get_rx_status_done(uint8_t *rx_tlv)
  878. {
  879. uint32_t tlv_tag;
  880. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  881. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  882. return QDF_STATUS_SUCCESS;
  883. else
  884. return QDF_STATUS_E_EMPTY;
  885. }
  886. static inline QDF_STATUS
  887. hal_clear_rx_status_done(uint8_t *rx_tlv)
  888. {
  889. *(uint32_t *)rx_tlv = 0;
  890. return QDF_STATUS_SUCCESS;
  891. }
  892. #endif