dp_rx.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DUP_RX_DESC_WAR
  42. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  43. hal_ring_handle_t hal_ring,
  44. hal_ring_desc_t ring_desc,
  45. struct dp_rx_desc *rx_desc)
  46. {
  47. void *hal_soc = soc->hal_soc;
  48. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  49. dp_rx_desc_dump(rx_desc);
  50. }
  51. #else
  52. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  53. hal_ring_handle_t hal_ring_hdl,
  54. hal_ring_desc_t ring_desc,
  55. struct dp_rx_desc *rx_desc)
  56. {
  57. hal_soc_handle_t hal_soc = soc->hal_soc;
  58. dp_rx_desc_dump(rx_desc);
  59. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  60. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  61. qdf_assert_always(0);
  62. }
  63. #endif
  64. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  65. #ifdef RX_DESC_SANITY_WAR
  66. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  67. hal_ring_handle_t hal_ring_hdl,
  68. hal_ring_desc_t ring_desc,
  69. struct dp_rx_desc *rx_desc)
  70. {
  71. uint8_t return_buffer_manager;
  72. if (qdf_unlikely(!rx_desc)) {
  73. /*
  74. * This is an unlikely case where the cookie obtained
  75. * from the ring_desc is invalid and hence we are not
  76. * able to find the corresponding rx_desc
  77. */
  78. goto fail;
  79. }
  80. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  81. if (qdf_unlikely(!(return_buffer_manager ==
  82. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  83. return_buffer_manager ==
  84. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  85. goto fail;
  86. }
  87. return QDF_STATUS_SUCCESS;
  88. fail:
  89. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  90. dp_err("Ring Desc:");
  91. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  92. ring_desc);
  93. return QDF_STATUS_E_NULL_VALUE;
  94. }
  95. #endif
  96. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  97. /**
  98. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  99. *
  100. * @dp_soc: struct dp_soc *
  101. * @nbuf_frag_info_t: nbuf frag info
  102. * @dp_pdev: struct dp_pdev *
  103. * @rx_desc_pool: Rx desc pool
  104. *
  105. * Return: QDF_STATUS
  106. */
  107. #ifdef DP_RX_MON_MEM_FRAG
  108. static inline QDF_STATUS
  109. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  110. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  111. struct dp_pdev *dp_pdev,
  112. struct rx_desc_pool *rx_desc_pool)
  113. {
  114. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  115. (nbuf_frag_info_t->virt_addr).vaddr =
  116. qdf_frag_alloc(rx_desc_pool->buf_size);
  117. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  118. dp_err("Frag alloc failed");
  119. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  120. return QDF_STATUS_E_NOMEM;
  121. }
  122. ret = qdf_mem_map_page(dp_soc->osdev,
  123. (nbuf_frag_info_t->virt_addr).vaddr,
  124. QDF_DMA_FROM_DEVICE,
  125. rx_desc_pool->buf_size,
  126. &nbuf_frag_info_t->paddr);
  127. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  128. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  129. dp_err("Frag map failed");
  130. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  131. return QDF_STATUS_E_FAULT;
  132. }
  133. return QDF_STATUS_SUCCESS;
  134. }
  135. #else
  136. static inline QDF_STATUS
  137. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  138. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  139. struct dp_pdev *dp_pdev,
  140. struct rx_desc_pool *rx_desc_pool)
  141. {
  142. return QDF_STATUS_SUCCESS;
  143. }
  144. #endif /* DP_RX_MON_MEM_FRAG */
  145. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  146. /**
  147. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  148. * @soc: Datapath soc structure
  149. * @ring_num: Refill ring number
  150. * @num_req: number of buffers requested for refill
  151. * @num_refill: number of buffers refilled
  152. *
  153. * Returns: None
  154. */
  155. static inline void
  156. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  157. hal_ring_handle_t hal_ring_hdl,
  158. uint32_t num_req, uint32_t num_refill)
  159. {
  160. struct dp_refill_info_record *record;
  161. uint32_t idx;
  162. uint32_t tp;
  163. uint32_t hp;
  164. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  165. !soc->rx_refill_ring_history[ring_num]))
  166. return;
  167. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  168. DP_RX_REFILL_HIST_MAX);
  169. /* No NULL check needed for record since its an array */
  170. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  171. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  172. record->timestamp = qdf_get_log_timestamp();
  173. record->num_req = num_req;
  174. record->num_refill = num_refill;
  175. record->hp = hp;
  176. record->tp = tp;
  177. }
  178. #else
  179. static inline void
  180. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  181. hal_ring_handle_t hal_ring_hdl,
  182. uint32_t num_req, uint32_t num_refill)
  183. {
  184. }
  185. #endif
  186. /**
  187. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  188. *
  189. * @dp_soc: struct dp_soc *
  190. * @mac_id: Mac id
  191. * @num_entries_avail: num_entries_avail
  192. * @nbuf_frag_info_t: nbuf frag info
  193. * @dp_pdev: struct dp_pdev *
  194. * @rx_desc_pool: Rx desc pool
  195. *
  196. * Return: QDF_STATUS
  197. */
  198. static inline QDF_STATUS
  199. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  200. uint32_t mac_id,
  201. uint32_t num_entries_avail,
  202. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  203. struct dp_pdev *dp_pdev,
  204. struct rx_desc_pool *rx_desc_pool)
  205. {
  206. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  207. (nbuf_frag_info_t->virt_addr).nbuf =
  208. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  209. mac_id,
  210. rx_desc_pool,
  211. num_entries_avail);
  212. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  213. dp_err("nbuf alloc failed");
  214. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  215. return QDF_STATUS_E_NOMEM;
  216. }
  217. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  218. nbuf_frag_info_t);
  219. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  220. dp_rx_buffer_pool_nbuf_free(dp_soc,
  221. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  222. dp_err("nbuf map failed");
  223. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  224. return QDF_STATUS_E_FAULT;
  225. }
  226. nbuf_frag_info_t->paddr =
  227. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  228. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  229. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  230. rx_desc_pool->buf_size,
  231. true);
  232. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  233. &nbuf_frag_info_t->paddr,
  234. rx_desc_pool);
  235. if (ret == QDF_STATUS_E_FAILURE) {
  236. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  237. return QDF_STATUS_E_ADDRNOTAVAIL;
  238. }
  239. return QDF_STATUS_SUCCESS;
  240. }
  241. /*
  242. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  243. * called during dp rx initialization
  244. * and at the end of dp_rx_process.
  245. *
  246. * @soc: core txrx main context
  247. * @mac_id: mac_id which is one of 3 mac_ids
  248. * @dp_rxdma_srng: dp rxdma circular ring
  249. * @rx_desc_pool: Pointer to free Rx descriptor pool
  250. * @num_req_buffers: number of buffer to be replenished
  251. * @desc_list: list of descs if called from dp_rx_process
  252. * or NULL during dp rx initialization or out of buffer
  253. * interrupt.
  254. * @tail: tail of descs list
  255. * @func_name: name of the caller function
  256. * Return: return success or failure
  257. */
  258. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  259. struct dp_srng *dp_rxdma_srng,
  260. struct rx_desc_pool *rx_desc_pool,
  261. uint32_t num_req_buffers,
  262. union dp_rx_desc_list_elem_t **desc_list,
  263. union dp_rx_desc_list_elem_t **tail,
  264. const char *func_name)
  265. {
  266. uint32_t num_alloc_desc;
  267. uint16_t num_desc_to_free = 0;
  268. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  269. uint32_t num_entries_avail;
  270. uint32_t count;
  271. int sync_hw_ptr = 1;
  272. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  273. void *rxdma_ring_entry;
  274. union dp_rx_desc_list_elem_t *next;
  275. QDF_STATUS ret;
  276. void *rxdma_srng;
  277. rxdma_srng = dp_rxdma_srng->hal_srng;
  278. if (qdf_unlikely(!dp_pdev)) {
  279. dp_rx_err("%pK: pdev is null for mac_id = %d",
  280. dp_soc, mac_id);
  281. return QDF_STATUS_E_FAILURE;
  282. }
  283. if (qdf_unlikely(!rxdma_srng)) {
  284. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  285. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  286. return QDF_STATUS_E_FAILURE;
  287. }
  288. dp_rx_debug("%pK: requested %d buffers for replenish",
  289. dp_soc, num_req_buffers);
  290. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  291. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  292. rxdma_srng,
  293. sync_hw_ptr);
  294. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  295. dp_soc, num_entries_avail);
  296. if (!(*desc_list) && (num_entries_avail >
  297. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  298. num_req_buffers = num_entries_avail;
  299. } else if (num_entries_avail < num_req_buffers) {
  300. num_desc_to_free = num_req_buffers - num_entries_avail;
  301. num_req_buffers = num_entries_avail;
  302. }
  303. if (qdf_unlikely(!num_req_buffers)) {
  304. num_desc_to_free = num_req_buffers;
  305. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  306. goto free_descs;
  307. }
  308. /*
  309. * if desc_list is NULL, allocate the descs from freelist
  310. */
  311. if (!(*desc_list)) {
  312. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  313. rx_desc_pool,
  314. num_req_buffers,
  315. desc_list,
  316. tail);
  317. if (!num_alloc_desc) {
  318. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  319. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  320. num_req_buffers);
  321. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  322. return QDF_STATUS_E_NOMEM;
  323. }
  324. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  325. num_req_buffers = num_alloc_desc;
  326. }
  327. count = 0;
  328. while (count < num_req_buffers) {
  329. /* Flag is set while pdev rx_desc_pool initialization */
  330. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  331. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  332. &nbuf_frag_info,
  333. dp_pdev,
  334. rx_desc_pool);
  335. else
  336. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  337. mac_id,
  338. num_entries_avail, &nbuf_frag_info,
  339. dp_pdev, rx_desc_pool);
  340. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  341. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  342. continue;
  343. break;
  344. }
  345. count++;
  346. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  347. rxdma_srng);
  348. qdf_assert_always(rxdma_ring_entry);
  349. next = (*desc_list)->next;
  350. /* Flag is set while pdev rx_desc_pool initialization */
  351. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  352. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  353. &nbuf_frag_info);
  354. else
  355. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  356. &nbuf_frag_info);
  357. /* rx_desc.in_use should be zero at this time*/
  358. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  359. (*desc_list)->rx_desc.in_use = 1;
  360. (*desc_list)->rx_desc.in_err_state = 0;
  361. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  362. func_name, RX_DESC_REPLENISHED);
  363. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  364. nbuf_frag_info.virt_addr.nbuf,
  365. (unsigned long long)(nbuf_frag_info.paddr),
  366. (*desc_list)->rx_desc.cookie);
  367. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  368. nbuf_frag_info.paddr,
  369. (*desc_list)->rx_desc.cookie,
  370. rx_desc_pool->owner);
  371. *desc_list = next;
  372. }
  373. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  374. num_req_buffers, count);
  375. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  376. dp_rx_schedule_refill_thread(dp_soc);
  377. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  378. count, num_desc_to_free);
  379. /* No need to count the number of bytes received during replenish.
  380. * Therefore set replenish.pkts.bytes as 0.
  381. */
  382. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  383. free_descs:
  384. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  385. /*
  386. * add any available free desc back to the free list
  387. */
  388. if (*desc_list)
  389. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  390. mac_id, rx_desc_pool);
  391. return QDF_STATUS_SUCCESS;
  392. }
  393. qdf_export_symbol(__dp_rx_buffers_replenish);
  394. /*
  395. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  396. * pkts to RAW mode simulation to
  397. * decapsulate the pkt.
  398. *
  399. * @vdev: vdev on which RAW mode is enabled
  400. * @nbuf_list: list of RAW pkts to process
  401. * @peer: peer object from which the pkt is rx
  402. *
  403. * Return: void
  404. */
  405. void
  406. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  407. struct dp_peer *peer)
  408. {
  409. qdf_nbuf_t deliver_list_head = NULL;
  410. qdf_nbuf_t deliver_list_tail = NULL;
  411. qdf_nbuf_t nbuf;
  412. nbuf = nbuf_list;
  413. while (nbuf) {
  414. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  415. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  416. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  417. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  418. /*
  419. * reset the chfrag_start and chfrag_end bits in nbuf cb
  420. * as this is a non-amsdu pkt and RAW mode simulation expects
  421. * these bit s to be 0 for non-amsdu pkt.
  422. */
  423. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  424. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  425. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  426. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  427. }
  428. nbuf = next;
  429. }
  430. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  431. &deliver_list_tail, peer->mac_addr.raw);
  432. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  433. }
  434. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  435. #ifndef FEATURE_WDS
  436. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  437. struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  438. {
  439. }
  440. #endif
  441. /*
  442. * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
  443. *
  444. * @soc: core txrx main context
  445. * @ta_peer : source peer entry
  446. * @rx_tlv_hdr : start address of rx tlvs
  447. * @nbuf : nbuf that has to be intrabss forwarded
  448. * @tid_stats : tid stats pointer
  449. *
  450. * Return: bool: true if it is forwarded else false
  451. */
  452. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  453. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  454. struct cdp_tid_rx_stats *tid_stats)
  455. {
  456. uint16_t len;
  457. qdf_nbuf_t nbuf_copy;
  458. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  459. nbuf))
  460. return true;
  461. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  462. return false;
  463. /* If the source peer in the isolation list
  464. * then dont forward instead push to bridge stack
  465. */
  466. if (dp_get_peer_isolation(ta_peer))
  467. return false;
  468. nbuf_copy = qdf_nbuf_copy(nbuf);
  469. if (!nbuf_copy)
  470. return false;
  471. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  472. qdf_nbuf_set_tx_fctx_type(nbuf_copy, &ta_peer->peer_id,
  473. CB_FTYPE_INTRABSS_FWD);
  474. if (dp_tx_send((struct cdp_soc_t *)soc,
  475. ta_peer->vdev->vdev_id, nbuf_copy)) {
  476. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  477. tid_stats->fail_cnt[INTRABSS_DROP]++;
  478. qdf_nbuf_free(nbuf_copy);
  479. } else {
  480. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  481. tid_stats->intrabss_cnt++;
  482. }
  483. return false;
  484. }
  485. /*
  486. * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
  487. *
  488. * @soc: core txrx main context
  489. * @ta_peer: source peer entry
  490. * @tx_vdev_id: VDEV ID for Intra-BSS TX
  491. * @rx_tlv_hdr: start address of rx tlvs
  492. * @nbuf: nbuf that has to be intrabss forwarded
  493. * @tid_stats: tid stats pointer
  494. *
  495. * Return: bool: true if it is forwarded else false
  496. */
  497. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  498. uint8_t tx_vdev_id,
  499. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  500. struct cdp_tid_rx_stats *tid_stats)
  501. {
  502. uint16_t len;
  503. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  504. /* linearize the nbuf just before we send to
  505. * dp_tx_send()
  506. */
  507. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  508. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  509. return false;
  510. nbuf = qdf_nbuf_unshare(nbuf);
  511. if (!nbuf) {
  512. DP_STATS_INC_PKT(ta_peer,
  513. rx.intra_bss.fail, 1, len);
  514. /* return true even though the pkt is
  515. * not forwarded. Basically skb_unshare
  516. * failed and we want to continue with
  517. * next nbuf.
  518. */
  519. tid_stats->fail_cnt[INTRABSS_DROP]++;
  520. return false;
  521. }
  522. }
  523. if (!dp_tx_send((struct cdp_soc_t *)soc,
  524. tx_vdev_id, nbuf)) {
  525. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  526. len);
  527. } else {
  528. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  529. len);
  530. tid_stats->fail_cnt[INTRABSS_DROP]++;
  531. return false;
  532. }
  533. return true;
  534. }
  535. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  536. #ifdef MESH_MODE_SUPPORT
  537. /**
  538. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  539. *
  540. * @vdev: DP Virtual device handle
  541. * @nbuf: Buffer pointer
  542. * @rx_tlv_hdr: start of rx tlv header
  543. * @peer: pointer to peer
  544. *
  545. * This function allocated memory for mesh receive stats and fill the
  546. * required stats. Stores the memory address in skb cb.
  547. *
  548. * Return: void
  549. */
  550. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  551. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  552. {
  553. struct mesh_recv_hdr_s *rx_info = NULL;
  554. uint32_t pkt_type;
  555. uint32_t nss;
  556. uint32_t rate_mcs;
  557. uint32_t bw;
  558. uint8_t primary_chan_num;
  559. uint32_t center_chan_freq;
  560. struct dp_soc *soc = vdev->pdev->soc;
  561. /* fill recv mesh stats */
  562. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  563. /* upper layers are resposible to free this memory */
  564. if (!rx_info) {
  565. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  566. vdev->pdev->soc);
  567. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  568. return;
  569. }
  570. rx_info->rs_flags = MESH_RXHDR_VER1;
  571. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  572. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  573. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  574. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  575. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  576. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  577. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  578. rx_tlv_hdr);
  579. if (vdev->osif_get_key)
  580. vdev->osif_get_key(vdev->osif_vdev,
  581. &rx_info->rs_decryptkey[0],
  582. &peer->mac_addr.raw[0],
  583. rx_info->rs_keyix);
  584. }
  585. rx_info->rs_snr = peer->stats.rx.snr;
  586. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  587. soc = vdev->pdev->soc;
  588. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  589. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  590. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  591. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  592. soc->ctrl_psoc,
  593. vdev->pdev->pdev_id,
  594. center_chan_freq);
  595. }
  596. rx_info->rs_channel = primary_chan_num;
  597. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  598. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  599. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  600. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  601. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  602. (bw << 24);
  603. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  604. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  605. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  606. rx_info->rs_flags,
  607. rx_info->rs_rssi,
  608. rx_info->rs_channel,
  609. rx_info->rs_ratephy1,
  610. rx_info->rs_keyix,
  611. rx_info->rs_snr);
  612. }
  613. /**
  614. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  615. *
  616. * @vdev: DP Virtual device handle
  617. * @nbuf: Buffer pointer
  618. * @rx_tlv_hdr: start of rx tlv header
  619. *
  620. * This checks if the received packet is matching any filter out
  621. * catogery and and drop the packet if it matches.
  622. *
  623. * Return: status(0 indicates drop, 1 indicate to no drop)
  624. */
  625. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  626. uint8_t *rx_tlv_hdr)
  627. {
  628. union dp_align_mac_addr mac_addr;
  629. struct dp_soc *soc = vdev->pdev->soc;
  630. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  631. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  632. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  633. rx_tlv_hdr))
  634. return QDF_STATUS_SUCCESS;
  635. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  636. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  637. rx_tlv_hdr))
  638. return QDF_STATUS_SUCCESS;
  639. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  640. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  641. rx_tlv_hdr) &&
  642. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  643. rx_tlv_hdr))
  644. return QDF_STATUS_SUCCESS;
  645. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  646. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  647. rx_tlv_hdr,
  648. &mac_addr.raw[0]))
  649. return QDF_STATUS_E_FAILURE;
  650. if (!qdf_mem_cmp(&mac_addr.raw[0],
  651. &vdev->mac_addr.raw[0],
  652. QDF_MAC_ADDR_SIZE))
  653. return QDF_STATUS_SUCCESS;
  654. }
  655. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  656. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  657. rx_tlv_hdr,
  658. &mac_addr.raw[0]))
  659. return QDF_STATUS_E_FAILURE;
  660. if (!qdf_mem_cmp(&mac_addr.raw[0],
  661. &vdev->mac_addr.raw[0],
  662. QDF_MAC_ADDR_SIZE))
  663. return QDF_STATUS_SUCCESS;
  664. }
  665. }
  666. return QDF_STATUS_E_FAILURE;
  667. }
  668. #else
  669. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  670. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  671. {
  672. }
  673. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  674. uint8_t *rx_tlv_hdr)
  675. {
  676. return QDF_STATUS_E_FAILURE;
  677. }
  678. #endif
  679. #ifdef FEATURE_NAC_RSSI
  680. /**
  681. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  682. * @soc: DP SOC handle
  683. * @mpdu: mpdu for which peer is invalid
  684. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  685. * pool_id has same mapping)
  686. *
  687. * return: integer type
  688. */
  689. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  690. uint8_t mac_id)
  691. {
  692. struct dp_invalid_peer_msg msg;
  693. struct dp_vdev *vdev = NULL;
  694. struct dp_pdev *pdev = NULL;
  695. struct ieee80211_frame *wh;
  696. qdf_nbuf_t curr_nbuf, next_nbuf;
  697. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  698. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  699. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  700. dp_rx_debug("%pK: Drop decapped frames", soc);
  701. goto free;
  702. }
  703. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  704. if (!DP_FRAME_IS_DATA(wh)) {
  705. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  706. goto free;
  707. }
  708. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  709. dp_rx_err("%pK: Invalid nbuf length", soc);
  710. goto free;
  711. }
  712. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  713. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  714. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  715. goto free;
  716. }
  717. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  718. QDF_STATUS_SUCCESS)
  719. return 0;
  720. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  721. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  722. QDF_MAC_ADDR_SIZE) == 0) {
  723. goto out;
  724. }
  725. }
  726. if (!vdev) {
  727. dp_rx_err("%pK: VDEV not found", soc);
  728. goto free;
  729. }
  730. out:
  731. msg.wh = wh;
  732. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  733. msg.nbuf = mpdu;
  734. msg.vdev_id = vdev->vdev_id;
  735. /*
  736. * NOTE: Only valid for HKv1.
  737. * If smart monitor mode is enabled on RE, we are getting invalid
  738. * peer frames with RA as STA mac of RE and the TA not matching
  739. * with any NAC list or the the BSSID.Such frames need to dropped
  740. * in order to avoid HM_WDS false addition.
  741. */
  742. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  743. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  744. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  745. soc, wh->i_addr1);
  746. goto free;
  747. }
  748. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  749. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  750. pdev->pdev_id, &msg);
  751. }
  752. free:
  753. /* Drop and free packet */
  754. curr_nbuf = mpdu;
  755. while (curr_nbuf) {
  756. next_nbuf = qdf_nbuf_next(curr_nbuf);
  757. qdf_nbuf_free(curr_nbuf);
  758. curr_nbuf = next_nbuf;
  759. }
  760. return 0;
  761. }
  762. /**
  763. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  764. * @soc: DP SOC handle
  765. * @mpdu: mpdu for which peer is invalid
  766. * @mpdu_done: if an mpdu is completed
  767. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  768. * pool_id has same mapping)
  769. *
  770. * return: integer type
  771. */
  772. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  773. qdf_nbuf_t mpdu, bool mpdu_done,
  774. uint8_t mac_id)
  775. {
  776. /* Only trigger the process when mpdu is completed */
  777. if (mpdu_done)
  778. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  779. }
  780. #else
  781. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  782. uint8_t mac_id)
  783. {
  784. qdf_nbuf_t curr_nbuf, next_nbuf;
  785. struct dp_pdev *pdev;
  786. struct dp_vdev *vdev = NULL;
  787. struct ieee80211_frame *wh;
  788. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  789. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  790. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  791. if (!DP_FRAME_IS_DATA(wh)) {
  792. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  793. "only for data frames");
  794. goto free;
  795. }
  796. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  797. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  798. goto free;
  799. }
  800. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  801. if (!pdev) {
  802. dp_rx_info_rl("%pK: PDEV not found", soc);
  803. goto free;
  804. }
  805. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  806. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  807. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  808. QDF_MAC_ADDR_SIZE) == 0) {
  809. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  810. goto out;
  811. }
  812. }
  813. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  814. if (!vdev) {
  815. dp_rx_info_rl("%pK: VDEV not found", soc);
  816. goto free;
  817. }
  818. out:
  819. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  820. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  821. free:
  822. /* reset the head and tail pointers */
  823. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  824. if (pdev) {
  825. pdev->invalid_peer_head_msdu = NULL;
  826. pdev->invalid_peer_tail_msdu = NULL;
  827. }
  828. /* Drop and free packet */
  829. curr_nbuf = mpdu;
  830. while (curr_nbuf) {
  831. next_nbuf = qdf_nbuf_next(curr_nbuf);
  832. qdf_nbuf_free(curr_nbuf);
  833. curr_nbuf = next_nbuf;
  834. }
  835. /* Reset the head and tail pointers */
  836. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  837. if (pdev) {
  838. pdev->invalid_peer_head_msdu = NULL;
  839. pdev->invalid_peer_tail_msdu = NULL;
  840. }
  841. return 0;
  842. }
  843. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  844. qdf_nbuf_t mpdu, bool mpdu_done,
  845. uint8_t mac_id)
  846. {
  847. /* Process the nbuf */
  848. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  849. }
  850. #endif
  851. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  852. #ifdef RECEIVE_OFFLOAD
  853. /**
  854. * dp_rx_print_offload_info() - Print offload info from RX TLV
  855. * @soc: dp soc handle
  856. * @msdu: MSDU for which the offload info is to be printed
  857. *
  858. * Return: None
  859. */
  860. static void dp_rx_print_offload_info(struct dp_soc *soc,
  861. qdf_nbuf_t msdu)
  862. {
  863. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  864. dp_verbose_debug("lro_eligible 0x%x",
  865. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  866. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  867. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  868. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  869. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  870. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  871. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  872. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  873. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  874. dp_verbose_debug("---------------------------------------------------------");
  875. }
  876. /**
  877. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  878. * @soc: DP SOC handle
  879. * @rx_tlv: RX TLV received for the msdu
  880. * @msdu: msdu for which GRO info needs to be filled
  881. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  882. *
  883. * Return: None
  884. */
  885. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  886. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  887. {
  888. struct hal_offload_info offload_info;
  889. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  890. return;
  891. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  892. return;
  893. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  894. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  895. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  896. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  897. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  898. rx_tlv);
  899. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  900. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  901. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  902. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  903. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  904. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  905. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  906. dp_rx_print_offload_info(soc, msdu);
  907. }
  908. #endif /* RECEIVE_OFFLOAD */
  909. /**
  910. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  911. *
  912. * @soc: DP soc handle
  913. * @nbuf: pointer to msdu.
  914. * @mpdu_len: mpdu length
  915. * @l3_pad_len: L3 padding length by HW
  916. *
  917. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  918. */
  919. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  920. qdf_nbuf_t nbuf,
  921. uint16_t *mpdu_len,
  922. uint32_t l3_pad_len)
  923. {
  924. bool last_nbuf;
  925. uint32_t pkt_hdr_size;
  926. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  927. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  928. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  929. last_nbuf = false;
  930. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  931. } else {
  932. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  933. last_nbuf = true;
  934. *mpdu_len = 0;
  935. }
  936. return last_nbuf;
  937. }
  938. /**
  939. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  940. *
  941. * @soc: DP soc handle
  942. * @nbuf: pointer to msdu.
  943. *
  944. * Return: returns padding length in bytes.
  945. */
  946. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  947. qdf_nbuf_t nbuf)
  948. {
  949. uint32_t l3_hdr_pad = 0;
  950. uint8_t *rx_tlv_hdr;
  951. struct hal_rx_msdu_metadata msdu_metadata;
  952. while (nbuf) {
  953. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  954. /* scattered msdu end with continuation is 0 */
  955. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  956. hal_rx_msdu_metadata_get(soc->hal_soc,
  957. rx_tlv_hdr,
  958. &msdu_metadata);
  959. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  960. break;
  961. }
  962. nbuf = nbuf->next;
  963. }
  964. return l3_hdr_pad;
  965. }
  966. /**
  967. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  968. * multiple nbufs.
  969. * @soc: DP SOC handle
  970. * @nbuf: pointer to the first msdu of an amsdu.
  971. *
  972. * This function implements the creation of RX frag_list for cases
  973. * where an MSDU is spread across multiple nbufs.
  974. *
  975. * Return: returns the head nbuf which contains complete frag_list.
  976. */
  977. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  978. {
  979. qdf_nbuf_t parent, frag_list, next = NULL;
  980. uint16_t frag_list_len = 0;
  981. uint16_t mpdu_len;
  982. bool last_nbuf;
  983. uint32_t l3_hdr_pad_offset = 0;
  984. /*
  985. * Use msdu len got from REO entry descriptor instead since
  986. * there is case the RX PKT TLV is corrupted while msdu_len
  987. * from REO descriptor is right for non-raw RX scatter msdu.
  988. */
  989. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  990. /*
  991. * this is a case where the complete msdu fits in one single nbuf.
  992. * in this case HW sets both start and end bit and we only need to
  993. * reset these bits for RAW mode simulator to decap the pkt
  994. */
  995. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  996. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  997. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  998. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  999. return nbuf;
  1000. }
  1001. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1002. /*
  1003. * This is a case where we have multiple msdus (A-MSDU) spread across
  1004. * multiple nbufs. here we create a fraglist out of these nbufs.
  1005. *
  1006. * the moment we encounter a nbuf with continuation bit set we
  1007. * know for sure we have an MSDU which is spread across multiple
  1008. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1009. */
  1010. parent = nbuf;
  1011. frag_list = nbuf->next;
  1012. nbuf = nbuf->next;
  1013. /*
  1014. * set the start bit in the first nbuf we encounter with continuation
  1015. * bit set. This has the proper mpdu length set as it is the first
  1016. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1017. * nbufs will form the frag_list of the parent nbuf.
  1018. */
  1019. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1020. /*
  1021. * L3 header padding is only needed for the 1st buffer
  1022. * in a scattered msdu
  1023. */
  1024. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1025. l3_hdr_pad_offset);
  1026. /*
  1027. * MSDU cont bit is set but reported MPDU length can fit
  1028. * in to single buffer
  1029. *
  1030. * Increment error stats and avoid SG list creation
  1031. */
  1032. if (last_nbuf) {
  1033. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1034. qdf_nbuf_pull_head(parent,
  1035. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1036. return parent;
  1037. }
  1038. /*
  1039. * this is where we set the length of the fragments which are
  1040. * associated to the parent nbuf. We iterate through the frag_list
  1041. * till we hit the last_nbuf of the list.
  1042. */
  1043. do {
  1044. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1045. qdf_nbuf_pull_head(nbuf,
  1046. soc->rx_pkt_tlv_size);
  1047. frag_list_len += qdf_nbuf_len(nbuf);
  1048. if (last_nbuf) {
  1049. next = nbuf->next;
  1050. nbuf->next = NULL;
  1051. break;
  1052. }
  1053. nbuf = nbuf->next;
  1054. } while (!last_nbuf);
  1055. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1056. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1057. parent->next = next;
  1058. qdf_nbuf_pull_head(parent,
  1059. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1060. return parent;
  1061. }
  1062. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1063. #ifdef QCA_PEER_EXT_STATS
  1064. /*
  1065. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1066. * @peer: DP soc context
  1067. * @nbuf: NBuffer
  1068. *
  1069. * Return: Void
  1070. */
  1071. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1072. qdf_nbuf_t nbuf)
  1073. {
  1074. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1075. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1076. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1077. }
  1078. #endif /* QCA_PEER_EXT_STATS */
  1079. /**
  1080. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1081. * to pass in correct fields
  1082. *
  1083. * @vdev: pdev handle
  1084. * @tx_desc: tx descriptor
  1085. * @tid: tid value
  1086. * Return: none
  1087. */
  1088. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1089. {
  1090. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1091. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1092. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1093. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1094. uint32_t interframe_delay =
  1095. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1096. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1097. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1098. /*
  1099. * Update interframe delay stats calculated at deliver_data_ol point.
  1100. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1101. * interframe delay will not be calculate correctly for 1st frame.
  1102. * On the other side, this will help in avoiding extra per packet check
  1103. * of vdev->prev_rx_deliver_tstamp.
  1104. */
  1105. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1106. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1107. vdev->prev_rx_deliver_tstamp = current_ts;
  1108. }
  1109. /**
  1110. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1111. * @pdev: dp pdev reference
  1112. * @buf_list: buffer list to be dropepd
  1113. *
  1114. * Return: int (number of bufs dropped)
  1115. */
  1116. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1117. qdf_nbuf_t buf_list)
  1118. {
  1119. struct cdp_tid_rx_stats *stats = NULL;
  1120. uint8_t tid = 0, ring_id = 0;
  1121. int num_dropped = 0;
  1122. qdf_nbuf_t buf, next_buf;
  1123. buf = buf_list;
  1124. while (buf) {
  1125. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1126. next_buf = qdf_nbuf_queue_next(buf);
  1127. tid = qdf_nbuf_get_tid_val(buf);
  1128. if (qdf_likely(pdev)) {
  1129. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1130. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1131. stats->delivered_to_stack--;
  1132. }
  1133. qdf_nbuf_free(buf);
  1134. buf = next_buf;
  1135. num_dropped++;
  1136. }
  1137. return num_dropped;
  1138. }
  1139. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1140. /**
  1141. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1142. * @soc: core txrx main context
  1143. * @vdev: vdev
  1144. * @peer: peer
  1145. * @nbuf_head: skb list head
  1146. *
  1147. * Return: true if packet is delivered to netdev per STA.
  1148. */
  1149. static inline bool
  1150. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1151. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1152. {
  1153. /*
  1154. * When extended WDS is disabled, frames are sent to AP netdevice.
  1155. */
  1156. if (qdf_likely(!vdev->wds_ext_enabled))
  1157. return false;
  1158. /*
  1159. * There can be 2 cases:
  1160. * 1. Send frame to parent netdev if its not for netdev per STA
  1161. * 2. If frame is meant for netdev per STA:
  1162. * a. Send frame to appropriate netdev using registered fp.
  1163. * b. If fp is NULL, drop the frames.
  1164. */
  1165. if (!peer->wds_ext.init)
  1166. return false;
  1167. if (peer->osif_rx)
  1168. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1169. else
  1170. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1171. return true;
  1172. }
  1173. #else
  1174. static inline bool
  1175. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1176. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1177. {
  1178. return false;
  1179. }
  1180. #endif
  1181. #ifdef PEER_CACHE_RX_PKTS
  1182. /**
  1183. * dp_rx_flush_rx_cached() - flush cached rx frames
  1184. * @peer: peer
  1185. * @drop: flag to drop frames or forward to net stack
  1186. *
  1187. * Return: None
  1188. */
  1189. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1190. {
  1191. struct dp_peer_cached_bufq *bufqi;
  1192. struct dp_rx_cached_buf *cache_buf = NULL;
  1193. ol_txrx_rx_fp data_rx = NULL;
  1194. int num_buff_elem;
  1195. QDF_STATUS status;
  1196. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1197. qdf_atomic_dec(&peer->flush_in_progress);
  1198. return;
  1199. }
  1200. qdf_spin_lock_bh(&peer->peer_info_lock);
  1201. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1202. data_rx = peer->vdev->osif_rx;
  1203. else
  1204. drop = true;
  1205. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1206. bufqi = &peer->bufq_info;
  1207. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1208. qdf_list_remove_front(&bufqi->cached_bufq,
  1209. (qdf_list_node_t **)&cache_buf);
  1210. while (cache_buf) {
  1211. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1212. cache_buf->buf);
  1213. bufqi->entries -= num_buff_elem;
  1214. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1215. if (drop) {
  1216. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1217. cache_buf->buf);
  1218. } else {
  1219. /* Flush the cached frames to OSIF DEV */
  1220. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1221. if (status != QDF_STATUS_SUCCESS)
  1222. bufqi->dropped = dp_rx_drop_nbuf_list(
  1223. peer->vdev->pdev,
  1224. cache_buf->buf);
  1225. }
  1226. qdf_mem_free(cache_buf);
  1227. cache_buf = NULL;
  1228. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1229. qdf_list_remove_front(&bufqi->cached_bufq,
  1230. (qdf_list_node_t **)&cache_buf);
  1231. }
  1232. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1233. qdf_atomic_dec(&peer->flush_in_progress);
  1234. }
  1235. /**
  1236. * dp_rx_enqueue_rx() - cache rx frames
  1237. * @peer: peer
  1238. * @rx_buf_list: cache buffer list
  1239. *
  1240. * Return: None
  1241. */
  1242. static QDF_STATUS
  1243. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1244. {
  1245. struct dp_rx_cached_buf *cache_buf;
  1246. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1247. int num_buff_elem;
  1248. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1249. bufqi->dropped);
  1250. if (!peer->valid) {
  1251. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1252. rx_buf_list);
  1253. return QDF_STATUS_E_INVAL;
  1254. }
  1255. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1256. if (bufqi->entries >= bufqi->thresh) {
  1257. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1258. rx_buf_list);
  1259. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1260. return QDF_STATUS_E_RESOURCES;
  1261. }
  1262. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1263. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1264. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1265. if (!cache_buf) {
  1266. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1267. "Failed to allocate buf to cache rx frames");
  1268. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1269. rx_buf_list);
  1270. return QDF_STATUS_E_NOMEM;
  1271. }
  1272. cache_buf->buf = rx_buf_list;
  1273. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1274. qdf_list_insert_back(&bufqi->cached_bufq,
  1275. &cache_buf->node);
  1276. bufqi->entries += num_buff_elem;
  1277. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1278. return QDF_STATUS_SUCCESS;
  1279. }
  1280. static inline
  1281. bool dp_rx_is_peer_cache_bufq_supported(void)
  1282. {
  1283. return true;
  1284. }
  1285. #else
  1286. static inline
  1287. bool dp_rx_is_peer_cache_bufq_supported(void)
  1288. {
  1289. return false;
  1290. }
  1291. static inline QDF_STATUS
  1292. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1293. {
  1294. return QDF_STATUS_SUCCESS;
  1295. }
  1296. #endif
  1297. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1298. /**
  1299. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1300. * using the appropriate call back functions.
  1301. * @soc: soc
  1302. * @vdev: vdev
  1303. * @peer: peer
  1304. * @nbuf_head: skb list head
  1305. * @nbuf_tail: skb list tail
  1306. *
  1307. * Return: None
  1308. */
  1309. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1310. struct dp_vdev *vdev,
  1311. struct dp_peer *peer,
  1312. qdf_nbuf_t nbuf_head)
  1313. {
  1314. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1315. peer, nbuf_head)))
  1316. return;
  1317. /* Function pointer initialized only when FISA is enabled */
  1318. if (vdev->osif_fisa_rx)
  1319. /* on failure send it via regular path */
  1320. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1321. else
  1322. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1323. }
  1324. #else
  1325. /**
  1326. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1327. * using the appropriate call back functions.
  1328. * @soc: soc
  1329. * @vdev: vdev
  1330. * @peer: peer
  1331. * @nbuf_head: skb list head
  1332. * @nbuf_tail: skb list tail
  1333. *
  1334. * Check the return status of the call back function and drop
  1335. * the packets if the return status indicates a failure.
  1336. *
  1337. * Return: None
  1338. */
  1339. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1340. struct dp_vdev *vdev,
  1341. struct dp_peer *peer,
  1342. qdf_nbuf_t nbuf_head)
  1343. {
  1344. int num_nbuf = 0;
  1345. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1346. /* Function pointer initialized only when FISA is enabled */
  1347. if (vdev->osif_fisa_rx)
  1348. /* on failure send it via regular path */
  1349. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1350. else if (vdev->osif_rx)
  1351. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1352. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1353. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1354. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1355. if (peer)
  1356. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1357. }
  1358. }
  1359. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1360. /*
  1361. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1362. * @soc DP soc
  1363. * @vdev: DP vdev handle
  1364. * @peer: pointer to the peer object
  1365. * nbuf_head: skb list head
  1366. *
  1367. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1368. * QDF_STATUS_E_FAILURE
  1369. */
  1370. static inline QDF_STATUS
  1371. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1372. struct dp_vdev *vdev,
  1373. struct dp_peer *peer,
  1374. qdf_nbuf_t nbuf_head)
  1375. {
  1376. int num_nbuf;
  1377. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1378. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1379. /*
  1380. * This is a special case where vdev is invalid,
  1381. * so we cannot know the pdev to which this packet
  1382. * belonged. Hence we update the soc rx error stats.
  1383. */
  1384. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1385. return QDF_STATUS_E_FAILURE;
  1386. }
  1387. /*
  1388. * highly unlikely to have a vdev without a registered rx
  1389. * callback function. if so let us free the nbuf_list.
  1390. */
  1391. if (qdf_unlikely(!vdev->osif_rx)) {
  1392. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1393. dp_rx_enqueue_rx(peer, nbuf_head);
  1394. } else {
  1395. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1396. nbuf_head);
  1397. DP_PEER_TO_STACK_DECC(peer, num_nbuf,
  1398. vdev->pdev->enhanced_stats_en);
  1399. }
  1400. return QDF_STATUS_E_FAILURE;
  1401. }
  1402. return QDF_STATUS_SUCCESS;
  1403. }
  1404. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  1405. struct dp_vdev *vdev,
  1406. struct dp_peer *peer,
  1407. qdf_nbuf_t nbuf_head,
  1408. qdf_nbuf_t nbuf_tail)
  1409. {
  1410. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1411. QDF_STATUS_SUCCESS)
  1412. return QDF_STATUS_E_FAILURE;
  1413. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1414. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1415. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1416. &nbuf_tail, peer->mac_addr.raw);
  1417. }
  1418. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1419. return QDF_STATUS_SUCCESS;
  1420. }
  1421. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  1422. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  1423. struct dp_vdev *vdev,
  1424. struct dp_peer *peer,
  1425. qdf_nbuf_t nbuf_head,
  1426. qdf_nbuf_t nbuf_tail)
  1427. {
  1428. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1429. QDF_STATUS_SUCCESS)
  1430. return QDF_STATUS_E_FAILURE;
  1431. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  1432. return QDF_STATUS_SUCCESS;
  1433. }
  1434. #endif
  1435. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1436. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1437. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1438. { \
  1439. qdf_nbuf_t nbuf_local; \
  1440. struct dp_peer *peer_local; \
  1441. struct dp_vdev *vdev_local = vdev_hdl; \
  1442. do { \
  1443. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1444. break; \
  1445. nbuf_local = nbuf; \
  1446. peer_local = peer; \
  1447. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1448. break; \
  1449. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1450. break; \
  1451. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1452. (nbuf_local), \
  1453. (peer_local), 0, 1); \
  1454. } while (0); \
  1455. }
  1456. #else
  1457. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1458. #endif
  1459. /**
  1460. * dp_rx_msdu_stats_update() - update per msdu stats.
  1461. * @soc: core txrx main context
  1462. * @nbuf: pointer to the first msdu of an amsdu.
  1463. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1464. * @peer: pointer to the peer object.
  1465. * @ring_id: reo dest ring number on which pkt is reaped.
  1466. * @tid_stats: per tid rx stats.
  1467. *
  1468. * update all the per msdu stats for that nbuf.
  1469. * Return: void
  1470. */
  1471. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1472. uint8_t *rx_tlv_hdr, struct dp_peer *peer,
  1473. uint8_t ring_id,
  1474. struct cdp_tid_rx_stats *tid_stats)
  1475. {
  1476. bool is_ampdu, is_not_amsdu;
  1477. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1478. struct dp_vdev *vdev = peer->vdev;
  1479. bool enh_flag;
  1480. qdf_ether_header_t *eh;
  1481. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1482. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1483. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1484. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1485. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1486. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1487. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1488. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1489. tid_stats->msdu_cnt++;
  1490. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1491. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1492. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1493. enh_flag = vdev->pdev->enhanced_stats_en;
  1494. DP_PEER_MC_INCC_PKT(peer, 1, msdu_len, enh_flag);
  1495. tid_stats->mcast_msdu_cnt++;
  1496. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1497. DP_PEER_BC_INCC_PKT(peer, 1, msdu_len, enh_flag);
  1498. tid_stats->bcast_msdu_cnt++;
  1499. }
  1500. }
  1501. /*
  1502. * currently we can return from here as we have similar stats
  1503. * updated at per ppdu level instead of msdu level
  1504. */
  1505. if (!soc->process_rx_status)
  1506. return;
  1507. peer->stats.rx.last_rx_ts = qdf_system_ticks();
  1508. /*
  1509. * TODO - For KIWI this field is present in ring_desc
  1510. * Try to use ring desc instead of tlv.
  1511. */
  1512. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  1513. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1514. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1515. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  1516. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1517. tid = qdf_nbuf_get_tid_val(nbuf);
  1518. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1519. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1520. rx_tlv_hdr);
  1521. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1522. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1523. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1524. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1525. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1526. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1527. DP_STATS_INC(peer, rx.bw[bw], 1);
  1528. /*
  1529. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1530. * then increase index [nss - 1] in array counter.
  1531. */
  1532. if (nss > 0 && (pkt_type == DOT11_N ||
  1533. pkt_type == DOT11_AC ||
  1534. pkt_type == DOT11_AX))
  1535. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1536. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1537. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1538. hal_rx_tlv_mic_err_get(soc->hal_soc, rx_tlv_hdr));
  1539. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1540. hal_rx_tlv_decrypt_err_get(soc->hal_soc, rx_tlv_hdr));
  1541. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1542. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1543. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1544. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1545. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1546. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1547. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1548. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1549. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1550. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1551. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1552. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1553. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1554. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1555. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1556. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1557. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1558. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1559. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1560. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1561. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1562. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1563. }
  1564. #ifndef WDS_VENDOR_EXTENSION
  1565. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1566. struct dp_vdev *vdev,
  1567. struct dp_peer *peer)
  1568. {
  1569. return 1;
  1570. }
  1571. #endif
  1572. #ifdef RX_DESC_DEBUG_CHECK
  1573. /**
  1574. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1575. * corruption
  1576. *
  1577. * @ring_desc: REO ring descriptor
  1578. * @rx_desc: Rx descriptor
  1579. *
  1580. * Return: NONE
  1581. */
  1582. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  1583. hal_ring_desc_t ring_desc,
  1584. struct dp_rx_desc *rx_desc)
  1585. {
  1586. struct hal_buf_info hbi;
  1587. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1588. /* Sanity check for possible buffer paddr corruption */
  1589. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1590. return QDF_STATUS_SUCCESS;
  1591. return QDF_STATUS_E_FAILURE;
  1592. }
  1593. /**
  1594. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1595. * out of bound access from H.W
  1596. *
  1597. * @soc: DP soc
  1598. * @pkt_len: Packet length received from H.W
  1599. *
  1600. * Return: NONE
  1601. */
  1602. static inline void
  1603. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1604. uint32_t pkt_len)
  1605. {
  1606. struct rx_desc_pool *rx_desc_pool;
  1607. rx_desc_pool = &soc->rx_desc_buf[0];
  1608. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1609. }
  1610. #else
  1611. static inline void
  1612. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1613. #endif
  1614. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1615. /**
  1616. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1617. * no corresbonding peer found
  1618. * @soc: core txrx main context
  1619. * @nbuf: pkt skb pointer
  1620. *
  1621. * This function will try to deliver some RX special frames to stack
  1622. * even there is no peer matched found. for instance, LFR case, some
  1623. * eapol data will be sent to host before peer_map done.
  1624. *
  1625. * Return: None
  1626. */
  1627. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1628. {
  1629. uint16_t peer_id;
  1630. uint8_t vdev_id;
  1631. struct dp_vdev *vdev = NULL;
  1632. uint32_t l2_hdr_offset = 0;
  1633. uint16_t msdu_len = 0;
  1634. uint32_t pkt_len = 0;
  1635. uint8_t *rx_tlv_hdr;
  1636. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1637. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1638. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1639. if (peer_id > soc->max_peer_id)
  1640. goto deliver_fail;
  1641. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1642. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1643. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1644. goto deliver_fail;
  1645. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1646. goto deliver_fail;
  1647. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1648. l2_hdr_offset =
  1649. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1650. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1651. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  1652. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1653. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1654. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  1655. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1656. qdf_nbuf_set_exc_frame(nbuf, 1);
  1657. if (QDF_STATUS_SUCCESS !=
  1658. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1659. goto deliver_fail;
  1660. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1661. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1662. return;
  1663. }
  1664. deliver_fail:
  1665. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1666. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1667. qdf_nbuf_free(nbuf);
  1668. if (vdev)
  1669. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1670. }
  1671. #else
  1672. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1673. {
  1674. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1675. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1676. qdf_nbuf_free(nbuf);
  1677. }
  1678. #endif
  1679. /**
  1680. * dp_rx_srng_get_num_pending() - get number of pending entries
  1681. * @hal_soc: hal soc opaque pointer
  1682. * @hal_ring: opaque pointer to the HAL Rx Ring
  1683. * @num_entries: number of entries in the hal_ring.
  1684. * @near_full: pointer to a boolean. This is set if ring is near full.
  1685. *
  1686. * The function returns the number of entries in a destination ring which are
  1687. * yet to be reaped. The function also checks if the ring is near full.
  1688. * If more than half of the ring needs to be reaped, the ring is considered
  1689. * approaching full.
  1690. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1691. * entries. It should not be called within a SRNG lock. HW pointer value is
  1692. * synced into cached_hp.
  1693. *
  1694. * Return: Number of pending entries if any
  1695. */
  1696. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1697. hal_ring_handle_t hal_ring_hdl,
  1698. uint32_t num_entries,
  1699. bool *near_full)
  1700. {
  1701. uint32_t num_pending = 0;
  1702. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1703. hal_ring_hdl,
  1704. true);
  1705. if (num_entries && (num_pending >= num_entries >> 1))
  1706. *near_full = true;
  1707. else
  1708. *near_full = false;
  1709. return num_pending;
  1710. }
  1711. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1712. #ifdef WLAN_SUPPORT_RX_FISA
  1713. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1714. {
  1715. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1716. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1717. }
  1718. /**
  1719. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1720. * @nbuf: pkt skb pointer
  1721. * @l3_padding: l3 padding
  1722. *
  1723. * Return: None
  1724. */
  1725. static inline
  1726. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1727. {
  1728. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1729. }
  1730. #else
  1731. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1732. {
  1733. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1734. }
  1735. static inline
  1736. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1737. {
  1738. }
  1739. #endif
  1740. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1741. #ifdef DP_RX_DROP_RAW_FRM
  1742. /**
  1743. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1744. * @nbuf: pkt skb pointer
  1745. *
  1746. * Return: true - raw frame, dropped
  1747. * false - not raw frame, do nothing
  1748. */
  1749. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1750. {
  1751. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1752. qdf_nbuf_free(nbuf);
  1753. return true;
  1754. }
  1755. return false;
  1756. }
  1757. #endif
  1758. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1759. /**
  1760. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1761. * @soc: Datapath soc structure
  1762. * @ring_num: REO ring number
  1763. * @ring_desc: REO ring descriptor
  1764. *
  1765. * Returns: None
  1766. */
  1767. void
  1768. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1769. hal_ring_desc_t ring_desc)
  1770. {
  1771. struct dp_buf_info_record *record;
  1772. struct hal_buf_info hbi;
  1773. uint32_t idx;
  1774. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1775. return;
  1776. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1777. /* buffer_addr_info is the first element of ring_desc */
  1778. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  1779. &hbi);
  1780. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1781. DP_RX_HIST_MAX);
  1782. /* No NULL check needed for record since its an array */
  1783. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1784. record->timestamp = qdf_get_log_timestamp();
  1785. record->hbi.paddr = hbi.paddr;
  1786. record->hbi.sw_cookie = hbi.sw_cookie;
  1787. record->hbi.rbm = hbi.rbm;
  1788. }
  1789. #endif
  1790. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1791. /**
  1792. * dp_rx_update_stats() - Update soc level rx packet count
  1793. * @soc: DP soc handle
  1794. * @nbuf: nbuf received
  1795. *
  1796. * Returns: none
  1797. */
  1798. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1799. {
  1800. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1801. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1802. }
  1803. #endif
  1804. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  1805. /**
  1806. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1807. * @soc : dp_soc handle
  1808. * @pdev: dp_pdev handle
  1809. * @peer_id: peer_id of the peer for which completion came
  1810. * @ppdu_id: ppdu_id
  1811. * @netbuf: Buffer pointer
  1812. *
  1813. * This function is used to deliver rx packet to packet capture
  1814. */
  1815. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1816. uint16_t peer_id, uint32_t is_offload,
  1817. qdf_nbuf_t netbuf)
  1818. {
  1819. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  1820. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1821. peer_id, is_offload, pdev->pdev_id);
  1822. }
  1823. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1824. uint32_t is_offload)
  1825. {
  1826. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  1827. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  1828. soc, nbuf, HTT_INVALID_VDEV,
  1829. is_offload, 0);
  1830. }
  1831. #endif
  1832. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1833. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  1834. {
  1835. QDF_STATUS ret;
  1836. if (vdev->osif_rx_flush) {
  1837. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  1838. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  1839. dp_err("Failed to flush rx pkts for vdev %d\n",
  1840. vdev->vdev_id);
  1841. return ret;
  1842. }
  1843. }
  1844. return QDF_STATUS_SUCCESS;
  1845. }
  1846. static QDF_STATUS
  1847. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  1848. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  1849. struct dp_pdev *dp_pdev,
  1850. struct rx_desc_pool *rx_desc_pool)
  1851. {
  1852. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  1853. (nbuf_frag_info_t->virt_addr).nbuf =
  1854. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  1855. RX_BUFFER_RESERVATION,
  1856. rx_desc_pool->buf_alignment, FALSE);
  1857. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  1858. dp_err("nbuf alloc failed");
  1859. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  1860. return ret;
  1861. }
  1862. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  1863. (nbuf_frag_info_t->virt_addr).nbuf,
  1864. QDF_DMA_FROM_DEVICE,
  1865. rx_desc_pool->buf_size);
  1866. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1867. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  1868. dp_err("nbuf map failed");
  1869. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  1870. return ret;
  1871. }
  1872. nbuf_frag_info_t->paddr =
  1873. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  1874. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  1875. &nbuf_frag_info_t->paddr,
  1876. rx_desc_pool);
  1877. if (ret == QDF_STATUS_E_FAILURE) {
  1878. dp_err("nbuf check x86 failed");
  1879. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  1880. return ret;
  1881. }
  1882. return QDF_STATUS_SUCCESS;
  1883. }
  1884. QDF_STATUS
  1885. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  1886. struct dp_srng *dp_rxdma_srng,
  1887. struct rx_desc_pool *rx_desc_pool,
  1888. uint32_t num_req_buffers)
  1889. {
  1890. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  1891. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  1892. union dp_rx_desc_list_elem_t *next;
  1893. void *rxdma_ring_entry;
  1894. qdf_dma_addr_t paddr;
  1895. struct dp_rx_nbuf_frag_info *nf_info;
  1896. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  1897. uint32_t buffer_index, nbuf_ptrs_per_page;
  1898. qdf_nbuf_t nbuf;
  1899. QDF_STATUS ret;
  1900. int page_idx, total_pages;
  1901. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1902. union dp_rx_desc_list_elem_t *tail = NULL;
  1903. int sync_hw_ptr = 1;
  1904. uint32_t num_entries_avail;
  1905. if (qdf_unlikely(!dp_pdev)) {
  1906. dp_rx_err("%pK: pdev is null for mac_id = %d",
  1907. dp_soc, mac_id);
  1908. return QDF_STATUS_E_FAILURE;
  1909. }
  1910. if (qdf_unlikely(!rxdma_srng)) {
  1911. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1912. return QDF_STATUS_E_FAILURE;
  1913. }
  1914. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  1915. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1916. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  1917. rxdma_srng,
  1918. sync_hw_ptr);
  1919. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  1920. if (!num_entries_avail) {
  1921. dp_err("Num of available entries is zero, nothing to do");
  1922. return QDF_STATUS_E_NOMEM;
  1923. }
  1924. if (num_entries_avail < num_req_buffers)
  1925. num_req_buffers = num_entries_avail;
  1926. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  1927. num_req_buffers, &desc_list, &tail);
  1928. if (!nr_descs) {
  1929. dp_err("no free rx_descs in freelist");
  1930. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  1931. return QDF_STATUS_E_NOMEM;
  1932. }
  1933. dp_debug("got %u RX descs for driver attach", nr_descs);
  1934. /*
  1935. * Try to allocate pointers to the nbuf one page at a time.
  1936. * Take pointers that can fit in one page of memory and
  1937. * iterate through the total descriptors that need to be
  1938. * allocated in order of pages. Reuse the pointers that
  1939. * have been allocated to fit in one page across each
  1940. * iteration to index into the nbuf.
  1941. */
  1942. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  1943. /*
  1944. * Add an extra page to store the remainder if any
  1945. */
  1946. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  1947. total_pages++;
  1948. nf_info = qdf_mem_malloc(PAGE_SIZE);
  1949. if (!nf_info) {
  1950. dp_err("failed to allocate nbuf array");
  1951. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1952. QDF_BUG(0);
  1953. return QDF_STATUS_E_NOMEM;
  1954. }
  1955. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  1956. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  1957. qdf_mem_zero(nf_info, PAGE_SIZE);
  1958. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  1959. /*
  1960. * The last page of buffer pointers may not be required
  1961. * completely based on the number of descriptors. Below
  1962. * check will ensure we are allocating only the
  1963. * required number of descriptors.
  1964. */
  1965. if (nr_nbuf_total >= nr_descs)
  1966. break;
  1967. /* Flag is set while pdev rx_desc_pool initialization */
  1968. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  1969. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  1970. &nf_info[nr_nbuf], dp_pdev,
  1971. rx_desc_pool);
  1972. else
  1973. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  1974. &nf_info[nr_nbuf], dp_pdev,
  1975. rx_desc_pool);
  1976. if (QDF_IS_STATUS_ERROR(ret))
  1977. break;
  1978. nr_nbuf_total++;
  1979. }
  1980. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1981. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  1982. rxdma_ring_entry =
  1983. hal_srng_src_get_next(dp_soc->hal_soc,
  1984. rxdma_srng);
  1985. qdf_assert_always(rxdma_ring_entry);
  1986. next = desc_list->next;
  1987. paddr = nf_info[buffer_index].paddr;
  1988. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  1989. /* Flag is set while pdev rx_desc_pool initialization */
  1990. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  1991. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  1992. &nf_info[buffer_index]);
  1993. else
  1994. dp_rx_desc_prep(&desc_list->rx_desc,
  1995. &nf_info[buffer_index]);
  1996. desc_list->rx_desc.in_use = 1;
  1997. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  1998. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  1999. __func__,
  2000. RX_DESC_REPLENISHED);
  2001. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2002. desc_list->rx_desc.cookie,
  2003. rx_desc_pool->owner);
  2004. dp_ipa_handle_rx_buf_smmu_mapping(
  2005. dp_soc, nbuf,
  2006. rx_desc_pool->buf_size,
  2007. true);
  2008. desc_list = next;
  2009. }
  2010. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2011. rxdma_srng, nr_nbuf, nr_nbuf);
  2012. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2013. }
  2014. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2015. qdf_mem_free(nf_info);
  2016. if (!nr_nbuf_total) {
  2017. dp_err("No nbuf's allocated");
  2018. QDF_BUG(0);
  2019. return QDF_STATUS_E_RESOURCES;
  2020. }
  2021. /* No need to count the number of bytes received during replenish.
  2022. * Therefore set replenish.pkts.bytes as 0.
  2023. */
  2024. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2025. return QDF_STATUS_SUCCESS;
  2026. }
  2027. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2028. /**
  2029. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2030. * monitor destination ring via frag.
  2031. *
  2032. * Enable this flag only for monitor destination buffer processing
  2033. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2034. * If flag is set then frag based function will be called for alloc,
  2035. * map, prep desc and free ops for desc buffer else normal nbuf based
  2036. * function will be called.
  2037. *
  2038. * @rx_desc_pool: Rx desc pool
  2039. * @is_mon_dest_desc: Is it for monitor dest buffer
  2040. *
  2041. * Return: None
  2042. */
  2043. #ifdef DP_RX_MON_MEM_FRAG
  2044. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2045. bool is_mon_dest_desc)
  2046. {
  2047. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2048. if (is_mon_dest_desc)
  2049. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2050. }
  2051. #else
  2052. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2053. bool is_mon_dest_desc)
  2054. {
  2055. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2056. if (is_mon_dest_desc)
  2057. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2058. }
  2059. #endif
  2060. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2061. /*
  2062. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2063. * pool
  2064. *
  2065. * @pdev: core txrx pdev context
  2066. *
  2067. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2068. * QDF_STATUS_E_NOMEM
  2069. */
  2070. QDF_STATUS
  2071. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2072. {
  2073. struct dp_soc *soc = pdev->soc;
  2074. uint32_t rxdma_entries;
  2075. uint32_t rx_sw_desc_num;
  2076. struct dp_srng *dp_rxdma_srng;
  2077. struct rx_desc_pool *rx_desc_pool;
  2078. uint32_t status = QDF_STATUS_SUCCESS;
  2079. int mac_for_pdev;
  2080. mac_for_pdev = pdev->lmac_id;
  2081. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2082. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2083. soc, mac_for_pdev);
  2084. return status;
  2085. }
  2086. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2087. rxdma_entries = dp_rxdma_srng->num_entries;
  2088. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2089. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2090. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2091. status = dp_rx_desc_pool_alloc(soc,
  2092. rx_sw_desc_num,
  2093. rx_desc_pool);
  2094. if (status != QDF_STATUS_SUCCESS)
  2095. return status;
  2096. return status;
  2097. }
  2098. /*
  2099. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2100. *
  2101. * @pdev: core txrx pdev context
  2102. */
  2103. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2104. {
  2105. int mac_for_pdev = pdev->lmac_id;
  2106. struct dp_soc *soc = pdev->soc;
  2107. struct rx_desc_pool *rx_desc_pool;
  2108. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2109. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2110. }
  2111. /*
  2112. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2113. *
  2114. * @pdev: core txrx pdev context
  2115. *
  2116. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2117. * QDF_STATUS_E_NOMEM
  2118. */
  2119. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2120. {
  2121. int mac_for_pdev = pdev->lmac_id;
  2122. struct dp_soc *soc = pdev->soc;
  2123. uint32_t rxdma_entries;
  2124. uint32_t rx_sw_desc_num;
  2125. struct dp_srng *dp_rxdma_srng;
  2126. struct rx_desc_pool *rx_desc_pool;
  2127. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2128. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2129. /**
  2130. * If NSS is enabled, rx_desc_pool is already filled.
  2131. * Hence, just disable desc_pool frag flag.
  2132. */
  2133. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2134. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2135. soc, mac_for_pdev);
  2136. return QDF_STATUS_SUCCESS;
  2137. }
  2138. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2139. return QDF_STATUS_E_NOMEM;
  2140. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2141. rxdma_entries = dp_rxdma_srng->num_entries;
  2142. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2143. rx_sw_desc_num =
  2144. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2145. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2146. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2147. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2148. /* Disable monitor dest processing via frag */
  2149. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2150. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2151. rx_sw_desc_num, rx_desc_pool);
  2152. return QDF_STATUS_SUCCESS;
  2153. }
  2154. /*
  2155. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2156. * @pdev: core txrx pdev context
  2157. *
  2158. * This function resets the freelist of rx descriptors and destroys locks
  2159. * associated with this list of descriptors.
  2160. */
  2161. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2162. {
  2163. int mac_for_pdev = pdev->lmac_id;
  2164. struct dp_soc *soc = pdev->soc;
  2165. struct rx_desc_pool *rx_desc_pool;
  2166. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2167. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2168. }
  2169. /*
  2170. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2171. *
  2172. * @pdev: core txrx pdev context
  2173. *
  2174. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2175. * QDF_STATUS_E_NOMEM
  2176. */
  2177. QDF_STATUS
  2178. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2179. {
  2180. int mac_for_pdev = pdev->lmac_id;
  2181. struct dp_soc *soc = pdev->soc;
  2182. struct dp_srng *dp_rxdma_srng;
  2183. struct rx_desc_pool *rx_desc_pool;
  2184. uint32_t rxdma_entries;
  2185. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2186. rxdma_entries = dp_rxdma_srng->num_entries;
  2187. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2188. /* Initialize RX buffer pool which will be
  2189. * used during low memory conditions
  2190. */
  2191. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2192. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2193. rx_desc_pool, rxdma_entries - 1);
  2194. }
  2195. /*
  2196. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2197. *
  2198. * @pdev: core txrx pdev context
  2199. */
  2200. void
  2201. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2202. {
  2203. int mac_for_pdev = pdev->lmac_id;
  2204. struct dp_soc *soc = pdev->soc;
  2205. struct rx_desc_pool *rx_desc_pool;
  2206. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2207. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2208. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2209. }
  2210. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2211. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2212. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2213. uint8_t *rx_tlv_hdr)
  2214. {
  2215. uint32_t l2_hdr_offset = 0;
  2216. uint16_t msdu_len = 0;
  2217. uint32_t skip_len;
  2218. l2_hdr_offset =
  2219. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2220. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2221. skip_len = l2_hdr_offset;
  2222. } else {
  2223. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2224. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2225. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2226. }
  2227. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2228. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2229. qdf_nbuf_pull_head(nbuf, skip_len);
  2230. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2231. dp_info("special frame, mpdu sn 0x%x",
  2232. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2233. qdf_nbuf_set_exc_frame(nbuf, 1);
  2234. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2235. nbuf, NULL);
  2236. return true;
  2237. }
  2238. return false;
  2239. }
  2240. #endif