lpass-cdc-wsa-macro.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/thermal.h>
  10. #include <linux/pm_runtime.h>
  11. #include <sound/soc.h>
  12. #include <sound/soc-dapm.h>
  13. #include <sound/tlv.h>
  14. #include <soc/swr-common.h>
  15. #include <soc/swr-wcd.h>
  16. #include <asoc/msm-cdc-pinctrl.h>
  17. #include "lpass-cdc.h"
  18. #include "lpass-cdc-comp.h"
  19. #include "lpass-cdc-registers.h"
  20. #include "lpass-cdc-wsa-macro.h"
  21. #include "lpass-cdc-clk-rsc.h"
  22. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  23. #define LPASS_CDC_WSA_MACRO_MAX_OFFSET 0x1000
  24. #define LPASS_CDC_WSA_MACRO_RX_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  25. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  27. #define LPASS_CDC_WSA_MACRO_RX_MIX_RATES (SNDRV_PCM_RATE_48000 |\
  28. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  29. #define LPASS_CDC_WSA_MACRO_RX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  30. SNDRV_PCM_FMTBIT_S24_LE |\
  31. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  32. #define LPASS_CDC_WSA_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  33. SNDRV_PCM_RATE_48000)
  34. #define LPASS_CDC_WSA_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  35. SNDRV_PCM_FMTBIT_S24_LE |\
  36. SNDRV_PCM_FMTBIT_S24_3LE)
  37. #define NUM_INTERPOLATORS 2
  38. #define LPASS_CDC_WSA_MACRO_MUX_INP_SHFT 0x3
  39. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK1 0x07
  40. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK2 0x38
  41. #define LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET 0x8
  42. #define LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET 0x4
  43. #define LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET \
  44. (LPASS_CDC_WSA_COMPANDER1_CTL0 - LPASS_CDC_WSA_COMPANDER0_CTL0)
  45. #define LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET \
  46. (LPASS_CDC_WSA_SOFTCLIP1_CRC - LPASS_CDC_WSA_SOFTCLIP0_CRC)
  47. #define LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET \
  48. (LPASS_CDC_WSA_RX1_RX_PATH_CTL - LPASS_CDC_WSA_RX0_RX_PATH_CTL)
  49. #define LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET 0x10
  50. #define LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET 0x4C
  51. #define LPASS_CDC_WSA_MACRO_FS_RATE_MASK 0x0F
  52. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK 0x03
  53. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK 0x18
  54. #define LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT 0x2
  55. #define LPASS_CDC_WSA_MACRO_THERMAL_MAX_STATE 11
  56. enum {
  57. LPASS_CDC_WSA_MACRO_RX0 = 0,
  58. LPASS_CDC_WSA_MACRO_RX1,
  59. LPASS_CDC_WSA_MACRO_RX_MIX,
  60. LPASS_CDC_WSA_MACRO_RX_MIX0 = LPASS_CDC_WSA_MACRO_RX_MIX,
  61. LPASS_CDC_WSA_MACRO_RX_MIX1,
  62. LPASS_CDC_WSA_MACRO_RX4,
  63. LPASS_CDC_WSA_MACRO_RX5,
  64. LPASS_CDC_WSA_MACRO_RX_MAX,
  65. };
  66. enum {
  67. LPASS_CDC_WSA_MACRO_TX0 = 0,
  68. LPASS_CDC_WSA_MACRO_TX1,
  69. LPASS_CDC_WSA_MACRO_TX_MAX,
  70. };
  71. enum {
  72. LPASS_CDC_WSA_MACRO_EC0_MUX = 0,
  73. LPASS_CDC_WSA_MACRO_EC1_MUX,
  74. LPASS_CDC_WSA_MACRO_EC_MUX_MAX,
  75. };
  76. enum {
  77. LPASS_CDC_WSA_MACRO_COMP1, /* SPK_L */
  78. LPASS_CDC_WSA_MACRO_COMP2, /* SPK_R */
  79. LPASS_CDC_WSA_MACRO_COMP_MAX
  80. };
  81. enum {
  82. LPASS_CDC_WSA_MACRO_SOFTCLIP0, /* RX0 */
  83. LPASS_CDC_WSA_MACRO_SOFTCLIP1, /* RX1 */
  84. LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX
  85. };
  86. enum {
  87. INTn_1_INP_SEL_ZERO = 0,
  88. INTn_1_INP_SEL_RX0,
  89. INTn_1_INP_SEL_RX1,
  90. INTn_1_INP_SEL_RX2,
  91. INTn_1_INP_SEL_RX3,
  92. INTn_1_INP_SEL_RX4,
  93. INTn_1_INP_SEL_RX5,
  94. INTn_1_INP_SEL_DEC0,
  95. INTn_1_INP_SEL_DEC1,
  96. };
  97. enum {
  98. INTn_2_INP_SEL_ZERO = 0,
  99. INTn_2_INP_SEL_RX0,
  100. INTn_2_INP_SEL_RX1,
  101. INTn_2_INP_SEL_RX2,
  102. INTn_2_INP_SEL_RX3,
  103. INTn_2_INP_SEL_RX4,
  104. INTn_2_INP_SEL_RX5,
  105. };
  106. enum {
  107. WSA_MODE_21DB,
  108. WSA_MODE_19P5DB,
  109. WSA_MODE_18DB,
  110. WSA_MODE_16P5DB,
  111. WSA_MODE_15DB,
  112. WSA_MODE_13P5DB,
  113. WSA_MODE_12DB,
  114. WSA_MODE_10P5DB,
  115. WSA_MODE_9DB,
  116. WSA_MODE_MAX
  117. };
  118. static struct lpass_cdc_comp_setting comp_setting_table[WSA_MODE_MAX] =
  119. {
  120. {42, 0, 42},
  121. {39, 0, 42},
  122. {36, 0, 42},
  123. {33, 0, 42},
  124. {30, 0, 42},
  125. {27, 0, 42},
  126. {24, 0, 42},
  127. {21, 0, 42},
  128. {18, 0, 42},
  129. };
  130. struct interp_sample_rate {
  131. int sample_rate;
  132. int rate_val;
  133. };
  134. /*
  135. * Structure used to update codec
  136. * register defaults after reset
  137. */
  138. struct lpass_cdc_wsa_macro_reg_mask_val {
  139. u16 reg;
  140. u8 mask;
  141. u8 val;
  142. };
  143. static struct interp_sample_rate int_prim_sample_rate_val[] = {
  144. {8000, 0x0}, /* 8K */
  145. {16000, 0x1}, /* 16K */
  146. {24000, -EINVAL},/* 24K */
  147. {32000, 0x3}, /* 32K */
  148. {48000, 0x4}, /* 48K */
  149. {96000, 0x5}, /* 96K */
  150. {192000, 0x6}, /* 192K */
  151. {384000, 0x7}, /* 384K */
  152. {44100, 0x8}, /* 44.1K */
  153. };
  154. static struct interp_sample_rate int_mix_sample_rate_val[] = {
  155. {48000, 0x4}, /* 48K */
  156. {96000, 0x5}, /* 96K */
  157. {192000, 0x6}, /* 192K */
  158. };
  159. #define LPASS_CDC_WSA_MACRO_SWR_STRING_LEN 80
  160. static int lpass_cdc_wsa_macro_core_vote(void *handle, bool enable);
  161. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  162. struct snd_pcm_hw_params *params,
  163. struct snd_soc_dai *dai);
  164. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  165. unsigned int *tx_num, unsigned int *tx_slot,
  166. unsigned int *rx_num, unsigned int *rx_slot);
  167. static int lpass_cdc_wsa_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  168. /* Hold instance to soundwire platform device */
  169. struct lpass_cdc_wsa_macro_swr_ctrl_data {
  170. struct platform_device *wsa_swr_pdev;
  171. };
  172. #define LPASS_CDC_WSA_MACRO_SET_VOLUME_TLV(xname, xreg, xmin, xmax, tlv_array) \
  173. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
  174. .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
  175. SNDRV_CTL_ELEM_ACCESS_READWRITE, \
  176. .tlv.p = (tlv_array), \
  177. .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\
  178. .put = lpass_cdc_wsa_macro_set_digital_volume, \
  179. .private_value = (unsigned long)&(struct soc_mixer_control) \
  180. {.reg = xreg, .rreg = xreg, \
  181. .min = xmin, .max = xmax, .platform_max = xmax, \
  182. .sign_bit = 7,} }
  183. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data {
  184. void *handle; /* holds codec private data */
  185. int (*read)(void *handle, int reg);
  186. int (*write)(void *handle, int reg, int val);
  187. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  188. int (*clk)(void *handle, bool enable);
  189. int (*core_vote)(void *handle, bool enable);
  190. int (*handle_irq)(void *handle,
  191. irqreturn_t (*swrm_irq_handler)(int irq,
  192. void *data),
  193. void *swrm_handle,
  194. int action);
  195. };
  196. enum {
  197. LPASS_CDC_WSA_MACRO_AIF_INVALID = 0,
  198. LPASS_CDC_WSA_MACRO_AIF1_PB,
  199. LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  200. LPASS_CDC_WSA_MACRO_AIF_VI,
  201. LPASS_CDC_WSA_MACRO_AIF_ECHO,
  202. LPASS_CDC_WSA_MACRO_MAX_DAIS,
  203. };
  204. #define LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX 3
  205. /*
  206. * @dev: wsa macro device pointer
  207. * @comp_enabled: compander enable mixer value set
  208. * @ec_hq: echo HQ enable mixer value set
  209. * @prim_int_users: Users of interpolator
  210. * @wsa_mclk_users: WSA MCLK users count
  211. * @swr_clk_users: SWR clk users count
  212. * @vi_feed_value: VI sense mask
  213. * @mclk_lock: to lock mclk operations
  214. * @swr_clk_lock: to lock swr master clock operations
  215. * @swr_ctrl_data: SoundWire data structure
  216. * @swr_plat_data: Soundwire platform data
  217. * @lpass_cdc_wsa_macro_add_child_devices_work: work for adding child devices
  218. * @wsa_swr_gpio_p: used by pinctrl API
  219. * @component: codec handle
  220. * @rx_0_count: RX0 interpolation users
  221. * @rx_1_count: RX1 interpolation users
  222. * @active_ch_mask: channel mask for all AIF DAIs
  223. * @active_ch_cnt: channel count of all AIF DAIs
  224. * @rx_port_value: mixer ctl value of WSA RX MUXes
  225. * @wsa_io_base: Base address of WSA macro addr space
  226. */
  227. struct lpass_cdc_wsa_macro_priv {
  228. struct device *dev;
  229. int comp_enabled[LPASS_CDC_WSA_MACRO_COMP_MAX];
  230. int comp_mode[LPASS_CDC_WSA_MACRO_COMP_MAX];
  231. int ec_hq[LPASS_CDC_WSA_MACRO_RX1 + 1];
  232. u16 prim_int_users[LPASS_CDC_WSA_MACRO_RX1 + 1];
  233. u16 wsa_mclk_users;
  234. u16 swr_clk_users;
  235. bool dapm_mclk_enable;
  236. bool reset_swr;
  237. unsigned int vi_feed_value;
  238. struct mutex mclk_lock;
  239. struct mutex swr_clk_lock;
  240. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data;
  241. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data swr_plat_data;
  242. struct work_struct lpass_cdc_wsa_macro_add_child_devices_work;
  243. struct device_node *wsa_swr_gpio_p;
  244. struct snd_soc_component *component;
  245. int rx_0_count;
  246. int rx_1_count;
  247. unsigned long active_ch_mask[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  248. unsigned long active_ch_cnt[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  249. int rx_port_value[LPASS_CDC_WSA_MACRO_RX_MAX];
  250. char __iomem *wsa_io_base;
  251. struct platform_device *pdev_child_devices
  252. [LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX];
  253. int child_count;
  254. int ear_spkr_gain;
  255. int spkr_gain_offset;
  256. int spkr_mode;
  257. int is_softclip_on[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  258. int softclip_clk_users[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  259. char __iomem *mclk_mode_muxsel;
  260. u16 default_clk_id;
  261. u32 pcm_rate_vi;
  262. int wsa_digital_mute_status[LPASS_CDC_WSA_MACRO_RX_MAX];
  263. u8 rx0_origin_gain;
  264. u8 rx1_origin_gain;
  265. struct thermal_cooling_device *tcdev;
  266. uint32_t thermal_cur_state;
  267. uint32_t thermal_max_state;
  268. struct work_struct lpass_cdc_wsa_macro_cooling_work;
  269. };
  270. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[];
  271. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  272. static const char *const rx_text[] = {
  273. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1", "RX4", "RX5", "DEC0", "DEC1"
  274. };
  275. static const char *const rx_mix_text[] = {
  276. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1", "RX4", "RX5",
  277. };
  278. static const char *const rx_mix_ec_text[] = {
  279. "ZERO", "RX_MIX_TX0", "RX_MIX_TX1"
  280. };
  281. static const char *const rx_mux_text[] = {
  282. "ZERO", "AIF1_PB", "AIF_MIX1_PB"
  283. };
  284. static const char *const rx_sidetone_mix_text[] = {
  285. "ZERO", "SRC0"
  286. };
  287. static const char * const lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text[] = {
  288. "OFF", "ON"
  289. };
  290. static const char * const lpass_cdc_wsa_macro_comp_mode_text[] = {
  291. "G_21_DB", "G_19P5_DB", "G_18_DB", "G_16P5_DB", "G_15_DB",
  292. "G_13P5_DB", "G_12_DB", "G_10P5_DB", "G_9_DB"
  293. };
  294. static const struct snd_kcontrol_new wsa_int0_vbat_mix_switch[] = {
  295. SOC_DAPM_SINGLE("WSA RX0 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  296. };
  297. static const struct snd_kcontrol_new wsa_int1_vbat_mix_switch[] = {
  298. SOC_DAPM_SINGLE("WSA RX1 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  299. };
  300. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  301. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text);
  302. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_comp_mode_enum,
  303. lpass_cdc_wsa_macro_comp_mode_text);
  304. /* RX INT0 */
  305. static const struct soc_enum rx0_prim_inp0_chain_enum =
  306. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  307. 0, 9, rx_text);
  308. static const struct soc_enum rx0_prim_inp1_chain_enum =
  309. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  310. 3, 9, rx_text);
  311. static const struct soc_enum rx0_prim_inp2_chain_enum =
  312. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  313. 3, 9, rx_text);
  314. static const struct soc_enum rx0_mix_chain_enum =
  315. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  316. 0, 7, rx_mix_text);
  317. static const struct soc_enum rx0_sidetone_mix_enum =
  318. SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, 2, rx_sidetone_mix_text);
  319. static const struct snd_kcontrol_new rx0_prim_inp0_mux =
  320. SOC_DAPM_ENUM("WSA_RX0 INP0 Mux", rx0_prim_inp0_chain_enum);
  321. static const struct snd_kcontrol_new rx0_prim_inp1_mux =
  322. SOC_DAPM_ENUM("WSA_RX0 INP1 Mux", rx0_prim_inp1_chain_enum);
  323. static const struct snd_kcontrol_new rx0_prim_inp2_mux =
  324. SOC_DAPM_ENUM("WSA_RX0 INP2 Mux", rx0_prim_inp2_chain_enum);
  325. static const struct snd_kcontrol_new rx0_mix_mux =
  326. SOC_DAPM_ENUM("WSA_RX0 MIX Mux", rx0_mix_chain_enum);
  327. static const struct snd_kcontrol_new rx0_sidetone_mix_mux =
  328. SOC_DAPM_ENUM("WSA_RX0 SIDETONE MIX Mux", rx0_sidetone_mix_enum);
  329. /* RX INT1 */
  330. static const struct soc_enum rx1_prim_inp0_chain_enum =
  331. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  332. 0, 9, rx_text);
  333. static const struct soc_enum rx1_prim_inp1_chain_enum =
  334. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  335. 3, 9, rx_text);
  336. static const struct soc_enum rx1_prim_inp2_chain_enum =
  337. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  338. 3, 9, rx_text);
  339. static const struct soc_enum rx1_mix_chain_enum =
  340. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  341. 0, 7, rx_mix_text);
  342. static const struct snd_kcontrol_new rx1_prim_inp0_mux =
  343. SOC_DAPM_ENUM("WSA_RX1 INP0 Mux", rx1_prim_inp0_chain_enum);
  344. static const struct snd_kcontrol_new rx1_prim_inp1_mux =
  345. SOC_DAPM_ENUM("WSA_RX1 INP1 Mux", rx1_prim_inp1_chain_enum);
  346. static const struct snd_kcontrol_new rx1_prim_inp2_mux =
  347. SOC_DAPM_ENUM("WSA_RX1 INP2 Mux", rx1_prim_inp2_chain_enum);
  348. static const struct snd_kcontrol_new rx1_mix_mux =
  349. SOC_DAPM_ENUM("WSA_RX1 MIX Mux", rx1_mix_chain_enum);
  350. static const struct soc_enum rx_mix_ec0_enum =
  351. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  352. 0, 3, rx_mix_ec_text);
  353. static const struct soc_enum rx_mix_ec1_enum =
  354. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  355. 3, 3, rx_mix_ec_text);
  356. static const struct snd_kcontrol_new rx_mix_ec0_mux =
  357. SOC_DAPM_ENUM("WSA RX_MIX EC0_Mux", rx_mix_ec0_enum);
  358. static const struct snd_kcontrol_new rx_mix_ec1_mux =
  359. SOC_DAPM_ENUM("WSA RX_MIX EC1_Mux", rx_mix_ec1_enum);
  360. static struct snd_soc_dai_ops lpass_cdc_wsa_macro_dai_ops = {
  361. .hw_params = lpass_cdc_wsa_macro_hw_params,
  362. .get_channel_map = lpass_cdc_wsa_macro_get_channel_map,
  363. .mute_stream = lpass_cdc_wsa_macro_mute_stream,
  364. };
  365. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[] = {
  366. {
  367. .name = "wsa_macro_rx1",
  368. .id = LPASS_CDC_WSA_MACRO_AIF1_PB,
  369. .playback = {
  370. .stream_name = "WSA_AIF1 Playback",
  371. .rates = LPASS_CDC_WSA_MACRO_RX_RATES,
  372. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  373. .rate_max = 384000,
  374. .rate_min = 8000,
  375. .channels_min = 1,
  376. .channels_max = 2,
  377. },
  378. .ops = &lpass_cdc_wsa_macro_dai_ops,
  379. },
  380. {
  381. .name = "wsa_macro_rx_mix",
  382. .id = LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  383. .playback = {
  384. .stream_name = "WSA_AIF_MIX1 Playback",
  385. .rates = LPASS_CDC_WSA_MACRO_RX_MIX_RATES,
  386. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  387. .rate_max = 192000,
  388. .rate_min = 48000,
  389. .channels_min = 1,
  390. .channels_max = 2,
  391. },
  392. .ops = &lpass_cdc_wsa_macro_dai_ops,
  393. },
  394. {
  395. .name = "wsa_macro_vifeedback",
  396. .id = LPASS_CDC_WSA_MACRO_AIF_VI,
  397. .capture = {
  398. .stream_name = "WSA_AIF_VI Capture",
  399. .rates = SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_48000,
  400. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  401. .rate_max = 48000,
  402. .rate_min = 8000,
  403. .channels_min = 1,
  404. .channels_max = 4,
  405. },
  406. .ops = &lpass_cdc_wsa_macro_dai_ops,
  407. },
  408. {
  409. .name = "wsa_macro_echo",
  410. .id = LPASS_CDC_WSA_MACRO_AIF_ECHO,
  411. .capture = {
  412. .stream_name = "WSA_AIF_ECHO Capture",
  413. .rates = LPASS_CDC_WSA_MACRO_ECHO_RATES,
  414. .formats = LPASS_CDC_WSA_MACRO_ECHO_FORMATS,
  415. .rate_max = 48000,
  416. .rate_min = 8000,
  417. .channels_min = 1,
  418. .channels_max = 2,
  419. },
  420. .ops = &lpass_cdc_wsa_macro_dai_ops,
  421. },
  422. };
  423. static bool lpass_cdc_wsa_macro_get_data(struct snd_soc_component *component,
  424. struct device **wsa_dev,
  425. struct lpass_cdc_wsa_macro_priv **wsa_priv,
  426. const char *func_name)
  427. {
  428. *wsa_dev = lpass_cdc_get_device_ptr(component->dev,
  429. WSA_MACRO);
  430. if (!(*wsa_dev)) {
  431. dev_err(component->dev,
  432. "%s: null device for macro!\n", func_name);
  433. return false;
  434. }
  435. *wsa_priv = dev_get_drvdata((*wsa_dev));
  436. if (!(*wsa_priv) || !(*wsa_priv)->component) {
  437. dev_err(component->dev,
  438. "%s: priv is null for macro!\n", func_name);
  439. return false;
  440. }
  441. return true;
  442. }
  443. static int lpass_cdc_wsa_macro_set_port_map(struct snd_soc_component *component,
  444. u32 usecase, u32 size, void *data)
  445. {
  446. struct device *wsa_dev = NULL;
  447. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  448. struct swrm_port_config port_cfg;
  449. int ret = 0;
  450. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  451. return -EINVAL;
  452. memset(&port_cfg, 0, sizeof(port_cfg));
  453. port_cfg.uc = usecase;
  454. port_cfg.size = size;
  455. port_cfg.params = data;
  456. if (wsa_priv->swr_ctrl_data)
  457. ret = swrm_wcd_notify(
  458. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  459. SWR_SET_PORT_MAP, &port_cfg);
  460. return ret;
  461. }
  462. static int lpass_cdc_wsa_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  463. u8 int_prim_fs_rate_reg_val,
  464. u32 sample_rate)
  465. {
  466. u8 int_1_mix1_inp;
  467. u32 j, port;
  468. u16 int_mux_cfg0, int_mux_cfg1;
  469. u16 int_fs_reg;
  470. u8 int_mux_cfg0_val, int_mux_cfg1_val;
  471. u8 inp0_sel, inp1_sel, inp2_sel;
  472. struct snd_soc_component *component = dai->component;
  473. struct device *wsa_dev = NULL;
  474. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  475. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  476. return -EINVAL;
  477. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  478. LPASS_CDC_WSA_MACRO_RX_MAX) {
  479. int_1_mix1_inp = port;
  480. if ((int_1_mix1_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  481. (int_1_mix1_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  482. dev_err(wsa_dev,
  483. "%s: Invalid RX port, Dai ID is %d\n",
  484. __func__, dai->id);
  485. return -EINVAL;
  486. }
  487. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0;
  488. /*
  489. * Loop through all interpolator MUX inputs and find out
  490. * to which interpolator input, the cdc_dma rx port
  491. * is connected
  492. */
  493. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  494. int_mux_cfg1 = int_mux_cfg0 + LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET;
  495. int_mux_cfg0_val = snd_soc_component_read(component,
  496. int_mux_cfg0);
  497. int_mux_cfg1_val = snd_soc_component_read(component,
  498. int_mux_cfg1);
  499. inp0_sel = int_mux_cfg0_val & LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  500. inp1_sel = (int_mux_cfg0_val >>
  501. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  502. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  503. inp2_sel = (int_mux_cfg1_val >>
  504. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  505. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  506. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  507. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  508. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  509. int_fs_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  510. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  511. dev_dbg(wsa_dev,
  512. "%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  513. __func__, dai->id, j);
  514. dev_dbg(wsa_dev,
  515. "%s: set INT%u_1 sample rate to %u\n",
  516. __func__, j, sample_rate);
  517. /* sample_rate is in Hz */
  518. snd_soc_component_update_bits(component,
  519. int_fs_reg,
  520. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  521. int_prim_fs_rate_reg_val);
  522. }
  523. int_mux_cfg0 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  524. }
  525. }
  526. return 0;
  527. }
  528. static int lpass_cdc_wsa_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  529. u8 int_mix_fs_rate_reg_val,
  530. u32 sample_rate)
  531. {
  532. u8 int_2_inp;
  533. u32 j, port;
  534. u16 int_mux_cfg1, int_fs_reg;
  535. u8 int_mux_cfg1_val;
  536. struct snd_soc_component *component = dai->component;
  537. struct device *wsa_dev = NULL;
  538. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  539. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  540. return -EINVAL;
  541. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  542. LPASS_CDC_WSA_MACRO_RX_MAX) {
  543. int_2_inp = port;
  544. if ((int_2_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  545. (int_2_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  546. dev_err(wsa_dev,
  547. "%s: Invalid RX port, Dai ID is %d\n",
  548. __func__, dai->id);
  549. return -EINVAL;
  550. }
  551. int_mux_cfg1 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1;
  552. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  553. int_mux_cfg1_val = snd_soc_component_read(component,
  554. int_mux_cfg1) &
  555. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  556. if (int_mux_cfg1_val == int_2_inp +
  557. INTn_2_INP_SEL_RX0) {
  558. int_fs_reg =
  559. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  560. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  561. dev_dbg(wsa_dev,
  562. "%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  563. __func__, dai->id, j);
  564. dev_dbg(wsa_dev,
  565. "%s: set INT%u_2 sample rate to %u\n",
  566. __func__, j, sample_rate);
  567. snd_soc_component_update_bits(component,
  568. int_fs_reg,
  569. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  570. int_mix_fs_rate_reg_val);
  571. }
  572. int_mux_cfg1 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  573. }
  574. }
  575. return 0;
  576. }
  577. static int lpass_cdc_wsa_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  578. u32 sample_rate)
  579. {
  580. int rate_val = 0;
  581. int i, ret;
  582. /* set mixing path rate */
  583. for (i = 0; i < ARRAY_SIZE(int_mix_sample_rate_val); i++) {
  584. if (sample_rate ==
  585. int_mix_sample_rate_val[i].sample_rate) {
  586. rate_val =
  587. int_mix_sample_rate_val[i].rate_val;
  588. break;
  589. }
  590. }
  591. if ((i == ARRAY_SIZE(int_mix_sample_rate_val)) ||
  592. (rate_val < 0))
  593. goto prim_rate;
  594. ret = lpass_cdc_wsa_macro_set_mix_interpolator_rate(dai,
  595. (u8) rate_val, sample_rate);
  596. prim_rate:
  597. /* set primary path sample rate */
  598. for (i = 0; i < ARRAY_SIZE(int_prim_sample_rate_val); i++) {
  599. if (sample_rate ==
  600. int_prim_sample_rate_val[i].sample_rate) {
  601. rate_val =
  602. int_prim_sample_rate_val[i].rate_val;
  603. break;
  604. }
  605. }
  606. if ((i == ARRAY_SIZE(int_prim_sample_rate_val)) ||
  607. (rate_val < 0))
  608. return -EINVAL;
  609. ret = lpass_cdc_wsa_macro_set_prim_interpolator_rate(dai,
  610. (u8) rate_val, sample_rate);
  611. return ret;
  612. }
  613. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  614. struct snd_pcm_hw_params *params,
  615. struct snd_soc_dai *dai)
  616. {
  617. struct snd_soc_component *component = dai->component;
  618. int ret;
  619. struct device *wsa_dev = NULL;
  620. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  621. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  622. return -EINVAL;
  623. wsa_priv = dev_get_drvdata(wsa_dev);
  624. if (!wsa_priv)
  625. return -EINVAL;
  626. dev_dbg(component->dev,
  627. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  628. dai->name, dai->id, params_rate(params),
  629. params_channels(params));
  630. switch (substream->stream) {
  631. case SNDRV_PCM_STREAM_PLAYBACK:
  632. ret = lpass_cdc_wsa_macro_set_interpolator_rate(dai, params_rate(params));
  633. if (ret) {
  634. dev_err(component->dev,
  635. "%s: cannot set sample rate: %u\n",
  636. __func__, params_rate(params));
  637. return ret;
  638. }
  639. break;
  640. case SNDRV_PCM_STREAM_CAPTURE:
  641. if (dai->id == LPASS_CDC_WSA_MACRO_AIF_VI)
  642. wsa_priv->pcm_rate_vi = params_rate(params);
  643. default:
  644. break;
  645. }
  646. return 0;
  647. }
  648. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  649. unsigned int *tx_num, unsigned int *tx_slot,
  650. unsigned int *rx_num, unsigned int *rx_slot)
  651. {
  652. struct snd_soc_component *component = dai->component;
  653. struct device *wsa_dev = NULL;
  654. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  655. u16 val = 0, mask = 0, cnt = 0, temp = 0;
  656. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  657. return -EINVAL;
  658. wsa_priv = dev_get_drvdata(wsa_dev);
  659. if (!wsa_priv)
  660. return -EINVAL;
  661. switch (dai->id) {
  662. case LPASS_CDC_WSA_MACRO_AIF_VI:
  663. *tx_slot = wsa_priv->active_ch_mask[dai->id];
  664. *tx_num = wsa_priv->active_ch_cnt[dai->id];
  665. break;
  666. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  667. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  668. for_each_set_bit(temp, &wsa_priv->active_ch_mask[dai->id],
  669. LPASS_CDC_WSA_MACRO_RX_MAX) {
  670. mask |= (1 << temp);
  671. if (++cnt == LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT)
  672. break;
  673. }
  674. if (mask & 0x0C)
  675. mask = mask >> 0x2;
  676. *rx_slot = mask;
  677. *rx_num = cnt;
  678. break;
  679. case LPASS_CDC_WSA_MACRO_AIF_ECHO:
  680. val = snd_soc_component_read(component,
  681. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  682. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK) {
  683. mask |= 0x2;
  684. cnt++;
  685. }
  686. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK) {
  687. mask |= 0x1;
  688. cnt++;
  689. }
  690. *tx_slot = mask;
  691. *tx_num = cnt;
  692. break;
  693. default:
  694. dev_err(wsa_dev, "%s: Invalid AIF\n", __func__);
  695. break;
  696. }
  697. return 0;
  698. }
  699. static int lpass_cdc_wsa_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  700. {
  701. struct snd_soc_component *component = dai->component;
  702. struct device *wsa_dev = NULL;
  703. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  704. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  705. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  706. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  707. bool adie_lb = false;
  708. if (mute)
  709. return 0;
  710. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  711. return -EINVAL;
  712. switch (dai->id) {
  713. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  714. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  715. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  716. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  717. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  718. mix_reg = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  719. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  720. dsm_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  721. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET) +
  722. LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET;
  723. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  724. int_mux_cfg1 = int_mux_cfg0 + 4;
  725. int_mux_cfg0_val = snd_soc_component_read(component,
  726. int_mux_cfg0);
  727. int_mux_cfg1_val = snd_soc_component_read(component,
  728. int_mux_cfg1);
  729. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  730. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0x38))
  731. snd_soc_component_update_bits(component, reg,
  732. 0x20, 0x20);
  733. if (int_mux_cfg1_val & 0x07) {
  734. snd_soc_component_update_bits(component, reg,
  735. 0x20, 0x20);
  736. snd_soc_component_update_bits(component,
  737. mix_reg, 0x20, 0x20);
  738. }
  739. }
  740. }
  741. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  742. break;
  743. default:
  744. break;
  745. }
  746. return 0;
  747. }
  748. static int lpass_cdc_wsa_macro_mclk_enable(
  749. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  750. bool mclk_enable, bool dapm)
  751. {
  752. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  753. int ret = 0;
  754. if (regmap == NULL) {
  755. dev_err(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  756. return -EINVAL;
  757. }
  758. dev_dbg(wsa_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  759. __func__, mclk_enable, dapm, wsa_priv->wsa_mclk_users);
  760. mutex_lock(&wsa_priv->mclk_lock);
  761. if (mclk_enable) {
  762. if (wsa_priv->wsa_mclk_users == 0) {
  763. ret = lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  764. wsa_priv->default_clk_id,
  765. wsa_priv->default_clk_id,
  766. true);
  767. if (ret < 0) {
  768. dev_err_ratelimited(wsa_priv->dev,
  769. "%s: wsa request clock enable failed\n",
  770. __func__);
  771. goto exit;
  772. }
  773. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  774. true);
  775. regcache_mark_dirty(regmap);
  776. regcache_sync_region(regmap,
  777. WSA_START_OFFSET,
  778. WSA_MAX_OFFSET);
  779. /* 9.6MHz MCLK, set value 0x00 if other frequency */
  780. regmap_update_bits(regmap,
  781. LPASS_CDC_WSA_TOP_FREQ_MCLK, 0x01, 0x01);
  782. regmap_update_bits(regmap,
  783. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  784. 0x01, 0x01);
  785. regmap_update_bits(regmap,
  786. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  787. 0x01, 0x01);
  788. }
  789. wsa_priv->wsa_mclk_users++;
  790. } else {
  791. if (wsa_priv->wsa_mclk_users <= 0) {
  792. dev_err(wsa_priv->dev, "%s: clock already disabled\n",
  793. __func__);
  794. wsa_priv->wsa_mclk_users = 0;
  795. goto exit;
  796. }
  797. wsa_priv->wsa_mclk_users--;
  798. if (wsa_priv->wsa_mclk_users == 0) {
  799. regmap_update_bits(regmap,
  800. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  801. 0x01, 0x00);
  802. regmap_update_bits(regmap,
  803. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  804. 0x01, 0x00);
  805. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  806. false);
  807. lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  808. wsa_priv->default_clk_id,
  809. wsa_priv->default_clk_id,
  810. false);
  811. }
  812. }
  813. exit:
  814. mutex_unlock(&wsa_priv->mclk_lock);
  815. return ret;
  816. }
  817. static int lpass_cdc_wsa_macro_mclk_event(struct snd_soc_dapm_widget *w,
  818. struct snd_kcontrol *kcontrol, int event)
  819. {
  820. struct snd_soc_component *component =
  821. snd_soc_dapm_to_component(w->dapm);
  822. int ret = 0;
  823. struct device *wsa_dev = NULL;
  824. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  825. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  826. return -EINVAL;
  827. dev_dbg(wsa_dev, "%s: event = %d\n", __func__, event);
  828. switch (event) {
  829. case SND_SOC_DAPM_PRE_PMU:
  830. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  831. if (ret)
  832. wsa_priv->dapm_mclk_enable = false;
  833. else
  834. wsa_priv->dapm_mclk_enable = true;
  835. break;
  836. case SND_SOC_DAPM_POST_PMD:
  837. if (wsa_priv->dapm_mclk_enable) {
  838. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  839. wsa_priv->dapm_mclk_enable = false;
  840. }
  841. break;
  842. default:
  843. dev_err(wsa_priv->dev,
  844. "%s: invalid DAPM event %d\n", __func__, event);
  845. ret = -EINVAL;
  846. }
  847. return ret;
  848. }
  849. static int lpass_cdc_wsa_macro_event_handler(struct snd_soc_component *component,
  850. u16 event, u32 data)
  851. {
  852. struct device *wsa_dev = NULL;
  853. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  854. int ret = 0;
  855. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  856. return -EINVAL;
  857. switch (event) {
  858. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  859. trace_printk("%s, enter SSR down\n", __func__);
  860. if (wsa_priv->swr_ctrl_data) {
  861. swrm_wcd_notify(
  862. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  863. SWR_DEVICE_SSR_DOWN, NULL);
  864. }
  865. if ((!pm_runtime_enabled(wsa_dev) ||
  866. !pm_runtime_suspended(wsa_dev))) {
  867. ret = lpass_cdc_runtime_suspend(wsa_dev);
  868. if (!ret) {
  869. pm_runtime_disable(wsa_dev);
  870. pm_runtime_set_suspended(wsa_dev);
  871. pm_runtime_enable(wsa_dev);
  872. }
  873. }
  874. break;
  875. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  876. break;
  877. case LPASS_CDC_MACRO_EVT_SSR_UP:
  878. trace_printk("%s, enter SSR up\n", __func__);
  879. /* reset swr after ssr/pdr */
  880. wsa_priv->reset_swr = true;
  881. if (wsa_priv->swr_ctrl_data)
  882. swrm_wcd_notify(
  883. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  884. SWR_DEVICE_SSR_UP, NULL);
  885. break;
  886. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  887. lpass_cdc_rsc_clk_reset(wsa_dev, WSA_CORE_CLK);
  888. break;
  889. }
  890. return 0;
  891. }
  892. static int lpass_cdc_wsa_macro_enable_vi_feedback(struct snd_soc_dapm_widget *w,
  893. struct snd_kcontrol *kcontrol,
  894. int event)
  895. {
  896. struct snd_soc_component *component =
  897. snd_soc_dapm_to_component(w->dapm);
  898. struct device *wsa_dev = NULL;
  899. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  900. u8 val = 0x0;
  901. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  902. return -EINVAL;
  903. switch (wsa_priv->pcm_rate_vi) {
  904. case 48000:
  905. val = 0x04;
  906. break;
  907. case 24000:
  908. val = 0x02;
  909. break;
  910. case 8000:
  911. default:
  912. val = 0x00;
  913. break;
  914. }
  915. switch (event) {
  916. case SND_SOC_DAPM_POST_PMU:
  917. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  918. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  919. dev_dbg(wsa_dev, "%s: spkr1 enabled\n", __func__);
  920. /* Enable V&I sensing */
  921. snd_soc_component_update_bits(component,
  922. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  923. 0x20, 0x20);
  924. snd_soc_component_update_bits(component,
  925. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  926. 0x20, 0x20);
  927. snd_soc_component_update_bits(component,
  928. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  929. 0x0F, val);
  930. snd_soc_component_update_bits(component,
  931. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  932. 0x0F, val);
  933. snd_soc_component_update_bits(component,
  934. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  935. 0x10, 0x10);
  936. snd_soc_component_update_bits(component,
  937. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  938. 0x10, 0x10);
  939. snd_soc_component_update_bits(component,
  940. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  941. 0x20, 0x00);
  942. snd_soc_component_update_bits(component,
  943. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  944. 0x20, 0x00);
  945. }
  946. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  947. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  948. dev_dbg(wsa_dev, "%s: spkr2 enabled\n", __func__);
  949. /* Enable V&I sensing */
  950. snd_soc_component_update_bits(component,
  951. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  952. 0x20, 0x20);
  953. snd_soc_component_update_bits(component,
  954. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  955. 0x20, 0x20);
  956. snd_soc_component_update_bits(component,
  957. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  958. 0x0F, val);
  959. snd_soc_component_update_bits(component,
  960. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  961. 0x0F, val);
  962. snd_soc_component_update_bits(component,
  963. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  964. 0x10, 0x10);
  965. snd_soc_component_update_bits(component,
  966. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  967. 0x10, 0x10);
  968. snd_soc_component_update_bits(component,
  969. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  970. 0x20, 0x00);
  971. snd_soc_component_update_bits(component,
  972. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  973. 0x20, 0x00);
  974. }
  975. break;
  976. case SND_SOC_DAPM_POST_PMD:
  977. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  978. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  979. /* Disable V&I sensing */
  980. snd_soc_component_update_bits(component,
  981. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  982. 0x20, 0x20);
  983. snd_soc_component_update_bits(component,
  984. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  985. 0x20, 0x20);
  986. dev_dbg(wsa_dev, "%s: spkr1 disabled\n", __func__);
  987. snd_soc_component_update_bits(component,
  988. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  989. 0x10, 0x00);
  990. snd_soc_component_update_bits(component,
  991. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  992. 0x10, 0x00);
  993. }
  994. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  995. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  996. /* Disable V&I sensing */
  997. dev_dbg(wsa_dev, "%s: spkr2 disabled\n", __func__);
  998. snd_soc_component_update_bits(component,
  999. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1000. 0x20, 0x20);
  1001. snd_soc_component_update_bits(component,
  1002. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1003. 0x20, 0x20);
  1004. snd_soc_component_update_bits(component,
  1005. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1006. 0x10, 0x00);
  1007. snd_soc_component_update_bits(component,
  1008. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1009. 0x10, 0x00);
  1010. }
  1011. break;
  1012. }
  1013. return 0;
  1014. }
  1015. static void lpass_cdc_wsa_macro_hd2_control(struct snd_soc_component *component,
  1016. u16 reg, int event)
  1017. {
  1018. u16 hd2_scale_reg;
  1019. u16 hd2_enable_reg = 0;
  1020. if (reg == LPASS_CDC_WSA_RX0_RX_PATH_CTL) {
  1021. hd2_scale_reg = LPASS_CDC_WSA_RX0_RX_PATH_SEC3;
  1022. hd2_enable_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0;
  1023. }
  1024. if (reg == LPASS_CDC_WSA_RX1_RX_PATH_CTL) {
  1025. hd2_scale_reg = LPASS_CDC_WSA_RX1_RX_PATH_SEC3;
  1026. hd2_enable_reg = LPASS_CDC_WSA_RX1_RX_PATH_CFG0;
  1027. }
  1028. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1029. snd_soc_component_update_bits(component, hd2_scale_reg,
  1030. 0x3C, 0x10);
  1031. snd_soc_component_update_bits(component, hd2_scale_reg,
  1032. 0x03, 0x01);
  1033. snd_soc_component_update_bits(component, hd2_enable_reg,
  1034. 0x04, 0x04);
  1035. }
  1036. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1037. snd_soc_component_update_bits(component, hd2_enable_reg,
  1038. 0x04, 0x00);
  1039. snd_soc_component_update_bits(component, hd2_scale_reg,
  1040. 0x03, 0x00);
  1041. snd_soc_component_update_bits(component, hd2_scale_reg,
  1042. 0x3C, 0x00);
  1043. }
  1044. }
  1045. static int lpass_cdc_wsa_macro_enable_swr(struct snd_soc_dapm_widget *w,
  1046. struct snd_kcontrol *kcontrol, int event)
  1047. {
  1048. struct snd_soc_component *component =
  1049. snd_soc_dapm_to_component(w->dapm);
  1050. int ch_cnt;
  1051. struct device *wsa_dev = NULL;
  1052. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1053. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1054. return -EINVAL;
  1055. switch (event) {
  1056. case SND_SOC_DAPM_PRE_PMU:
  1057. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1058. !wsa_priv->rx_0_count)
  1059. wsa_priv->rx_0_count++;
  1060. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1061. !wsa_priv->rx_1_count)
  1062. wsa_priv->rx_1_count++;
  1063. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1064. if (wsa_priv->swr_ctrl_data) {
  1065. swrm_wcd_notify(
  1066. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1067. SWR_DEVICE_UP, NULL);
  1068. swrm_wcd_notify(
  1069. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1070. SWR_SET_NUM_RX_CH, &ch_cnt);
  1071. }
  1072. break;
  1073. case SND_SOC_DAPM_POST_PMD:
  1074. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1075. wsa_priv->rx_0_count)
  1076. wsa_priv->rx_0_count--;
  1077. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1078. wsa_priv->rx_1_count)
  1079. wsa_priv->rx_1_count--;
  1080. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1081. if (wsa_priv->swr_ctrl_data)
  1082. swrm_wcd_notify(
  1083. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1084. SWR_SET_NUM_RX_CH, &ch_cnt);
  1085. break;
  1086. }
  1087. dev_dbg(wsa_priv->dev, "%s: current swr ch cnt: %d\n",
  1088. __func__, wsa_priv->rx_0_count + wsa_priv->rx_1_count);
  1089. return 0;
  1090. }
  1091. static int lpass_cdc_wsa_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1092. struct snd_kcontrol *kcontrol, int event)
  1093. {
  1094. struct snd_soc_component *component =
  1095. snd_soc_dapm_to_component(w->dapm);
  1096. u16 gain_reg;
  1097. int offset_val = 0;
  1098. int val = 0;
  1099. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1100. if (!(strcmp(w->name, "WSA_RX0 MIX INP"))) {
  1101. gain_reg = LPASS_CDC_WSA_RX0_RX_VOL_MIX_CTL;
  1102. } else if (!(strcmp(w->name, "WSA_RX1 MIX INP"))) {
  1103. gain_reg = LPASS_CDC_WSA_RX1_RX_VOL_MIX_CTL;
  1104. } else {
  1105. dev_err(component->dev, "%s: No gain register avail for %s\n",
  1106. __func__, w->name);
  1107. return 0;
  1108. }
  1109. switch (event) {
  1110. case SND_SOC_DAPM_PRE_PMU:
  1111. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1112. val = snd_soc_component_read(component, gain_reg);
  1113. val += offset_val;
  1114. snd_soc_component_write(component, gain_reg, val);
  1115. break;
  1116. case SND_SOC_DAPM_POST_PMD:
  1117. snd_soc_component_update_bits(component,
  1118. w->reg, 0x20, 0x00);
  1119. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1120. break;
  1121. }
  1122. return 0;
  1123. }
  1124. static int lpass_cdc_wsa_macro_config_compander(struct snd_soc_component *component,
  1125. int comp, int event)
  1126. {
  1127. u16 comp_ctl0_reg, comp_ctl8_reg, rx_path_cfg0_reg;
  1128. struct device *wsa_dev = NULL;
  1129. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1130. u16 mode = 0;
  1131. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1132. return -EINVAL;
  1133. dev_dbg(component->dev, "%s: event %d compander %d, enabled %d\n",
  1134. __func__, event, comp + 1, wsa_priv->comp_enabled[comp]);
  1135. if (!wsa_priv->comp_enabled[comp])
  1136. return 0;
  1137. mode = wsa_priv->comp_mode[comp];
  1138. comp_ctl0_reg = LPASS_CDC_WSA_COMPANDER0_CTL0 +
  1139. (comp * LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET);
  1140. comp_ctl8_reg = LPASS_CDC_WSA_COMPANDER0_CTL8 +
  1141. (comp * LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET);
  1142. rx_path_cfg0_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0 +
  1143. (comp * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  1144. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1145. lpass_cdc_update_compander_setting(component,
  1146. comp_ctl8_reg,
  1147. &comp_setting_table[mode]);
  1148. /* Enable Compander Clock */
  1149. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1150. 0x01, 0x01);
  1151. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1152. 0x02, 0x02);
  1153. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1154. 0x02, 0x00);
  1155. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1156. 0x02, 0x02);
  1157. }
  1158. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1159. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1160. 0x04, 0x04);
  1161. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1162. 0x02, 0x00);
  1163. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1164. 0x02, 0x02);
  1165. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1166. 0x02, 0x00);
  1167. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1168. 0x01, 0x00);
  1169. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1170. 0x04, 0x00);
  1171. }
  1172. return 0;
  1173. }
  1174. static void lpass_cdc_wsa_macro_enable_softclip_clk(struct snd_soc_component *component,
  1175. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  1176. int path,
  1177. bool enable)
  1178. {
  1179. u16 softclip_clk_reg = LPASS_CDC_WSA_SOFTCLIP0_CRC +
  1180. (path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1181. u8 softclip_mux_mask = (1 << path);
  1182. u8 softclip_mux_value = (1 << path);
  1183. dev_dbg(component->dev, "%s: path %d, enable %d\n",
  1184. __func__, path, enable);
  1185. if (enable) {
  1186. if (wsa_priv->softclip_clk_users[path] == 0) {
  1187. snd_soc_component_update_bits(component,
  1188. softclip_clk_reg, 0x01, 0x01);
  1189. snd_soc_component_update_bits(component,
  1190. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1191. softclip_mux_mask, softclip_mux_value);
  1192. }
  1193. wsa_priv->softclip_clk_users[path]++;
  1194. } else {
  1195. wsa_priv->softclip_clk_users[path]--;
  1196. if (wsa_priv->softclip_clk_users[path] == 0) {
  1197. snd_soc_component_update_bits(component,
  1198. softclip_clk_reg, 0x01, 0x00);
  1199. snd_soc_component_update_bits(component,
  1200. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1201. softclip_mux_mask, 0x00);
  1202. }
  1203. }
  1204. }
  1205. static int lpass_cdc_wsa_macro_config_softclip(struct snd_soc_component *component,
  1206. int path, int event)
  1207. {
  1208. u16 softclip_ctrl_reg = 0;
  1209. struct device *wsa_dev = NULL;
  1210. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1211. int softclip_path = 0;
  1212. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1213. return -EINVAL;
  1214. if (path == LPASS_CDC_WSA_MACRO_COMP1)
  1215. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1216. else if (path == LPASS_CDC_WSA_MACRO_COMP2)
  1217. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1218. dev_dbg(component->dev, "%s: event %d path %d, enabled %d\n",
  1219. __func__, event, softclip_path,
  1220. wsa_priv->is_softclip_on[softclip_path]);
  1221. if (!wsa_priv->is_softclip_on[softclip_path])
  1222. return 0;
  1223. softclip_ctrl_reg = LPASS_CDC_WSA_SOFTCLIP0_SOFTCLIP_CTRL +
  1224. (softclip_path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1225. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1226. /* Enable Softclip clock and mux */
  1227. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1228. softclip_path, true);
  1229. /* Enable Softclip control */
  1230. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1231. 0x01, 0x01);
  1232. }
  1233. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1234. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1235. 0x01, 0x00);
  1236. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1237. softclip_path, false);
  1238. }
  1239. return 0;
  1240. }
  1241. static bool lpass_cdc_wsa_macro_adie_lb(struct snd_soc_component *component,
  1242. int interp_idx)
  1243. {
  1244. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1245. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1246. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1247. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1248. int_mux_cfg1 = int_mux_cfg0 + 4;
  1249. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1250. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1251. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1252. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1253. int_n_inp0 == INTn_1_INP_SEL_DEC1)
  1254. return true;
  1255. int_n_inp1 = int_mux_cfg0_val >> 4;
  1256. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1257. int_n_inp1 == INTn_1_INP_SEL_DEC1)
  1258. return true;
  1259. int_n_inp2 = int_mux_cfg1_val >> 4;
  1260. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1261. int_n_inp2 == INTn_1_INP_SEL_DEC1)
  1262. return true;
  1263. return false;
  1264. }
  1265. static int lpass_cdc_wsa_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1266. struct snd_kcontrol *kcontrol,
  1267. int event)
  1268. {
  1269. struct snd_soc_component *component =
  1270. snd_soc_dapm_to_component(w->dapm);
  1271. u16 reg = 0;
  1272. struct device *wsa_dev = NULL;
  1273. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1274. bool adie_lb = false;
  1275. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1276. return -EINVAL;
  1277. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  1278. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * w->shift;
  1279. switch (event) {
  1280. case SND_SOC_DAPM_PRE_PMU:
  1281. if (lpass_cdc_wsa_macro_adie_lb(component, w->shift)) {
  1282. adie_lb = true;
  1283. snd_soc_component_update_bits(component,
  1284. reg, 0x20, 0x20);
  1285. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  1286. }
  1287. break;
  1288. default:
  1289. break;
  1290. }
  1291. return 0;
  1292. }
  1293. static int lpass_cdc_wsa_macro_interp_get_primary_reg(u16 reg, u16 *ind)
  1294. {
  1295. u16 prim_int_reg = 0;
  1296. switch (reg) {
  1297. case LPASS_CDC_WSA_RX0_RX_PATH_CTL:
  1298. case LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL:
  1299. prim_int_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1300. *ind = 0;
  1301. break;
  1302. case LPASS_CDC_WSA_RX1_RX_PATH_CTL:
  1303. case LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL:
  1304. prim_int_reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1305. *ind = 1;
  1306. break;
  1307. }
  1308. return prim_int_reg;
  1309. }
  1310. static int lpass_cdc_wsa_macro_enable_prim_interpolator(
  1311. struct snd_soc_component *component,
  1312. u16 reg, int event)
  1313. {
  1314. u16 prim_int_reg;
  1315. u16 ind = 0;
  1316. struct device *wsa_dev = NULL;
  1317. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1318. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1319. return -EINVAL;
  1320. prim_int_reg = lpass_cdc_wsa_macro_interp_get_primary_reg(reg, &ind);
  1321. switch (event) {
  1322. case SND_SOC_DAPM_PRE_PMU:
  1323. wsa_priv->prim_int_users[ind]++;
  1324. if (wsa_priv->prim_int_users[ind] == 1) {
  1325. snd_soc_component_update_bits(component,
  1326. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET,
  1327. 0x03, 0x03);
  1328. snd_soc_component_update_bits(component, prim_int_reg,
  1329. 0x10, 0x10);
  1330. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1331. snd_soc_component_update_bits(component,
  1332. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1333. 0x1, 0x1);
  1334. }
  1335. if ((reg != prim_int_reg) &&
  1336. ((snd_soc_component_read(
  1337. component, prim_int_reg)) & 0x10))
  1338. snd_soc_component_update_bits(component, reg,
  1339. 0x10, 0x10);
  1340. break;
  1341. case SND_SOC_DAPM_POST_PMD:
  1342. wsa_priv->prim_int_users[ind]--;
  1343. if (wsa_priv->prim_int_users[ind] == 0) {
  1344. snd_soc_component_update_bits(component, prim_int_reg,
  1345. 1 << 0x5, 0 << 0x5);
  1346. snd_soc_component_update_bits(component,
  1347. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1348. 0x1, 0x0);
  1349. snd_soc_component_update_bits(component, prim_int_reg,
  1350. 0x40, 0x40);
  1351. snd_soc_component_update_bits(component, prim_int_reg,
  1352. 0x40, 0x00);
  1353. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1354. }
  1355. break;
  1356. }
  1357. dev_dbg(component->dev, "%s: primary interpolator: INT%d, users: %d\n",
  1358. __func__, ind, wsa_priv->prim_int_users[ind]);
  1359. return 0;
  1360. }
  1361. static int lpass_cdc_wsa_macro_enable_interpolator(struct snd_soc_dapm_widget *w,
  1362. struct snd_kcontrol *kcontrol,
  1363. int event)
  1364. {
  1365. struct snd_soc_component *component =
  1366. snd_soc_dapm_to_component(w->dapm);
  1367. struct device *wsa_dev = NULL;
  1368. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1369. u8 gain = 0;
  1370. u16 reg = 0;
  1371. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1372. return -EINVAL;
  1373. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1374. if (!(strcmp(w->name, "WSA_RX INT0 INTERP"))) {
  1375. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1376. } else if (!(strcmp(w->name, "WSA_RX INT1 INTERP"))) {
  1377. reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1378. } else {
  1379. dev_err(component->dev, "%s: Interpolator reg not found\n",
  1380. __func__);
  1381. return -EINVAL;
  1382. }
  1383. switch (event) {
  1384. case SND_SOC_DAPM_PRE_PMU:
  1385. /* Reset if needed */
  1386. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1387. break;
  1388. case SND_SOC_DAPM_POST_PMU:
  1389. if (!strcmp(w->name, "WSA_RX INT0 INTERP")) {
  1390. gain = (u8)(wsa_priv->rx0_origin_gain -
  1391. wsa_priv->thermal_cur_state);
  1392. if (snd_soc_component_read(wsa_priv->component,
  1393. LPASS_CDC_WSA_RX0_RX_VOL_CTL) != gain) {
  1394. snd_soc_component_update_bits(wsa_priv->component,
  1395. LPASS_CDC_WSA_RX0_RX_VOL_CTL, 0xFF, gain);
  1396. dev_dbg(wsa_priv->dev,
  1397. "%s: RX0 current thermal state: %d, "
  1398. "adjusted gain: %#x\n",
  1399. __func__, wsa_priv->thermal_cur_state, gain);
  1400. }
  1401. }
  1402. if (!strcmp(w->name, "WSA_RX INT1 INTERP")) {
  1403. gain = (u8)(wsa_priv->rx1_origin_gain -
  1404. wsa_priv->thermal_cur_state);
  1405. if (snd_soc_component_read(wsa_priv->component,
  1406. LPASS_CDC_WSA_RX1_RX_VOL_CTL) != gain) {
  1407. snd_soc_component_update_bits(wsa_priv->component,
  1408. LPASS_CDC_WSA_RX1_RX_VOL_CTL, 0xFF, gain);
  1409. dev_dbg(wsa_priv->dev,
  1410. "%s: RX1 current thermal state: %d, "
  1411. "adjusted gain: %#x\n",
  1412. __func__, wsa_priv->thermal_cur_state, gain);
  1413. }
  1414. }
  1415. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1416. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1417. break;
  1418. case SND_SOC_DAPM_POST_PMD:
  1419. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1420. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1421. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1422. break;
  1423. }
  1424. return 0;
  1425. }
  1426. static int lpass_cdc_wsa_macro_spk_boost_event(struct snd_soc_dapm_widget *w,
  1427. struct snd_kcontrol *kcontrol,
  1428. int event)
  1429. {
  1430. struct snd_soc_component *component =
  1431. snd_soc_dapm_to_component(w->dapm);
  1432. u16 boost_path_ctl, boost_path_cfg1;
  1433. u16 reg, reg_mix;
  1434. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1435. if (!strcmp(w->name, "WSA_RX INT0 CHAIN")) {
  1436. boost_path_ctl = LPASS_CDC_WSA_BOOST0_BOOST_PATH_CTL;
  1437. boost_path_cfg1 = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1438. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1439. reg_mix = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL;
  1440. } else if (!strcmp(w->name, "WSA_RX INT1 CHAIN")) {
  1441. boost_path_ctl = LPASS_CDC_WSA_BOOST1_BOOST_PATH_CTL;
  1442. boost_path_cfg1 = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1443. reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1444. reg_mix = LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL;
  1445. } else {
  1446. dev_err(component->dev, "%s: unknown widget: %s\n",
  1447. __func__, w->name);
  1448. return -EINVAL;
  1449. }
  1450. switch (event) {
  1451. case SND_SOC_DAPM_PRE_PMU:
  1452. snd_soc_component_update_bits(component, boost_path_cfg1,
  1453. 0x01, 0x01);
  1454. snd_soc_component_update_bits(component, boost_path_ctl,
  1455. 0x10, 0x10);
  1456. if ((snd_soc_component_read(component, reg_mix)) & 0x10)
  1457. snd_soc_component_update_bits(component, reg_mix,
  1458. 0x10, 0x00);
  1459. break;
  1460. case SND_SOC_DAPM_POST_PMU:
  1461. snd_soc_component_update_bits(component, reg, 0x10, 0x00);
  1462. break;
  1463. case SND_SOC_DAPM_POST_PMD:
  1464. snd_soc_component_update_bits(component, boost_path_ctl,
  1465. 0x10, 0x00);
  1466. snd_soc_component_update_bits(component, boost_path_cfg1,
  1467. 0x01, 0x00);
  1468. break;
  1469. }
  1470. return 0;
  1471. }
  1472. static int lpass_cdc_wsa_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  1473. struct snd_kcontrol *kcontrol,
  1474. int event)
  1475. {
  1476. struct snd_soc_component *component =
  1477. snd_soc_dapm_to_component(w->dapm);
  1478. struct device *wsa_dev = NULL;
  1479. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1480. u16 vbat_path_cfg = 0;
  1481. int softclip_path = 0;
  1482. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1483. return -EINVAL;
  1484. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1485. if (!strcmp(w->name, "WSA_RX INT0 VBAT")) {
  1486. vbat_path_cfg = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1487. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1488. } else if (!strcmp(w->name, "WSA_RX INT1 VBAT")) {
  1489. vbat_path_cfg = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1490. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1491. }
  1492. switch (event) {
  1493. case SND_SOC_DAPM_PRE_PMU:
  1494. /* Enable clock for VBAT block */
  1495. snd_soc_component_update_bits(component,
  1496. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  1497. /* Enable VBAT block */
  1498. snd_soc_component_update_bits(component,
  1499. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x01);
  1500. /* Update interpolator with 384K path */
  1501. snd_soc_component_update_bits(component, vbat_path_cfg,
  1502. 0x80, 0x80);
  1503. /* Use attenuation mode */
  1504. snd_soc_component_update_bits(component,
  1505. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x02, 0x00);
  1506. /*
  1507. * BCL block needs softclip clock and mux config to be enabled
  1508. */
  1509. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1510. softclip_path, true);
  1511. /* Enable VBAT at channel level */
  1512. snd_soc_component_update_bits(component, vbat_path_cfg,
  1513. 0x02, 0x02);
  1514. /* Set the ATTK1 gain */
  1515. snd_soc_component_update_bits(component,
  1516. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1517. 0xFF, 0xFF);
  1518. snd_soc_component_update_bits(component,
  1519. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1520. 0xFF, 0x03);
  1521. snd_soc_component_update_bits(component,
  1522. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1523. 0xFF, 0x00);
  1524. /* Set the ATTK2 gain */
  1525. snd_soc_component_update_bits(component,
  1526. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1527. 0xFF, 0xFF);
  1528. snd_soc_component_update_bits(component,
  1529. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1530. 0xFF, 0x03);
  1531. snd_soc_component_update_bits(component,
  1532. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1533. 0xFF, 0x00);
  1534. /* Set the ATTK3 gain */
  1535. snd_soc_component_update_bits(component,
  1536. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1537. 0xFF, 0xFF);
  1538. snd_soc_component_update_bits(component,
  1539. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1540. 0xFF, 0x03);
  1541. snd_soc_component_update_bits(component,
  1542. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1543. 0xFF, 0x00);
  1544. /* Enable CB decode block clock */
  1545. snd_soc_component_update_bits(component,
  1546. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  1547. /* Enable BCL path */
  1548. snd_soc_component_update_bits(component,
  1549. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  1550. /* Request for BCL data */
  1551. snd_soc_component_update_bits(component,
  1552. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  1553. break;
  1554. case SND_SOC_DAPM_POST_PMD:
  1555. snd_soc_component_update_bits(component,
  1556. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  1557. snd_soc_component_update_bits(component,
  1558. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  1559. snd_soc_component_update_bits(component,
  1560. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  1561. snd_soc_component_update_bits(component, vbat_path_cfg,
  1562. 0x80, 0x00);
  1563. snd_soc_component_update_bits(component,
  1564. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  1565. 0x02, 0x02);
  1566. snd_soc_component_update_bits(component, vbat_path_cfg,
  1567. 0x02, 0x00);
  1568. snd_soc_component_update_bits(component,
  1569. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1570. 0xFF, 0x00);
  1571. snd_soc_component_update_bits(component,
  1572. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1573. 0xFF, 0x00);
  1574. snd_soc_component_update_bits(component,
  1575. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1576. 0xFF, 0x00);
  1577. snd_soc_component_update_bits(component,
  1578. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1579. 0xFF, 0x00);
  1580. snd_soc_component_update_bits(component,
  1581. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1582. 0xFF, 0x00);
  1583. snd_soc_component_update_bits(component,
  1584. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1585. 0xFF, 0x00);
  1586. snd_soc_component_update_bits(component,
  1587. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1588. 0xFF, 0x00);
  1589. snd_soc_component_update_bits(component,
  1590. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1591. 0xFF, 0x00);
  1592. snd_soc_component_update_bits(component,
  1593. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1594. 0xFF, 0x00);
  1595. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1596. softclip_path, false);
  1597. snd_soc_component_update_bits(component,
  1598. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x00);
  1599. snd_soc_component_update_bits(component,
  1600. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  1601. break;
  1602. default:
  1603. dev_err(wsa_dev, "%s: Invalid event %d\n", __func__, event);
  1604. break;
  1605. }
  1606. return 0;
  1607. }
  1608. static int lpass_cdc_wsa_macro_enable_echo(struct snd_soc_dapm_widget *w,
  1609. struct snd_kcontrol *kcontrol,
  1610. int event)
  1611. {
  1612. struct snd_soc_component *component =
  1613. snd_soc_dapm_to_component(w->dapm);
  1614. struct device *wsa_dev = NULL;
  1615. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1616. u16 val, ec_tx = 0, ec_hq_reg;
  1617. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1618. return -EINVAL;
  1619. dev_dbg(wsa_dev, "%s %d %s\n", __func__, event, w->name);
  1620. val = snd_soc_component_read(component,
  1621. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  1622. if (!(strcmp(w->name, "WSA RX_MIX EC0_MUX")))
  1623. ec_tx = (val & 0x07) - 1;
  1624. else
  1625. ec_tx = ((val & 0x38) >> 0x3) - 1;
  1626. if (ec_tx < 0 || ec_tx >= (LPASS_CDC_WSA_MACRO_RX1 + 1)) {
  1627. dev_err(wsa_dev, "%s: EC mix control not set correctly\n",
  1628. __func__);
  1629. return -EINVAL;
  1630. }
  1631. if (wsa_priv->ec_hq[ec_tx]) {
  1632. snd_soc_component_update_bits(component,
  1633. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  1634. 0x1 << ec_tx, 0x1 << ec_tx);
  1635. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_PATH_CTL +
  1636. 0x40 * ec_tx;
  1637. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  1638. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_CFG0 +
  1639. 0x40 * ec_tx;
  1640. /* default set to 48k */
  1641. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  1642. }
  1643. return 0;
  1644. }
  1645. static int lpass_cdc_wsa_macro_get_ec_hq(struct snd_kcontrol *kcontrol,
  1646. struct snd_ctl_elem_value *ucontrol)
  1647. {
  1648. struct snd_soc_component *component =
  1649. snd_soc_kcontrol_component(kcontrol);
  1650. int ec_tx = ((struct soc_multi_mixer_control *)
  1651. kcontrol->private_value)->shift;
  1652. struct device *wsa_dev = NULL;
  1653. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1654. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1655. return -EINVAL;
  1656. ucontrol->value.integer.value[0] = wsa_priv->ec_hq[ec_tx];
  1657. return 0;
  1658. }
  1659. static int lpass_cdc_wsa_macro_set_ec_hq(struct snd_kcontrol *kcontrol,
  1660. struct snd_ctl_elem_value *ucontrol)
  1661. {
  1662. struct snd_soc_component *component =
  1663. snd_soc_kcontrol_component(kcontrol);
  1664. int ec_tx = ((struct soc_multi_mixer_control *)
  1665. kcontrol->private_value)->shift;
  1666. int value = ucontrol->value.integer.value[0];
  1667. struct device *wsa_dev = NULL;
  1668. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1669. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1670. return -EINVAL;
  1671. dev_dbg(wsa_dev, "%s: enable current %d, new %d\n",
  1672. __func__, wsa_priv->ec_hq[ec_tx], value);
  1673. wsa_priv->ec_hq[ec_tx] = value;
  1674. return 0;
  1675. }
  1676. static int lpass_cdc_wsa_macro_get_rx_mute_status(struct snd_kcontrol *kcontrol,
  1677. struct snd_ctl_elem_value *ucontrol)
  1678. {
  1679. struct snd_soc_component *component =
  1680. snd_soc_kcontrol_component(kcontrol);
  1681. struct device *wsa_dev = NULL;
  1682. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1683. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1684. kcontrol->private_value)->shift;
  1685. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1686. return -EINVAL;
  1687. ucontrol->value.integer.value[0] =
  1688. wsa_priv->wsa_digital_mute_status[wsa_rx_shift];
  1689. return 0;
  1690. }
  1691. static int lpass_cdc_wsa_macro_set_rx_mute_status(struct snd_kcontrol *kcontrol,
  1692. struct snd_ctl_elem_value *ucontrol)
  1693. {
  1694. struct snd_soc_component *component =
  1695. snd_soc_kcontrol_component(kcontrol);
  1696. struct device *wsa_dev = NULL;
  1697. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1698. int value = ucontrol->value.integer.value[0];
  1699. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1700. kcontrol->private_value)->shift;
  1701. int ret = 0;
  1702. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1703. return -EINVAL;
  1704. pm_runtime_get_sync(wsa_priv->dev);
  1705. switch (wsa_rx_shift) {
  1706. case 0:
  1707. snd_soc_component_update_bits(component,
  1708. LPASS_CDC_WSA_RX0_RX_PATH_CTL,
  1709. 0x10, value << 4);
  1710. break;
  1711. case 1:
  1712. snd_soc_component_update_bits(component,
  1713. LPASS_CDC_WSA_RX1_RX_PATH_CTL,
  1714. 0x10, value << 4);
  1715. break;
  1716. case 2:
  1717. snd_soc_component_update_bits(component,
  1718. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL,
  1719. 0x10, value << 4);
  1720. break;
  1721. case 3:
  1722. snd_soc_component_update_bits(component,
  1723. LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL,
  1724. 0x10, value << 4);
  1725. break;
  1726. default:
  1727. pr_err("%s: invalid argument rx_shift = %d\n", __func__,
  1728. wsa_rx_shift);
  1729. ret = -EINVAL;
  1730. }
  1731. pm_runtime_mark_last_busy(wsa_priv->dev);
  1732. pm_runtime_put_autosuspend(wsa_priv->dev);
  1733. dev_dbg(component->dev, "%s: WSA Digital Mute RX %d Enable %d\n",
  1734. __func__, wsa_rx_shift, value);
  1735. wsa_priv->wsa_digital_mute_status[wsa_rx_shift] = value;
  1736. return ret;
  1737. }
  1738. static int lpass_cdc_wsa_macro_set_digital_volume(struct snd_kcontrol *kcontrol,
  1739. struct snd_ctl_elem_value *ucontrol)
  1740. {
  1741. struct snd_soc_component *component =
  1742. snd_soc_kcontrol_component(kcontrol);
  1743. struct device *wsa_dev = NULL;
  1744. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1745. struct soc_mixer_control *mc =
  1746. (struct soc_mixer_control *)kcontrol->private_value;
  1747. u8 gain = 0;
  1748. int ret = 0;
  1749. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1750. return -EINVAL;
  1751. if (!wsa_priv) {
  1752. pr_err("%s: priv is null for macro!\n",
  1753. __func__);
  1754. return -EINVAL;
  1755. }
  1756. ret = snd_soc_put_volsw(kcontrol, ucontrol);
  1757. if (mc->reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL) {
  1758. wsa_priv->rx0_origin_gain =
  1759. (u8)snd_soc_component_read(wsa_priv->component,
  1760. mc->reg);
  1761. gain = (u8)(wsa_priv->rx0_origin_gain -
  1762. wsa_priv->thermal_cur_state);
  1763. } else if (mc->reg == LPASS_CDC_WSA_RX1_RX_VOL_CTL) {
  1764. wsa_priv->rx1_origin_gain =
  1765. (u8)snd_soc_component_read(wsa_priv->component,
  1766. mc->reg);
  1767. gain = (u8)(wsa_priv->rx1_origin_gain -
  1768. wsa_priv->thermal_cur_state);
  1769. } else {
  1770. dev_err(wsa_priv->dev,
  1771. "%s: Incorrect RX Path selected\n", __func__);
  1772. return -EINVAL;
  1773. }
  1774. /* only adjust gain if thermal state is positive */
  1775. if (wsa_priv->dapm_mclk_enable &&
  1776. wsa_priv->thermal_cur_state > 0) {
  1777. snd_soc_component_update_bits(wsa_priv->component,
  1778. mc->reg, 0xFF, gain);
  1779. dev_dbg(wsa_priv->dev,
  1780. "%s: Current thermal state: %d, adjusted gain: %x\n",
  1781. __func__, wsa_priv->thermal_cur_state, gain);
  1782. }
  1783. return ret;
  1784. }
  1785. static int lpass_cdc_wsa_macro_get_compander(struct snd_kcontrol *kcontrol,
  1786. struct snd_ctl_elem_value *ucontrol)
  1787. {
  1788. struct snd_soc_component *component =
  1789. snd_soc_kcontrol_component(kcontrol);
  1790. int comp = ((struct soc_multi_mixer_control *)
  1791. kcontrol->private_value)->shift;
  1792. struct device *wsa_dev = NULL;
  1793. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1794. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1795. return -EINVAL;
  1796. ucontrol->value.integer.value[0] = wsa_priv->comp_enabled[comp];
  1797. return 0;
  1798. }
  1799. static int lpass_cdc_wsa_macro_set_compander(struct snd_kcontrol *kcontrol,
  1800. struct snd_ctl_elem_value *ucontrol)
  1801. {
  1802. struct snd_soc_component *component =
  1803. snd_soc_kcontrol_component(kcontrol);
  1804. int comp = ((struct soc_multi_mixer_control *)
  1805. kcontrol->private_value)->shift;
  1806. int value = ucontrol->value.integer.value[0];
  1807. struct device *wsa_dev = NULL;
  1808. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1809. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1810. return -EINVAL;
  1811. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1812. __func__, comp + 1, wsa_priv->comp_enabled[comp], value);
  1813. wsa_priv->comp_enabled[comp] = value;
  1814. return 0;
  1815. }
  1816. static int lpass_cdc_wsa_macro_comp_mode_get(struct snd_kcontrol *kcontrol,
  1817. struct snd_ctl_elem_value *ucontrol)
  1818. {
  1819. struct snd_soc_component *component =
  1820. snd_soc_kcontrol_component(kcontrol);
  1821. struct device *wsa_dev = NULL;
  1822. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1823. u16 idx = 0;
  1824. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1825. return -EINVAL;
  1826. if (strnstr(kcontrol->id.name, "RX0", sizeof("WSA_RX0")))
  1827. idx = LPASS_CDC_WSA_MACRO_COMP1;
  1828. if (strnstr(kcontrol->id.name, "RX1", sizeof("WSA_RX1")))
  1829. idx = LPASS_CDC_WSA_MACRO_COMP2;
  1830. ucontrol->value.integer.value[0] = wsa_priv->comp_mode[idx];
  1831. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1832. __func__, ucontrol->value.integer.value[0]);
  1833. return 0;
  1834. }
  1835. static int lpass_cdc_wsa_macro_comp_mode_put(struct snd_kcontrol *kcontrol,
  1836. struct snd_ctl_elem_value *ucontrol)
  1837. {
  1838. struct snd_soc_component *component =
  1839. snd_soc_kcontrol_component(kcontrol);
  1840. struct device *wsa_dev = NULL;
  1841. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1842. u16 idx = 0;
  1843. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1844. return -EINVAL;
  1845. if (strnstr(kcontrol->id.name, "RX0", sizeof("WSA_RX0")))
  1846. idx = LPASS_CDC_WSA_MACRO_COMP1;
  1847. if (strnstr(kcontrol->id.name, "RX1", sizeof("WSA_RX1")))
  1848. idx = LPASS_CDC_WSA_MACRO_COMP2;
  1849. wsa_priv->comp_mode[idx] = ucontrol->value.integer.value[0];
  1850. dev_dbg(component->dev, "%s: comp_mode = %d\n", __func__,
  1851. wsa_priv->comp_mode[idx]);
  1852. return 0;
  1853. }
  1854. static int lpass_cdc_wsa_macro_rx_mux_get(struct snd_kcontrol *kcontrol,
  1855. struct snd_ctl_elem_value *ucontrol)
  1856. {
  1857. struct snd_soc_dapm_widget *widget =
  1858. snd_soc_dapm_kcontrol_widget(kcontrol);
  1859. struct snd_soc_component *component =
  1860. snd_soc_dapm_to_component(widget->dapm);
  1861. struct device *wsa_dev = NULL;
  1862. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1863. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1864. return -EINVAL;
  1865. ucontrol->value.integer.value[0] =
  1866. wsa_priv->rx_port_value[widget->shift];
  1867. return 0;
  1868. }
  1869. static int lpass_cdc_wsa_macro_rx_mux_put(struct snd_kcontrol *kcontrol,
  1870. struct snd_ctl_elem_value *ucontrol)
  1871. {
  1872. struct snd_soc_dapm_widget *widget =
  1873. snd_soc_dapm_kcontrol_widget(kcontrol);
  1874. struct snd_soc_component *component =
  1875. snd_soc_dapm_to_component(widget->dapm);
  1876. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1877. struct snd_soc_dapm_update *update = NULL;
  1878. u32 rx_port_value = ucontrol->value.integer.value[0];
  1879. u32 bit_input = 0;
  1880. u32 aif_rst;
  1881. struct device *wsa_dev = NULL;
  1882. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1883. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1884. return -EINVAL;
  1885. aif_rst = wsa_priv->rx_port_value[widget->shift];
  1886. if (!rx_port_value) {
  1887. if (aif_rst == 0) {
  1888. dev_err(wsa_dev, "%s: AIF reset already\n", __func__);
  1889. return 0;
  1890. }
  1891. if (aif_rst >= LPASS_CDC_WSA_MACRO_RX_MAX) {
  1892. dev_err(wsa_dev, "%s: Invalid AIF reset\n", __func__);
  1893. return 0;
  1894. }
  1895. }
  1896. wsa_priv->rx_port_value[widget->shift] = rx_port_value;
  1897. bit_input = widget->shift;
  1898. dev_dbg(wsa_dev,
  1899. "%s: mux input: %d, mux output: %d, bit: %d\n",
  1900. __func__, rx_port_value, widget->shift, bit_input);
  1901. switch (rx_port_value) {
  1902. case 0:
  1903. if (wsa_priv->active_ch_cnt[aif_rst]) {
  1904. clear_bit(bit_input,
  1905. &wsa_priv->active_ch_mask[aif_rst]);
  1906. wsa_priv->active_ch_cnt[aif_rst]--;
  1907. }
  1908. break;
  1909. case 1:
  1910. case 2:
  1911. set_bit(bit_input,
  1912. &wsa_priv->active_ch_mask[rx_port_value]);
  1913. wsa_priv->active_ch_cnt[rx_port_value]++;
  1914. break;
  1915. default:
  1916. dev_err(wsa_dev,
  1917. "%s: Invalid AIF_ID for WSA RX MUX %d\n",
  1918. __func__, rx_port_value);
  1919. return -EINVAL;
  1920. }
  1921. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  1922. rx_port_value, e, update);
  1923. return 0;
  1924. }
  1925. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  1926. struct snd_ctl_elem_value *ucontrol)
  1927. {
  1928. struct snd_soc_component *component =
  1929. snd_soc_kcontrol_component(kcontrol);
  1930. ucontrol->value.integer.value[0] =
  1931. ((snd_soc_component_read(
  1932. component, LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG) & 0x04) ?
  1933. 1 : 0);
  1934. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  1935. ucontrol->value.integer.value[0]);
  1936. return 0;
  1937. }
  1938. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  1939. struct snd_ctl_elem_value *ucontrol)
  1940. {
  1941. struct snd_soc_component *component =
  1942. snd_soc_kcontrol_component(kcontrol);
  1943. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  1944. ucontrol->value.integer.value[0]);
  1945. /* Set Vbat register configuration for GSM mode bit based on value */
  1946. if (ucontrol->value.integer.value[0])
  1947. snd_soc_component_update_bits(component,
  1948. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  1949. 0x04, 0x04);
  1950. else
  1951. snd_soc_component_update_bits(component,
  1952. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  1953. 0x04, 0x00);
  1954. return 0;
  1955. }
  1956. static int lpass_cdc_wsa_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  1957. struct snd_ctl_elem_value *ucontrol)
  1958. {
  1959. struct snd_soc_component *component =
  1960. snd_soc_kcontrol_component(kcontrol);
  1961. struct device *wsa_dev = NULL;
  1962. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1963. int path = ((struct soc_multi_mixer_control *)
  1964. kcontrol->private_value)->shift;
  1965. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1966. return -EINVAL;
  1967. ucontrol->value.integer.value[0] = wsa_priv->is_softclip_on[path];
  1968. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1969. __func__, ucontrol->value.integer.value[0]);
  1970. return 0;
  1971. }
  1972. static int lpass_cdc_wsa_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  1973. struct snd_ctl_elem_value *ucontrol)
  1974. {
  1975. struct snd_soc_component *component =
  1976. snd_soc_kcontrol_component(kcontrol);
  1977. struct device *wsa_dev = NULL;
  1978. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1979. int path = ((struct soc_multi_mixer_control *)
  1980. kcontrol->private_value)->shift;
  1981. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1982. return -EINVAL;
  1983. wsa_priv->is_softclip_on[path] = ucontrol->value.integer.value[0];
  1984. dev_dbg(component->dev, "%s: soft clip enable for %d: %d\n", __func__,
  1985. path, wsa_priv->is_softclip_on[path]);
  1986. return 0;
  1987. }
  1988. static const struct snd_kcontrol_new lpass_cdc_wsa_macro_snd_controls[] = {
  1989. SOC_ENUM_EXT("GSM mode Enable", lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  1990. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get,
  1991. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put),
  1992. SOC_ENUM_EXT("WSA_RX0 comp_mode", lpass_cdc_wsa_macro_comp_mode_enum,
  1993. lpass_cdc_wsa_macro_comp_mode_get,
  1994. lpass_cdc_wsa_macro_comp_mode_put),
  1995. SOC_ENUM_EXT("WSA_RX1 comp_mode", lpass_cdc_wsa_macro_comp_mode_enum,
  1996. lpass_cdc_wsa_macro_comp_mode_get,
  1997. lpass_cdc_wsa_macro_comp_mode_put),
  1998. SOC_SINGLE_EXT("WSA_Softclip0 Enable", SND_SOC_NOPM,
  1999. LPASS_CDC_WSA_MACRO_SOFTCLIP0, 1, 0,
  2000. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2001. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2002. SOC_SINGLE_EXT("WSA_Softclip1 Enable", SND_SOC_NOPM,
  2003. LPASS_CDC_WSA_MACRO_SOFTCLIP1, 1, 0,
  2004. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2005. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2006. LPASS_CDC_WSA_MACRO_SET_VOLUME_TLV("WSA_RX0 Digital Volume",
  2007. LPASS_CDC_WSA_RX0_RX_VOL_CTL,
  2008. -84, 40, digital_gain),
  2009. LPASS_CDC_WSA_MACRO_SET_VOLUME_TLV("WSA_RX1 Digital Volume",
  2010. LPASS_CDC_WSA_RX1_RX_VOL_CTL,
  2011. -84, 40, digital_gain),
  2012. SOC_SINGLE_EXT("WSA_RX0 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 1,
  2013. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2014. lpass_cdc_wsa_macro_set_rx_mute_status),
  2015. SOC_SINGLE_EXT("WSA_RX1 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 1,
  2016. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2017. lpass_cdc_wsa_macro_set_rx_mute_status),
  2018. SOC_SINGLE_EXT("WSA_RX0_MIX Digital Mute", SND_SOC_NOPM,
  2019. LPASS_CDC_WSA_MACRO_RX_MIX0, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2020. lpass_cdc_wsa_macro_set_rx_mute_status),
  2021. SOC_SINGLE_EXT("WSA_RX1_MIX Digital Mute", SND_SOC_NOPM,
  2022. LPASS_CDC_WSA_MACRO_RX_MIX1, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2023. lpass_cdc_wsa_macro_set_rx_mute_status),
  2024. SOC_SINGLE_EXT("WSA_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP1, 1, 0,
  2025. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2026. SOC_SINGLE_EXT("WSA_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP2, 1, 0,
  2027. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2028. SOC_SINGLE_EXT("WSA_RX0 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0,
  2029. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2030. SOC_SINGLE_EXT("WSA_RX1 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1,
  2031. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2032. };
  2033. static const struct soc_enum rx_mux_enum =
  2034. SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(rx_mux_text), rx_mux_text);
  2035. static const struct snd_kcontrol_new rx_mux[LPASS_CDC_WSA_MACRO_RX_MAX] = {
  2036. SOC_DAPM_ENUM_EXT("WSA RX0 Mux", rx_mux_enum,
  2037. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2038. SOC_DAPM_ENUM_EXT("WSA RX1 Mux", rx_mux_enum,
  2039. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2040. SOC_DAPM_ENUM_EXT("WSA RX_MIX0 Mux", rx_mux_enum,
  2041. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2042. SOC_DAPM_ENUM_EXT("WSA RX_MIX1 Mux", rx_mux_enum,
  2043. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2044. SOC_DAPM_ENUM_EXT("WSA RX4 Mux", rx_mux_enum,
  2045. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2046. SOC_DAPM_ENUM_EXT("WSA RX5 Mux", rx_mux_enum,
  2047. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2048. };
  2049. static int lpass_cdc_wsa_macro_vi_feed_mixer_get(struct snd_kcontrol *kcontrol,
  2050. struct snd_ctl_elem_value *ucontrol)
  2051. {
  2052. struct snd_soc_dapm_widget *widget =
  2053. snd_soc_dapm_kcontrol_widget(kcontrol);
  2054. struct snd_soc_component *component =
  2055. snd_soc_dapm_to_component(widget->dapm);
  2056. struct soc_multi_mixer_control *mixer =
  2057. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2058. u32 dai_id = widget->shift;
  2059. u32 spk_tx_id = mixer->shift;
  2060. struct device *wsa_dev = NULL;
  2061. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2062. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2063. return -EINVAL;
  2064. if (test_bit(spk_tx_id, &wsa_priv->active_ch_mask[dai_id]))
  2065. ucontrol->value.integer.value[0] = 1;
  2066. else
  2067. ucontrol->value.integer.value[0] = 0;
  2068. return 0;
  2069. }
  2070. static int lpass_cdc_wsa_macro_vi_feed_mixer_put(struct snd_kcontrol *kcontrol,
  2071. struct snd_ctl_elem_value *ucontrol)
  2072. {
  2073. struct snd_soc_dapm_widget *widget =
  2074. snd_soc_dapm_kcontrol_widget(kcontrol);
  2075. struct snd_soc_component *component =
  2076. snd_soc_dapm_to_component(widget->dapm);
  2077. struct soc_multi_mixer_control *mixer =
  2078. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2079. u32 spk_tx_id = mixer->shift;
  2080. u32 enable = ucontrol->value.integer.value[0];
  2081. struct device *wsa_dev = NULL;
  2082. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2083. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2084. return -EINVAL;
  2085. wsa_priv->vi_feed_value = ucontrol->value.integer.value[0];
  2086. if (enable) {
  2087. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2088. !test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2089. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2090. set_bit(LPASS_CDC_WSA_MACRO_TX0,
  2091. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2092. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2093. }
  2094. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2095. !test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2096. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2097. set_bit(LPASS_CDC_WSA_MACRO_TX1,
  2098. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2099. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2100. }
  2101. } else {
  2102. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2103. test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2104. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2105. clear_bit(LPASS_CDC_WSA_MACRO_TX0,
  2106. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2107. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2108. }
  2109. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2110. test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2111. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2112. clear_bit(LPASS_CDC_WSA_MACRO_TX1,
  2113. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2114. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2115. }
  2116. }
  2117. snd_soc_dapm_mixer_update_power(widget->dapm, kcontrol, enable, NULL);
  2118. return 0;
  2119. }
  2120. static const struct snd_kcontrol_new aif_vi_mixer[] = {
  2121. SOC_SINGLE_EXT("WSA_SPKR_VI_1", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX0, 1, 0,
  2122. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2123. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2124. SOC_SINGLE_EXT("WSA_SPKR_VI_2", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX1, 1, 0,
  2125. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2126. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2127. };
  2128. static const struct snd_soc_dapm_widget lpass_cdc_wsa_macro_dapm_widgets[] = {
  2129. SND_SOC_DAPM_AIF_IN("WSA AIF1 PB", "WSA_AIF1 Playback", 0,
  2130. SND_SOC_NOPM, 0, 0),
  2131. SND_SOC_DAPM_AIF_IN("WSA AIF_MIX1 PB", "WSA_AIF_MIX1 Playback", 0,
  2132. SND_SOC_NOPM, 0, 0),
  2133. SND_SOC_DAPM_AIF_OUT_E("WSA AIF_VI", "WSA_AIF_VI Capture", 0,
  2134. SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI, 0,
  2135. lpass_cdc_wsa_macro_enable_vi_feedback,
  2136. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
  2137. SND_SOC_DAPM_AIF_OUT("WSA AIF_ECHO", "WSA_AIF_ECHO Capture", 0,
  2138. SND_SOC_NOPM, 0, 0),
  2139. SND_SOC_DAPM_MIXER("WSA_AIF_VI Mixer", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI,
  2140. 0, aif_vi_mixer, ARRAY_SIZE(aif_vi_mixer)),
  2141. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC0_MUX", SND_SOC_NOPM,
  2142. LPASS_CDC_WSA_MACRO_EC0_MUX, 0,
  2143. &rx_mix_ec0_mux, lpass_cdc_wsa_macro_enable_echo,
  2144. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2145. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC1_MUX", SND_SOC_NOPM,
  2146. LPASS_CDC_WSA_MACRO_EC1_MUX, 0,
  2147. &rx_mix_ec1_mux, lpass_cdc_wsa_macro_enable_echo,
  2148. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2149. SND_SOC_DAPM_MUX("WSA RX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 0,
  2150. &rx_mux[LPASS_CDC_WSA_MACRO_RX0]),
  2151. SND_SOC_DAPM_MUX("WSA RX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 0,
  2152. &rx_mux[LPASS_CDC_WSA_MACRO_RX1]),
  2153. SND_SOC_DAPM_MUX("WSA RX_MIX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX0, 0,
  2154. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX0]),
  2155. SND_SOC_DAPM_MUX("WSA RX_MIX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX1, 0,
  2156. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX1]),
  2157. SND_SOC_DAPM_MUX("WSA RX4 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX4, 0,
  2158. &rx_mux[LPASS_CDC_WSA_MACRO_RX4]),
  2159. SND_SOC_DAPM_MUX("WSA RX5 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX5, 0,
  2160. &rx_mux[LPASS_CDC_WSA_MACRO_RX5]),
  2161. SND_SOC_DAPM_MIXER("WSA RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2162. SND_SOC_DAPM_MIXER("WSA RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2163. SND_SOC_DAPM_MIXER("WSA RX_MIX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2164. SND_SOC_DAPM_MIXER("WSA RX_MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2165. SND_SOC_DAPM_MIXER("WSA RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  2166. SND_SOC_DAPM_MIXER("WSA RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  2167. SND_SOC_DAPM_MUX_E("WSA_RX0 INP0", SND_SOC_NOPM, 0, 0,
  2168. &rx0_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2169. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2170. SND_SOC_DAPM_MUX_E("WSA_RX0 INP1", SND_SOC_NOPM, 0, 0,
  2171. &rx0_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2172. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2173. SND_SOC_DAPM_MUX_E("WSA_RX0 INP2", SND_SOC_NOPM, 0, 0,
  2174. &rx0_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2175. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2176. SND_SOC_DAPM_MUX_E("WSA_RX0 MIX INP", SND_SOC_NOPM,
  2177. 0, 0, &rx0_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2178. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2179. SND_SOC_DAPM_MUX_E("WSA_RX1 INP0", SND_SOC_NOPM, 0, 0,
  2180. &rx1_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2181. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2182. SND_SOC_DAPM_MUX_E("WSA_RX1 INP1", SND_SOC_NOPM, 0, 0,
  2183. &rx1_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2184. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2185. SND_SOC_DAPM_MUX_E("WSA_RX1 INP2", SND_SOC_NOPM, 0, 0,
  2186. &rx1_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2187. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2188. SND_SOC_DAPM_MUX_E("WSA_RX1 MIX INP", SND_SOC_NOPM,
  2189. 0, 0, &rx1_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2190. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2191. SND_SOC_DAPM_PGA_E("WSA_RX INT0 MIX", SND_SOC_NOPM,
  2192. 0, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2193. SND_SOC_DAPM_PRE_PMU),
  2194. SND_SOC_DAPM_PGA_E("WSA_RX INT1 MIX", SND_SOC_NOPM,
  2195. 1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2196. SND_SOC_DAPM_PRE_PMU),
  2197. SND_SOC_DAPM_MIXER("WSA_RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2198. SND_SOC_DAPM_MIXER("WSA_RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2199. SND_SOC_DAPM_MUX_E("WSA_RX0 INT0 SIDETONE MIX",
  2200. LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 4, 0,
  2201. &rx0_sidetone_mix_mux, lpass_cdc_wsa_macro_enable_swr,
  2202. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2203. SND_SOC_DAPM_INPUT("WSA SRC0_INP"),
  2204. SND_SOC_DAPM_INPUT("WSA_TX DEC0_INP"),
  2205. SND_SOC_DAPM_INPUT("WSA_TX DEC1_INP"),
  2206. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 INTERP", SND_SOC_NOPM,
  2207. LPASS_CDC_WSA_MACRO_COMP1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2208. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2209. SND_SOC_DAPM_POST_PMD),
  2210. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 INTERP", SND_SOC_NOPM,
  2211. LPASS_CDC_WSA_MACRO_COMP2, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2212. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2213. SND_SOC_DAPM_POST_PMD),
  2214. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 CHAIN", SND_SOC_NOPM, 0, 0,
  2215. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2216. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2217. SND_SOC_DAPM_POST_PMD),
  2218. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 CHAIN", SND_SOC_NOPM, 0, 0,
  2219. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2220. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2221. SND_SOC_DAPM_POST_PMD),
  2222. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 VBAT", SND_SOC_NOPM,
  2223. 0, 0, wsa_int0_vbat_mix_switch,
  2224. ARRAY_SIZE(wsa_int0_vbat_mix_switch),
  2225. lpass_cdc_wsa_macro_enable_vbat,
  2226. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2227. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 VBAT", SND_SOC_NOPM,
  2228. 0, 0, wsa_int1_vbat_mix_switch,
  2229. ARRAY_SIZE(wsa_int1_vbat_mix_switch),
  2230. lpass_cdc_wsa_macro_enable_vbat,
  2231. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2232. SND_SOC_DAPM_INPUT("VIINPUT_WSA"),
  2233. SND_SOC_DAPM_OUTPUT("WSA_SPK1 OUT"),
  2234. SND_SOC_DAPM_OUTPUT("WSA_SPK2 OUT"),
  2235. SND_SOC_DAPM_SUPPLY_S("WSA_MCLK", 0, SND_SOC_NOPM, 0, 0,
  2236. lpass_cdc_wsa_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2237. };
  2238. static const struct snd_soc_dapm_route wsa_audio_map[] = {
  2239. /* VI Feedback */
  2240. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_1", "VIINPUT_WSA"},
  2241. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_2", "VIINPUT_WSA"},
  2242. {"WSA AIF_VI", NULL, "WSA_AIF_VI Mixer"},
  2243. {"WSA AIF_VI", NULL, "WSA_MCLK"},
  2244. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2245. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2246. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2247. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2248. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC0_MUX"},
  2249. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC1_MUX"},
  2250. {"WSA AIF_ECHO", NULL, "WSA_MCLK"},
  2251. {"WSA AIF1 PB", NULL, "WSA_MCLK"},
  2252. {"WSA AIF_MIX1 PB", NULL, "WSA_MCLK"},
  2253. {"WSA RX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2254. {"WSA RX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2255. {"WSA RX_MIX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2256. {"WSA RX_MIX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2257. {"WSA RX4 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2258. {"WSA RX5 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2259. {"WSA RX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2260. {"WSA RX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2261. {"WSA RX_MIX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2262. {"WSA RX_MIX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2263. {"WSA RX4 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2264. {"WSA RX5 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2265. {"WSA RX0", NULL, "WSA RX0 MUX"},
  2266. {"WSA RX1", NULL, "WSA RX1 MUX"},
  2267. {"WSA RX_MIX0", NULL, "WSA RX_MIX0 MUX"},
  2268. {"WSA RX_MIX1", NULL, "WSA RX_MIX1 MUX"},
  2269. {"WSA RX4", NULL, "WSA RX4 MUX"},
  2270. {"WSA RX5", NULL, "WSA RX5 MUX"},
  2271. {"WSA_RX0 INP0", "RX0", "WSA RX0"},
  2272. {"WSA_RX0 INP0", "RX1", "WSA RX1"},
  2273. {"WSA_RX0 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2274. {"WSA_RX0 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2275. {"WSA_RX0 INP0", "RX4", "WSA RX4"},
  2276. {"WSA_RX0 INP0", "RX5", "WSA RX5"},
  2277. {"WSA_RX0 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2278. {"WSA_RX0 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2279. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP0"},
  2280. {"WSA_RX0 INP1", "RX0", "WSA RX0"},
  2281. {"WSA_RX0 INP1", "RX1", "WSA RX1"},
  2282. {"WSA_RX0 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2283. {"WSA_RX0 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2284. {"WSA_RX0 INP1", "RX4", "WSA RX4"},
  2285. {"WSA_RX0 INP1", "RX5", "WSA RX5"},
  2286. {"WSA_RX0 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2287. {"WSA_RX0 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2288. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP1"},
  2289. {"WSA_RX0 INP2", "RX0", "WSA RX0"},
  2290. {"WSA_RX0 INP2", "RX1", "WSA RX1"},
  2291. {"WSA_RX0 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2292. {"WSA_RX0 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2293. {"WSA_RX0 INP2", "RX4", "WSA RX4"},
  2294. {"WSA_RX0 INP2", "RX5", "WSA RX5"},
  2295. {"WSA_RX0 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2296. {"WSA_RX0 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2297. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP2"},
  2298. {"WSA_RX0 MIX INP", "RX0", "WSA RX0"},
  2299. {"WSA_RX0 MIX INP", "RX1", "WSA RX1"},
  2300. {"WSA_RX0 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2301. {"WSA_RX0 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2302. {"WSA_RX0 MIX INP", "RX4", "WSA RX4"},
  2303. {"WSA_RX0 MIX INP", "RX5", "WSA RX5"},
  2304. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX0 MIX INP"},
  2305. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX INT0 MIX"},
  2306. {"WSA_RX INT0 INTERP", NULL, "WSA_RX INT0 SEC MIX"},
  2307. {"WSA_RX0 INT0 SIDETONE MIX", "SRC0", "WSA SRC0_INP"},
  2308. {"WSA_RX INT0 INTERP", NULL, "WSA_RX0 INT0 SIDETONE MIX"},
  2309. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 INTERP"},
  2310. {"WSA_RX INT0 VBAT", "WSA RX0 VBAT Enable", "WSA_RX INT0 INTERP"},
  2311. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 VBAT"},
  2312. {"WSA_SPK1 OUT", NULL, "WSA_RX INT0 CHAIN"},
  2313. {"WSA_SPK1 OUT", NULL, "WSA_MCLK"},
  2314. {"WSA_RX1 INP0", "RX0", "WSA RX0"},
  2315. {"WSA_RX1 INP0", "RX1", "WSA RX1"},
  2316. {"WSA_RX1 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2317. {"WSA_RX1 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2318. {"WSA_RX1 INP0", "RX4", "WSA RX4"},
  2319. {"WSA_RX1 INP0", "RX5", "WSA RX5"},
  2320. {"WSA_RX1 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2321. {"WSA_RX1 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2322. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP0"},
  2323. {"WSA_RX1 INP1", "RX0", "WSA RX0"},
  2324. {"WSA_RX1 INP1", "RX1", "WSA RX1"},
  2325. {"WSA_RX1 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2326. {"WSA_RX1 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2327. {"WSA_RX1 INP1", "RX4", "WSA RX4"},
  2328. {"WSA_RX1 INP1", "RX5", "WSA RX5"},
  2329. {"WSA_RX1 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2330. {"WSA_RX1 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2331. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP1"},
  2332. {"WSA_RX1 INP2", "RX0", "WSA RX0"},
  2333. {"WSA_RX1 INP2", "RX1", "WSA RX1"},
  2334. {"WSA_RX1 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2335. {"WSA_RX1 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2336. {"WSA_RX1 INP2", "RX4", "WSA RX4"},
  2337. {"WSA_RX1 INP2", "RX5", "WSA RX5"},
  2338. {"WSA_RX1 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2339. {"WSA_RX1 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2340. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP2"},
  2341. {"WSA_RX1 MIX INP", "RX0", "WSA RX0"},
  2342. {"WSA_RX1 MIX INP", "RX1", "WSA RX1"},
  2343. {"WSA_RX1 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2344. {"WSA_RX1 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2345. {"WSA_RX1 MIX INP", "RX4", "WSA RX4"},
  2346. {"WSA_RX1 MIX INP", "RX5", "WSA RX5"},
  2347. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX1 MIX INP"},
  2348. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX INT1 MIX"},
  2349. {"WSA_RX INT1 INTERP", NULL, "WSA_RX INT1 SEC MIX"},
  2350. {"WSA_RX INT1 VBAT", "WSA RX1 VBAT Enable", "WSA_RX INT1 INTERP"},
  2351. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 VBAT"},
  2352. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 INTERP"},
  2353. {"WSA_SPK2 OUT", NULL, "WSA_RX INT1 CHAIN"},
  2354. {"WSA_SPK2 OUT", NULL, "WSA_MCLK"},
  2355. };
  2356. static const struct lpass_cdc_wsa_macro_reg_mask_val
  2357. lpass_cdc_wsa_macro_reg_init[] = {
  2358. {LPASS_CDC_WSA_BOOST0_BOOST_CFG1, 0x3F, 0x12},
  2359. {LPASS_CDC_WSA_BOOST0_BOOST_CFG2, 0x1C, 0x08},
  2360. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x1E, 0x0C},
  2361. {LPASS_CDC_WSA_BOOST1_BOOST_CFG1, 0x3F, 0x12},
  2362. {LPASS_CDC_WSA_BOOST1_BOOST_CFG2, 0x1C, 0x08},
  2363. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x1E, 0x0C},
  2364. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x70, 0x58},
  2365. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x70, 0x58},
  2366. {LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 0x08, 0x08},
  2367. {LPASS_CDC_WSA_RX1_RX_PATH_CFG1, 0x08, 0x08},
  2368. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x02, 0x02},
  2369. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x01, 0x01},
  2370. {LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2371. {LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2372. {LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2373. {LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2374. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x01, 0x01},
  2375. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x01, 0x01},
  2376. {LPASS_CDC_WSA_RX0_RX_PATH_CFG0, 0x01, 0x01},
  2377. {LPASS_CDC_WSA_RX1_RX_PATH_CFG0, 0x01, 0x01},
  2378. {LPASS_CDC_WSA_RX0_RX_PATH_MIX_CFG, 0x01, 0x01},
  2379. {LPASS_CDC_WSA_RX1_RX_PATH_MIX_CFG, 0x01, 0x01},
  2380. };
  2381. static void lpass_cdc_wsa_macro_init_reg(struct snd_soc_component *component)
  2382. {
  2383. int i;
  2384. for (i = 0; i < ARRAY_SIZE(lpass_cdc_wsa_macro_reg_init); i++)
  2385. snd_soc_component_update_bits(component,
  2386. lpass_cdc_wsa_macro_reg_init[i].reg,
  2387. lpass_cdc_wsa_macro_reg_init[i].mask,
  2388. lpass_cdc_wsa_macro_reg_init[i].val);
  2389. }
  2390. static int lpass_cdc_wsa_macro_core_vote(void *handle, bool enable)
  2391. {
  2392. int rc = 0;
  2393. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2394. if (wsa_priv == NULL) {
  2395. pr_err("%s: wsa priv data is NULL\n", __func__);
  2396. return -EINVAL;
  2397. }
  2398. if (enable) {
  2399. pm_runtime_get_sync(wsa_priv->dev);
  2400. if (lpass_cdc_check_core_votes(wsa_priv->dev))
  2401. rc = 0;
  2402. else
  2403. rc = -ENOTSYNC;
  2404. } else {
  2405. pm_runtime_put_autosuspend(wsa_priv->dev);
  2406. pm_runtime_mark_last_busy(wsa_priv->dev);
  2407. }
  2408. return rc;
  2409. }
  2410. static int wsa_swrm_clock(void *handle, bool enable)
  2411. {
  2412. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2413. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  2414. int ret = 0;
  2415. if (regmap == NULL) {
  2416. dev_err(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  2417. return -EINVAL;
  2418. }
  2419. mutex_lock(&wsa_priv->swr_clk_lock);
  2420. trace_printk("%s: %s swrm clock %s\n",
  2421. dev_name(wsa_priv->dev), __func__,
  2422. (enable ? "enable" : "disable"));
  2423. dev_dbg(wsa_priv->dev, "%s: swrm clock %s\n",
  2424. __func__, (enable ? "enable" : "disable"));
  2425. if (enable) {
  2426. pm_runtime_get_sync(wsa_priv->dev);
  2427. if (wsa_priv->swr_clk_users == 0) {
  2428. ret = msm_cdc_pinctrl_select_active_state(
  2429. wsa_priv->wsa_swr_gpio_p);
  2430. if (ret < 0) {
  2431. dev_err_ratelimited(wsa_priv->dev,
  2432. "%s: wsa swr pinctrl enable failed\n",
  2433. __func__);
  2434. pm_runtime_mark_last_busy(wsa_priv->dev);
  2435. pm_runtime_put_autosuspend(wsa_priv->dev);
  2436. goto exit;
  2437. }
  2438. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  2439. if (ret < 0) {
  2440. msm_cdc_pinctrl_select_sleep_state(
  2441. wsa_priv->wsa_swr_gpio_p);
  2442. dev_err_ratelimited(wsa_priv->dev,
  2443. "%s: wsa request clock enable failed\n",
  2444. __func__);
  2445. pm_runtime_mark_last_busy(wsa_priv->dev);
  2446. pm_runtime_put_autosuspend(wsa_priv->dev);
  2447. goto exit;
  2448. }
  2449. if (wsa_priv->reset_swr)
  2450. regmap_update_bits(regmap,
  2451. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2452. 0x02, 0x02);
  2453. regmap_update_bits(regmap,
  2454. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2455. 0x01, 0x01);
  2456. if (wsa_priv->reset_swr)
  2457. regmap_update_bits(regmap,
  2458. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2459. 0x02, 0x00);
  2460. regmap_update_bits(regmap,
  2461. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2462. 0x1C, 0x0C);
  2463. wsa_priv->reset_swr = false;
  2464. }
  2465. wsa_priv->swr_clk_users++;
  2466. pm_runtime_mark_last_busy(wsa_priv->dev);
  2467. pm_runtime_put_autosuspend(wsa_priv->dev);
  2468. } else {
  2469. if (wsa_priv->swr_clk_users <= 0) {
  2470. dev_err(wsa_priv->dev, "%s: clock already disabled\n",
  2471. __func__);
  2472. wsa_priv->swr_clk_users = 0;
  2473. goto exit;
  2474. }
  2475. wsa_priv->swr_clk_users--;
  2476. if (wsa_priv->swr_clk_users == 0) {
  2477. regmap_update_bits(regmap,
  2478. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2479. 0x01, 0x00);
  2480. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  2481. ret = msm_cdc_pinctrl_select_sleep_state(
  2482. wsa_priv->wsa_swr_gpio_p);
  2483. if (ret < 0) {
  2484. dev_err_ratelimited(wsa_priv->dev,
  2485. "%s: wsa swr pinctrl disable failed\n",
  2486. __func__);
  2487. goto exit;
  2488. }
  2489. }
  2490. }
  2491. trace_printk("%s: %s swrm clock users: %d\n",
  2492. dev_name(wsa_priv->dev), __func__,
  2493. wsa_priv->swr_clk_users);
  2494. dev_dbg(wsa_priv->dev, "%s: swrm clock users %d\n",
  2495. __func__, wsa_priv->swr_clk_users);
  2496. exit:
  2497. mutex_unlock(&wsa_priv->swr_clk_lock);
  2498. return ret;
  2499. }
  2500. /* Thermal Functions */
  2501. static int lpass_cdc_wsa_macro_get_max_state(
  2502. struct thermal_cooling_device *cdev,
  2503. unsigned long *state)
  2504. {
  2505. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  2506. if (!wsa_priv) {
  2507. pr_err("%s: cdev->devdata is NULL\n", __func__);
  2508. return -EINVAL;
  2509. }
  2510. *state = wsa_priv->thermal_max_state;
  2511. return 0;
  2512. }
  2513. static int lpass_cdc_wsa_macro_get_cur_state(
  2514. struct thermal_cooling_device *cdev,
  2515. unsigned long *state)
  2516. {
  2517. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  2518. if (!wsa_priv) {
  2519. pr_err("%s: cdev->devdata is NULL\n", __func__);
  2520. return -EINVAL;
  2521. }
  2522. *state = wsa_priv->thermal_cur_state;
  2523. pr_debug("%s: thermal current state:%lu\n", __func__, *state);
  2524. return 0;
  2525. }
  2526. static int lpass_cdc_wsa_macro_set_cur_state(
  2527. struct thermal_cooling_device *cdev,
  2528. unsigned long state)
  2529. {
  2530. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  2531. if (!wsa_priv) {
  2532. pr_err("%s: cdev->devdata is NULL\n", __func__);
  2533. return -EINVAL;
  2534. }
  2535. if (state < wsa_priv->thermal_max_state)
  2536. wsa_priv->thermal_cur_state = state;
  2537. else
  2538. wsa_priv->thermal_cur_state = wsa_priv->thermal_max_state;
  2539. dev_dbg(wsa_priv->dev,
  2540. "%s: requested state:%d, actual state: %d\n",
  2541. __func__, state, wsa_priv->thermal_cur_state);
  2542. schedule_work(&wsa_priv->lpass_cdc_wsa_macro_cooling_work);
  2543. return 0;
  2544. }
  2545. static struct thermal_cooling_device_ops wsa_cooling_ops = {
  2546. .get_max_state = lpass_cdc_wsa_macro_get_max_state,
  2547. .get_cur_state = lpass_cdc_wsa_macro_get_cur_state,
  2548. .set_cur_state = lpass_cdc_wsa_macro_set_cur_state,
  2549. };
  2550. static int lpass_cdc_wsa_macro_init(struct snd_soc_component *component)
  2551. {
  2552. struct snd_soc_dapm_context *dapm =
  2553. snd_soc_component_get_dapm(component);
  2554. int ret;
  2555. struct device *wsa_dev = NULL;
  2556. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2557. wsa_dev = lpass_cdc_get_device_ptr(component->dev, WSA_MACRO);
  2558. if (!wsa_dev) {
  2559. dev_err(component->dev,
  2560. "%s: null device for macro!\n", __func__);
  2561. return -EINVAL;
  2562. }
  2563. wsa_priv = dev_get_drvdata(wsa_dev);
  2564. if (!wsa_priv) {
  2565. dev_err(component->dev,
  2566. "%s: priv is null for macro!\n", __func__);
  2567. return -EINVAL;
  2568. }
  2569. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_wsa_macro_dapm_widgets,
  2570. ARRAY_SIZE(lpass_cdc_wsa_macro_dapm_widgets));
  2571. if (ret < 0) {
  2572. dev_err(wsa_dev, "%s: Failed to add controls\n", __func__);
  2573. return ret;
  2574. }
  2575. ret = snd_soc_dapm_add_routes(dapm, wsa_audio_map,
  2576. ARRAY_SIZE(wsa_audio_map));
  2577. if (ret < 0) {
  2578. dev_err(wsa_dev, "%s: Failed to add routes\n", __func__);
  2579. return ret;
  2580. }
  2581. ret = snd_soc_dapm_new_widgets(dapm->card);
  2582. if (ret < 0) {
  2583. dev_err(wsa_dev, "%s: Failed to add widgets\n", __func__);
  2584. return ret;
  2585. }
  2586. ret = snd_soc_add_component_controls(component, lpass_cdc_wsa_macro_snd_controls,
  2587. ARRAY_SIZE(lpass_cdc_wsa_macro_snd_controls));
  2588. if (ret < 0) {
  2589. dev_err(wsa_dev, "%s: Failed to add snd_ctls\n", __func__);
  2590. return ret;
  2591. }
  2592. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF1 Playback");
  2593. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_MIX1 Playback");
  2594. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_VI Capture");
  2595. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_ECHO Capture");
  2596. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK1 OUT");
  2597. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK2 OUT");
  2598. snd_soc_dapm_ignore_suspend(dapm, "VIINPUT_WSA");
  2599. snd_soc_dapm_ignore_suspend(dapm, "WSA SRC0_INP");
  2600. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC0_INP");
  2601. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC1_INP");
  2602. snd_soc_dapm_sync(dapm);
  2603. wsa_priv->component = component;
  2604. wsa_priv->spkr_gain_offset = LPASS_CDC_WSA_MACRO_GAIN_OFFSET_0_DB;
  2605. lpass_cdc_wsa_macro_init_reg(component);
  2606. return 0;
  2607. }
  2608. static int lpass_cdc_wsa_macro_deinit(struct snd_soc_component *component)
  2609. {
  2610. struct device *wsa_dev = NULL;
  2611. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2612. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2613. return -EINVAL;
  2614. wsa_priv->component = NULL;
  2615. return 0;
  2616. }
  2617. static void lpass_cdc_wsa_macro_add_child_devices(struct work_struct *work)
  2618. {
  2619. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2620. struct platform_device *pdev;
  2621. struct device_node *node;
  2622. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data = NULL, *temp;
  2623. int ret;
  2624. u16 count = 0, ctrl_num = 0;
  2625. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data *platdata;
  2626. char plat_dev_name[LPASS_CDC_WSA_MACRO_SWR_STRING_LEN];
  2627. wsa_priv = container_of(work, struct lpass_cdc_wsa_macro_priv,
  2628. lpass_cdc_wsa_macro_add_child_devices_work);
  2629. if (!wsa_priv) {
  2630. pr_err("%s: Memory for wsa_priv does not exist\n",
  2631. __func__);
  2632. return;
  2633. }
  2634. if (!wsa_priv->dev || !wsa_priv->dev->of_node) {
  2635. dev_err(wsa_priv->dev,
  2636. "%s: DT node for wsa_priv does not exist\n", __func__);
  2637. return;
  2638. }
  2639. platdata = &wsa_priv->swr_plat_data;
  2640. wsa_priv->child_count = 0;
  2641. for_each_available_child_of_node(wsa_priv->dev->of_node, node) {
  2642. if (strnstr(node->name, "wsa_swr_master",
  2643. strlen("wsa_swr_master")) != NULL)
  2644. strlcpy(plat_dev_name, "wsa_swr_ctrl",
  2645. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  2646. else if (strnstr(node->name, "msm_cdc_pinctrl",
  2647. strlen("msm_cdc_pinctrl")) != NULL)
  2648. strlcpy(plat_dev_name, node->name,
  2649. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  2650. else
  2651. continue;
  2652. pdev = platform_device_alloc(plat_dev_name, -1);
  2653. if (!pdev) {
  2654. dev_err(wsa_priv->dev, "%s: pdev memory alloc failed\n",
  2655. __func__);
  2656. ret = -ENOMEM;
  2657. goto err;
  2658. }
  2659. pdev->dev.parent = wsa_priv->dev;
  2660. pdev->dev.of_node = node;
  2661. if (strnstr(node->name, "wsa_swr_master",
  2662. strlen("wsa_swr_master")) != NULL) {
  2663. ret = platform_device_add_data(pdev, platdata,
  2664. sizeof(*platdata));
  2665. if (ret) {
  2666. dev_err(&pdev->dev,
  2667. "%s: cannot add plat data ctrl:%d\n",
  2668. __func__, ctrl_num);
  2669. goto fail_pdev_add;
  2670. }
  2671. temp = krealloc(swr_ctrl_data,
  2672. (ctrl_num + 1) * sizeof(
  2673. struct lpass_cdc_wsa_macro_swr_ctrl_data),
  2674. GFP_KERNEL);
  2675. if (!temp) {
  2676. dev_err(&pdev->dev, "out of memory\n");
  2677. ret = -ENOMEM;
  2678. goto fail_pdev_add;
  2679. }
  2680. swr_ctrl_data = temp;
  2681. swr_ctrl_data[ctrl_num].wsa_swr_pdev = pdev;
  2682. ctrl_num++;
  2683. dev_dbg(&pdev->dev,
  2684. "%s: Adding soundwire ctrl device(s)\n",
  2685. __func__);
  2686. wsa_priv->swr_ctrl_data = swr_ctrl_data;
  2687. }
  2688. ret = platform_device_add(pdev);
  2689. if (ret) {
  2690. dev_err(&pdev->dev,
  2691. "%s: Cannot add platform device\n",
  2692. __func__);
  2693. goto fail_pdev_add;
  2694. }
  2695. if (wsa_priv->child_count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX)
  2696. wsa_priv->pdev_child_devices[
  2697. wsa_priv->child_count++] = pdev;
  2698. else
  2699. goto err;
  2700. }
  2701. return;
  2702. fail_pdev_add:
  2703. for (count = 0; count < wsa_priv->child_count; count++)
  2704. platform_device_put(wsa_priv->pdev_child_devices[count]);
  2705. err:
  2706. return;
  2707. }
  2708. static void lpass_cdc_wsa_macro_cooling_adjust_gain(struct work_struct *work)
  2709. {
  2710. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2711. u8 gain = 0;
  2712. wsa_priv = container_of(work, struct lpass_cdc_wsa_macro_priv,
  2713. lpass_cdc_wsa_macro_cooling_work);
  2714. if (!wsa_priv) {
  2715. pr_err("%s: priv is null for macro!\n",
  2716. __func__);
  2717. return;
  2718. }
  2719. if (!wsa_priv->dev || !wsa_priv->dev->of_node) {
  2720. dev_err(wsa_priv->dev,
  2721. "%s: DT node for wsa_priv does not exist\n", __func__);
  2722. return;
  2723. }
  2724. /* Only adjust the volume when WSA clock is enabled */
  2725. if (wsa_priv->dapm_mclk_enable) {
  2726. gain = (u8)(wsa_priv->rx0_origin_gain -
  2727. wsa_priv->thermal_cur_state);
  2728. snd_soc_component_update_bits(wsa_priv->component,
  2729. LPASS_CDC_WSA_RX0_RX_VOL_CTL, 0xFF, gain);
  2730. dev_dbg(wsa_priv->dev,
  2731. "%s: RX0 current thermal state: %d, "
  2732. "adjusted gain: %#x\n",
  2733. __func__, wsa_priv->thermal_cur_state, gain);
  2734. gain = (u8)(wsa_priv->rx1_origin_gain -
  2735. wsa_priv->thermal_cur_state);
  2736. snd_soc_component_update_bits(wsa_priv->component,
  2737. LPASS_CDC_WSA_RX1_RX_VOL_CTL, 0xFF, gain);
  2738. dev_dbg(wsa_priv->dev,
  2739. "%s: RX1 current thermal state: %d, "
  2740. "adjusted gain: %#x\n",
  2741. __func__, wsa_priv->thermal_cur_state, gain);
  2742. }
  2743. return;
  2744. }
  2745. static void lpass_cdc_wsa_macro_init_ops(struct macro_ops *ops,
  2746. char __iomem *wsa_io_base)
  2747. {
  2748. memset(ops, 0, sizeof(struct macro_ops));
  2749. ops->init = lpass_cdc_wsa_macro_init;
  2750. ops->exit = lpass_cdc_wsa_macro_deinit;
  2751. ops->io_base = wsa_io_base;
  2752. ops->dai_ptr = lpass_cdc_wsa_macro_dai;
  2753. ops->num_dais = ARRAY_SIZE(lpass_cdc_wsa_macro_dai);
  2754. ops->event_handler = lpass_cdc_wsa_macro_event_handler;
  2755. ops->set_port_map = lpass_cdc_wsa_macro_set_port_map;
  2756. }
  2757. static int lpass_cdc_wsa_macro_probe(struct platform_device *pdev)
  2758. {
  2759. struct macro_ops ops;
  2760. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2761. u32 wsa_base_addr, default_clk_id, thermal_max_state;
  2762. char __iomem *wsa_io_base;
  2763. int ret = 0;
  2764. u32 is_used_wsa_swr_gpio = 1;
  2765. const char *is_used_wsa_swr_gpio_dt = "qcom,is-used-swr-gpio";
  2766. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  2767. dev_err(&pdev->dev,
  2768. "%s: va-macro not registered yet, defer\n", __func__);
  2769. return -EPROBE_DEFER;
  2770. }
  2771. wsa_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_wsa_macro_priv),
  2772. GFP_KERNEL);
  2773. if (!wsa_priv)
  2774. return -ENOMEM;
  2775. wsa_priv->dev = &pdev->dev;
  2776. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  2777. &wsa_base_addr);
  2778. if (ret) {
  2779. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  2780. __func__, "reg");
  2781. return ret;
  2782. }
  2783. if (of_find_property(pdev->dev.of_node, is_used_wsa_swr_gpio_dt,
  2784. NULL)) {
  2785. ret = of_property_read_u32(pdev->dev.of_node,
  2786. is_used_wsa_swr_gpio_dt,
  2787. &is_used_wsa_swr_gpio);
  2788. if (ret) {
  2789. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  2790. __func__, is_used_wsa_swr_gpio_dt);
  2791. is_used_wsa_swr_gpio = 1;
  2792. }
  2793. }
  2794. wsa_priv->wsa_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  2795. "qcom,wsa-swr-gpios", 0);
  2796. if (!wsa_priv->wsa_swr_gpio_p && is_used_wsa_swr_gpio) {
  2797. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  2798. __func__);
  2799. return -EINVAL;
  2800. }
  2801. if (msm_cdc_pinctrl_get_state(wsa_priv->wsa_swr_gpio_p) < 0 &&
  2802. is_used_wsa_swr_gpio) {
  2803. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  2804. __func__);
  2805. return -EPROBE_DEFER;
  2806. }
  2807. msm_cdc_pinctrl_set_wakeup_capable(
  2808. wsa_priv->wsa_swr_gpio_p, false);
  2809. wsa_io_base = devm_ioremap(&pdev->dev,
  2810. wsa_base_addr, LPASS_CDC_WSA_MACRO_MAX_OFFSET);
  2811. if (!wsa_io_base) {
  2812. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  2813. return -EINVAL;
  2814. }
  2815. wsa_priv->wsa_io_base = wsa_io_base;
  2816. wsa_priv->reset_swr = true;
  2817. INIT_WORK(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work,
  2818. lpass_cdc_wsa_macro_add_child_devices);
  2819. INIT_WORK(&wsa_priv->lpass_cdc_wsa_macro_cooling_work,
  2820. lpass_cdc_wsa_macro_cooling_adjust_gain);
  2821. wsa_priv->swr_plat_data.handle = (void *) wsa_priv;
  2822. wsa_priv->swr_plat_data.read = NULL;
  2823. wsa_priv->swr_plat_data.write = NULL;
  2824. wsa_priv->swr_plat_data.bulk_write = NULL;
  2825. wsa_priv->swr_plat_data.clk = wsa_swrm_clock;
  2826. wsa_priv->swr_plat_data.core_vote = lpass_cdc_wsa_macro_core_vote;
  2827. wsa_priv->swr_plat_data.handle_irq = NULL;
  2828. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  2829. &default_clk_id);
  2830. if (ret) {
  2831. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  2832. __func__, "qcom,mux0-clk-id");
  2833. default_clk_id = WSA_CORE_CLK;
  2834. }
  2835. wsa_priv->default_clk_id = default_clk_id;
  2836. dev_set_drvdata(&pdev->dev, wsa_priv);
  2837. mutex_init(&wsa_priv->mclk_lock);
  2838. mutex_init(&wsa_priv->swr_clk_lock);
  2839. lpass_cdc_wsa_macro_init_ops(&ops, wsa_io_base);
  2840. ops.clk_id_req = wsa_priv->default_clk_id;
  2841. ops.default_clk_id = wsa_priv->default_clk_id;
  2842. ret = lpass_cdc_register_macro(&pdev->dev, WSA_MACRO, &ops);
  2843. if (ret < 0) {
  2844. dev_err(&pdev->dev, "%s: register macro failed\n", __func__);
  2845. goto reg_macro_fail;
  2846. }
  2847. if (of_find_property(wsa_priv->dev->of_node, "#cooling-cells", NULL)) {
  2848. ret = of_property_read_u32(pdev->dev.of_node,
  2849. "qcom,thermal-max-state",
  2850. &thermal_max_state);
  2851. if (ret) {
  2852. dev_info(&pdev->dev, "%s: could not find %s entry in dt\n",
  2853. __func__, "qcom,thermal-max-state");
  2854. wsa_priv->thermal_max_state =
  2855. LPASS_CDC_WSA_MACRO_THERMAL_MAX_STATE;
  2856. } else {
  2857. wsa_priv->thermal_max_state = thermal_max_state;
  2858. }
  2859. wsa_priv->tcdev = devm_thermal_of_cooling_device_register(
  2860. &pdev->dev,
  2861. wsa_priv->dev->of_node,
  2862. "wsa", wsa_priv,
  2863. &wsa_cooling_ops);
  2864. if (IS_ERR(wsa_priv->tcdev)) {
  2865. dev_err(&pdev->dev,
  2866. "%s: failed to register wsa macro as cooling device\n",
  2867. __func__);
  2868. wsa_priv->tcdev = NULL;
  2869. }
  2870. }
  2871. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  2872. pm_runtime_use_autosuspend(&pdev->dev);
  2873. pm_runtime_set_suspended(&pdev->dev);
  2874. pm_suspend_ignore_children(&pdev->dev, true);
  2875. pm_runtime_enable(&pdev->dev);
  2876. schedule_work(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work);
  2877. return ret;
  2878. reg_macro_fail:
  2879. mutex_destroy(&wsa_priv->mclk_lock);
  2880. mutex_destroy(&wsa_priv->swr_clk_lock);
  2881. return ret;
  2882. }
  2883. static int lpass_cdc_wsa_macro_remove(struct platform_device *pdev)
  2884. {
  2885. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2886. u16 count = 0;
  2887. wsa_priv = dev_get_drvdata(&pdev->dev);
  2888. if (!wsa_priv)
  2889. return -EINVAL;
  2890. if (wsa_priv->tcdev)
  2891. thermal_cooling_device_unregister(wsa_priv->tcdev);
  2892. for (count = 0; count < wsa_priv->child_count &&
  2893. count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX; count++)
  2894. platform_device_unregister(wsa_priv->pdev_child_devices[count]);
  2895. pm_runtime_disable(&pdev->dev);
  2896. pm_runtime_set_suspended(&pdev->dev);
  2897. lpass_cdc_unregister_macro(&pdev->dev, WSA_MACRO);
  2898. mutex_destroy(&wsa_priv->mclk_lock);
  2899. mutex_destroy(&wsa_priv->swr_clk_lock);
  2900. return 0;
  2901. }
  2902. static const struct of_device_id lpass_cdc_wsa_macro_dt_match[] = {
  2903. {.compatible = "qcom,lpass-cdc-wsa-macro"},
  2904. {}
  2905. };
  2906. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  2907. SET_SYSTEM_SLEEP_PM_OPS(
  2908. pm_runtime_force_suspend,
  2909. pm_runtime_force_resume
  2910. )
  2911. SET_RUNTIME_PM_OPS(
  2912. lpass_cdc_runtime_suspend,
  2913. lpass_cdc_runtime_resume,
  2914. NULL
  2915. )
  2916. };
  2917. static struct platform_driver lpass_cdc_wsa_macro_driver = {
  2918. .driver = {
  2919. .name = "lpass_cdc_wsa_macro",
  2920. .owner = THIS_MODULE,
  2921. .pm = &lpass_cdc_dev_pm_ops,
  2922. .of_match_table = lpass_cdc_wsa_macro_dt_match,
  2923. .suppress_bind_attrs = true,
  2924. },
  2925. .probe = lpass_cdc_wsa_macro_probe,
  2926. .remove = lpass_cdc_wsa_macro_remove,
  2927. };
  2928. module_platform_driver(lpass_cdc_wsa_macro_driver);
  2929. MODULE_DESCRIPTION("WSA macro driver");
  2930. MODULE_LICENSE("GPL v2");