hal_api_mon.h 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #include <target_type.h>
  23. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  24. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  25. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  26. #define HAL_RX_GET(_ptr, block, field) \
  27. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  28. HAL_RX_MASk(block, field)) >> \
  29. HAL_RX_LSB(block, field))
  30. #define HAL_RX_PHY_DATA_RADAR 0x01
  31. #define HAL_SU_MU_CODING_LDPC 0x01
  32. #define HAL_RX_FCS_LEN (4)
  33. #define KEY_EXTIV 0x20
  34. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  35. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  36. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  37. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  38. #define HAL_RX_USER_TLV32_LEN_LSB 10
  39. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  40. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  41. #define HAL_RX_USER_TLV32_USERID_LSB 26
  42. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  43. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  44. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  45. #define HAL_RX_TLV32_HDR_SIZE 4
  46. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  47. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  48. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  49. HAL_RX_USER_TLV32_TYPE_LSB)
  50. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  51. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  52. HAL_RX_USER_TLV32_LEN_MASK) >> \
  53. HAL_RX_USER_TLV32_LEN_LSB)
  54. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  55. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  56. HAL_RX_USER_TLV32_USERID_MASK) >> \
  57. HAL_RX_USER_TLV32_USERID_LSB)
  58. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  59. #define HAL_TLV_STATUS_PPDU_DONE 1
  60. #define HAL_TLV_STATUS_BUF_DONE 2
  61. #define HAL_TLV_STATUS_PPDU_NON_STD_DONE 3
  62. #define HAL_MAX_UL_MU_USERS 8
  63. #define HAL_RX_PKT_TYPE_11A 0
  64. #define HAL_RX_PKT_TYPE_11B 1
  65. #define HAL_RX_PKT_TYPE_11N 2
  66. #define HAL_RX_PKT_TYPE_11AC 3
  67. #define HAL_RX_PKT_TYPE_11AX 4
  68. #define HAL_RX_RECEPTION_TYPE_SU 0
  69. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  70. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  71. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  72. /* Multiply rate by 2 to avoid float point
  73. * and get rate in units of 500kbps
  74. */
  75. #define HAL_11B_RATE_0MCS 11*2
  76. #define HAL_11B_RATE_1MCS 5.5*2
  77. #define HAL_11B_RATE_2MCS 2*2
  78. #define HAL_11B_RATE_3MCS 1*2
  79. #define HAL_11B_RATE_4MCS 11*2
  80. #define HAL_11B_RATE_5MCS 5.5*2
  81. #define HAL_11B_RATE_6MCS 2*2
  82. #define HAL_11A_RATE_0MCS 48*2
  83. #define HAL_11A_RATE_1MCS 24*2
  84. #define HAL_11A_RATE_2MCS 12*2
  85. #define HAL_11A_RATE_3MCS 6*2
  86. #define HAL_11A_RATE_4MCS 54*2
  87. #define HAL_11A_RATE_5MCS 36*2
  88. #define HAL_11A_RATE_6MCS 18*2
  89. #define HAL_11A_RATE_7MCS 9*2
  90. #define HE_GI_0_8 0
  91. #define HE_GI_1_6 1
  92. #define HE_GI_3_2 2
  93. #define HT_SGI_PRESENT 0x80
  94. #define HE_LTF_1_X 0
  95. #define HE_LTF_2_X 1
  96. #define HE_LTF_4_X 2
  97. #define VHT_SIG_SU_NSS_MASK 0x7
  98. #define HAL_TID_INVALID 31
  99. #define HAL_AST_IDX_INVALID 0xFFFF
  100. #ifdef GET_MSDU_AGGREGATION
  101. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)\
  102. {\
  103. struct rx_msdu_end *rx_msdu_end;\
  104. bool first_msdu, last_msdu; \
  105. rx_msdu_end = &rx_desc->msdu_end_tlv.rx_msdu_end;\
  106. first_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, FIRST_MSDU);\
  107. last_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, LAST_MSDU);\
  108. if (first_msdu && last_msdu)\
  109. rs->rs_flags &= (~IEEE80211_AMSDU_FLAG);\
  110. else\
  111. rs->rs_flags |= (IEEE80211_AMSDU_FLAG); \
  112. } \
  113. #else
  114. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)
  115. #endif
  116. #define HAL_MAC_ADDR_LEN 6
  117. enum {
  118. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  119. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  120. HAL_HW_RX_DECAP_FORMAT_ETH2,
  121. HAL_HW_RX_DECAP_FORMAT_8023,
  122. };
  123. enum {
  124. DP_PPDU_STATUS_START,
  125. DP_PPDU_STATUS_DONE,
  126. };
  127. static inline
  128. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  129. {
  130. /* return the HW_RX_DESC size */
  131. return sizeof(struct rx_pkt_tlvs);
  132. }
  133. static inline
  134. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  135. {
  136. return data;
  137. }
  138. static inline
  139. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  140. {
  141. struct rx_attention *rx_attn;
  142. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  143. rx_attn = &rx_desc->attn_tlv.rx_attn;
  144. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  145. }
  146. static inline
  147. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  148. {
  149. struct rx_attention *rx_attn;
  150. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  151. rx_attn = &rx_desc->attn_tlv.rx_attn;
  152. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  153. }
  154. static inline
  155. uint32_t
  156. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  157. struct rx_msdu_start *rx_msdu_start;
  158. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  159. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  160. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  161. }
  162. static inline
  163. uint8_t *
  164. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  165. uint8_t *rx_pkt_hdr;
  166. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  167. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  168. return rx_pkt_hdr;
  169. }
  170. static inline
  171. uint32_t HAL_RX_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  172. {
  173. struct rx_mpdu_info *rx_mpdu_info;
  174. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  175. rx_mpdu_info =
  176. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  177. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  178. }
  179. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  180. static inline
  181. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  182. {
  183. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  184. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  185. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  186. }
  187. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  188. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  189. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  190. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  191. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  192. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  193. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  194. (((struct reo_entrance_ring *)reo_ent_desc) \
  195. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  196. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  197. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  198. (((struct reo_entrance_ring *)reo_ent_desc) \
  199. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  200. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  201. (HAL_RX_BUF_COOKIE_GET(& \
  202. (((struct reo_entrance_ring *)reo_ent_desc) \
  203. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  204. /**
  205. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  206. * cookie from the REO entrance ring element
  207. *
  208. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  209. * the current descriptor
  210. * @ buf_info: structure to return the buffer information
  211. * @ msdu_cnt: pointer to msdu count in MPDU
  212. * Return: void
  213. */
  214. static inline
  215. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  216. struct hal_buf_info *buf_info,
  217. void **pp_buf_addr_info,
  218. uint32_t *msdu_cnt
  219. )
  220. {
  221. struct reo_entrance_ring *reo_ent_ring =
  222. (struct reo_entrance_ring *)rx_desc;
  223. struct buffer_addr_info *buf_addr_info;
  224. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  225. uint32_t loop_cnt;
  226. rx_mpdu_desc_info_details =
  227. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  228. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  229. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  230. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  231. buf_addr_info =
  232. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  233. buf_info->paddr =
  234. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  235. ((uint64_t)
  236. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  237. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  238. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  239. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d",
  240. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  241. (unsigned long long)buf_info->paddr, loop_cnt);
  242. *pp_buf_addr_info = (void *)buf_addr_info;
  243. }
  244. static inline
  245. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  246. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  247. {
  248. struct rx_msdu_link *msdu_link =
  249. (struct rx_msdu_link *)rx_msdu_link_desc;
  250. struct buffer_addr_info *buf_addr_info;
  251. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  252. buf_info->paddr =
  253. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  254. ((uint64_t)
  255. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  256. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  257. *pp_buf_addr_info = (void *)buf_addr_info;
  258. }
  259. /**
  260. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  261. *
  262. * @ soc : HAL version of the SOC pointer
  263. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  264. * @ buf_addr_info : void pointer to the buffer_addr_info
  265. *
  266. * Return: void
  267. */
  268. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  269. void *src_srng_desc, void *buf_addr_info)
  270. {
  271. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  272. (struct buffer_addr_info *)src_srng_desc;
  273. uint64_t paddr;
  274. struct buffer_addr_info *p_buffer_addr_info =
  275. (struct buffer_addr_info *)buf_addr_info;
  276. paddr =
  277. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  278. ((uint64_t)
  279. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  280. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  281. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx",
  282. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  283. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  284. /* Structure copy !!! */
  285. *wbm_srng_buffer_addr_info =
  286. *((struct buffer_addr_info *)buf_addr_info);
  287. }
  288. static inline
  289. uint32 hal_get_rx_msdu_link_desc_size(void)
  290. {
  291. return sizeof(struct rx_msdu_link);
  292. }
  293. enum {
  294. HAL_PKT_TYPE_OFDM = 0,
  295. HAL_PKT_TYPE_CCK,
  296. HAL_PKT_TYPE_HT,
  297. HAL_PKT_TYPE_VHT,
  298. HAL_PKT_TYPE_HE,
  299. };
  300. enum {
  301. HAL_SGI_0_8_US,
  302. HAL_SGI_0_4_US,
  303. HAL_SGI_1_6_US,
  304. HAL_SGI_3_2_US,
  305. };
  306. enum {
  307. HAL_FULL_RX_BW_20,
  308. HAL_FULL_RX_BW_40,
  309. HAL_FULL_RX_BW_80,
  310. HAL_FULL_RX_BW_160,
  311. };
  312. enum {
  313. HAL_RX_TYPE_SU,
  314. HAL_RX_TYPE_MU_MIMO,
  315. HAL_RX_TYPE_MU_OFDMA,
  316. HAL_RX_TYPE_MU_OFDMA_MIMO,
  317. };
  318. /**
  319. * enum
  320. * @HAL_RX_MON_PPDU_START: PPDU start TLV is decoded in HAL
  321. * @HAL_RX_MON_PPDU_END: PPDU end TLV is decided in HAL
  322. */
  323. enum {
  324. HAL_RX_MON_PPDU_START = 0,
  325. HAL_RX_MON_PPDU_END,
  326. };
  327. struct hal_rx_ppdu_user_info {
  328. };
  329. struct hal_rx_ppdu_common_info {
  330. uint32_t ppdu_id;
  331. uint32_t last_ppdu_id;
  332. uint32_t ppdu_timestamp;
  333. uint32_t mpdu_cnt_fcs_ok;
  334. uint32_t mpdu_cnt_fcs_err;
  335. };
  336. struct hal_rx_msdu_payload_info {
  337. uint8_t *first_msdu_payload;
  338. uint32_t payload_len;
  339. };
  340. /**
  341. * struct hal_rx_nac_info - struct for neighbour info
  342. * @fc_valid: flag indicate if it has valid frame control information
  343. * @to_ds_flag: flag indicate to_ds bit
  344. * @mac_addr2_valid: flag indicate if mac_addr2 is valid
  345. * @mac_addr2: mac address2 in wh
  346. */
  347. struct hal_rx_nac_info {
  348. uint8_t fc_valid;
  349. uint8_t to_ds_flag;
  350. uint8_t mac_addr2_valid;
  351. uint8_t mac_addr2[HAL_MAC_ADDR_LEN];
  352. };
  353. struct hal_rx_ppdu_info {
  354. struct hal_rx_ppdu_common_info com_info;
  355. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  356. struct mon_rx_status rx_status;
  357. struct hal_rx_msdu_payload_info msdu_info;
  358. struct hal_rx_nac_info nac_info;
  359. /* status ring PPDU start and end state */
  360. uint32_t rx_state;
  361. };
  362. static inline uint32_t
  363. hal_get_rx_status_buf_size(void) {
  364. /* RX status buffer size is hard coded for now */
  365. return 2048;
  366. }
  367. static inline uint8_t*
  368. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  369. uint32_t tlv_len, tlv_tag;
  370. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  371. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  372. /* The actual length of PPDU_END is the combined length of many PHY
  373. * TLVs that follow. Skip the TLV header and
  374. * rx_rxpcu_classification_overview that follows the header to get to
  375. * next TLV.
  376. */
  377. if (tlv_tag == WIFIRX_PPDU_END_E)
  378. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  379. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  380. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  381. }
  382. static void hal_rx_proc_phyrx_other_receive_info_tlv(struct hal_soc *hal_soc,
  383. void *rx_tlv_hdr,
  384. struct hal_rx_ppdu_info
  385. *ppdu_info)
  386. {
  387. hal_soc->ops->hal_rx_proc_phyrx_other_receive_info_tlv(rx_tlv_hdr,
  388. (void *)ppdu_info);
  389. }
  390. /**
  391. * hal_rx_status_get_tlv_info() - process receive info TLV
  392. * @rx_tlv_hdr: pointer to TLV header
  393. * @ppdu_info: pointer to ppdu_info
  394. *
  395. * Return: HAL_TLV_STATUS_PPDU_NOT_DONE or HAL_TLV_STATUS_PPDU_DONE from tlv
  396. */
  397. static inline uint32_t
  398. hal_rx_status_get_tlv_info(void *rx_tlv_hdr, struct hal_rx_ppdu_info *ppdu_info,
  399. struct hal_soc *hal)
  400. {
  401. uint32_t tlv_tag, user_id, tlv_len, value;
  402. uint8_t group_id = 0;
  403. uint8_t he_dcm = 0;
  404. uint8_t he_stbc = 0;
  405. uint16_t he_gi = 0;
  406. uint16_t he_ltf = 0;
  407. void *rx_tlv;
  408. bool unhandled = false;
  409. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv_hdr);
  410. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv_hdr);
  411. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv_hdr);
  412. rx_tlv = (uint8_t *)rx_tlv_hdr + HAL_RX_TLV32_HDR_SIZE;
  413. switch (tlv_tag) {
  414. case WIFIRX_PPDU_START_E:
  415. ppdu_info->com_info.ppdu_id =
  416. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  417. PHY_PPDU_ID);
  418. /* channel number is set in PHY meta data */
  419. ppdu_info->rx_status.chan_num =
  420. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  421. SW_PHY_META_DATA);
  422. ppdu_info->com_info.ppdu_timestamp =
  423. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  424. PPDU_START_TIMESTAMP);
  425. ppdu_info->rx_status.ppdu_timestamp =
  426. ppdu_info->com_info.ppdu_timestamp;
  427. ppdu_info->rx_state = HAL_RX_MON_PPDU_START;
  428. break;
  429. case WIFIRX_PPDU_START_USER_INFO_E:
  430. break;
  431. case WIFIRX_PPDU_END_E:
  432. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  433. "[%s][%d] ppdu_end_e len=%d",
  434. __func__, __LINE__, tlv_len);
  435. /* This is followed by sub-TLVs of PPDU_END */
  436. ppdu_info->rx_state = HAL_RX_MON_PPDU_END;
  437. break;
  438. case WIFIRXPCU_PPDU_END_INFO_E:
  439. ppdu_info->rx_status.tsft =
  440. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  441. WB_TIMESTAMP_UPPER_32);
  442. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  443. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  444. WB_TIMESTAMP_LOWER_32);
  445. ppdu_info->rx_status.duration =
  446. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  447. RX_PPDU_DURATION);
  448. break;
  449. case WIFIRX_PPDU_END_USER_STATS_E:
  450. {
  451. unsigned long tid = 0;
  452. uint16_t seq = 0;
  453. ppdu_info->rx_status.ast_index =
  454. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  455. AST_INDEX);
  456. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  457. RECEIVED_QOS_DATA_TID_BITMAP);
  458. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  459. if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
  460. ppdu_info->rx_status.tid = HAL_TID_INVALID;
  461. ppdu_info->rx_status.tcp_msdu_count =
  462. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  463. TCP_MSDU_COUNT) +
  464. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  465. TCP_ACK_MSDU_COUNT);
  466. ppdu_info->rx_status.udp_msdu_count =
  467. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  468. UDP_MSDU_COUNT);
  469. ppdu_info->rx_status.other_msdu_count =
  470. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  471. OTHER_MSDU_COUNT);
  472. ppdu_info->rx_status.frame_control_info_valid =
  473. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  474. DATA_SEQUENCE_CONTROL_INFO_VALID);
  475. seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
  476. FIRST_DATA_SEQ_CTRL);
  477. if (ppdu_info->rx_status.frame_control_info_valid)
  478. ppdu_info->rx_status.first_data_seq_ctrl = seq;
  479. ppdu_info->rx_status.preamble_type =
  480. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  481. HT_CONTROL_FIELD_PKT_TYPE);
  482. switch (ppdu_info->rx_status.preamble_type) {
  483. case HAL_RX_PKT_TYPE_11N:
  484. ppdu_info->rx_status.ht_flags = 1;
  485. ppdu_info->rx_status.rtap_flags |= HT_SGI_PRESENT;
  486. break;
  487. case HAL_RX_PKT_TYPE_11AC:
  488. ppdu_info->rx_status.vht_flags = 1;
  489. break;
  490. case HAL_RX_PKT_TYPE_11AX:
  491. ppdu_info->rx_status.he_flags = 1;
  492. break;
  493. default:
  494. break;
  495. }
  496. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  497. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  498. MPDU_CNT_FCS_OK);
  499. ppdu_info->com_info.mpdu_cnt_fcs_err =
  500. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  501. MPDU_CNT_FCS_ERR);
  502. if ((ppdu_info->com_info.mpdu_cnt_fcs_ok |
  503. ppdu_info->com_info.mpdu_cnt_fcs_err) > 1)
  504. ppdu_info->rx_status.rs_flags |= IEEE80211_AMPDU_FLAG;
  505. else
  506. ppdu_info->rx_status.rs_flags &=
  507. (~IEEE80211_AMPDU_FLAG);
  508. break;
  509. }
  510. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  511. break;
  512. case WIFIRX_PPDU_END_STATUS_DONE_E:
  513. return HAL_TLV_STATUS_PPDU_DONE;
  514. case WIFIDUMMY_E:
  515. return HAL_TLV_STATUS_BUF_DONE;
  516. case WIFIPHYRX_HT_SIG_E:
  517. {
  518. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  519. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  520. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  521. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  522. FEC_CODING);
  523. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  524. 1 : 0;
  525. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  526. HT_SIG_INFO_0, MCS);
  527. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  528. HT_SIG_INFO_0, CBW);
  529. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  530. HT_SIG_INFO_1, SHORT_GI);
  531. break;
  532. }
  533. case WIFIPHYRX_L_SIG_B_E:
  534. {
  535. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  536. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  537. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  538. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  539. ppdu_info->rx_status.l_sig_b_info = *((uint32_t *)l_sig_b_info);
  540. switch (value) {
  541. case 1:
  542. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  543. break;
  544. case 2:
  545. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  546. break;
  547. case 3:
  548. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  549. break;
  550. case 4:
  551. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  552. break;
  553. case 5:
  554. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  555. break;
  556. case 6:
  557. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  558. break;
  559. case 7:
  560. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  561. break;
  562. default:
  563. break;
  564. }
  565. ppdu_info->rx_status.cck_flag = 1;
  566. break;
  567. }
  568. case WIFIPHYRX_L_SIG_A_E:
  569. {
  570. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  571. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  572. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  573. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  574. ppdu_info->rx_status.l_sig_a_info = *((uint32_t *)l_sig_a_info);
  575. switch (value) {
  576. case 8:
  577. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  578. break;
  579. case 9:
  580. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  581. break;
  582. case 10:
  583. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  584. break;
  585. case 11:
  586. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  587. break;
  588. case 12:
  589. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  590. break;
  591. case 13:
  592. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  593. break;
  594. case 14:
  595. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  596. break;
  597. case 15:
  598. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  599. break;
  600. default:
  601. break;
  602. }
  603. ppdu_info->rx_status.ofdm_flag = 1;
  604. break;
  605. }
  606. case WIFIPHYRX_VHT_SIG_A_E:
  607. {
  608. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  609. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  610. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  611. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  612. SU_MU_CODING);
  613. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  614. 1 : 0;
  615. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  616. ppdu_info->rx_status.vht_flag_values5 = group_id;
  617. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  618. VHT_SIG_A_INFO_1, MCS);
  619. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  620. VHT_SIG_A_INFO_1, GI_SETTING);
  621. switch (hal->target_type) {
  622. case TARGET_TYPE_QCA8074:
  623. case TARGET_TYPE_QCA8074V2:
  624. ppdu_info->rx_status.is_stbc =
  625. HAL_RX_GET(vht_sig_a_info,
  626. VHT_SIG_A_INFO_0, STBC);
  627. value = HAL_RX_GET(vht_sig_a_info,
  628. VHT_SIG_A_INFO_0, N_STS);
  629. if (ppdu_info->rx_status.is_stbc && (value > 0))
  630. value = ((value + 1) >> 1) - 1;
  631. ppdu_info->rx_status.nss =
  632. ((value & VHT_SIG_SU_NSS_MASK) + 1);
  633. break;
  634. case TARGET_TYPE_QCA6290:
  635. #if !defined(QCA_WIFI_QCA6290_11AX)
  636. ppdu_info->rx_status.is_stbc =
  637. HAL_RX_GET(vht_sig_a_info,
  638. VHT_SIG_A_INFO_0, STBC);
  639. value = HAL_RX_GET(vht_sig_a_info,
  640. VHT_SIG_A_INFO_0, N_STS);
  641. if (ppdu_info->rx_status.is_stbc && (value > 0))
  642. value = ((value + 1) >> 1) - 1;
  643. ppdu_info->rx_status.nss =
  644. ((value & VHT_SIG_SU_NSS_MASK) + 1);
  645. #else
  646. ppdu_info->rx_status.nss = 0;
  647. #endif
  648. break;
  649. #ifdef QCA_WIFI_QCA6390
  650. case TARGET_TYPE_QCA6390:
  651. ppdu_info->rx_status.nss = 0;
  652. break;
  653. #endif
  654. default:
  655. break;
  656. }
  657. ppdu_info->rx_status.vht_flag_values3[0] =
  658. (((ppdu_info->rx_status.mcs) << 4)
  659. | ppdu_info->rx_status.nss);
  660. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  661. VHT_SIG_A_INFO_0, BANDWIDTH);
  662. ppdu_info->rx_status.vht_flag_values2 =
  663. ppdu_info->rx_status.bw;
  664. ppdu_info->rx_status.vht_flag_values4 =
  665. HAL_RX_GET(vht_sig_a_info,
  666. VHT_SIG_A_INFO_1, SU_MU_CODING);
  667. ppdu_info->rx_status.beamformed = HAL_RX_GET(vht_sig_a_info,
  668. VHT_SIG_A_INFO_1, BEAMFORMED);
  669. break;
  670. }
  671. case WIFIPHYRX_HE_SIG_A_SU_E:
  672. {
  673. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  674. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  675. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  676. ppdu_info->rx_status.he_flags = 1;
  677. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  678. FORMAT_INDICATION);
  679. if (value == 0) {
  680. ppdu_info->rx_status.he_data1 =
  681. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  682. } else {
  683. ppdu_info->rx_status.he_data1 =
  684. QDF_MON_STATUS_HE_SU_FORMAT_TYPE;
  685. }
  686. /* data1 */
  687. ppdu_info->rx_status.he_data1 |=
  688. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  689. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  690. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  691. QDF_MON_STATUS_HE_MCS_KNOWN |
  692. QDF_MON_STATUS_HE_DCM_KNOWN |
  693. QDF_MON_STATUS_HE_CODING_KNOWN |
  694. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  695. QDF_MON_STATUS_HE_STBC_KNOWN |
  696. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  697. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  698. /* data2 */
  699. ppdu_info->rx_status.he_data2 =
  700. QDF_MON_STATUS_HE_GI_KNOWN;
  701. ppdu_info->rx_status.he_data2 |=
  702. QDF_MON_STATUS_TXBF_KNOWN |
  703. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  704. QDF_MON_STATUS_TXOP_KNOWN |
  705. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  706. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  707. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  708. /* data3 */
  709. value = HAL_RX_GET(he_sig_a_su_info,
  710. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  711. ppdu_info->rx_status.he_data3 = value;
  712. value = HAL_RX_GET(he_sig_a_su_info,
  713. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  714. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  715. ppdu_info->rx_status.he_data3 |= value;
  716. value = HAL_RX_GET(he_sig_a_su_info,
  717. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  718. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  719. ppdu_info->rx_status.he_data3 |= value;
  720. value = HAL_RX_GET(he_sig_a_su_info,
  721. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  722. ppdu_info->rx_status.mcs = value;
  723. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  724. ppdu_info->rx_status.he_data3 |= value;
  725. value = HAL_RX_GET(he_sig_a_su_info,
  726. HE_SIG_A_SU_INFO_0, DCM);
  727. he_dcm = value;
  728. value = value << QDF_MON_STATUS_DCM_SHIFT;
  729. ppdu_info->rx_status.he_data3 |= value;
  730. value = HAL_RX_GET(he_sig_a_su_info,
  731. HE_SIG_A_SU_INFO_1, CODING);
  732. value = value << QDF_MON_STATUS_CODING_SHIFT;
  733. ppdu_info->rx_status.he_data3 |= value;
  734. value = HAL_RX_GET(he_sig_a_su_info,
  735. HE_SIG_A_SU_INFO_1,
  736. LDPC_EXTRA_SYMBOL);
  737. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  738. ppdu_info->rx_status.he_data3 |= value;
  739. value = HAL_RX_GET(he_sig_a_su_info,
  740. HE_SIG_A_SU_INFO_1, STBC);
  741. he_stbc = value;
  742. value = value << QDF_MON_STATUS_STBC_SHIFT;
  743. ppdu_info->rx_status.he_data3 |= value;
  744. /* data4 */
  745. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  746. SPATIAL_REUSE);
  747. ppdu_info->rx_status.he_data4 = value;
  748. /* data5 */
  749. value = HAL_RX_GET(he_sig_a_su_info,
  750. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  751. ppdu_info->rx_status.he_data5 = value;
  752. ppdu_info->rx_status.bw = value;
  753. value = HAL_RX_GET(he_sig_a_su_info,
  754. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  755. switch (value) {
  756. case 0:
  757. he_gi = HE_GI_0_8;
  758. he_ltf = HE_LTF_1_X;
  759. break;
  760. case 1:
  761. he_gi = HE_GI_0_8;
  762. he_ltf = HE_LTF_2_X;
  763. break;
  764. case 2:
  765. he_gi = HE_GI_1_6;
  766. he_ltf = HE_LTF_2_X;
  767. break;
  768. case 3:
  769. if (he_dcm && he_stbc) {
  770. he_gi = HE_GI_0_8;
  771. he_ltf = HE_LTF_4_X;
  772. } else {
  773. he_gi = HE_GI_3_2;
  774. he_ltf = HE_LTF_4_X;
  775. }
  776. break;
  777. }
  778. ppdu_info->rx_status.sgi = he_gi;
  779. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  780. ppdu_info->rx_status.he_data5 |= value;
  781. value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
  782. ppdu_info->rx_status.he_data5 |= value;
  783. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  784. value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
  785. ppdu_info->rx_status.he_data5 |= value;
  786. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  787. PACKET_EXTENSION_A_FACTOR);
  788. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  789. ppdu_info->rx_status.he_data5 |= value;
  790. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  791. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  792. ppdu_info->rx_status.he_data5 |= value;
  793. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  794. PACKET_EXTENSION_PE_DISAMBIGUITY);
  795. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  796. ppdu_info->rx_status.he_data5 |= value;
  797. /* data6 */
  798. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  799. value++;
  800. ppdu_info->rx_status.nss = value;
  801. ppdu_info->rx_status.he_data6 = value;
  802. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  803. DOPPLER_INDICATION);
  804. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  805. ppdu_info->rx_status.he_data6 |= value;
  806. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  807. TXOP_DURATION);
  808. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  809. ppdu_info->rx_status.he_data6 |= value;
  810. ppdu_info->rx_status.beamformed = HAL_RX_GET(he_sig_a_su_info,
  811. HE_SIG_A_SU_INFO_1, TXBF);
  812. break;
  813. }
  814. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  815. {
  816. uint8_t *he_sig_a_mu_dl_info = (uint8_t *)rx_tlv +
  817. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  818. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS);
  819. ppdu_info->rx_status.he_mu_flags = 1;
  820. /* HE Flags */
  821. /*data1*/
  822. ppdu_info->rx_status.he_data1 =
  823. QDF_MON_STATUS_HE_MU_FORMAT_TYPE;
  824. ppdu_info->rx_status.he_data1 |=
  825. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  826. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  827. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  828. QDF_MON_STATUS_HE_STBC_KNOWN |
  829. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  830. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  831. /* data2 */
  832. ppdu_info->rx_status.he_data2 =
  833. QDF_MON_STATUS_HE_GI_KNOWN;
  834. ppdu_info->rx_status.he_data2 |=
  835. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  836. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  837. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  838. QDF_MON_STATUS_TXOP_KNOWN |
  839. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  840. /*data3*/
  841. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  842. HE_SIG_A_MU_DL_INFO_0, BSS_COLOR_ID);
  843. ppdu_info->rx_status.he_data3 = value;
  844. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  845. HE_SIG_A_MU_DL_INFO_0, DL_UL_FLAG);
  846. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  847. ppdu_info->rx_status.he_data3 |= value;
  848. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  849. HE_SIG_A_MU_DL_INFO_1,
  850. LDPC_EXTRA_SYMBOL);
  851. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  852. ppdu_info->rx_status.he_data3 |= value;
  853. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  854. HE_SIG_A_MU_DL_INFO_1, STBC);
  855. he_stbc = value;
  856. value = value << QDF_MON_STATUS_STBC_SHIFT;
  857. ppdu_info->rx_status.he_data3 |= value;
  858. /*data4*/
  859. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
  860. SPATIAL_REUSE);
  861. ppdu_info->rx_status.he_data4 = value;
  862. /*data5*/
  863. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  864. HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
  865. ppdu_info->rx_status.he_data5 = value;
  866. ppdu_info->rx_status.bw = value;
  867. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  868. HE_SIG_A_MU_DL_INFO_0, CP_LTF_SIZE);
  869. switch (value) {
  870. case 0:
  871. he_gi = HE_GI_0_8;
  872. he_ltf = HE_LTF_4_X;
  873. break;
  874. case 1:
  875. he_gi = HE_GI_0_8;
  876. he_ltf = HE_LTF_2_X;
  877. break;
  878. case 2:
  879. he_gi = HE_GI_1_6;
  880. he_ltf = HE_LTF_2_X;
  881. break;
  882. case 3:
  883. he_gi = HE_GI_3_2;
  884. he_ltf = HE_LTF_4_X;
  885. break;
  886. }
  887. ppdu_info->rx_status.sgi = he_gi;
  888. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  889. ppdu_info->rx_status.he_data5 |= value;
  890. value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
  891. ppdu_info->rx_status.he_data5 |= value;
  892. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  893. HE_SIG_A_MU_DL_INFO_1, NUM_LTF_SYMBOLS);
  894. value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
  895. ppdu_info->rx_status.he_data5 |= value;
  896. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  897. PACKET_EXTENSION_A_FACTOR);
  898. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  899. ppdu_info->rx_status.he_data5 |= value;
  900. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  901. PACKET_EXTENSION_PE_DISAMBIGUITY);
  902. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  903. ppdu_info->rx_status.he_data5 |= value;
  904. /*data6*/
  905. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
  906. DOPPLER_INDICATION);
  907. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  908. ppdu_info->rx_status.he_data6 |= value;
  909. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  910. TXOP_DURATION);
  911. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  912. ppdu_info->rx_status.he_data6 |= value;
  913. /* HE-MU Flags */
  914. /* HE-MU-flags1 */
  915. ppdu_info->rx_status.he_flags1 =
  916. QDF_MON_STATUS_SIG_B_MCS_KNOWN |
  917. QDF_MON_STATUS_SIG_B_DCM_KNOWN |
  918. QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_1_KNOWN |
  919. QDF_MON_STATUS_SIG_B_SYM_NUM_KNOWN |
  920. QDF_MON_STATUS_RU_0_KNOWN;
  921. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  922. HE_SIG_A_MU_DL_INFO_0, MCS_OF_SIG_B);
  923. ppdu_info->rx_status.he_flags1 |= value;
  924. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  925. HE_SIG_A_MU_DL_INFO_0, DCM_OF_SIG_B);
  926. value = value << QDF_MON_STATUS_DCM_FLAG_1_SHIFT;
  927. ppdu_info->rx_status.he_flags1 |= value;
  928. /* HE-MU-flags2 */
  929. ppdu_info->rx_status.he_flags2 =
  930. QDF_MON_STATUS_BW_KNOWN;
  931. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  932. HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
  933. ppdu_info->rx_status.he_flags2 |= value;
  934. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  935. HE_SIG_A_MU_DL_INFO_0, COMP_MODE_SIG_B);
  936. value = value << QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_2_SHIFT;
  937. ppdu_info->rx_status.he_flags2 |= value;
  938. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  939. HE_SIG_A_MU_DL_INFO_0, NUM_SIG_B_SYMBOLS);
  940. value = value - 1;
  941. value = value << QDF_MON_STATUS_NUM_SIG_B_SYMBOLS_SHIFT;
  942. ppdu_info->rx_status.he_flags2 |= value;
  943. break;
  944. }
  945. case WIFIPHYRX_HE_SIG_B1_MU_E:
  946. {
  947. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  948. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  949. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS);
  950. ppdu_info->rx_status.he_sig_b_common_known |=
  951. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  952. /* TODO: Check on the availability of other fields in
  953. * sig_b_common
  954. */
  955. value = HAL_RX_GET(he_sig_b1_mu_info,
  956. HE_SIG_B1_MU_INFO_0, RU_ALLOCATION);
  957. ppdu_info->rx_status.he_RU[0] = value;
  958. break;
  959. }
  960. case WIFIPHYRX_HE_SIG_B2_MU_E:
  961. {
  962. uint8_t *he_sig_b2_mu_info = (uint8_t *)rx_tlv +
  963. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  964. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS);
  965. /*
  966. * Not all "HE" fields can be updated from
  967. * WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
  968. * to populate rest of the "HE" fields for MU scenarios.
  969. */
  970. /* HE-data1 */
  971. ppdu_info->rx_status.he_data1 |=
  972. QDF_MON_STATUS_HE_MCS_KNOWN |
  973. QDF_MON_STATUS_HE_CODING_KNOWN;
  974. /* HE-data2 */
  975. /* HE-data3 */
  976. value = HAL_RX_GET(he_sig_b2_mu_info,
  977. HE_SIG_B2_MU_INFO_0, STA_MCS);
  978. ppdu_info->rx_status.mcs = value;
  979. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  980. ppdu_info->rx_status.he_data3 |= value;
  981. value = HAL_RX_GET(he_sig_b2_mu_info,
  982. HE_SIG_B2_MU_INFO_0, STA_CODING);
  983. value = value << QDF_MON_STATUS_CODING_SHIFT;
  984. ppdu_info->rx_status.he_data3 |= value;
  985. /* HE-data4 */
  986. value = HAL_RX_GET(he_sig_b2_mu_info,
  987. HE_SIG_B2_MU_INFO_0, STA_ID);
  988. value = value << QDF_MON_STATUS_STA_ID_SHIFT;
  989. ppdu_info->rx_status.he_data4 |= value;
  990. /* HE-data5 */
  991. /* HE-data6 */
  992. value = HAL_RX_GET(he_sig_b2_mu_info,
  993. HE_SIG_B2_MU_INFO_0, NSTS);
  994. /* value n indicates n+1 spatial streams */
  995. value++;
  996. ppdu_info->rx_status.nss = value;
  997. ppdu_info->rx_status.he_data6 |= value;
  998. break;
  999. }
  1000. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  1001. {
  1002. uint8_t *he_sig_b2_ofdma_info =
  1003. (uint8_t *)rx_tlv +
  1004. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  1005. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS);
  1006. /*
  1007. * Not all "HE" fields can be updated from
  1008. * WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
  1009. * to populate rest of "HE" fields for MU OFDMA scenarios.
  1010. */
  1011. /* HE-data1 */
  1012. ppdu_info->rx_status.he_data1 |=
  1013. QDF_MON_STATUS_HE_MCS_KNOWN |
  1014. QDF_MON_STATUS_HE_DCM_KNOWN |
  1015. QDF_MON_STATUS_HE_CODING_KNOWN;
  1016. /* HE-data2 */
  1017. ppdu_info->rx_status.he_data2 |=
  1018. QDF_MON_STATUS_TXBF_KNOWN;
  1019. /* HE-data3 */
  1020. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1021. HE_SIG_B2_OFDMA_INFO_0, STA_MCS);
  1022. ppdu_info->rx_status.mcs = value;
  1023. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  1024. ppdu_info->rx_status.he_data3 |= value;
  1025. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1026. HE_SIG_B2_OFDMA_INFO_0, STA_DCM);
  1027. he_dcm = value;
  1028. value = value << QDF_MON_STATUS_DCM_SHIFT;
  1029. ppdu_info->rx_status.he_data3 |= value;
  1030. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1031. HE_SIG_B2_OFDMA_INFO_0, STA_CODING);
  1032. value = value << QDF_MON_STATUS_CODING_SHIFT;
  1033. ppdu_info->rx_status.he_data3 |= value;
  1034. /* HE-data4 */
  1035. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1036. HE_SIG_B2_OFDMA_INFO_0, STA_ID);
  1037. value = value << QDF_MON_STATUS_STA_ID_SHIFT;
  1038. ppdu_info->rx_status.he_data4 |= value;
  1039. /* HE-data5 */
  1040. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1041. HE_SIG_B2_OFDMA_INFO_0, TXBF);
  1042. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  1043. ppdu_info->rx_status.he_data5 |= value;
  1044. /* HE-data6 */
  1045. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1046. HE_SIG_B2_OFDMA_INFO_0, NSTS);
  1047. /* value n indicates n+1 spatial streams */
  1048. value++;
  1049. ppdu_info->rx_status.nss = value;
  1050. ppdu_info->rx_status.he_data6 |= value;
  1051. break;
  1052. }
  1053. case WIFIPHYRX_RSSI_LEGACY_E:
  1054. {
  1055. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  1056. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  1057. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  1058. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  1059. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  1060. ppdu_info->rx_status.bw = hal->ops->hal_rx_get_tlv(rx_tlv);
  1061. ppdu_info->rx_status.he_re = 0;
  1062. ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
  1063. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  1064. value = HAL_RX_GET(rssi_info_tlv,
  1065. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  1066. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1067. "RSSI_PRI20_CHAIN0: %d", value);
  1068. value = HAL_RX_GET(rssi_info_tlv,
  1069. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  1070. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1071. "RSSI_EXT20_CHAIN0: %d", value);
  1072. value = HAL_RX_GET(rssi_info_tlv,
  1073. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  1074. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1075. "RSSI_EXT40_LOW20_CHAIN0: %d", value);
  1076. value = HAL_RX_GET(rssi_info_tlv,
  1077. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  1078. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1079. "RSSI_EXT40_HIGH20_CHAIN0: %d", value);
  1080. value = HAL_RX_GET(rssi_info_tlv,
  1081. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  1082. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1083. "RSSI_EXT80_LOW20_CHAIN0: %d", value);
  1084. value = HAL_RX_GET(rssi_info_tlv,
  1085. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  1086. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1087. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d", value);
  1088. value = HAL_RX_GET(rssi_info_tlv,
  1089. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  1090. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1091. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d", value);
  1092. value = HAL_RX_GET(rssi_info_tlv,
  1093. RECEIVE_RSSI_INFO_1,
  1094. RSSI_EXT80_HIGH20_CHAIN0);
  1095. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1096. "RSSI_EXT80_HIGH20_CHAIN0: %d", value);
  1097. break;
  1098. }
  1099. case WIFIPHYRX_OTHER_RECEIVE_INFO_E:
  1100. hal_rx_proc_phyrx_other_receive_info_tlv(hal, rx_tlv_hdr,
  1101. ppdu_info);
  1102. break;
  1103. case WIFIRX_HEADER_E:
  1104. ppdu_info->msdu_info.first_msdu_payload = rx_tlv;
  1105. ppdu_info->msdu_info.payload_len = tlv_len;
  1106. break;
  1107. case WIFIRX_MPDU_START_E:
  1108. {
  1109. uint8_t *rx_mpdu_start =
  1110. (uint8_t *)rx_tlv + HAL_RX_OFFSET(RX_MPDU_START_0,
  1111. RX_MPDU_INFO_RX_MPDU_INFO_DETAILS);
  1112. uint32_t ppdu_id = HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_0,
  1113. PHY_PPDU_ID);
  1114. ppdu_info->nac_info.fc_valid =
  1115. HAL_RX_GET(rx_mpdu_start,
  1116. RX_MPDU_INFO_2,
  1117. MPDU_FRAME_CONTROL_VALID);
  1118. ppdu_info->nac_info.to_ds_flag =
  1119. HAL_RX_GET(rx_mpdu_start,
  1120. RX_MPDU_INFO_2,
  1121. TO_DS);
  1122. ppdu_info->nac_info.mac_addr2_valid =
  1123. HAL_RX_GET(rx_mpdu_start,
  1124. RX_MPDU_INFO_2,
  1125. MAC_ADDR_AD2_VALID);
  1126. *(uint16_t *)&ppdu_info->nac_info.mac_addr2[0] =
  1127. HAL_RX_GET(rx_mpdu_start,
  1128. RX_MPDU_INFO_16,
  1129. MAC_ADDR_AD2_15_0);
  1130. *(uint32_t *)&ppdu_info->nac_info.mac_addr2[2] =
  1131. HAL_RX_GET(rx_mpdu_start,
  1132. RX_MPDU_INFO_17,
  1133. MAC_ADDR_AD2_47_16);
  1134. if (ppdu_info->rx_status.prev_ppdu_id != ppdu_id) {
  1135. ppdu_info->rx_status.prev_ppdu_id = ppdu_id;
  1136. ppdu_info->rx_status.ppdu_len =
  1137. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  1138. MPDU_LENGTH);
  1139. } else {
  1140. ppdu_info->rx_status.ppdu_len +=
  1141. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  1142. MPDU_LENGTH);
  1143. }
  1144. break;
  1145. }
  1146. case 0:
  1147. return HAL_TLV_STATUS_PPDU_DONE;
  1148. default:
  1149. unhandled = true;
  1150. break;
  1151. }
  1152. if (!unhandled)
  1153. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1154. "%s TLV type: %d, TLV len:%d %s",
  1155. __func__, tlv_tag, tlv_len,
  1156. unhandled == true ? "unhandled" : "");
  1157. qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, rx_tlv, tlv_len);
  1158. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  1159. }
  1160. static inline
  1161. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  1162. {
  1163. return HAL_RX_TLV32_HDR_SIZE;
  1164. }
  1165. static inline QDF_STATUS
  1166. hal_get_rx_status_done(uint8_t *rx_tlv)
  1167. {
  1168. uint32_t tlv_tag;
  1169. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  1170. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  1171. return QDF_STATUS_SUCCESS;
  1172. else
  1173. return QDF_STATUS_E_EMPTY;
  1174. }
  1175. static inline QDF_STATUS
  1176. hal_clear_rx_status_done(uint8_t *rx_tlv)
  1177. {
  1178. *(uint32_t *)rx_tlv = 0;
  1179. return QDF_STATUS_SUCCESS;
  1180. }
  1181. #endif