lpass-cdc-rx-macro.c 156 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/io.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/clk.h>
  10. #include <linux/pm_runtime.h>
  11. #include <sound/soc.h>
  12. #include <sound/pcm.h>
  13. #include <sound/pcm_params.h>
  14. #include <sound/soc-dapm.h>
  15. #include <sound/tlv.h>
  16. #include <soc/swr-common.h>
  17. #include <soc/swr-wcd.h>
  18. #include <asoc/msm-cdc-pinctrl.h>
  19. #include "lpass-cdc.h"
  20. #include "lpass-cdc-comp.h"
  21. #include "lpass-cdc-registers.h"
  22. #include "lpass-cdc-clk-rsc.h"
  23. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  24. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  25. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  27. SNDRV_PCM_RATE_384000)
  28. /* Fractional Rates */
  29. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  30. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  31. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  32. SNDRV_PCM_FMTBIT_S24_LE |\
  33. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  34. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  35. SNDRV_PCM_RATE_48000)
  36. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  37. SNDRV_PCM_FMTBIT_S24_LE |\
  38. SNDRV_PCM_FMTBIT_S24_3LE)
  39. #define SAMPLING_RATE_44P1KHZ 44100
  40. #define SAMPLING_RATE_88P2KHZ 88200
  41. #define SAMPLING_RATE_176P4KHZ 176400
  42. #define SAMPLING_RATE_352P8KHZ 352800
  43. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  44. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  45. #define RX_SWR_STRING_LEN 80
  46. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  47. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  48. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  49. #ifdef CONFIG_BOLERO_VER_2P6
  50. #define LPASS_CDC_RX_MACRO_FIR_COEFF_MAX 100
  51. #define LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX \
  52. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX + 1)
  53. /* first value represent number of coefficients in each 100 integer group */
  54. #define LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES \
  55. (sizeof(u32) * LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX)
  56. #endif
  57. #define STRING(name) #name
  58. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  59. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  60. static const struct snd_kcontrol_new name##_mux = \
  61. SOC_DAPM_ENUM(STRING(name), name##_enum)
  62. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  63. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  64. static const struct snd_kcontrol_new name##_mux = \
  65. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  66. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  67. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  68. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  69. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  70. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  71. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  72. #define MAX_IMPED_PARAMS 6
  73. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  74. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  75. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  76. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  77. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  78. /* Define macros to increase PA Gain by half */
  79. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  80. #define COMP_MAX_COEFF 25
  81. struct wcd_imped_val {
  82. u32 imped_val;
  83. u8 index;
  84. };
  85. static const struct wcd_imped_val imped_index[] = {
  86. {4, 0},
  87. {5, 1},
  88. {6, 2},
  89. {7, 3},
  90. {8, 4},
  91. {9, 5},
  92. {10, 6},
  93. {11, 7},
  94. {12, 8},
  95. {13, 9},
  96. };
  97. enum {
  98. HPH_ULP,
  99. HPH_LOHIFI,
  100. HPH_MODE_MAX,
  101. };
  102. static struct comp_coeff_val
  103. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  104. {
  105. {0x40, 0x00},
  106. {0x4C, 0x00},
  107. {0x5A, 0x00},
  108. {0x6B, 0x00},
  109. {0x7F, 0x00},
  110. {0x97, 0x00},
  111. {0xB3, 0x00},
  112. {0xD5, 0x00},
  113. {0xFD, 0x00},
  114. {0x2D, 0x01},
  115. {0x66, 0x01},
  116. {0xA7, 0x01},
  117. {0xF8, 0x01},
  118. {0x57, 0x02},
  119. {0xC7, 0x02},
  120. {0x4B, 0x03},
  121. {0xE9, 0x03},
  122. {0xA3, 0x04},
  123. {0x7D, 0x05},
  124. {0x90, 0x06},
  125. {0xD1, 0x07},
  126. {0x49, 0x09},
  127. {0x00, 0x0B},
  128. {0x01, 0x0D},
  129. {0x59, 0x0F},
  130. },
  131. {
  132. {0x40, 0x00},
  133. {0x4C, 0x00},
  134. {0x5A, 0x00},
  135. {0x6B, 0x00},
  136. {0x80, 0x00},
  137. {0x98, 0x00},
  138. {0xB4, 0x00},
  139. {0xD5, 0x00},
  140. {0xFE, 0x00},
  141. {0x2E, 0x01},
  142. {0x66, 0x01},
  143. {0xA9, 0x01},
  144. {0xF8, 0x01},
  145. {0x56, 0x02},
  146. {0xC4, 0x02},
  147. {0x4F, 0x03},
  148. {0xF0, 0x03},
  149. {0xAE, 0x04},
  150. {0x8B, 0x05},
  151. {0x8E, 0x06},
  152. {0xBC, 0x07},
  153. {0x56, 0x09},
  154. {0x0F, 0x0B},
  155. {0x13, 0x0D},
  156. {0x6F, 0x0F},
  157. },
  158. };
  159. enum {
  160. RX_MODE_ULP,
  161. RX_MODE_LOHIFI,
  162. RX_MODE_EAR,
  163. RX_MODE_MAX
  164. };
  165. #ifdef CONFIG_BOLERO_VER_2P6
  166. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  167. {
  168. {12, -60, 12},
  169. {0, -60, 12},
  170. {12, -36, 12},
  171. };
  172. #endif
  173. struct lpass_cdc_rx_macro_reg_mask_val {
  174. u16 reg;
  175. u8 mask;
  176. u8 val;
  177. };
  178. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  179. {
  180. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  181. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  182. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  183. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  184. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  185. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  186. },
  187. {
  188. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  189. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  190. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  191. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  192. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  193. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  194. },
  195. {
  196. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  197. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  198. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  199. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  200. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  201. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  202. },
  203. {
  204. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  205. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  206. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  207. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  208. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  209. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  210. },
  211. {
  212. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  213. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  214. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  215. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  216. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  217. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  218. },
  219. {
  220. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  221. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  222. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  223. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  224. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  225. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  226. },
  227. {
  228. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  229. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  230. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  231. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  232. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  233. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  234. },
  235. {
  236. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  237. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  238. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  239. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  240. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  241. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  242. },
  243. {
  244. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  245. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  246. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  247. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  248. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  249. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  250. },
  251. };
  252. enum {
  253. INTERP_HPHL,
  254. INTERP_HPHR,
  255. INTERP_AUX,
  256. INTERP_MAX
  257. };
  258. enum {
  259. LPASS_CDC_RX_MACRO_RX0,
  260. LPASS_CDC_RX_MACRO_RX1,
  261. LPASS_CDC_RX_MACRO_RX2,
  262. LPASS_CDC_RX_MACRO_RX3,
  263. LPASS_CDC_RX_MACRO_RX4,
  264. LPASS_CDC_RX_MACRO_RX5,
  265. LPASS_CDC_RX_MACRO_PORTS_MAX
  266. };
  267. enum {
  268. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  269. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  270. LPASS_CDC_RX_MACRO_COMP_MAX
  271. };
  272. enum {
  273. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  274. LPASS_CDC_RX_MACRO_EC1_MUX,
  275. LPASS_CDC_RX_MACRO_EC2_MUX,
  276. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  277. };
  278. enum {
  279. INTn_1_INP_SEL_ZERO = 0,
  280. INTn_1_INP_SEL_DEC0,
  281. INTn_1_INP_SEL_DEC1,
  282. INTn_1_INP_SEL_IIR0,
  283. INTn_1_INP_SEL_IIR1,
  284. INTn_1_INP_SEL_RX0,
  285. INTn_1_INP_SEL_RX1,
  286. INTn_1_INP_SEL_RX2,
  287. INTn_1_INP_SEL_RX3,
  288. INTn_1_INP_SEL_RX4,
  289. INTn_1_INP_SEL_RX5,
  290. };
  291. enum {
  292. INTn_2_INP_SEL_ZERO = 0,
  293. INTn_2_INP_SEL_RX0,
  294. INTn_2_INP_SEL_RX1,
  295. INTn_2_INP_SEL_RX2,
  296. INTn_2_INP_SEL_RX3,
  297. INTn_2_INP_SEL_RX4,
  298. INTn_2_INP_SEL_RX5,
  299. };
  300. enum {
  301. INTERP_MAIN_PATH,
  302. INTERP_MIX_PATH,
  303. };
  304. /* Codec supports 2 IIR filters */
  305. enum {
  306. IIR0 = 0,
  307. IIR1,
  308. IIR_MAX,
  309. };
  310. /* Each IIR has 5 Filter Stages */
  311. enum {
  312. BAND1 = 0,
  313. BAND2,
  314. BAND3,
  315. BAND4,
  316. BAND5,
  317. BAND_MAX,
  318. };
  319. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  320. struct lpass_cdc_rx_macro_iir_filter_ctl {
  321. unsigned int iir_idx;
  322. unsigned int band_idx;
  323. struct soc_bytes_ext bytes_ext;
  324. };
  325. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  326. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  327. .info = lpass_cdc_rx_macro_iir_filter_info, \
  328. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  329. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  330. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  331. .iir_idx = iidx, \
  332. .band_idx = bidx, \
  333. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  334. } \
  335. }
  336. #ifdef CONFIG_BOLERO_VER_2P6
  337. /* Codec supports 2 FIR filters Path */
  338. enum {
  339. RX0_PATH = 0,
  340. RX1_PATH,
  341. FIR_PATH_MAX,
  342. };
  343. /* Each RX Path has 2 group of coefficients */
  344. enum {
  345. GRP0 = 0,
  346. GRP1,
  347. GRP_MAX,
  348. };
  349. struct lpass_cdc_rx_macro_fir_filter_ctl {
  350. unsigned int path_idx;
  351. unsigned int grp_idx;
  352. struct soc_bytes_ext bytes_ext;
  353. };
  354. #define LPASS_CDC_RX_MACRO_FIR_FILTER_CTL(xname, pidx, gidx) \
  355. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  356. .info = lpass_cdc_rx_macro_fir_filter_info, \
  357. .get = lpass_cdc_rx_macro_fir_audio_mixer_get, \
  358. .put = lpass_cdc_rx_macro_fir_audio_mixer_put, \
  359. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_fir_filter_ctl) { \
  360. .path_idx = pidx, \
  361. .grp_idx = gidx, \
  362. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES, }, \
  363. } \
  364. }
  365. #endif
  366. struct lpass_cdc_rx_macro_idle_detect_config {
  367. u8 hph_idle_thr;
  368. u8 hph_idle_detect_en;
  369. };
  370. struct interp_sample_rate {
  371. int sample_rate;
  372. int rate_val;
  373. };
  374. static struct interp_sample_rate sr_val_tbl[] = {
  375. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  376. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  377. {176400, 0xB}, {352800, 0xC},
  378. };
  379. struct lpass_cdc_rx_macro_bcl_pmic_params {
  380. u8 id;
  381. u8 sid;
  382. u8 ppid;
  383. };
  384. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable);
  385. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  386. struct snd_pcm_hw_params *params,
  387. struct snd_soc_dai *dai);
  388. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  389. unsigned int *tx_num, unsigned int *tx_slot,
  390. unsigned int *rx_num, unsigned int *rx_slot);
  391. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  392. struct snd_ctl_elem_value *ucontrol);
  393. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  394. struct snd_ctl_elem_value *ucontrol);
  395. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  396. struct snd_ctl_elem_value *ucontrol);
  397. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  398. int event, int interp_idx);
  399. /* Hold instance to soundwire platform device */
  400. struct rx_swr_ctrl_data {
  401. struct platform_device *rx_swr_pdev;
  402. };
  403. struct rx_swr_ctrl_platform_data {
  404. void *handle; /* holds codec private data */
  405. int (*read)(void *handle, int reg);
  406. int (*write)(void *handle, int reg, int val);
  407. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  408. int (*clk)(void *handle, bool enable);
  409. int (*core_vote)(void *handle, bool enable);
  410. int (*handle_irq)(void *handle,
  411. irqreturn_t (*swrm_irq_handler)(int irq,
  412. void *data),
  413. void *swrm_handle,
  414. int action);
  415. };
  416. enum {
  417. RX_MACRO_AIF_INVALID = 0,
  418. RX_MACRO_AIF1_PB,
  419. RX_MACRO_AIF2_PB,
  420. RX_MACRO_AIF3_PB,
  421. RX_MACRO_AIF4_PB,
  422. RX_MACRO_AIF_ECHO,
  423. RX_MACRO_AIF5_PB,
  424. RX_MACRO_AIF6_PB,
  425. LPASS_CDC_RX_MACRO_MAX_DAIS,
  426. };
  427. enum {
  428. RX_MACRO_AIF1_CAP = 0,
  429. RX_MACRO_AIF2_CAP,
  430. RX_MACRO_AIF3_CAP,
  431. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  432. };
  433. /*
  434. * @dev: rx macro device pointer
  435. * @comp_enabled: compander enable mixer value set
  436. * @prim_int_users: Users of interpolator
  437. * @rx_mclk_users: RX MCLK users count
  438. * @vi_feed_value: VI sense mask
  439. * @swr_clk_lock: to lock swr master clock operations
  440. * @swr_ctrl_data: SoundWire data structure
  441. * @swr_plat_data: Soundwire platform data
  442. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  443. * @rx_swr_gpio_p: used by pinctrl API
  444. * @component: codec handle
  445. */
  446. struct lpass_cdc_rx_macro_priv {
  447. struct device *dev;
  448. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  449. u8 is_pcm_enabled;
  450. /* Main path clock users count */
  451. int main_clk_users[INTERP_MAX];
  452. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  453. u16 prim_int_users[INTERP_MAX];
  454. int rx_mclk_users;
  455. int swr_clk_users;
  456. bool dapm_mclk_enable;
  457. bool reset_swr;
  458. int clsh_users;
  459. int rx_mclk_cnt;
  460. #ifdef CONFIG_BOLERO_VER_2P6
  461. u8 fir_total_coeff_num[FIR_PATH_MAX];
  462. bool is_fir_coeff_written[FIR_PATH_MAX][GRP_MAX];
  463. u32 fir_coeff_array[FIR_PATH_MAX][GRP_MAX]
  464. [LPASS_CDC_RX_MACRO_FIR_COEFF_MAX];
  465. u32 num_fir_coeff[FIR_PATH_MAX][GRP_MAX];
  466. #endif
  467. bool is_native_on;
  468. bool is_ear_mode_on;
  469. bool is_fir_filter_on;
  470. bool is_fir_capable;
  471. bool dev_up;
  472. bool pre_dev_up;
  473. bool hph_pwr_mode;
  474. bool hph_hd2_mode;
  475. struct mutex mclk_lock;
  476. struct mutex swr_clk_lock;
  477. struct rx_swr_ctrl_data *swr_ctrl_data;
  478. struct rx_swr_ctrl_platform_data swr_plat_data;
  479. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  480. struct device_node *rx_swr_gpio_p;
  481. struct snd_soc_component *component;
  482. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  483. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  484. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  485. char __iomem *rx_io_base;
  486. char __iomem *rx_mclk_mode_muxsel;
  487. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  488. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  489. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  490. /* NOT designed to always reflect the actual hardware value */
  491. struct platform_device *pdev_child_devices
  492. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  493. int child_count;
  494. int is_softclip_on;
  495. int is_aux_hpf_on;
  496. int softclip_clk_users;
  497. struct lpass_cdc_rx_macro_bcl_pmic_params bcl_pmic_params;
  498. u16 clk_id;
  499. u16 default_clk_id;
  500. struct clk *hifi_fir_clk;
  501. int8_t rx0_gain_val;
  502. int8_t rx1_gain_val;
  503. int pcm_select_users;
  504. };
  505. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  506. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  507. static const char * const rx_int_mix_mux_text[] = {
  508. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  509. };
  510. static const char * const rx_prim_mix_text[] = {
  511. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  512. "RX3", "RX4", "RX5"
  513. };
  514. static const char * const rx_sidetone_mix_text[] = {
  515. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  516. };
  517. static const char * const iir_inp_mux_text[] = {
  518. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  519. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  520. };
  521. static const char * const rx_int_dem_inp_mux_text[] = {
  522. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  523. };
  524. static const char * const rx_int0_1_interp_mux_text[] = {
  525. "ZERO", "RX INT0_1 MIX1",
  526. };
  527. static const char * const rx_int1_1_interp_mux_text[] = {
  528. "ZERO", "RX INT1_1 MIX1",
  529. };
  530. static const char * const rx_int2_1_interp_mux_text[] = {
  531. "ZERO", "RX INT2_1 MIX1",
  532. };
  533. static const char * const rx_int0_2_interp_mux_text[] = {
  534. "ZERO", "RX INT0_2 MUX",
  535. };
  536. static const char * const rx_int1_2_interp_mux_text[] = {
  537. "ZERO", "RX INT1_2 MUX",
  538. };
  539. static const char * const rx_int2_2_interp_mux_text[] = {
  540. "ZERO", "RX INT2_2 MUX",
  541. };
  542. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  543. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  544. };
  545. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  546. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  547. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  548. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  549. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  550. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  551. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  552. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  553. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  554. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  555. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  556. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  557. #ifdef CONFIG_BOLERO_VER_2P6
  558. static const char *const lpass_cdc_rx_macro_fir_filter_text[] = {"OFF", "ON"};
  559. static const struct soc_enum lpass_cdc_rx_macro_fir_filter_enum =
  560. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_fir_filter_text);
  561. #endif
  562. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  563. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  564. };
  565. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  566. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  567. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  568. rx_int_mix_mux_text);
  569. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  570. rx_int_mix_mux_text);
  571. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  572. rx_int_mix_mux_text);
  573. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  574. rx_prim_mix_text);
  575. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  576. rx_prim_mix_text);
  577. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  578. rx_prim_mix_text);
  579. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  580. rx_prim_mix_text);
  581. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  582. rx_prim_mix_text);
  583. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  584. rx_prim_mix_text);
  585. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  586. rx_prim_mix_text);
  587. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  588. rx_prim_mix_text);
  589. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  590. rx_prim_mix_text);
  591. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  592. rx_sidetone_mix_text);
  593. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  594. rx_sidetone_mix_text);
  595. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  596. rx_sidetone_mix_text);
  597. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  598. iir_inp_mux_text);
  599. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  600. iir_inp_mux_text);
  601. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  602. iir_inp_mux_text);
  603. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  604. iir_inp_mux_text);
  605. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  606. iir_inp_mux_text);
  607. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  608. iir_inp_mux_text);
  609. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  610. iir_inp_mux_text);
  611. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  612. iir_inp_mux_text);
  613. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  614. rx_int0_1_interp_mux_text);
  615. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  616. rx_int1_1_interp_mux_text);
  617. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  618. rx_int2_1_interp_mux_text);
  619. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  620. rx_int0_2_interp_mux_text);
  621. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  622. rx_int1_2_interp_mux_text);
  623. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  624. rx_int2_2_interp_mux_text);
  625. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  626. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  627. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  628. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  629. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  630. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  631. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  632. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  633. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  634. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  635. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  636. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  637. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  638. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  639. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  640. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  641. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  642. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  643. static const char * const rx_echo_mux_text[] = {
  644. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  645. };
  646. static const struct soc_enum rx_mix_tx2_mux_enum =
  647. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  648. rx_echo_mux_text);
  649. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  650. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  651. static const struct soc_enum rx_mix_tx1_mux_enum =
  652. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  653. rx_echo_mux_text);
  654. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  655. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  656. static const struct soc_enum rx_mix_tx0_mux_enum =
  657. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  658. rx_echo_mux_text);
  659. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  660. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  661. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  662. .hw_params = lpass_cdc_rx_macro_hw_params,
  663. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  664. };
  665. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  666. {
  667. .name = "rx_macro_rx1",
  668. .id = RX_MACRO_AIF1_PB,
  669. .playback = {
  670. .stream_name = "RX_MACRO_AIF1 Playback",
  671. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  672. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  673. .rate_max = 384000,
  674. .rate_min = 8000,
  675. .channels_min = 1,
  676. .channels_max = 2,
  677. },
  678. .ops = &lpass_cdc_rx_macro_dai_ops,
  679. },
  680. {
  681. .name = "rx_macro_rx2",
  682. .id = RX_MACRO_AIF2_PB,
  683. .playback = {
  684. .stream_name = "RX_MACRO_AIF2 Playback",
  685. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  686. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  687. .rate_max = 384000,
  688. .rate_min = 8000,
  689. .channels_min = 1,
  690. .channels_max = 2,
  691. },
  692. .ops = &lpass_cdc_rx_macro_dai_ops,
  693. },
  694. {
  695. .name = "rx_macro_rx3",
  696. .id = RX_MACRO_AIF3_PB,
  697. .playback = {
  698. .stream_name = "RX_MACRO_AIF3 Playback",
  699. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  700. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  701. .rate_max = 384000,
  702. .rate_min = 8000,
  703. .channels_min = 1,
  704. .channels_max = 2,
  705. },
  706. .ops = &lpass_cdc_rx_macro_dai_ops,
  707. },
  708. {
  709. .name = "rx_macro_rx4",
  710. .id = RX_MACRO_AIF4_PB,
  711. .playback = {
  712. .stream_name = "RX_MACRO_AIF4 Playback",
  713. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  714. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  715. .rate_max = 384000,
  716. .rate_min = 8000,
  717. .channels_min = 1,
  718. .channels_max = 2,
  719. },
  720. .ops = &lpass_cdc_rx_macro_dai_ops,
  721. },
  722. {
  723. .name = "rx_macro_echo",
  724. .id = RX_MACRO_AIF_ECHO,
  725. .capture = {
  726. .stream_name = "RX_AIF_ECHO Capture",
  727. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  728. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  729. .rate_max = 48000,
  730. .rate_min = 8000,
  731. .channels_min = 1,
  732. .channels_max = 3,
  733. },
  734. .ops = &lpass_cdc_rx_macro_dai_ops,
  735. },
  736. {
  737. .name = "rx_macro_rx5",
  738. .id = RX_MACRO_AIF5_PB,
  739. .playback = {
  740. .stream_name = "RX_MACRO_AIF5 Playback",
  741. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  742. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  743. .rate_max = 384000,
  744. .rate_min = 8000,
  745. .channels_min = 1,
  746. .channels_max = 4,
  747. },
  748. .ops = &lpass_cdc_rx_macro_dai_ops,
  749. },
  750. {
  751. .name = "rx_macro_rx6",
  752. .id = RX_MACRO_AIF6_PB,
  753. .playback = {
  754. .stream_name = "RX_MACRO_AIF6 Playback",
  755. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  756. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  757. .rate_max = 384000,
  758. .rate_min = 8000,
  759. .channels_min = 1,
  760. .channels_max = 4,
  761. },
  762. .ops = &lpass_cdc_rx_macro_dai_ops,
  763. },
  764. };
  765. static int get_impedance_index(int imped)
  766. {
  767. int i = 0;
  768. if (imped < imped_index[i].imped_val) {
  769. pr_debug("%s, detected impedance is less than %d Ohm\n",
  770. __func__, imped_index[i].imped_val);
  771. i = 0;
  772. goto ret;
  773. }
  774. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  775. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  776. __func__,
  777. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  778. i = ARRAY_SIZE(imped_index) - 1;
  779. goto ret;
  780. }
  781. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  782. if (imped >= imped_index[i].imped_val &&
  783. imped < imped_index[i + 1].imped_val)
  784. break;
  785. }
  786. ret:
  787. pr_debug("%s: selected impedance index = %d\n",
  788. __func__, imped_index[i].index);
  789. return imped_index[i].index;
  790. }
  791. /*
  792. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  793. * This function updates HPHL and HPHR gain settings
  794. * according to the impedance value.
  795. *
  796. * @component: codec pointer handle
  797. * @imped: impedance value of HPHL/R
  798. * @reset: bool variable to reset registers when teardown
  799. */
  800. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  801. int imped, bool reset)
  802. {
  803. int i;
  804. int index = 0;
  805. int table_size;
  806. static const struct lpass_cdc_rx_macro_reg_mask_val
  807. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  808. table_size = ARRAY_SIZE(imped_table);
  809. imped_table_ptr = imped_table;
  810. /* reset = 1, which means request is to reset the register values */
  811. if (reset) {
  812. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  813. snd_soc_component_update_bits(component,
  814. imped_table_ptr[index][i].reg,
  815. imped_table_ptr[index][i].mask, 0);
  816. return;
  817. }
  818. index = get_impedance_index(imped);
  819. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  820. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  821. return;
  822. }
  823. if (index >= table_size) {
  824. pr_debug("%s, impedance index not in range = %d\n", __func__,
  825. index);
  826. return;
  827. }
  828. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  829. snd_soc_component_update_bits(component,
  830. imped_table_ptr[index][i].reg,
  831. imped_table_ptr[index][i].mask,
  832. imped_table_ptr[index][i].val);
  833. }
  834. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  835. struct device **rx_dev,
  836. struct lpass_cdc_rx_macro_priv **rx_priv,
  837. const char *func_name)
  838. {
  839. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  840. if (!(*rx_dev)) {
  841. dev_err_ratelimited(component->dev,
  842. "%s: null device for macro!\n", func_name);
  843. return false;
  844. }
  845. *rx_priv = dev_get_drvdata((*rx_dev));
  846. if (!(*rx_priv)) {
  847. dev_err_ratelimited(component->dev,
  848. "%s: priv is null for macro!\n", func_name);
  849. return false;
  850. }
  851. if (!(*rx_priv)->component) {
  852. dev_err_ratelimited(component->dev,
  853. "%s: rx_priv component is not initialized!\n", func_name);
  854. return false;
  855. }
  856. return true;
  857. }
  858. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  859. u32 usecase, u32 size, void *data)
  860. {
  861. struct device *rx_dev = NULL;
  862. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  863. struct swrm_port_config port_cfg;
  864. int ret = 0;
  865. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  866. return -EINVAL;
  867. memset(&port_cfg, 0, sizeof(port_cfg));
  868. port_cfg.uc = usecase;
  869. port_cfg.size = size;
  870. port_cfg.params = data;
  871. if (rx_priv->swr_ctrl_data)
  872. ret = swrm_wcd_notify(
  873. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  874. SWR_SET_PORT_MAP, &port_cfg);
  875. return ret;
  876. }
  877. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  878. struct snd_ctl_elem_value *ucontrol)
  879. {
  880. struct snd_soc_dapm_widget *widget =
  881. snd_soc_dapm_kcontrol_widget(kcontrol);
  882. struct snd_soc_component *component =
  883. snd_soc_dapm_to_component(widget->dapm);
  884. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  885. unsigned int val = 0;
  886. unsigned short look_ahead_dly_reg =
  887. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  888. val = ucontrol->value.enumerated.item[0];
  889. if (val >= e->items)
  890. return -EINVAL;
  891. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  892. widget->name, val);
  893. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  894. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  895. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  896. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  897. /* Set Look Ahead Delay */
  898. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  899. 0x08, (val ? 0x08 : 0x00));
  900. /* Set DEM INP Select */
  901. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  902. }
  903. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  904. u8 rate_reg_val,
  905. u32 sample_rate)
  906. {
  907. u8 int_1_mix1_inp = 0;
  908. u32 j = 0, port = 0;
  909. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  910. u16 int_fs_reg = 0;
  911. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  912. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  913. struct snd_soc_component *component = dai->component;
  914. struct device *rx_dev = NULL;
  915. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  916. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  917. return -EINVAL;
  918. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  919. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  920. int_1_mix1_inp = port;
  921. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  922. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  923. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  924. __func__, dai->id);
  925. return -EINVAL;
  926. }
  927. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  928. /*
  929. * Loop through all interpolator MUX inputs and find out
  930. * to which interpolator input, the rx port
  931. * is connected
  932. */
  933. for (j = 0; j < INTERP_MAX; j++) {
  934. int_mux_cfg1 = int_mux_cfg0 + 4;
  935. int_mux_cfg0_val = snd_soc_component_read(
  936. component, int_mux_cfg0);
  937. int_mux_cfg1_val = snd_soc_component_read(
  938. component, int_mux_cfg1);
  939. inp0_sel = int_mux_cfg0_val & 0x0F;
  940. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  941. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  942. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  943. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  944. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  945. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  946. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  947. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  948. __func__, dai->id, j);
  949. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  950. __func__, j, sample_rate);
  951. /* sample_rate is in Hz */
  952. snd_soc_component_update_bits(component,
  953. int_fs_reg,
  954. 0x0F, rate_reg_val);
  955. }
  956. int_mux_cfg0 += 8;
  957. }
  958. }
  959. return 0;
  960. }
  961. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  962. u8 rate_reg_val,
  963. u32 sample_rate)
  964. {
  965. u8 int_2_inp = 0;
  966. u32 j = 0, port = 0;
  967. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  968. u8 int_mux_cfg1_val = 0;
  969. struct snd_soc_component *component = dai->component;
  970. struct device *rx_dev = NULL;
  971. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  972. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  973. return -EINVAL;
  974. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  975. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  976. int_2_inp = port;
  977. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  978. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  979. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  980. __func__, dai->id);
  981. return -EINVAL;
  982. }
  983. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  984. for (j = 0; j < INTERP_MAX; j++) {
  985. int_mux_cfg1_val = snd_soc_component_read(
  986. component, int_mux_cfg1) &
  987. 0x0F;
  988. if (int_mux_cfg1_val == int_2_inp +
  989. INTn_2_INP_SEL_RX0) {
  990. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  991. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  992. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  993. __func__, dai->id, j);
  994. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  995. __func__, j, sample_rate);
  996. snd_soc_component_update_bits(
  997. component, int_fs_reg,
  998. 0x0F, rate_reg_val);
  999. }
  1000. int_mux_cfg1 += 8;
  1001. }
  1002. }
  1003. return 0;
  1004. }
  1005. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  1006. {
  1007. switch (sample_rate) {
  1008. case SAMPLING_RATE_44P1KHZ:
  1009. case SAMPLING_RATE_88P2KHZ:
  1010. case SAMPLING_RATE_176P4KHZ:
  1011. case SAMPLING_RATE_352P8KHZ:
  1012. return true;
  1013. default:
  1014. return false;
  1015. }
  1016. return false;
  1017. }
  1018. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  1019. u32 sample_rate)
  1020. {
  1021. struct snd_soc_component *component = dai->component;
  1022. int rate_val = 0;
  1023. int i = 0, ret = 0;
  1024. struct device *rx_dev = NULL;
  1025. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1026. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1027. return -EINVAL;
  1028. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  1029. if (sample_rate == sr_val_tbl[i].sample_rate) {
  1030. rate_val = sr_val_tbl[i].rate_val;
  1031. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  1032. rx_priv->is_native_on = true;
  1033. else
  1034. rx_priv->is_native_on = false;
  1035. break;
  1036. }
  1037. }
  1038. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  1039. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  1040. __func__, sample_rate);
  1041. return -EINVAL;
  1042. }
  1043. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1044. if (ret)
  1045. return ret;
  1046. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1047. if (ret)
  1048. return ret;
  1049. return ret;
  1050. }
  1051. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  1052. struct snd_pcm_hw_params *params,
  1053. struct snd_soc_dai *dai)
  1054. {
  1055. struct snd_soc_component *component = dai->component;
  1056. int ret = 0;
  1057. struct device *rx_dev = NULL;
  1058. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1059. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1060. return -EINVAL;
  1061. dev_dbg(component->dev,
  1062. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1063. dai->name, dai->id, params_rate(params),
  1064. params_channels(params));
  1065. switch (substream->stream) {
  1066. case SNDRV_PCM_STREAM_PLAYBACK:
  1067. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1068. if (ret) {
  1069. pr_err_ratelimited("%s: cannot set sample rate: %u\n",
  1070. __func__, params_rate(params));
  1071. return ret;
  1072. }
  1073. rx_priv->bit_width[dai->id] = params_width(params);
  1074. break;
  1075. case SNDRV_PCM_STREAM_CAPTURE:
  1076. default:
  1077. break;
  1078. }
  1079. return 0;
  1080. }
  1081. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1082. unsigned int *tx_num, unsigned int *tx_slot,
  1083. unsigned int *rx_num, unsigned int *rx_slot)
  1084. {
  1085. struct snd_soc_component *component = dai->component;
  1086. struct device *rx_dev = NULL;
  1087. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1088. unsigned int temp = 0, ch_mask = 0;
  1089. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1090. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1091. return -EINVAL;
  1092. switch (dai->id) {
  1093. case RX_MACRO_AIF1_PB:
  1094. case RX_MACRO_AIF2_PB:
  1095. case RX_MACRO_AIF3_PB:
  1096. case RX_MACRO_AIF4_PB:
  1097. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1098. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1099. ch_mask |= (1 << temp);
  1100. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1101. break;
  1102. }
  1103. /*
  1104. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1105. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1106. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1107. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1108. * AIFn can pair to any CDC_DMA_RX_n port.
  1109. * In general, below convention is used::
  1110. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1111. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1112. * Above is reflected in machine driver BE dailink
  1113. */
  1114. if (ch_mask & 0x0C)
  1115. ch_mask = ch_mask >> 2;
  1116. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1117. ch_mask = 0x1;
  1118. *rx_slot = ch_mask;
  1119. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1120. dev_dbg(rx_priv->dev,
  1121. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1122. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1123. break;
  1124. case RX_MACRO_AIF5_PB:
  1125. *rx_slot = 0x1;
  1126. *rx_num = 0x01;
  1127. dev_dbg(rx_priv->dev,
  1128. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1129. __func__, dai->id, *rx_slot, *rx_num);
  1130. break;
  1131. case RX_MACRO_AIF6_PB:
  1132. *rx_slot = 0x1;
  1133. *rx_num = 0x01;
  1134. dev_dbg(rx_priv->dev,
  1135. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1136. __func__, dai->id, *rx_slot, *rx_num);
  1137. break;
  1138. case RX_MACRO_AIF_ECHO:
  1139. val = snd_soc_component_read(component,
  1140. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1141. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1142. mask |= 0x1;
  1143. cnt++;
  1144. }
  1145. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1146. mask |= 0x2;
  1147. cnt++;
  1148. }
  1149. val = snd_soc_component_read(component,
  1150. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1151. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1152. mask |= 0x4;
  1153. cnt++;
  1154. }
  1155. *tx_slot = mask;
  1156. *tx_num = cnt;
  1157. break;
  1158. default:
  1159. dev_err_ratelimited(rx_dev, "%s: Invalid AIF\n", __func__);
  1160. break;
  1161. }
  1162. return 0;
  1163. }
  1164. static int lpass_cdc_rx_macro_mclk_enable(
  1165. struct lpass_cdc_rx_macro_priv *rx_priv,
  1166. bool mclk_enable, bool dapm)
  1167. {
  1168. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1169. int ret = 0;
  1170. if (regmap == NULL) {
  1171. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1172. return -EINVAL;
  1173. }
  1174. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1175. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1176. mutex_lock(&rx_priv->mclk_lock);
  1177. if (mclk_enable) {
  1178. if (rx_priv->rx_mclk_users == 0) {
  1179. if (rx_priv->is_native_on)
  1180. rx_priv->clk_id = RX_CORE_CLK;
  1181. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1182. if (ret < 0) {
  1183. dev_err_ratelimited(rx_priv->dev,
  1184. "%s: rx request core vote failed\n",
  1185. __func__);
  1186. goto exit;
  1187. }
  1188. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1189. rx_priv->default_clk_id,
  1190. rx_priv->clk_id,
  1191. true);
  1192. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1193. if (ret < 0) {
  1194. dev_err_ratelimited(rx_priv->dev,
  1195. "%s: rx request clock enable failed\n",
  1196. __func__);
  1197. goto exit;
  1198. }
  1199. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1200. true);
  1201. regcache_mark_dirty(regmap);
  1202. regcache_sync_region(regmap,
  1203. RX_START_OFFSET,
  1204. RX_MAX_OFFSET);
  1205. regmap_update_bits(regmap,
  1206. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1207. 0x01, 0x01);
  1208. regmap_update_bits(regmap,
  1209. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1210. 0x02, 0x02);
  1211. regmap_update_bits(regmap,
  1212. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1213. 0x02, 0x00);
  1214. regmap_update_bits(regmap,
  1215. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1216. 0x01, 0x01);
  1217. }
  1218. rx_priv->rx_mclk_users++;
  1219. } else {
  1220. if (rx_priv->rx_mclk_users <= 0) {
  1221. dev_err_ratelimited(rx_priv->dev, "%s: clock already disabled\n",
  1222. __func__);
  1223. rx_priv->rx_mclk_users = 0;
  1224. goto exit;
  1225. }
  1226. rx_priv->rx_mclk_users--;
  1227. if (rx_priv->rx_mclk_users == 0) {
  1228. regmap_update_bits(regmap,
  1229. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1230. 0x01, 0x00);
  1231. regmap_update_bits(regmap,
  1232. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1233. 0x02, 0x02);
  1234. regmap_update_bits(regmap,
  1235. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1236. 0x02, 0x00);
  1237. regmap_update_bits(regmap,
  1238. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1239. 0x01, 0x00);
  1240. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1241. false);
  1242. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1243. if (ret < 0) {
  1244. dev_err_ratelimited(rx_priv->dev,
  1245. "%s: rx request core vote failed\n",
  1246. __func__);
  1247. }
  1248. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1249. rx_priv->default_clk_id,
  1250. rx_priv->clk_id,
  1251. false);
  1252. if (!ret)
  1253. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1254. rx_priv->clk_id = rx_priv->default_clk_id;
  1255. }
  1256. }
  1257. exit:
  1258. mutex_unlock(&rx_priv->mclk_lock);
  1259. return ret;
  1260. }
  1261. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1262. struct snd_kcontrol *kcontrol, int event)
  1263. {
  1264. struct snd_soc_component *component =
  1265. snd_soc_dapm_to_component(w->dapm);
  1266. int ret = 0;
  1267. struct device *rx_dev = NULL;
  1268. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1269. int mclk_freq = MCLK_FREQ;
  1270. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1271. return -EINVAL;
  1272. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1273. switch (event) {
  1274. case SND_SOC_DAPM_PRE_PMU:
  1275. if (rx_priv->is_native_on)
  1276. mclk_freq = MCLK_FREQ_NATIVE;
  1277. if (rx_priv->swr_ctrl_data)
  1278. swrm_wcd_notify(
  1279. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1280. SWR_CLK_FREQ, &mclk_freq);
  1281. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1282. if (ret)
  1283. rx_priv->dapm_mclk_enable = false;
  1284. else
  1285. rx_priv->dapm_mclk_enable = true;
  1286. break;
  1287. case SND_SOC_DAPM_POST_PMD:
  1288. if (rx_priv->dapm_mclk_enable)
  1289. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1290. break;
  1291. default:
  1292. dev_err_ratelimited(rx_priv->dev,
  1293. "%s: invalid DAPM event %d\n", __func__, event);
  1294. ret = -EINVAL;
  1295. }
  1296. return ret;
  1297. }
  1298. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1299. u16 event, u32 data)
  1300. {
  1301. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1302. struct device *rx_dev = NULL;
  1303. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1304. int ret = 0;
  1305. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1306. return -EINVAL;
  1307. switch (event) {
  1308. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1309. rx_idx = data >> 0x10;
  1310. mute = data & 0xffff;
  1311. val = mute ? 0x10 : 0x00;
  1312. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1313. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1314. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1315. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1316. snd_soc_component_update_bits(component, reg,
  1317. 0x10, val);
  1318. snd_soc_component_update_bits(component, reg_mix,
  1319. 0x10, val);
  1320. break;
  1321. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1322. rx_idx = data >> 0x10;
  1323. if (rx_idx == INTERP_AUX)
  1324. goto done;
  1325. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1326. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1327. snd_soc_component_write(component, reg,
  1328. snd_soc_component_read(component, reg));
  1329. break;
  1330. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1331. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1332. break;
  1333. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1334. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1335. break;
  1336. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1337. rx_priv->pre_dev_up = false;
  1338. rx_priv->dev_up = false;
  1339. if (rx_priv->swr_ctrl_data) {
  1340. swrm_wcd_notify(
  1341. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1342. SWR_DEVICE_SSR_DOWN, NULL);
  1343. }
  1344. if ((!pm_runtime_enabled(rx_dev) ||
  1345. !pm_runtime_suspended(rx_dev))) {
  1346. ret = lpass_cdc_runtime_suspend(rx_dev);
  1347. if (!ret) {
  1348. pm_runtime_disable(rx_dev);
  1349. pm_runtime_set_suspended(rx_dev);
  1350. pm_runtime_enable(rx_dev);
  1351. }
  1352. }
  1353. break;
  1354. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1355. rx_priv->pre_dev_up = true;
  1356. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1357. if (ret < 0) {
  1358. dev_err_ratelimited(rx_priv->dev,
  1359. "%s: rx request core vote failed\n",
  1360. __func__);
  1361. break;
  1362. }
  1363. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1364. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1365. rx_priv->default_clk_id,
  1366. RX_CORE_CLK, true);
  1367. if (ret < 0)
  1368. dev_err_ratelimited(rx_priv->dev,
  1369. "%s, failed to enable clk, ret:%d\n",
  1370. __func__, ret);
  1371. else
  1372. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1373. rx_priv->default_clk_id,
  1374. RX_CORE_CLK, false);
  1375. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1376. break;
  1377. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1378. rx_priv->dev_up = true;
  1379. /* reset swr after ssr/pdr */
  1380. rx_priv->reset_swr = true;
  1381. if (rx_priv->swr_ctrl_data)
  1382. swrm_wcd_notify(
  1383. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1384. SWR_DEVICE_SSR_UP, NULL);
  1385. break;
  1386. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1387. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1388. lpass_cdc_rsc_clk_reset(rx_dev, RX_TX_CORE_CLK);
  1389. break;
  1390. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1391. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1392. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1393. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1394. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1395. if (data) {
  1396. /* Reduce gain by half only if its greater than -6DB */
  1397. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1398. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1399. snd_soc_component_update_bits(component,
  1400. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1401. (rx_priv->rx0_gain_val -
  1402. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1403. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1404. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1405. snd_soc_component_update_bits(component,
  1406. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1407. (rx_priv->rx1_gain_val -
  1408. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1409. }
  1410. else {
  1411. /* Reset gain value to default */
  1412. if ((rx_priv->rx0_gain_val >=
  1413. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1414. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1415. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1416. snd_soc_component_update_bits(component,
  1417. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1418. (rx_priv->rx0_gain_val +
  1419. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1420. if ((rx_priv->rx1_gain_val >=
  1421. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1422. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1423. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1424. snd_soc_component_update_bits(component,
  1425. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1426. (rx_priv->rx1_gain_val +
  1427. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1428. }
  1429. break;
  1430. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1431. /* Enable hd2 config for hphl*/
  1432. snd_soc_component_update_bits(component,
  1433. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1434. break;
  1435. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1436. /* Enable hd2 config for hphr*/
  1437. snd_soc_component_update_bits(component,
  1438. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1439. break;
  1440. }
  1441. done:
  1442. return ret;
  1443. }
  1444. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1445. struct lpass_cdc_rx_macro_priv *rx_priv)
  1446. {
  1447. int i = 0;
  1448. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1449. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1450. return i;
  1451. }
  1452. return -EINVAL;
  1453. }
  1454. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1455. struct lpass_cdc_rx_macro_priv *rx_priv,
  1456. int interp, int path_type)
  1457. {
  1458. int port_id[4] = { 0, 0, 0, 0 };
  1459. int *port_ptr = NULL;
  1460. int num_ports = 0;
  1461. int bit_width = 0, i = 0;
  1462. int mux_reg = 0, mux_reg_val = 0;
  1463. int dai_id = 0, idle_thr = 0;
  1464. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1465. return 0;
  1466. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1467. return 0;
  1468. port_ptr = &port_id[0];
  1469. num_ports = 0;
  1470. /*
  1471. * Read interpolator MUX input registers and find
  1472. * which cdc_dma port is connected and store the port
  1473. * numbers in port_id array.
  1474. */
  1475. if (path_type == INTERP_MIX_PATH) {
  1476. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1477. 2 * interp;
  1478. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1479. 0x0f;
  1480. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1481. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1482. *port_ptr++ = mux_reg_val - 1;
  1483. num_ports++;
  1484. }
  1485. }
  1486. if (path_type == INTERP_MAIN_PATH) {
  1487. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1488. 2 * (interp - 1);
  1489. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1490. 0x0f;
  1491. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1492. while (i) {
  1493. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1494. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1495. *port_ptr++ = mux_reg_val -
  1496. INTn_1_INP_SEL_RX0;
  1497. num_ports++;
  1498. }
  1499. mux_reg_val =
  1500. (snd_soc_component_read(component, mux_reg) &
  1501. 0xf0) >> 4;
  1502. mux_reg += 1;
  1503. i--;
  1504. }
  1505. }
  1506. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1507. __func__, num_ports, port_id[0], port_id[1],
  1508. port_id[2], port_id[3]);
  1509. i = 0;
  1510. while (num_ports) {
  1511. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1512. rx_priv);
  1513. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1514. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1515. __func__, dai_id,
  1516. rx_priv->bit_width[dai_id]);
  1517. if (rx_priv->bit_width[dai_id] > bit_width)
  1518. bit_width = rx_priv->bit_width[dai_id];
  1519. }
  1520. num_ports--;
  1521. }
  1522. switch (bit_width) {
  1523. case 16:
  1524. idle_thr = 0xff; /* F16 */
  1525. break;
  1526. case 24:
  1527. case 32:
  1528. idle_thr = 0x03; /* F22 */
  1529. break;
  1530. default:
  1531. idle_thr = 0x00;
  1532. break;
  1533. }
  1534. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1535. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1536. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1537. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1538. snd_soc_component_write(component,
  1539. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1540. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1541. }
  1542. return 0;
  1543. }
  1544. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1545. struct snd_kcontrol *kcontrol, int event)
  1546. {
  1547. struct snd_soc_component *component =
  1548. snd_soc_dapm_to_component(w->dapm);
  1549. u16 gain_reg = 0, mix_reg = 0;
  1550. struct device *rx_dev = NULL;
  1551. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1552. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1553. return -EINVAL;
  1554. if (w->shift >= INTERP_MAX) {
  1555. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1556. __func__, w->shift, w->name);
  1557. return -EINVAL;
  1558. }
  1559. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1560. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1561. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1562. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1563. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1564. switch (event) {
  1565. case SND_SOC_DAPM_PRE_PMU:
  1566. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1567. INTERP_MIX_PATH);
  1568. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1569. /* Clk Enable */
  1570. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x20);
  1571. break;
  1572. case SND_SOC_DAPM_POST_PMU:
  1573. snd_soc_component_write(component, gain_reg,
  1574. snd_soc_component_read(component, gain_reg));
  1575. break;
  1576. case SND_SOC_DAPM_POST_PMD:
  1577. /* Clk Disable */
  1578. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1579. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1580. /* Reset enable and disable */
  1581. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1582. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1583. break;
  1584. }
  1585. return 0;
  1586. }
  1587. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1588. int interp_idx)
  1589. {
  1590. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1591. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1592. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1593. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1594. int_mux_cfg1 = int_mux_cfg0 + 4;
  1595. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1596. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1597. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1598. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1599. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1600. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1601. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1602. return true;
  1603. int_n_inp1 = int_mux_cfg0_val >> 4;
  1604. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1605. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1606. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1607. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1608. return true;
  1609. int_n_inp2 = int_mux_cfg1_val >> 4;
  1610. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1611. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1612. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1613. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1614. return true;
  1615. return false;
  1616. }
  1617. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1618. struct snd_kcontrol *kcontrol,
  1619. int event)
  1620. {
  1621. struct snd_soc_component *component =
  1622. snd_soc_dapm_to_component(w->dapm);
  1623. u16 gain_reg = 0;
  1624. u16 reg = 0;
  1625. struct device *rx_dev = NULL;
  1626. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1627. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1628. return -EINVAL;
  1629. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1630. if (w->shift >= INTERP_MAX) {
  1631. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1632. __func__, w->shift, w->name);
  1633. return -EINVAL;
  1634. }
  1635. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1636. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1637. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1638. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1639. switch (event) {
  1640. case SND_SOC_DAPM_PRE_PMU:
  1641. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1642. INTERP_MAIN_PATH);
  1643. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1644. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1645. snd_soc_component_update_bits(component,
  1646. reg, 0x20, 0x20);
  1647. break;
  1648. case SND_SOC_DAPM_POST_PMU:
  1649. snd_soc_component_write(component, gain_reg,
  1650. snd_soc_component_read(component, gain_reg));
  1651. break;
  1652. case SND_SOC_DAPM_POST_PMD:
  1653. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1654. break;
  1655. }
  1656. return 0;
  1657. }
  1658. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1659. struct lpass_cdc_rx_macro_priv *rx_priv,
  1660. int interp_n, int event)
  1661. {
  1662. u8 pcm_rate = 0, val = 0;
  1663. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1664. if (rx_priv->is_pcm_enabled)
  1665. return;
  1666. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1667. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1668. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1669. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1670. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1671. & 0x0F);
  1672. if (pcm_rate < 0x06)
  1673. val = 0x03;
  1674. else if (pcm_rate < 0x08)
  1675. val = 0x01;
  1676. else if (pcm_rate < 0x0B)
  1677. val = 0x02;
  1678. else
  1679. val = 0x00;
  1680. if (SND_SOC_DAPM_EVENT_ON(event))
  1681. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1682. 0x03, val);
  1683. if (SND_SOC_DAPM_EVENT_OFF(event))
  1684. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1685. 0x03, 0x03);
  1686. }
  1687. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1688. struct lpass_cdc_rx_macro_priv *rx_priv,
  1689. int interp_n, int event)
  1690. {
  1691. int comp = 0;
  1692. u16 comp_ctl0_reg = 0, rx_path_cfg0_reg = 0;
  1693. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1694. u16 mode = rx_priv->hph_pwr_mode;
  1695. #ifdef CONFIG_BOLERO_VER_2P6
  1696. u16 comp_ctl8_reg = 0;
  1697. #endif
  1698. /* AUX does not have compander */
  1699. if (interp_n == INTERP_AUX)
  1700. return 0;
  1701. comp = interp_n;
  1702. if (!rx_priv->comp_enabled[comp] && rx_priv->is_pcm_enabled)
  1703. return 0;
  1704. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1705. mode = RX_MODE_EAR;
  1706. if (interp_n == INTERP_HPHL) {
  1707. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1708. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1709. } else if (interp_n == INTERP_HPHR) {
  1710. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1711. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1712. } else {
  1713. /* compander coefficients are loaded only for hph path */
  1714. return 0;
  1715. }
  1716. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1717. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1718. #ifdef CONFIG_BOLERO_VER_2P6
  1719. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1720. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1721. #endif
  1722. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1723. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1724. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1725. lpass_cdc_load_compander_coeff(component,
  1726. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1727. comp_coeff_table[rx_priv->hph_pwr_mode],
  1728. COMP_MAX_COEFF);
  1729. #ifdef CONFIG_BOLERO_VER_2P6
  1730. lpass_cdc_update_compander_setting(component,
  1731. comp_ctl8_reg,
  1732. &comp_setting_table[mode]);
  1733. #endif
  1734. /* Enable Compander Clock */
  1735. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1736. 0x01, 0x01);
  1737. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1738. 0x02, 0x02);
  1739. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1740. 0x02, 0x00);
  1741. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1742. 0x02, 0x02);
  1743. }
  1744. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1745. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1746. 0x04, 0x04);
  1747. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1748. 0x02, 0x00);
  1749. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1750. 0x01, 0x00);
  1751. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1752. 0x04, 0x00);
  1753. }
  1754. return 0;
  1755. }
  1756. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1757. struct lpass_cdc_rx_macro_priv *rx_priv,
  1758. bool enable)
  1759. {
  1760. if (enable) {
  1761. if (rx_priv->softclip_clk_users == 0)
  1762. snd_soc_component_update_bits(component,
  1763. LPASS_CDC_RX_SOFTCLIP_CRC,
  1764. 0x01, 0x01);
  1765. rx_priv->softclip_clk_users++;
  1766. } else {
  1767. rx_priv->softclip_clk_users--;
  1768. if (rx_priv->softclip_clk_users == 0)
  1769. snd_soc_component_update_bits(component,
  1770. LPASS_CDC_RX_SOFTCLIP_CRC,
  1771. 0x01, 0x00);
  1772. }
  1773. }
  1774. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1775. struct lpass_cdc_rx_macro_priv *rx_priv,
  1776. int event)
  1777. {
  1778. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1779. __func__, event, rx_priv->is_softclip_on);
  1780. if (!rx_priv->is_softclip_on)
  1781. return 0;
  1782. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1783. /* Enable Softclip clock */
  1784. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1785. /* Enable Softclip control */
  1786. snd_soc_component_update_bits(component,
  1787. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1788. }
  1789. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1790. snd_soc_component_update_bits(component,
  1791. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1792. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1793. }
  1794. return 0;
  1795. }
  1796. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1797. struct lpass_cdc_rx_macro_priv *rx_priv,
  1798. int event)
  1799. {
  1800. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1801. __func__, event, rx_priv->is_aux_hpf_on);
  1802. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1803. /* Update Aux HPF control */
  1804. if (!rx_priv->is_aux_hpf_on)
  1805. snd_soc_component_update_bits(component,
  1806. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1807. }
  1808. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1809. /* Reset to default (HPF=ON) */
  1810. snd_soc_component_update_bits(component,
  1811. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1812. }
  1813. return 0;
  1814. }
  1815. static inline void
  1816. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1817. {
  1818. if ((enable && ++rx_priv->clsh_users == 1) ||
  1819. (!enable && --rx_priv->clsh_users == 0))
  1820. snd_soc_component_update_bits(rx_priv->component,
  1821. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1822. (u8) enable);
  1823. if (rx_priv->clsh_users < 0)
  1824. rx_priv->clsh_users = 0;
  1825. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1826. rx_priv->clsh_users, enable);
  1827. }
  1828. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1829. struct lpass_cdc_rx_macro_priv *rx_priv,
  1830. int interp_n, int event)
  1831. {
  1832. if (interp_n == INTERP_AUX)
  1833. return 0; /* AUX does not have Class-H */
  1834. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1835. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1836. return 0;
  1837. }
  1838. if (!SND_SOC_DAPM_EVENT_ON(event))
  1839. return 0;
  1840. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1841. if (interp_n == INTERP_HPHL ||
  1842. interp_n == INTERP_HPHR) {
  1843. /*
  1844. * These K1 values depend on the Headphone Impedance
  1845. * For now it is assumed to be 16 ohm
  1846. */
  1847. snd_soc_component_update_bits(component,
  1848. LPASS_CDC_RX_CLSH_K1_LSB,
  1849. 0xFF, 0xC0);
  1850. snd_soc_component_update_bits(component,
  1851. LPASS_CDC_RX_CLSH_K1_MSB,
  1852. 0x0F, 0x00);
  1853. }
  1854. switch (interp_n) {
  1855. case INTERP_HPHL:
  1856. if (rx_priv->is_ear_mode_on)
  1857. snd_soc_component_update_bits(component,
  1858. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1859. 0x3F, 0x39);
  1860. else
  1861. snd_soc_component_update_bits(component,
  1862. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1863. 0x3F, 0x1C);
  1864. snd_soc_component_update_bits(component,
  1865. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1866. 0x07, 0x00);
  1867. snd_soc_component_update_bits(component,
  1868. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1869. 0x40, 0x40);
  1870. break;
  1871. case INTERP_HPHR:
  1872. if (rx_priv->is_ear_mode_on)
  1873. snd_soc_component_update_bits(component,
  1874. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1875. 0x3F, 0x39);
  1876. else
  1877. snd_soc_component_update_bits(component,
  1878. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1879. 0x3F, 0x1C);
  1880. snd_soc_component_update_bits(component,
  1881. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1882. 0x07, 0x00);
  1883. snd_soc_component_update_bits(component,
  1884. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1885. 0x40, 0x40);
  1886. break;
  1887. case INTERP_AUX:
  1888. snd_soc_component_update_bits(component,
  1889. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1890. 0x08, 0x08);
  1891. snd_soc_component_update_bits(component,
  1892. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1893. 0x10, 0x10);
  1894. break;
  1895. }
  1896. return 0;
  1897. }
  1898. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1899. struct lpass_cdc_rx_macro_priv *rx_priv,
  1900. u16 interp_idx, int event)
  1901. {
  1902. u16 hd2_scale_reg = 0;
  1903. u16 hd2_enable_reg = 0;
  1904. if (rx_priv->is_pcm_enabled)
  1905. return;
  1906. switch (interp_idx) {
  1907. case INTERP_HPHL:
  1908. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1909. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1910. break;
  1911. case INTERP_HPHR:
  1912. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1913. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1914. break;
  1915. }
  1916. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1917. snd_soc_component_update_bits(component, hd2_scale_reg,
  1918. 0x3C, 0x14);
  1919. snd_soc_component_update_bits(component, hd2_enable_reg,
  1920. 0x04, 0x04);
  1921. }
  1922. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1923. snd_soc_component_update_bits(component, hd2_enable_reg,
  1924. 0x04, 0x00);
  1925. snd_soc_component_update_bits(component, hd2_scale_reg,
  1926. 0x3C, 0x00);
  1927. }
  1928. }
  1929. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1930. struct snd_ctl_elem_value *ucontrol)
  1931. {
  1932. struct snd_soc_component *component =
  1933. snd_soc_kcontrol_component(kcontrol);
  1934. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1935. struct device *rx_dev = NULL;
  1936. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1937. return -EINVAL;
  1938. ucontrol->value.integer.value[0] =
  1939. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1940. return 0;
  1941. }
  1942. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1943. struct snd_ctl_elem_value *ucontrol)
  1944. {
  1945. struct snd_soc_component *component =
  1946. snd_soc_kcontrol_component(kcontrol);
  1947. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1948. struct device *rx_dev = NULL;
  1949. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1950. return -EINVAL;
  1951. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1952. ucontrol->value.integer.value[0];
  1953. return 0;
  1954. }
  1955. #ifdef CONFIG_BOLERO_VER_2P6
  1956. static int lpass_cdc_rx_macro_get_pcm_path(struct snd_kcontrol *kcontrol,
  1957. struct snd_ctl_elem_value *ucontrol)
  1958. {
  1959. struct snd_soc_component *component =
  1960. snd_soc_kcontrol_component(kcontrol);
  1961. struct device *rx_dev = NULL;
  1962. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1963. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1964. return -EINVAL;
  1965. ucontrol->value.integer.value[0] = rx_priv->is_pcm_enabled;
  1966. return 0;
  1967. }
  1968. static int lpass_cdc_rx_macro_put_pcm_path(struct snd_kcontrol *kcontrol,
  1969. struct snd_ctl_elem_value *ucontrol)
  1970. {
  1971. struct snd_soc_component *component =
  1972. snd_soc_kcontrol_component(kcontrol);
  1973. struct device *rx_dev = NULL;
  1974. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1975. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1976. return -EINVAL;
  1977. rx_priv->is_pcm_enabled = ucontrol->value.integer.value[0];
  1978. return 0;
  1979. }
  1980. #endif
  1981. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1982. struct snd_ctl_elem_value *ucontrol)
  1983. {
  1984. struct snd_soc_component *component =
  1985. snd_soc_kcontrol_component(kcontrol);
  1986. int comp = ((struct soc_multi_mixer_control *)
  1987. kcontrol->private_value)->shift;
  1988. struct device *rx_dev = NULL;
  1989. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1990. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1991. return -EINVAL;
  1992. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1993. return 0;
  1994. }
  1995. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1996. struct snd_ctl_elem_value *ucontrol)
  1997. {
  1998. struct snd_soc_component *component =
  1999. snd_soc_kcontrol_component(kcontrol);
  2000. int comp = ((struct soc_multi_mixer_control *)
  2001. kcontrol->private_value)->shift;
  2002. int value = ucontrol->value.integer.value[0];
  2003. struct device *rx_dev = NULL;
  2004. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2005. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2006. return -EINVAL;
  2007. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  2008. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  2009. rx_priv->comp_enabled[comp] = value;
  2010. return 0;
  2011. }
  2012. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  2013. struct snd_ctl_elem_value *ucontrol)
  2014. {
  2015. struct snd_soc_dapm_widget *widget =
  2016. snd_soc_dapm_kcontrol_widget(kcontrol);
  2017. struct snd_soc_component *component =
  2018. snd_soc_dapm_to_component(widget->dapm);
  2019. struct device *rx_dev = NULL;
  2020. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2021. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2022. return -EINVAL;
  2023. ucontrol->value.integer.value[0] =
  2024. rx_priv->rx_port_value[widget->shift];
  2025. return 0;
  2026. }
  2027. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  2028. struct snd_ctl_elem_value *ucontrol)
  2029. {
  2030. struct snd_soc_dapm_widget *widget =
  2031. snd_soc_dapm_kcontrol_widget(kcontrol);
  2032. struct snd_soc_component *component =
  2033. snd_soc_dapm_to_component(widget->dapm);
  2034. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2035. struct snd_soc_dapm_update *update = NULL;
  2036. u32 rx_port_value = ucontrol->value.integer.value[0];
  2037. u32 aif_rst = 0;
  2038. struct device *rx_dev = NULL;
  2039. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2040. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2041. return -EINVAL;
  2042. aif_rst = rx_priv->rx_port_value[widget->shift];
  2043. if (!rx_port_value) {
  2044. if (aif_rst == 0) {
  2045. dev_err_ratelimited(rx_dev, "%s:AIF reset already\n", __func__);
  2046. return 0;
  2047. }
  2048. if (aif_rst > RX_MACRO_AIF4_PB) {
  2049. dev_err_ratelimited(rx_dev, "%s: Invalid AIF reset\n", __func__);
  2050. return 0;
  2051. }
  2052. }
  2053. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  2054. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  2055. __func__, rx_port_value, widget->shift, aif_rst);
  2056. switch (rx_port_value) {
  2057. case 0:
  2058. if (rx_priv->active_ch_cnt[aif_rst]) {
  2059. clear_bit(widget->shift,
  2060. &rx_priv->active_ch_mask[aif_rst]);
  2061. rx_priv->active_ch_cnt[aif_rst]--;
  2062. }
  2063. break;
  2064. case 1:
  2065. case 2:
  2066. case 3:
  2067. case 4:
  2068. set_bit(widget->shift,
  2069. &rx_priv->active_ch_mask[rx_port_value]);
  2070. rx_priv->active_ch_cnt[rx_port_value]++;
  2071. break;
  2072. default:
  2073. dev_err_ratelimited(component->dev,
  2074. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  2075. __func__, rx_port_value);
  2076. goto err;
  2077. }
  2078. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2079. rx_port_value, e, update);
  2080. return 0;
  2081. err:
  2082. return -EINVAL;
  2083. }
  2084. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2085. struct snd_ctl_elem_value *ucontrol)
  2086. {
  2087. struct snd_soc_component *component =
  2088. snd_soc_kcontrol_component(kcontrol);
  2089. struct device *rx_dev = NULL;
  2090. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2091. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2092. return -EINVAL;
  2093. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2094. return 0;
  2095. }
  2096. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2097. struct snd_ctl_elem_value *ucontrol)
  2098. {
  2099. struct snd_soc_component *component =
  2100. snd_soc_kcontrol_component(kcontrol);
  2101. struct device *rx_dev = NULL;
  2102. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2103. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2104. return -EINVAL;
  2105. rx_priv->is_ear_mode_on =
  2106. (!ucontrol->value.integer.value[0] ? false : true);
  2107. return 0;
  2108. }
  2109. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2110. struct snd_ctl_elem_value *ucontrol)
  2111. {
  2112. struct snd_soc_component *component =
  2113. snd_soc_kcontrol_component(kcontrol);
  2114. struct device *rx_dev = NULL;
  2115. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2116. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2117. return -EINVAL;
  2118. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2119. return 0;
  2120. }
  2121. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2122. struct snd_ctl_elem_value *ucontrol)
  2123. {
  2124. struct snd_soc_component *component =
  2125. snd_soc_kcontrol_component(kcontrol);
  2126. struct device *rx_dev = NULL;
  2127. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2128. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2129. return -EINVAL;
  2130. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2131. return 0;
  2132. }
  2133. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2134. struct snd_ctl_elem_value *ucontrol)
  2135. {
  2136. struct snd_soc_component *component =
  2137. snd_soc_kcontrol_component(kcontrol);
  2138. struct device *rx_dev = NULL;
  2139. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2140. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2141. return -EINVAL;
  2142. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2143. return 0;
  2144. }
  2145. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2146. struct snd_ctl_elem_value *ucontrol)
  2147. {
  2148. struct snd_soc_component *component =
  2149. snd_soc_kcontrol_component(kcontrol);
  2150. struct device *rx_dev = NULL;
  2151. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2152. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2153. return -EINVAL;
  2154. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2155. return 0;
  2156. }
  2157. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2158. struct snd_ctl_elem_value *ucontrol)
  2159. {
  2160. struct snd_soc_component *component =
  2161. snd_soc_kcontrol_component(kcontrol);
  2162. ucontrol->value.integer.value[0] =
  2163. ((snd_soc_component_read(
  2164. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2165. 1 : 0);
  2166. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2167. ucontrol->value.integer.value[0]);
  2168. return 0;
  2169. }
  2170. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2171. struct snd_ctl_elem_value *ucontrol)
  2172. {
  2173. struct snd_soc_component *component =
  2174. snd_soc_kcontrol_component(kcontrol);
  2175. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2176. ucontrol->value.integer.value[0]);
  2177. /* Set Vbat register configuration for GSM mode bit based on value */
  2178. if (ucontrol->value.integer.value[0])
  2179. snd_soc_component_update_bits(component,
  2180. LPASS_CDC_RX_BCL_VBAT_CFG,
  2181. 0x04, 0x04);
  2182. else
  2183. snd_soc_component_update_bits(component,
  2184. LPASS_CDC_RX_BCL_VBAT_CFG,
  2185. 0x04, 0x00);
  2186. return 0;
  2187. }
  2188. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2189. struct snd_ctl_elem_value *ucontrol)
  2190. {
  2191. struct snd_soc_component *component =
  2192. snd_soc_kcontrol_component(kcontrol);
  2193. struct device *rx_dev = NULL;
  2194. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2195. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2196. return -EINVAL;
  2197. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2198. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2199. __func__, ucontrol->value.integer.value[0]);
  2200. return 0;
  2201. }
  2202. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2203. struct snd_ctl_elem_value *ucontrol)
  2204. {
  2205. struct snd_soc_component *component =
  2206. snd_soc_kcontrol_component(kcontrol);
  2207. struct device *rx_dev = NULL;
  2208. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2209. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2210. return -EINVAL;
  2211. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2212. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2213. rx_priv->is_softclip_on);
  2214. return 0;
  2215. }
  2216. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2217. struct snd_ctl_elem_value *ucontrol)
  2218. {
  2219. struct snd_soc_component *component =
  2220. snd_soc_kcontrol_component(kcontrol);
  2221. struct device *rx_dev = NULL;
  2222. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2223. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2224. return -EINVAL;
  2225. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2226. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2227. __func__, ucontrol->value.integer.value[0]);
  2228. return 0;
  2229. }
  2230. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2231. struct snd_ctl_elem_value *ucontrol)
  2232. {
  2233. struct snd_soc_component *component =
  2234. snd_soc_kcontrol_component(kcontrol);
  2235. struct device *rx_dev = NULL;
  2236. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2237. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2238. return -EINVAL;
  2239. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2240. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2241. rx_priv->is_aux_hpf_on);
  2242. return 0;
  2243. }
  2244. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2245. struct snd_kcontrol *kcontrol,
  2246. int event)
  2247. {
  2248. struct snd_soc_component *component =
  2249. snd_soc_dapm_to_component(w->dapm);
  2250. struct device *rx_dev = NULL;
  2251. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2252. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2253. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2254. return -EINVAL;
  2255. switch (event) {
  2256. case SND_SOC_DAPM_PRE_PMU:
  2257. /* Enable clock for VBAT block */
  2258. snd_soc_component_update_bits(component,
  2259. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2260. /* Enable VBAT block */
  2261. snd_soc_component_update_bits(component,
  2262. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2263. /* Update interpolator with 384K path */
  2264. snd_soc_component_update_bits(component,
  2265. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2266. /* Update DSM FS rate */
  2267. snd_soc_component_update_bits(component,
  2268. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2269. /* Use attenuation mode */
  2270. snd_soc_component_update_bits(component,
  2271. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2272. /* BCL block needs softclip clock to be enabled */
  2273. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2274. /* Enable VBAT at channel level */
  2275. snd_soc_component_update_bits(component,
  2276. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2277. /* Set the ATTK1 gain */
  2278. snd_soc_component_update_bits(component,
  2279. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2280. 0xFF, 0xFF);
  2281. snd_soc_component_update_bits(component,
  2282. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2283. 0xFF, 0x03);
  2284. snd_soc_component_update_bits(component,
  2285. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2286. 0xFF, 0x00);
  2287. /* Set the ATTK2 gain */
  2288. snd_soc_component_update_bits(component,
  2289. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2290. 0xFF, 0xFF);
  2291. snd_soc_component_update_bits(component,
  2292. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2293. 0xFF, 0x03);
  2294. snd_soc_component_update_bits(component,
  2295. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2296. 0xFF, 0x00);
  2297. /* Set the ATTK3 gain */
  2298. snd_soc_component_update_bits(component,
  2299. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2300. 0xFF, 0xFF);
  2301. snd_soc_component_update_bits(component,
  2302. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2303. 0xFF, 0x03);
  2304. snd_soc_component_update_bits(component,
  2305. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2306. 0xFF, 0x00);
  2307. #ifdef CONFIG_BOLERO_VER_2P6
  2308. /* Enable CB decode block clock */
  2309. snd_soc_component_update_bits(component,
  2310. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2311. /* Enable BCL path */
  2312. snd_soc_component_update_bits(component,
  2313. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2314. /* Request for BCL data */
  2315. snd_soc_component_update_bits(component,
  2316. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2317. #endif
  2318. break;
  2319. case SND_SOC_DAPM_POST_PMD:
  2320. #ifdef CONFIG_BOLERO_VER_2P6
  2321. snd_soc_component_update_bits(component,
  2322. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2323. snd_soc_component_update_bits(component,
  2324. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2325. snd_soc_component_update_bits(component,
  2326. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2327. #endif
  2328. snd_soc_component_update_bits(component,
  2329. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2330. 0x80, 0x00);
  2331. snd_soc_component_update_bits(component,
  2332. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2333. 0x02, 0x00);
  2334. snd_soc_component_update_bits(component,
  2335. LPASS_CDC_RX_BCL_VBAT_CFG,
  2336. 0x02, 0x02);
  2337. snd_soc_component_update_bits(component,
  2338. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2339. 0x02, 0x00);
  2340. snd_soc_component_update_bits(component,
  2341. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2342. 0xFF, 0x00);
  2343. snd_soc_component_update_bits(component,
  2344. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2345. 0xFF, 0x00);
  2346. snd_soc_component_update_bits(component,
  2347. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2348. 0xFF, 0x00);
  2349. snd_soc_component_update_bits(component,
  2350. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2351. 0xFF, 0x00);
  2352. snd_soc_component_update_bits(component,
  2353. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2354. 0xFF, 0x00);
  2355. snd_soc_component_update_bits(component,
  2356. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2357. 0xFF, 0x00);
  2358. snd_soc_component_update_bits(component,
  2359. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2360. 0xFF, 0x00);
  2361. snd_soc_component_update_bits(component,
  2362. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2363. 0xFF, 0x00);
  2364. snd_soc_component_update_bits(component,
  2365. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2366. 0xFF, 0x00);
  2367. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2368. snd_soc_component_update_bits(component,
  2369. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2370. snd_soc_component_update_bits(component,
  2371. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2372. break;
  2373. default:
  2374. dev_err_ratelimited(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2375. break;
  2376. }
  2377. return 0;
  2378. }
  2379. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2380. struct lpass_cdc_rx_macro_priv *rx_priv,
  2381. int interp, int event)
  2382. {
  2383. int reg = 0, mask = 0, val = 0;
  2384. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2385. return;
  2386. if (!rx_priv->is_pcm_enabled)
  2387. return;
  2388. if (interp == INTERP_HPHL) {
  2389. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2390. mask = 0x01;
  2391. val = 0x01;
  2392. }
  2393. if (interp == INTERP_HPHR) {
  2394. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2395. mask = 0x02;
  2396. val = 0x02;
  2397. }
  2398. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2399. snd_soc_component_update_bits(component, reg, mask, val);
  2400. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2401. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2402. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2403. snd_soc_component_write(component,
  2404. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2405. }
  2406. }
  2407. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2408. struct lpass_cdc_rx_macro_priv *rx_priv,
  2409. u16 interp_idx, int event)
  2410. {
  2411. u16 hph_lut_bypass_reg = 0;
  2412. u16 hph_comp_ctrl7 = 0;
  2413. if (rx_priv->is_pcm_enabled)
  2414. return;
  2415. switch (interp_idx) {
  2416. case INTERP_HPHL:
  2417. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2418. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2419. break;
  2420. case INTERP_HPHR:
  2421. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2422. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2423. break;
  2424. default:
  2425. break;
  2426. }
  2427. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2428. if (interp_idx == INTERP_HPHL) {
  2429. if (rx_priv->is_ear_mode_on)
  2430. snd_soc_component_update_bits(component,
  2431. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2432. 0x02, 0x02);
  2433. else
  2434. snd_soc_component_update_bits(component,
  2435. hph_lut_bypass_reg,
  2436. 0x80, 0x80);
  2437. } else {
  2438. snd_soc_component_update_bits(component,
  2439. hph_lut_bypass_reg,
  2440. 0x80, 0x80);
  2441. }
  2442. if (rx_priv->hph_pwr_mode)
  2443. snd_soc_component_update_bits(component,
  2444. hph_comp_ctrl7,
  2445. 0x20, 0x00);
  2446. }
  2447. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2448. snd_soc_component_update_bits(component,
  2449. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2450. 0x02, 0x00);
  2451. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2452. 0x80, 0x00);
  2453. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2454. 0x20, 0x20);
  2455. }
  2456. }
  2457. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2458. int event, int interp_idx)
  2459. {
  2460. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2461. struct device *rx_dev = NULL;
  2462. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2463. if (!component) {
  2464. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2465. return -EINVAL;
  2466. }
  2467. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2468. return -EINVAL;
  2469. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2470. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2471. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2472. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2473. if (interp_idx == INTERP_AUX)
  2474. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2475. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2476. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2477. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2478. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2479. /* Main path PGA mute enable */
  2480. snd_soc_component_update_bits(component, main_reg,
  2481. 0x10, 0x10);
  2482. snd_soc_component_update_bits(component, dsm_reg,
  2483. 0x01, 0x01);
  2484. /* Clk Enable */
  2485. snd_soc_component_update_bits(component, main_reg,
  2486. 0x20, 0x20);
  2487. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2488. 0x03, 0x03);
  2489. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2490. interp_idx, event);
  2491. if (rx_priv->hph_hd2_mode)
  2492. lpass_cdc_rx_macro_hd2_control(
  2493. component, rx_priv, interp_idx, event);
  2494. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2495. interp_idx, event);
  2496. lpass_cdc_rx_macro_droop_setting(component,
  2497. rx_priv, interp_idx, event);
  2498. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2499. interp_idx, event);
  2500. if (interp_idx == INTERP_AUX) {
  2501. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2502. event);
  2503. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2504. event);
  2505. }
  2506. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2507. interp_idx, event);
  2508. /*select PCM path and swr clk is 9.6MHz*/
  2509. if (rx_priv->is_pcm_enabled && !rx_priv->is_native_on &&
  2510. interp_idx != INTERP_AUX) {
  2511. if (rx_priv->pcm_select_users == 0)
  2512. snd_soc_component_update_bits(component,
  2513. LPASS_CDC_RX_TOP_SWR_CTRL, 0x02, 0x02);
  2514. ++rx_priv->pcm_select_users;
  2515. }
  2516. lpass_cdc_notify_wcd_rx_clk(rx_dev, rx_priv->is_native_on);
  2517. }
  2518. rx_priv->main_clk_users[interp_idx]++;
  2519. }
  2520. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2521. rx_priv->main_clk_users[interp_idx]--;
  2522. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2523. rx_priv->main_clk_users[interp_idx] = 0;
  2524. /* Main path PGA mute enable */
  2525. snd_soc_component_update_bits(component, main_reg,
  2526. 0x10, 0x10);
  2527. /*Unselect PCM path*/
  2528. if (rx_priv->is_pcm_enabled && !rx_priv->is_native_on &&
  2529. interp_idx != INTERP_AUX) {
  2530. if (rx_priv->pcm_select_users == 1)
  2531. snd_soc_component_update_bits(component,
  2532. LPASS_CDC_RX_TOP_SWR_CTRL, 0x02, 0x00);
  2533. --rx_priv->pcm_select_users;
  2534. if (rx_priv->pcm_select_users < 0)
  2535. rx_priv->pcm_select_users = 0;
  2536. }
  2537. /* Clk Disable */
  2538. snd_soc_component_update_bits(component, dsm_reg,
  2539. 0x01, 0x00);
  2540. snd_soc_component_update_bits(component, main_reg,
  2541. 0x20, 0x00);
  2542. /* Reset enable and disable */
  2543. snd_soc_component_update_bits(component, main_reg,
  2544. 0x40, 0x40);
  2545. snd_soc_component_update_bits(component, main_reg,
  2546. 0x40, 0x00);
  2547. /* Reset rate to 48K*/
  2548. snd_soc_component_update_bits(component, main_reg,
  2549. 0x0F, 0x04);
  2550. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2551. 0x03, 0x00);
  2552. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2553. interp_idx, event);
  2554. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2555. interp_idx, event);
  2556. if (interp_idx == INTERP_AUX) {
  2557. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2558. event);
  2559. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2560. event);
  2561. }
  2562. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2563. interp_idx, event);
  2564. if (rx_priv->hph_hd2_mode)
  2565. lpass_cdc_rx_macro_hd2_control(component,
  2566. rx_priv, interp_idx, event);
  2567. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2568. interp_idx, event);
  2569. }
  2570. }
  2571. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2572. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2573. return rx_priv->main_clk_users[interp_idx];
  2574. }
  2575. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2576. struct snd_kcontrol *kcontrol, int event)
  2577. {
  2578. struct snd_soc_component *component =
  2579. snd_soc_dapm_to_component(w->dapm);
  2580. u16 sidetone_reg = 0, fs_reg = 0;
  2581. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2582. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2583. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2584. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2585. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2586. switch (event) {
  2587. case SND_SOC_DAPM_PRE_PMU:
  2588. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2589. snd_soc_component_update_bits(component, sidetone_reg,
  2590. 0x10, 0x10);
  2591. snd_soc_component_update_bits(component, fs_reg,
  2592. 0x20, 0x20);
  2593. break;
  2594. case SND_SOC_DAPM_POST_PMD:
  2595. snd_soc_component_update_bits(component, sidetone_reg,
  2596. 0x10, 0x00);
  2597. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2598. break;
  2599. default:
  2600. break;
  2601. };
  2602. return 0;
  2603. }
  2604. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2605. int band_idx)
  2606. {
  2607. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2608. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2609. if (regmap == NULL) {
  2610. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2611. return;
  2612. }
  2613. regmap_write(regmap,
  2614. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2615. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2616. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2617. /* 5 coefficients per band and 4 writes per coefficient */
  2618. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2619. coeff_idx++) {
  2620. /* Four 8 bit values(one 32 bit) per coefficient */
  2621. regmap_write(regmap, reg_add,
  2622. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2623. regmap_write(regmap, reg_add,
  2624. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2625. regmap_write(regmap, reg_add,
  2626. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2627. regmap_write(regmap, reg_add,
  2628. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2629. }
  2630. }
  2631. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2632. struct snd_ctl_elem_value *ucontrol)
  2633. {
  2634. struct snd_soc_component *component =
  2635. snd_soc_kcontrol_component(kcontrol);
  2636. int iir_idx = ((struct soc_multi_mixer_control *)
  2637. kcontrol->private_value)->reg;
  2638. int band_idx = ((struct soc_multi_mixer_control *)
  2639. kcontrol->private_value)->shift;
  2640. /* IIR filter band registers are at integer multiples of 0x80 */
  2641. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2642. ucontrol->value.integer.value[0] = (
  2643. snd_soc_component_read(component, iir_reg) &
  2644. (1 << band_idx)) != 0;
  2645. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2646. iir_idx, band_idx,
  2647. (uint32_t)ucontrol->value.integer.value[0]);
  2648. return 0;
  2649. }
  2650. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2651. struct snd_ctl_elem_value *ucontrol)
  2652. {
  2653. struct snd_soc_component *component =
  2654. snd_soc_kcontrol_component(kcontrol);
  2655. int iir_idx = ((struct soc_multi_mixer_control *)
  2656. kcontrol->private_value)->reg;
  2657. int band_idx = ((struct soc_multi_mixer_control *)
  2658. kcontrol->private_value)->shift;
  2659. bool iir_band_en_status = 0;
  2660. int value = ucontrol->value.integer.value[0];
  2661. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2662. struct device *rx_dev = NULL;
  2663. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2664. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2665. return -EINVAL;
  2666. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2667. /* Mask first 5 bits, 6-8 are reserved */
  2668. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2669. (value << band_idx));
  2670. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2671. (1 << band_idx)) != 0);
  2672. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2673. iir_idx, band_idx, iir_band_en_status);
  2674. return 0;
  2675. }
  2676. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2677. int iir_idx, int band_idx,
  2678. int coeff_idx)
  2679. {
  2680. uint32_t value = 0;
  2681. /* Address does not automatically update if reading */
  2682. snd_soc_component_write(component,
  2683. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2684. ((band_idx * BAND_MAX + coeff_idx)
  2685. * sizeof(uint32_t)) & 0x7F);
  2686. value |= snd_soc_component_read(component,
  2687. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2688. snd_soc_component_write(component,
  2689. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2690. ((band_idx * BAND_MAX + coeff_idx)
  2691. * sizeof(uint32_t) + 1) & 0x7F);
  2692. value |= (snd_soc_component_read(component,
  2693. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2694. 0x80 * iir_idx)) << 8);
  2695. snd_soc_component_write(component,
  2696. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2697. ((band_idx * BAND_MAX + coeff_idx)
  2698. * sizeof(uint32_t) + 2) & 0x7F);
  2699. value |= (snd_soc_component_read(component,
  2700. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2701. 0x80 * iir_idx)) << 16);
  2702. snd_soc_component_write(component,
  2703. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2704. ((band_idx * BAND_MAX + coeff_idx)
  2705. * sizeof(uint32_t) + 3) & 0x7F);
  2706. /* Mask bits top 2 bits since they are reserved */
  2707. value |= ((snd_soc_component_read(component,
  2708. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2709. 0x80 * iir_idx)) & 0x3F) << 24);
  2710. return value;
  2711. }
  2712. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2713. struct snd_ctl_elem_info *ucontrol)
  2714. {
  2715. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2716. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2717. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2718. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2719. ucontrol->count = params->max;
  2720. return 0;
  2721. }
  2722. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2723. struct snd_ctl_elem_value *ucontrol)
  2724. {
  2725. struct snd_soc_component *component =
  2726. snd_soc_kcontrol_component(kcontrol);
  2727. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2728. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2729. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2730. int iir_idx = ctl->iir_idx;
  2731. int band_idx = ctl->band_idx;
  2732. u32 coeff[BAND_MAX];
  2733. int coeff_idx = 0;
  2734. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2735. coeff_idx++) {
  2736. coeff[coeff_idx] =
  2737. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2738. }
  2739. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2740. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2741. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2742. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2743. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2744. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2745. __func__, iir_idx, band_idx, coeff[0],
  2746. __func__, iir_idx, band_idx, coeff[1],
  2747. __func__, iir_idx, band_idx, coeff[2],
  2748. __func__, iir_idx, band_idx, coeff[3],
  2749. __func__, iir_idx, band_idx, coeff[4]);
  2750. return 0;
  2751. }
  2752. static void set_iir_band_coeff(struct snd_soc_component *component,
  2753. int iir_idx, int band_idx,
  2754. uint32_t value)
  2755. {
  2756. snd_soc_component_write(component,
  2757. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2758. (value & 0xFF));
  2759. snd_soc_component_write(component,
  2760. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2761. (value >> 8) & 0xFF);
  2762. snd_soc_component_write(component,
  2763. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2764. (value >> 16) & 0xFF);
  2765. /* Mask top 2 bits, 7-8 are reserved */
  2766. snd_soc_component_write(component,
  2767. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2768. (value >> 24) & 0x3F);
  2769. }
  2770. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2771. struct snd_ctl_elem_value *ucontrol)
  2772. {
  2773. struct snd_soc_component *component =
  2774. snd_soc_kcontrol_component(kcontrol);
  2775. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2776. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2777. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2778. int iir_idx = ctl->iir_idx;
  2779. int band_idx = ctl->band_idx;
  2780. u32 coeff[BAND_MAX];
  2781. int coeff_idx, idx = 0;
  2782. struct device *rx_dev = NULL;
  2783. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2784. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2785. return -EINVAL;
  2786. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2787. /*
  2788. * Mask top bit it is reserved
  2789. * Updates addr automatically for each B2 write
  2790. */
  2791. snd_soc_component_write(component,
  2792. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2793. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2794. /* Store the coefficients in sidetone coeff array */
  2795. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2796. coeff_idx++) {
  2797. uint32_t value = coeff[coeff_idx];
  2798. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2799. /* Four 8 bit values(one 32 bit) per coefficient */
  2800. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2801. (value & 0xFF);
  2802. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2803. (value >> 8) & 0xFF;
  2804. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2805. (value >> 16) & 0xFF;
  2806. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2807. (value >> 24) & 0xFF;
  2808. }
  2809. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2810. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2811. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2812. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2813. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2814. __func__, iir_idx, band_idx,
  2815. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2816. __func__, iir_idx, band_idx,
  2817. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2818. __func__, iir_idx, band_idx,
  2819. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2820. __func__, iir_idx, band_idx,
  2821. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2822. __func__, iir_idx, band_idx,
  2823. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2824. return 0;
  2825. }
  2826. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2827. struct snd_kcontrol *kcontrol, int event)
  2828. {
  2829. struct snd_soc_component *component =
  2830. snd_soc_dapm_to_component(w->dapm);
  2831. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2832. switch (event) {
  2833. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2834. case SND_SOC_DAPM_PRE_PMD:
  2835. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2836. snd_soc_component_write(component,
  2837. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2838. snd_soc_component_read(component,
  2839. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2840. snd_soc_component_write(component,
  2841. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2842. snd_soc_component_read(component,
  2843. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2844. snd_soc_component_write(component,
  2845. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2846. snd_soc_component_read(component,
  2847. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2848. snd_soc_component_write(component,
  2849. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2850. snd_soc_component_read(component,
  2851. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2852. } else {
  2853. snd_soc_component_write(component,
  2854. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2855. snd_soc_component_read(component,
  2856. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2857. snd_soc_component_write(component,
  2858. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2859. snd_soc_component_read(component,
  2860. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2861. snd_soc_component_write(component,
  2862. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2863. snd_soc_component_read(component,
  2864. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2865. snd_soc_component_write(component,
  2866. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2867. snd_soc_component_read(component,
  2868. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2869. }
  2870. break;
  2871. }
  2872. return 0;
  2873. }
  2874. #ifdef CONFIG_BOLERO_VER_2P6
  2875. static int lpass_cdc_rx_macro_fir_filter_enable_get(struct snd_kcontrol *kcontrol,
  2876. struct snd_ctl_elem_value *ucontrol)
  2877. {
  2878. struct snd_soc_component *component =
  2879. snd_soc_kcontrol_component(kcontrol);
  2880. struct device *rx_dev = NULL;
  2881. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2882. if (!component) {
  2883. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2884. return -EINVAL;
  2885. }
  2886. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2887. return -EINVAL;
  2888. ucontrol->value.bytes.data[0] = (unsigned char)rx_priv->is_fir_filter_on;
  2889. return 0;
  2890. }
  2891. static int lpass_cdc_rx_macro_fir_filter_enable_put(struct snd_kcontrol *kcontrol,
  2892. struct snd_ctl_elem_value *ucontrol)
  2893. {
  2894. struct snd_soc_component *component =
  2895. snd_soc_kcontrol_component(kcontrol);
  2896. struct device *rx_dev = NULL;
  2897. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2898. int ret = 0;
  2899. if (!component) {
  2900. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2901. return -EINVAL;
  2902. }
  2903. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2904. return -EINVAL;
  2905. if (!rx_priv->hifi_fir_clk) {
  2906. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  2907. __func__);
  2908. return 0;
  2909. }
  2910. if (!rx_priv->is_fir_capable) {
  2911. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  2912. __func__);
  2913. return 0;
  2914. }
  2915. rx_priv->is_fir_filter_on =
  2916. (!ucontrol->value.bytes.data[0] ? false : true);
  2917. dev_dbg(rx_priv->dev, "%s:is_fir_filter_on=%d\n",
  2918. __func__, rx_priv->is_fir_filter_on);
  2919. if (rx_priv->is_fir_filter_on) {
  2920. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2921. if (ret < 0) {
  2922. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2923. __func__);
  2924. return ret;
  2925. }
  2926. snd_soc_component_write(component, LPASS_CDC_RX_RX0_RX_FIR_CFG,
  2927. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2928. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2929. " number written: %d.\n",
  2930. __func__, RX0_PATH,
  2931. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2932. snd_soc_component_write(component, LPASS_CDC_RX_RX1_RX_FIR_CFG,
  2933. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2934. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2935. " number written: %d.\n",
  2936. __func__, RX1_PATH,
  2937. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2938. /* Enable HIFI_FEAT_EN bit */
  2939. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2940. /* Enable FIR_CLK_EN */
  2941. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x80);
  2942. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x80);
  2943. /* Start the FIR filter */
  2944. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x05);
  2945. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x05);
  2946. } else {
  2947. /* Stop the FIR filter */
  2948. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x00);
  2949. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x00);
  2950. /* Disable FIR_CLK_EN */
  2951. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x00);
  2952. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x00);
  2953. /* Disable HIFI_FEAT_EN bit */
  2954. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  2955. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  2956. }
  2957. return 0;
  2958. }
  2959. static int lpass_cdc_rx_macro_fir_filter_info(struct snd_kcontrol *kcontrol,
  2960. struct snd_ctl_elem_info *ucontrol)
  2961. {
  2962. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2963. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2964. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2965. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2966. ucontrol->count = params->max;
  2967. return 0;
  2968. }
  2969. static int lpass_cdc_rx_macro_fir_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2970. struct snd_ctl_elem_value *ucontrol)
  2971. {
  2972. struct snd_soc_component *component =
  2973. snd_soc_kcontrol_component(kcontrol);
  2974. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2975. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2976. unsigned int path_idx = ctl->path_idx;
  2977. unsigned int grp_idx = ctl->grp_idx;
  2978. u32 num_coeff_grp = 0;
  2979. u32 readArray[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  2980. unsigned int coeff_idx = 0, array_idx = 0;
  2981. unsigned int copy_size;
  2982. struct device *rx_dev = NULL;
  2983. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2984. if (!component) {
  2985. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2986. return -EINVAL;
  2987. }
  2988. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2989. return -EINVAL;
  2990. if (path_idx >= FIR_PATH_MAX) {
  2991. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  2992. __func__, path_idx);
  2993. return -EINVAL;
  2994. }
  2995. if (grp_idx >= GRP_MAX) {
  2996. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  2997. __func__, grp_idx);
  2998. return -EINVAL;
  2999. }
  3000. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  3001. readArray[array_idx++] = num_coeff_grp;
  3002. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++) {
  3003. readArray[array_idx++] =
  3004. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx];
  3005. }
  3006. copy_size = array_idx;
  3007. memcpy(ucontrol->value.bytes.data, &readArray[0], sizeof(readArray[0]) * copy_size);
  3008. return 0;
  3009. }
  3010. static int set_fir_filter_coeff(struct snd_soc_component *component,
  3011. struct lpass_cdc_rx_macro_priv *rx_priv,
  3012. unsigned int path_idx)
  3013. {
  3014. int grp_idx = 0, coeff_idx = 0;
  3015. unsigned int ret = 0;
  3016. unsigned int max_coeff_num, num_coeff_grp;
  3017. unsigned int path_ctl_addr = 0, wdata0_addr = 0, coeff_addr = 0;
  3018. unsigned int fir_ctl_addr = 0;
  3019. bool all_coeff_written = true;
  3020. switch (path_idx) {
  3021. case RX0_PATH:
  3022. path_ctl_addr = LPASS_CDC_RX_RX0_RX_PATH_CTL;
  3023. wdata0_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_WDATA0;
  3024. coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_ADDR;
  3025. fir_ctl_addr = LPASS_CDC_RX_RX0_RX_FIR_CTL;
  3026. break;
  3027. case RX1_PATH:
  3028. path_ctl_addr = LPASS_CDC_RX_RX1_RX_PATH_CTL;
  3029. wdata0_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_WDATA0;
  3030. coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_ADDR;
  3031. fir_ctl_addr = LPASS_CDC_RX_RX1_RX_FIR_CTL;
  3032. break;
  3033. default:
  3034. dev_err_ratelimited(rx_priv->dev,
  3035. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  3036. ret = -EINVAL;
  3037. goto exit;
  3038. }
  3039. max_coeff_num = LPASS_CDC_RX_MACRO_FIR_COEFF_MAX;
  3040. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3041. all_coeff_written = all_coeff_written &&
  3042. rx_priv->is_fir_coeff_written[path_idx][grp_idx];
  3043. if (all_coeff_written)
  3044. goto exit;
  3045. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, false);
  3046. if (ret < 0) {
  3047. dev_err_ratelimited(rx_priv->dev, "%s:rx_macro_mclk enable failed\n",
  3048. __func__);
  3049. goto exit;
  3050. }
  3051. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  3052. if (ret < 0) {
  3053. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  3054. __func__);
  3055. goto disable_mclk_block;
  3056. }
  3057. /* Enable HIFI_FEAT_EN bit */
  3058. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  3059. /* Enable FIR_CLK_EN, datapath reset */
  3060. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0xC0);
  3061. /* Enable FIR_CLK_EN, Release Reset */
  3062. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0x80);
  3063. /* wait for data ram initialization after enabling clock */
  3064. usleep_range(10, 11);
  3065. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  3066. unsigned int coeff_idx_start = 0, array_idx = 0;
  3067. /* Skip if this group is written and no futher update */
  3068. if (rx_priv->is_fir_coeff_written[path_idx][grp_idx])
  3069. continue;
  3070. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  3071. if (num_coeff_grp > max_coeff_num) {
  3072. dev_err_ratelimited(rx_priv->dev,
  3073. "%s: inavlid number of RX_FIR coefficients:%d"
  3074. " in path:%d, group:%d\n",
  3075. __func__, num_coeff_grp, path_idx, grp_idx);
  3076. ret = -EINVAL;
  3077. goto disable_FIR;
  3078. }
  3079. coeff_idx_start = grp_idx * max_coeff_num;
  3080. for (coeff_idx = coeff_idx_start;
  3081. coeff_idx < coeff_idx_start + num_coeff_grp / 2 * 2;
  3082. coeff_idx += 2) {
  3083. unsigned int addr_offset = coeff_idx / 2;
  3084. /* First coefficient in pair */
  3085. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3086. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3087. __func__, coeff_idx, value);
  3088. snd_soc_component_write(component, wdata0_addr,
  3089. value & 0xFF);
  3090. snd_soc_component_write(component, wdata0_addr + 0x4,
  3091. (value >> 8) & 0xFF);
  3092. snd_soc_component_write(component, wdata0_addr + 0x8,
  3093. (value >> 16) & 0xFF);
  3094. snd_soc_component_write(component, wdata0_addr + 0xC,
  3095. (value >> 24) & 0xFF);
  3096. /* Second coefficient in pair */
  3097. value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3098. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3099. __func__, coeff_idx, value);
  3100. snd_soc_component_write(component, wdata0_addr + 0x10,
  3101. value & 0xFF);
  3102. snd_soc_component_write(component, wdata0_addr + 0x14,
  3103. (value >> 8) & 0xFF);
  3104. snd_soc_component_write(component, wdata0_addr + 0x18,
  3105. (value >> 16) & 0xFF);
  3106. snd_soc_component_write(component, wdata0_addr + 0x1C,
  3107. (value >> 24) & 0xFF);
  3108. snd_soc_component_write(component, coeff_addr, addr_offset);
  3109. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3110. usleep_range(13, 15);
  3111. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3112. }
  3113. /* odd number of coefficients in this group, handle last one */
  3114. if (num_coeff_grp % 2 != 0) {
  3115. int addr_offset = coeff_idx / 2;
  3116. /* First coefficient in pair */
  3117. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3118. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3119. __func__, coeff_idx, value);
  3120. snd_soc_component_write(component, wdata0_addr,
  3121. value & 0xFF);
  3122. snd_soc_component_write(component, wdata0_addr + 0x4,
  3123. (value >> 8) & 0xFF);
  3124. snd_soc_component_write(component, wdata0_addr + 0x8,
  3125. (value >> 16) & 0xFF);
  3126. snd_soc_component_write(component, wdata0_addr + 0xC,
  3127. (value >> 24) & 0xFF);
  3128. /* Second coefficient in pair */
  3129. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3130. __func__, coeff_idx, 0x0);
  3131. snd_soc_component_write(component, wdata0_addr + 0x10, 0x0);
  3132. snd_soc_component_write(component, wdata0_addr + 0x14, 0x0);
  3133. snd_soc_component_write(component, wdata0_addr + 0x18, 0x0);
  3134. snd_soc_component_write(component, wdata0_addr + 0x1C, 0x0);
  3135. snd_soc_component_write(component, coeff_addr, addr_offset);
  3136. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3137. usleep_range(13, 15);
  3138. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3139. }
  3140. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = true;
  3141. dev_dbg(component->dev, "%s: HIFI FIR Path:%d Group:%d coefficients"
  3142. " updated.\n",
  3143. __func__, path_idx, grp_idx);
  3144. }
  3145. disable_FIR:
  3146. /* disable FIR_CLK_EN */
  3147. snd_soc_component_update_bits(component, path_ctl_addr, 0x80, 0x00);
  3148. /* Disable HIFI_FEAT_EN bit */
  3149. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  3150. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  3151. disable_mclk_block:
  3152. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, false);
  3153. exit:
  3154. return ret;
  3155. }
  3156. static int lpass_cdc_rx_macro_fir_audio_mixer_put(struct snd_kcontrol *kcontrol,
  3157. struct snd_ctl_elem_value *ucontrol)
  3158. {
  3159. struct snd_soc_component *component =
  3160. snd_soc_kcontrol_component(kcontrol);
  3161. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  3162. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  3163. unsigned int path_idx = ctl->path_idx;
  3164. unsigned int grp_idx = ctl->grp_idx;
  3165. u32 ele_size = 0, num_coeff_grp = 0;
  3166. u32 coeff[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  3167. int ret = 0;
  3168. unsigned int stored_total_num = 0;
  3169. unsigned int grp_iidx = 0, coeff_idx = 0, array_idx = 0;
  3170. struct device *rx_dev = NULL;
  3171. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3172. if (!component) {
  3173. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3174. return -EINVAL;
  3175. }
  3176. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3177. return -EINVAL;
  3178. if (path_idx >= FIR_PATH_MAX) {
  3179. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3180. __func__, path_idx);
  3181. return -EINVAL;
  3182. }
  3183. if (grp_idx >= GRP_MAX) {
  3184. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  3185. __func__, grp_idx);
  3186. return -EINVAL;
  3187. }
  3188. if (!rx_priv->hifi_fir_clk) {
  3189. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  3190. __func__);
  3191. return 0;
  3192. }
  3193. if (!rx_priv->is_fir_capable) {
  3194. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  3195. __func__);
  3196. return 0;
  3197. }
  3198. ele_size = sizeof(coeff[0]);
  3199. memcpy(&coeff[0], ucontrol->value.bytes.data, ele_size);
  3200. num_coeff_grp = coeff[0];
  3201. dev_dbg(rx_priv->dev, "%s: bytes.data: path:%d, grp:%d, num_coeff_grp:%d\n",
  3202. __func__, path_idx, grp_idx, num_coeff_grp);
  3203. if (num_coeff_grp > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3204. dev_err_ratelimited(rx_priv->dev,
  3205. "%s: inavlid number of RX_FIR coefficients:%d in path:%d, group:%d\n",
  3206. __func__, num_coeff_grp, path_idx, grp_idx);
  3207. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3208. return -EINVAL;
  3209. } else {
  3210. rx_priv->num_fir_coeff[path_idx][grp_idx] = num_coeff_grp;
  3211. }
  3212. memcpy(&coeff[1], &(ucontrol->value.bytes.data[ele_size]), ele_size * num_coeff_grp);
  3213. /* Store the coefficients in FIR coeff array */
  3214. array_idx = 1;
  3215. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++)
  3216. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx] = coeff[array_idx++];
  3217. /* Clear the written flag so this group is ready to be written */
  3218. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = false;
  3219. stored_total_num = 0;
  3220. for (grp_iidx = 0; grp_iidx < GRP_MAX; grp_iidx++) {
  3221. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_iidx];
  3222. }
  3223. /* Only write coeffs if total num matches, otherwise delay the write */
  3224. if (rx_priv->fir_total_coeff_num[path_idx] == stored_total_num)
  3225. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3226. return ret;
  3227. }
  3228. static int lpass_cdc_rx_macro_fir_coeff_num_get(struct snd_kcontrol *kcontrol,
  3229. struct snd_ctl_elem_value *ucontrol)
  3230. {
  3231. struct snd_soc_component *component =
  3232. snd_soc_kcontrol_component(kcontrol);
  3233. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3234. kcontrol->private_value)->shift;
  3235. struct device *rx_dev = NULL;
  3236. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3237. if (!component) {
  3238. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3239. return -EINVAL;
  3240. }
  3241. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3242. return -EINVAL;
  3243. if (path_idx >= FIR_PATH_MAX) {
  3244. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3245. __func__, path_idx);
  3246. return -EINVAL;
  3247. }
  3248. ucontrol->value.bytes.data[0] = rx_priv->fir_total_coeff_num[path_idx];
  3249. return 0;
  3250. }
  3251. static int lpass_cdc_rx_macro_fir_coeff_num_put(struct snd_kcontrol *kcontrol,
  3252. struct snd_ctl_elem_value *ucontrol)
  3253. {
  3254. struct snd_soc_component *component =
  3255. snd_soc_kcontrol_component(kcontrol);
  3256. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3257. kcontrol->private_value)->shift;
  3258. u8 fir_total_coeff_num = ucontrol->value.bytes.data[0];
  3259. struct device *rx_dev = NULL;
  3260. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3261. unsigned int ret = 0;
  3262. unsigned int grp_idx, stored_total_num;
  3263. if (!component) {
  3264. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3265. return -EINVAL;
  3266. }
  3267. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3268. return -EINVAL;
  3269. if (fir_total_coeff_num > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX) {
  3270. dev_err_ratelimited(rx_priv->dev,
  3271. "%s: inavlid total number of RX_FIR coefficients:%d"
  3272. " in path:%d\n",
  3273. __func__, fir_total_coeff_num, path_idx);
  3274. rx_priv->fir_total_coeff_num[path_idx] = 0;
  3275. return -EINVAL;
  3276. } else {
  3277. rx_priv->fir_total_coeff_num[path_idx] = fir_total_coeff_num;
  3278. }
  3279. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  3280. " number updated in private data: %d.\n",
  3281. __func__, path_idx, fir_total_coeff_num);
  3282. stored_total_num = 0;
  3283. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3284. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_idx];
  3285. if (fir_total_coeff_num == stored_total_num)
  3286. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3287. return ret;
  3288. }
  3289. #endif
  3290. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  3291. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  3292. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  3293. -84, 40, digital_gain),
  3294. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  3295. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  3296. -84, 40, digital_gain),
  3297. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  3298. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  3299. -84, 40, digital_gain),
  3300. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  3301. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  3302. -84, 40, digital_gain),
  3303. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  3304. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  3305. -84, 40, digital_gain),
  3306. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  3307. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  3308. -84, 40, digital_gain),
  3309. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  3310. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3311. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  3312. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3313. #ifdef CONFIG_BOLERO_VER_2P6
  3314. SOC_SINGLE_EXT("RX_HPH PCM", SND_SOC_NOPM, 0, 1, 0,
  3315. lpass_cdc_rx_macro_get_pcm_path, lpass_cdc_rx_macro_put_pcm_path),
  3316. SOC_SINGLE_EXT("RX0 FIR Coeff Num", SND_SOC_NOPM, RX0_PATH,
  3317. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3318. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3319. SOC_SINGLE_EXT("RX1 FIR Coeff Num", SND_SOC_NOPM, RX1_PATH,
  3320. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3321. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3322. SOC_ENUM_EXT("RX_FIR Filter", lpass_cdc_rx_macro_fir_filter_enum,
  3323. lpass_cdc_rx_macro_fir_filter_enable_get, lpass_cdc_rx_macro_fir_filter_enable_put),
  3324. #endif
  3325. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  3326. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  3327. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  3328. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  3329. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  3330. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  3331. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  3332. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  3333. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  3334. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  3335. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  3336. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  3337. lpass_cdc_rx_macro_soft_clip_enable_get,
  3338. lpass_cdc_rx_macro_soft_clip_enable_put),
  3339. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  3340. lpass_cdc_rx_macro_aux_hpf_mode_get,
  3341. lpass_cdc_rx_macro_aux_hpf_mode_put),
  3342. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  3343. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  3344. digital_gain),
  3345. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  3346. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  3347. digital_gain),
  3348. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  3349. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  3350. digital_gain),
  3351. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  3352. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  3353. digital_gain),
  3354. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  3355. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  3356. digital_gain),
  3357. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  3358. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  3359. digital_gain),
  3360. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  3361. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  3362. digital_gain),
  3363. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  3364. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  3365. digital_gain),
  3366. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  3367. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3368. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3369. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  3370. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3371. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3372. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  3373. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3374. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3375. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  3376. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3377. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3378. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  3379. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3380. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3381. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  3382. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3383. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3384. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  3385. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3386. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3387. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  3388. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3389. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3390. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  3391. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3392. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3393. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  3394. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3395. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3396. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  3397. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  3398. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  3399. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  3400. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  3401. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  3402. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  3403. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  3404. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  3405. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  3406. #ifdef CONFIG_BOLERO_VER_2P6
  3407. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group0", RX0_PATH, GRP0),
  3408. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group1", RX0_PATH, GRP1),
  3409. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group0", RX1_PATH, GRP0),
  3410. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group1", RX1_PATH, GRP1),
  3411. #endif
  3412. };
  3413. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  3414. struct snd_kcontrol *kcontrol,
  3415. int event)
  3416. {
  3417. struct snd_soc_component *component =
  3418. snd_soc_dapm_to_component(w->dapm);
  3419. struct device *rx_dev = NULL;
  3420. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3421. u16 val = 0, ec_hq_reg = 0;
  3422. int ec_tx = 0;
  3423. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3424. return -EINVAL;
  3425. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  3426. val = snd_soc_component_read(component,
  3427. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  3428. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  3429. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  3430. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  3431. ec_tx = (val & 0x0f) - 1;
  3432. val = snd_soc_component_read(component,
  3433. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  3434. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  3435. ec_tx = (val & 0x0f) - 1;
  3436. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  3437. dev_err_ratelimited(rx_dev, "%s: EC mix control not set correctly\n",
  3438. __func__);
  3439. return -EINVAL;
  3440. }
  3441. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  3442. 0x40 * ec_tx;
  3443. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  3444. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  3445. 0x40 * ec_tx;
  3446. /* default set to 48k */
  3447. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  3448. return 0;
  3449. }
  3450. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  3451. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  3452. SND_SOC_NOPM, 0, 0),
  3453. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  3454. SND_SOC_NOPM, 0, 0),
  3455. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  3456. SND_SOC_NOPM, 0, 0),
  3457. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  3458. SND_SOC_NOPM, 0, 0),
  3459. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  3460. SND_SOC_NOPM, 0, 0),
  3461. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  3462. SND_SOC_NOPM, 0, 0),
  3463. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  3464. SND_SOC_NOPM, 0, 0),
  3465. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  3466. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  3467. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  3468. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  3469. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  3470. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  3471. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  3472. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3473. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3474. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  3475. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  3476. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  3477. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  3478. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  3479. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  3480. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  3481. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  3482. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  3483. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  3484. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  3485. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  3486. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  3487. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  3488. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3489. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  3490. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  3491. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  3492. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3493. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  3494. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  3495. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  3496. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3497. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  3498. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3499. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3500. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  3501. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3502. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3503. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  3504. 4, 0, NULL, 0),
  3505. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  3506. 4, 0, NULL, 0),
  3507. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  3508. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  3509. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  3510. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3511. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3512. SND_SOC_DAPM_POST_PMD),
  3513. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  3514. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3515. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3516. SND_SOC_DAPM_POST_PMD),
  3517. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  3518. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3519. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3520. SND_SOC_DAPM_POST_PMD),
  3521. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  3522. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  3523. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  3524. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  3525. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  3526. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  3527. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  3528. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  3529. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  3530. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  3531. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3532. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3533. SND_SOC_DAPM_POST_PMD),
  3534. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  3535. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3536. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3537. SND_SOC_DAPM_POST_PMD),
  3538. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  3539. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3540. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3541. SND_SOC_DAPM_POST_PMD),
  3542. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  3543. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  3544. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  3545. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3546. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3547. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3548. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3549. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3550. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3551. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3552. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3553. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3554. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3555. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3556. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3557. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3558. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3559. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3560. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3561. 0, 0, rx_int2_1_vbat_mix_switch,
  3562. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3563. lpass_cdc_rx_macro_enable_vbat,
  3564. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3565. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3566. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3567. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3568. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3569. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3570. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3571. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3572. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3573. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3574. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3575. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3576. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3577. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3578. };
  3579. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3580. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3581. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3582. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3583. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3584. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3585. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3586. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3587. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3588. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3589. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3590. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3591. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3592. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3593. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3594. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3595. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3596. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3597. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3598. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3599. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3600. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3601. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3602. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3603. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3604. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3605. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3606. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3607. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3608. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3609. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3610. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3611. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3612. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3613. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3614. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3615. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3616. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3617. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3618. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3619. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3620. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3621. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3622. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3623. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3624. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3625. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3626. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3627. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3628. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3629. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3630. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3631. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3632. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3633. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3634. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3635. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3636. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3637. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3638. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3639. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3640. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3641. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3642. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3643. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3644. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3645. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3646. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3647. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3648. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3649. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3650. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3651. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3652. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3653. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3654. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3655. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3656. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3657. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3658. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3659. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3660. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3661. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3662. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3663. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3664. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3665. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3666. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3667. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3668. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3669. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3670. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3671. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3672. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3673. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3674. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3675. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3676. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3677. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3678. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3679. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3680. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3681. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3682. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3683. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3684. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3685. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3686. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3687. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3688. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3689. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3690. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3691. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3692. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3693. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3694. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3695. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3696. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3697. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3698. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3699. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3700. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3701. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3702. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3703. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3704. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3705. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3706. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3707. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3708. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3709. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3710. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3711. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3712. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3713. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3714. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3715. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3716. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3717. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3718. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3719. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3720. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3721. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3722. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3723. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3724. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3725. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3726. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3727. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3728. /* Mixing path INT0 */
  3729. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3730. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3731. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3732. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3733. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3734. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3735. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3736. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3737. /* Mixing path INT1 */
  3738. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3739. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3740. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3741. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3742. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3743. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3744. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3745. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3746. /* Mixing path INT2 */
  3747. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3748. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3749. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3750. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3751. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3752. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3753. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3754. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3755. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3756. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3757. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3758. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3759. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3760. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3761. {"HPHL_OUT", NULL, "RX_MCLK"},
  3762. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3763. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3764. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3765. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3766. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3767. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3768. {"HPHR_OUT", NULL, "RX_MCLK"},
  3769. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3770. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3771. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3772. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3773. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3774. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3775. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3776. {"AUX_OUT", NULL, "RX_MCLK"},
  3777. {"IIR0", NULL, "RX_MCLK"},
  3778. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3779. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3780. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3781. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3782. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3783. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3784. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3785. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3786. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3787. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3788. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3789. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3790. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3791. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3792. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3793. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3794. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3795. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3796. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3797. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3798. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3799. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3800. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3801. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3802. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3803. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3804. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3805. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3806. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3807. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3808. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3809. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3810. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3811. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3812. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3813. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3814. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3815. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3816. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3817. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3818. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3819. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3820. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3821. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3822. {"IIR1", NULL, "RX_MCLK"},
  3823. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3824. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3825. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3826. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3827. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3828. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3829. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3830. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3831. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3832. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3833. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3834. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3835. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3836. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3837. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3838. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3839. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3840. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3841. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3842. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3843. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3844. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3845. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3846. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3847. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3848. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3849. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3850. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3851. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3852. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3853. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3854. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3855. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3856. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3857. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3858. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3859. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3860. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3861. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3862. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3863. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3864. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3865. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3866. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3867. {"SRC0", NULL, "IIR0"},
  3868. {"SRC1", NULL, "IIR1"},
  3869. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3870. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3871. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3872. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3873. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3874. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3875. };
  3876. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3877. {
  3878. int rc = 0;
  3879. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3880. if (rx_priv == NULL) {
  3881. pr_err_ratelimited("%s: rx priv data is NULL\n", __func__);
  3882. return -EINVAL;
  3883. }
  3884. if (!rx_priv->pre_dev_up && enable) {
  3885. pr_debug("%s: adsp is not up\n", __func__);
  3886. return -EINVAL;
  3887. }
  3888. if (enable) {
  3889. pm_runtime_get_sync(rx_priv->dev);
  3890. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3891. rc = 0;
  3892. else
  3893. rc = -ENOTSYNC;
  3894. } else {
  3895. pm_runtime_put_autosuspend(rx_priv->dev);
  3896. pm_runtime_mark_last_busy(rx_priv->dev);
  3897. }
  3898. return rc;
  3899. }
  3900. static int rx_swrm_clock(void *handle, bool enable)
  3901. {
  3902. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3903. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3904. int ret = 0;
  3905. if (regmap == NULL) {
  3906. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3907. return -EINVAL;
  3908. }
  3909. mutex_lock(&rx_priv->swr_clk_lock);
  3910. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3911. __func__, (enable ? "enable" : "disable"));
  3912. if (enable) {
  3913. pm_runtime_get_sync(rx_priv->dev);
  3914. if (rx_priv->swr_clk_users == 0) {
  3915. ret = msm_cdc_pinctrl_select_active_state(
  3916. rx_priv->rx_swr_gpio_p);
  3917. if (ret < 0) {
  3918. dev_err_ratelimited(rx_priv->dev,
  3919. "%s: rx swr pinctrl enable failed\n",
  3920. __func__);
  3921. pm_runtime_mark_last_busy(rx_priv->dev);
  3922. pm_runtime_put_autosuspend(rx_priv->dev);
  3923. goto exit;
  3924. }
  3925. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3926. if (ret < 0) {
  3927. msm_cdc_pinctrl_select_sleep_state(
  3928. rx_priv->rx_swr_gpio_p);
  3929. dev_err_ratelimited(rx_priv->dev,
  3930. "%s: rx request clock enable failed\n",
  3931. __func__);
  3932. pm_runtime_mark_last_busy(rx_priv->dev);
  3933. pm_runtime_put_autosuspend(rx_priv->dev);
  3934. goto exit;
  3935. }
  3936. if (rx_priv->reset_swr)
  3937. regmap_update_bits(regmap,
  3938. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3939. 0x02, 0x02);
  3940. regmap_update_bits(regmap,
  3941. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3942. 0x01, 0x01);
  3943. if (rx_priv->reset_swr)
  3944. regmap_update_bits(regmap,
  3945. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3946. 0x02, 0x00);
  3947. rx_priv->reset_swr = false;
  3948. }
  3949. pm_runtime_mark_last_busy(rx_priv->dev);
  3950. pm_runtime_put_autosuspend(rx_priv->dev);
  3951. rx_priv->swr_clk_users++;
  3952. } else {
  3953. if (rx_priv->swr_clk_users <= 0) {
  3954. dev_err_ratelimited(rx_priv->dev,
  3955. "%s: rx swrm clock users already reset\n",
  3956. __func__);
  3957. rx_priv->swr_clk_users = 0;
  3958. goto exit;
  3959. }
  3960. rx_priv->swr_clk_users--;
  3961. if (rx_priv->swr_clk_users == 0) {
  3962. regmap_update_bits(regmap,
  3963. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3964. 0x01, 0x00);
  3965. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3966. ret = msm_cdc_pinctrl_select_sleep_state(
  3967. rx_priv->rx_swr_gpio_p);
  3968. if (ret < 0) {
  3969. dev_err_ratelimited(rx_priv->dev,
  3970. "%s: rx swr pinctrl disable failed\n",
  3971. __func__);
  3972. goto exit;
  3973. }
  3974. }
  3975. }
  3976. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3977. __func__, rx_priv->swr_clk_users);
  3978. exit:
  3979. mutex_unlock(&rx_priv->swr_clk_lock);
  3980. return ret;
  3981. }
  3982. #ifdef CONFIG_BOLERO_VER_2P6
  3983. /**
  3984. * lpass_cdc_rx_set_fir_capability - Set RX HIFI FIR Filter capability
  3985. *
  3986. * @component: Codec component ptr.
  3987. * @capable: if the target have RX HIFI FIR available.
  3988. *
  3989. * Set RX HIFI FIR capability, stored the capability into RX macro private data.
  3990. */
  3991. int lpass_cdc_rx_set_fir_capability(struct snd_soc_component *component, bool capable)
  3992. {
  3993. struct device *rx_dev = NULL;
  3994. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3995. if (!component) {
  3996. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3997. return -EINVAL;
  3998. }
  3999. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4000. return -EINVAL;
  4001. rx_priv->is_fir_capable = capable;
  4002. return 0;
  4003. }
  4004. EXPORT_SYMBOL(lpass_cdc_rx_set_fir_capability);
  4005. #endif
  4006. static const struct lpass_cdc_rx_macro_reg_mask_val
  4007. lpass_cdc_rx_macro_reg_init[] = {
  4008. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  4009. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  4010. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  4011. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  4012. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  4013. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  4014. };
  4015. #ifdef CONFIG_BOLERO_VER_2P1
  4016. static void lpass_cdc_rx_macro_init_bcl_pmic_reg(struct snd_soc_component *component)
  4017. {
  4018. struct device *rx_dev = NULL;
  4019. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4020. if (!component) {
  4021. pr_err("%s: NULL component pointer!\n", __func__);
  4022. return;
  4023. }
  4024. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4025. return;
  4026. switch (rx_priv->bcl_pmic_params.id) {
  4027. case 0:
  4028. /* Enable ID0 to listen to respective PMIC group interrupts */
  4029. snd_soc_component_update_bits(component,
  4030. LPASS_CDC_RX_BCL_VBAT_DECODE_CTL1, 0x02, 0x02);
  4031. /* Update MC_SID0 */
  4032. snd_soc_component_update_bits(component,
  4033. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG1, 0x0F,
  4034. rx_priv->bcl_pmic_params.sid);
  4035. /* Update MC_PPID0 */
  4036. snd_soc_component_update_bits(component,
  4037. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG2, 0xFF,
  4038. rx_priv->bcl_pmic_params.ppid);
  4039. break;
  4040. case 1:
  4041. /* Enable ID1 to listen to respective PMIC group interrupts */
  4042. snd_soc_component_update_bits(component,
  4043. LPASS_CDC_RX_BCL_VBAT_DECODE_CTL1, 0x01, 0x01);
  4044. /* Update MC_SID1 */
  4045. snd_soc_component_update_bits(component,
  4046. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG3, 0x0F,
  4047. rx_priv->bcl_pmic_params.sid);
  4048. /* Update MC_PPID1 */
  4049. snd_soc_component_update_bits(component,
  4050. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG1, 0xFF,
  4051. rx_priv->bcl_pmic_params.ppid);
  4052. break;
  4053. default:
  4054. dev_err(rx_dev, "%s: PMIC ID is invalid %d\n",
  4055. __func__, rx_priv->bcl_pmic_params.id);
  4056. break;
  4057. }
  4058. }
  4059. #endif
  4060. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  4061. {
  4062. struct snd_soc_dapm_context *dapm =
  4063. snd_soc_component_get_dapm(component);
  4064. int ret = 0;
  4065. struct device *rx_dev = NULL;
  4066. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4067. int i;
  4068. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  4069. if (!rx_dev) {
  4070. dev_err(component->dev,
  4071. "%s: null device for macro!\n", __func__);
  4072. return -EINVAL;
  4073. }
  4074. rx_priv = dev_get_drvdata(rx_dev);
  4075. if (!rx_priv) {
  4076. dev_err(component->dev,
  4077. "%s: priv is null for macro!\n", __func__);
  4078. return -EINVAL;
  4079. }
  4080. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  4081. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  4082. if (ret < 0) {
  4083. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  4084. return ret;
  4085. }
  4086. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  4087. ARRAY_SIZE(rx_audio_map));
  4088. if (ret < 0) {
  4089. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  4090. return ret;
  4091. }
  4092. ret = snd_soc_dapm_new_widgets(dapm->card);
  4093. if (ret < 0) {
  4094. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  4095. return ret;
  4096. }
  4097. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  4098. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  4099. if (ret < 0) {
  4100. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  4101. return ret;
  4102. }
  4103. rx_priv->dev_up = true;
  4104. rx_priv->rx0_gain_val = 0;
  4105. rx_priv->rx1_gain_val = 0;
  4106. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  4107. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  4108. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  4109. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  4110. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  4111. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  4112. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  4113. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  4114. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  4115. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  4116. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  4117. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  4118. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  4119. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  4120. snd_soc_dapm_sync(dapm);
  4121. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  4122. snd_soc_component_update_bits(component,
  4123. lpass_cdc_rx_macro_reg_init[i].reg,
  4124. lpass_cdc_rx_macro_reg_init[i].mask,
  4125. lpass_cdc_rx_macro_reg_init[i].val);
  4126. rx_priv->component = component;
  4127. #ifdef CONFIG_BOLERO_VER_2P1
  4128. lpass_cdc_rx_macro_init_bcl_pmic_reg(component);
  4129. #endif
  4130. return 0;
  4131. }
  4132. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  4133. {
  4134. struct device *rx_dev = NULL;
  4135. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4136. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4137. return -EINVAL;
  4138. rx_priv->component = NULL;
  4139. return 0;
  4140. }
  4141. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  4142. {
  4143. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4144. struct platform_device *pdev = NULL;
  4145. struct device_node *node = NULL;
  4146. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  4147. int ret = 0;
  4148. u16 count = 0, ctrl_num = 0;
  4149. struct rx_swr_ctrl_platform_data *platdata = NULL;
  4150. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  4151. bool rx_swr_master_node = false;
  4152. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  4153. lpass_cdc_rx_macro_add_child_devices_work);
  4154. if (!rx_priv) {
  4155. pr_err("%s: Memory for rx_priv does not exist\n",
  4156. __func__);
  4157. return;
  4158. }
  4159. if (!rx_priv->dev) {
  4160. pr_err("%s: RX device does not exist\n", __func__);
  4161. return;
  4162. }
  4163. if(!rx_priv->dev->of_node) {
  4164. dev_err(rx_priv->dev,
  4165. "%s: DT node for RX dev does not exist\n", __func__);
  4166. return;
  4167. }
  4168. platdata = &rx_priv->swr_plat_data;
  4169. rx_priv->child_count = 0;
  4170. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  4171. rx_swr_master_node = false;
  4172. if (strnstr(node->name, "rx_swr_master",
  4173. strlen("rx_swr_master")) != NULL)
  4174. rx_swr_master_node = true;
  4175. if(rx_swr_master_node)
  4176. strlcpy(plat_dev_name, "rx_swr_ctrl",
  4177. (RX_SWR_STRING_LEN - 1));
  4178. else
  4179. strlcpy(plat_dev_name, node->name,
  4180. (RX_SWR_STRING_LEN - 1));
  4181. pdev = platform_device_alloc(plat_dev_name, -1);
  4182. if (!pdev) {
  4183. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  4184. __func__);
  4185. ret = -ENOMEM;
  4186. goto err;
  4187. }
  4188. pdev->dev.parent = rx_priv->dev;
  4189. pdev->dev.of_node = node;
  4190. if (rx_swr_master_node) {
  4191. ret = platform_device_add_data(pdev, platdata,
  4192. sizeof(*platdata));
  4193. if (ret) {
  4194. dev_err(&pdev->dev,
  4195. "%s: cannot add plat data ctrl:%d\n",
  4196. __func__, ctrl_num);
  4197. goto fail_pdev_add;
  4198. }
  4199. temp = krealloc(swr_ctrl_data,
  4200. (ctrl_num + 1) * sizeof(
  4201. struct rx_swr_ctrl_data),
  4202. GFP_KERNEL);
  4203. if (!temp) {
  4204. ret = -ENOMEM;
  4205. goto fail_pdev_add;
  4206. }
  4207. swr_ctrl_data = temp;
  4208. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  4209. ctrl_num++;
  4210. dev_dbg(&pdev->dev,
  4211. "%s: Adding soundwire ctrl device(s)\n",
  4212. __func__);
  4213. rx_priv->swr_ctrl_data = swr_ctrl_data;
  4214. }
  4215. ret = platform_device_add(pdev);
  4216. if (ret) {
  4217. dev_err(&pdev->dev,
  4218. "%s: Cannot add platform device\n",
  4219. __func__);
  4220. goto fail_pdev_add;
  4221. }
  4222. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  4223. rx_priv->pdev_child_devices[
  4224. rx_priv->child_count++] = pdev;
  4225. else
  4226. goto err;
  4227. }
  4228. return;
  4229. fail_pdev_add:
  4230. for (count = 0; count < rx_priv->child_count; count++)
  4231. platform_device_put(rx_priv->pdev_child_devices[count]);
  4232. err:
  4233. return;
  4234. }
  4235. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  4236. {
  4237. memset(ops, 0, sizeof(struct macro_ops));
  4238. ops->init = lpass_cdc_rx_macro_init;
  4239. ops->exit = lpass_cdc_rx_macro_deinit;
  4240. ops->io_base = rx_io_base;
  4241. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  4242. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  4243. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  4244. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  4245. }
  4246. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  4247. {
  4248. struct macro_ops ops = {0};
  4249. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4250. u32 rx_base_addr = 0, muxsel = 0;
  4251. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  4252. int ret = 0;
  4253. #ifdef CONFIG_BOLERO_VER_2P1
  4254. u8 bcl_pmic_params[3];
  4255. #endif
  4256. u32 default_clk_id = 0;
  4257. #ifdef CONFIG_BOLERO_VER_2P6
  4258. struct clk *hifi_fir_clk = NULL;
  4259. #endif
  4260. u32 is_used_rx_swr_gpio = 1;
  4261. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  4262. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  4263. dev_err(&pdev->dev,
  4264. "%s: va-macro not registered yet, defer\n", __func__);
  4265. return -EPROBE_DEFER;
  4266. }
  4267. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  4268. GFP_KERNEL);
  4269. if (!rx_priv)
  4270. return -ENOMEM;
  4271. rx_priv->pre_dev_up = true;
  4272. rx_priv->dev = &pdev->dev;
  4273. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  4274. &rx_base_addr);
  4275. if (ret) {
  4276. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4277. __func__, "reg");
  4278. return ret;
  4279. }
  4280. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  4281. &muxsel);
  4282. if (ret) {
  4283. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4284. __func__, "reg");
  4285. return ret;
  4286. }
  4287. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  4288. &default_clk_id);
  4289. if (ret) {
  4290. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4291. __func__, "qcom,default-clk-id");
  4292. default_clk_id = RX_CORE_CLK;
  4293. }
  4294. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  4295. NULL)) {
  4296. ret = of_property_read_u32(pdev->dev.of_node,
  4297. is_used_rx_swr_gpio_dt,
  4298. &is_used_rx_swr_gpio);
  4299. if (ret) {
  4300. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  4301. __func__, is_used_rx_swr_gpio_dt);
  4302. is_used_rx_swr_gpio = 1;
  4303. }
  4304. }
  4305. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  4306. "qcom,rx-swr-gpios", 0);
  4307. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  4308. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  4309. __func__);
  4310. return -EINVAL;
  4311. }
  4312. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  4313. is_used_rx_swr_gpio) {
  4314. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  4315. __func__);
  4316. return -EPROBE_DEFER;
  4317. }
  4318. msm_cdc_pinctrl_set_wakeup_capable(
  4319. rx_priv->rx_swr_gpio_p, false);
  4320. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  4321. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  4322. if (!rx_io_base) {
  4323. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  4324. return -ENOMEM;
  4325. }
  4326. rx_priv->rx_io_base = rx_io_base;
  4327. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  4328. if (!muxsel_io) {
  4329. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  4330. __func__);
  4331. return -ENOMEM;
  4332. }
  4333. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  4334. rx_priv->reset_swr = true;
  4335. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  4336. lpass_cdc_rx_macro_add_child_devices);
  4337. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  4338. rx_priv->swr_plat_data.read = NULL;
  4339. rx_priv->swr_plat_data.write = NULL;
  4340. rx_priv->swr_plat_data.bulk_write = NULL;
  4341. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  4342. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  4343. rx_priv->swr_plat_data.handle_irq = NULL;
  4344. #ifdef CONFIG_BOLERO_VER_2P1
  4345. ret = of_property_read_u8_array(pdev->dev.of_node,
  4346. "qcom,rx-bcl-pmic-params", bcl_pmic_params,
  4347. sizeof(bcl_pmic_params));
  4348. if (ret) {
  4349. dev_dbg(&pdev->dev, "%s: could not find %s entry in dt\n",
  4350. __func__, "qcom,rx-bcl-pmic-params");
  4351. } else {
  4352. rx_priv->bcl_pmic_params.id = bcl_pmic_params[0];
  4353. rx_priv->bcl_pmic_params.sid = bcl_pmic_params[1];
  4354. rx_priv->bcl_pmic_params.ppid = bcl_pmic_params[2];
  4355. }
  4356. #endif
  4357. rx_priv->clk_id = default_clk_id;
  4358. rx_priv->default_clk_id = default_clk_id;
  4359. ops.clk_id_req = rx_priv->clk_id;
  4360. ops.default_clk_id = default_clk_id;
  4361. #ifdef CONFIG_BOLERO_VER_2P6
  4362. hifi_fir_clk = devm_clk_get(&pdev->dev, "rx_mclk2_2x_clk");
  4363. if (IS_ERR(hifi_fir_clk)) {
  4364. ret = PTR_ERR(hifi_fir_clk);
  4365. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  4366. __func__, "rx_mclk2_2x_clk", ret);
  4367. hifi_fir_clk = NULL;
  4368. }
  4369. rx_priv->hifi_fir_clk = hifi_fir_clk;
  4370. #endif
  4371. rx_priv->is_aux_hpf_on = 1;
  4372. dev_set_drvdata(&pdev->dev, rx_priv);
  4373. mutex_init(&rx_priv->mclk_lock);
  4374. mutex_init(&rx_priv->swr_clk_lock);
  4375. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  4376. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  4377. if (ret) {
  4378. dev_err(&pdev->dev,
  4379. "%s: register macro failed\n", __func__);
  4380. goto err_reg_macro;
  4381. }
  4382. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  4383. pm_runtime_use_autosuspend(&pdev->dev);
  4384. pm_runtime_set_suspended(&pdev->dev);
  4385. pm_suspend_ignore_children(&pdev->dev, true);
  4386. pm_runtime_enable(&pdev->dev);
  4387. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  4388. return 0;
  4389. err_reg_macro:
  4390. mutex_destroy(&rx_priv->mclk_lock);
  4391. mutex_destroy(&rx_priv->swr_clk_lock);
  4392. return ret;
  4393. }
  4394. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  4395. {
  4396. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4397. u16 count = 0;
  4398. rx_priv = dev_get_drvdata(&pdev->dev);
  4399. if (!rx_priv)
  4400. return -EINVAL;
  4401. for (count = 0; count < rx_priv->child_count &&
  4402. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  4403. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  4404. pm_runtime_disable(&pdev->dev);
  4405. pm_runtime_set_suspended(&pdev->dev);
  4406. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  4407. mutex_destroy(&rx_priv->mclk_lock);
  4408. mutex_destroy(&rx_priv->swr_clk_lock);
  4409. kfree(rx_priv->swr_ctrl_data);
  4410. return 0;
  4411. }
  4412. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  4413. {.compatible = "qcom,lpass-cdc-rx-macro"},
  4414. {}
  4415. };
  4416. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  4417. SET_SYSTEM_SLEEP_PM_OPS(
  4418. pm_runtime_force_suspend,
  4419. pm_runtime_force_resume
  4420. )
  4421. SET_RUNTIME_PM_OPS(
  4422. lpass_cdc_runtime_suspend,
  4423. lpass_cdc_runtime_resume,
  4424. NULL
  4425. )
  4426. };
  4427. static struct platform_driver lpass_cdc_rx_macro_driver = {
  4428. .driver = {
  4429. .name = "lpass_cdc_rx_macro",
  4430. .owner = THIS_MODULE,
  4431. .pm = &lpass_cdc_dev_pm_ops,
  4432. .of_match_table = lpass_cdc_rx_macro_dt_match,
  4433. .suppress_bind_attrs = true,
  4434. },
  4435. .probe = lpass_cdc_rx_macro_probe,
  4436. .remove = lpass_cdc_rx_macro_remove,
  4437. };
  4438. module_platform_driver(lpass_cdc_rx_macro_driver);
  4439. MODULE_DESCRIPTION("RX macro driver");
  4440. MODULE_LICENSE("GPL v2");