hal_srng.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "hal_reo.h"
  21. #include "target_type.h"
  22. #include "qdf_module.h"
  23. #include "wcss_version.h"
  24. #ifdef QCA_WIFI_QCA8074
  25. void hal_qca6290_attach(struct hal_soc *hal);
  26. #endif
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca8074_attach(struct hal_soc *hal);
  29. #endif
  30. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  31. void hal_qca8074v2_attach(struct hal_soc *hal);
  32. #endif
  33. #ifdef QCA_WIFI_QCA6390
  34. void hal_qca6390_attach(struct hal_soc *hal);
  35. #endif
  36. #ifdef QCA_WIFI_QCA6490
  37. void hal_qca6490_attach(struct hal_soc *hal);
  38. #endif
  39. #ifdef QCA_WIFI_QCN9000
  40. void hal_qcn9000_attach(struct hal_soc *hal);
  41. #endif
  42. #ifdef QCA_WIFI_QCN6122
  43. void hal_qcn6122_attach(struct hal_soc *hal);
  44. #endif
  45. #ifdef QCA_WIFI_QCA6750
  46. void hal_qca6750_attach(struct hal_soc *hal);
  47. #endif
  48. #ifdef QCA_WIFI_QCA5018
  49. void hal_qca5018_attach(struct hal_soc *hal);
  50. #endif
  51. #ifdef QCA_WIFI_WCN7850
  52. void hal_wcn7850_attach(struct hal_soc *hal);
  53. #endif
  54. #ifdef ENABLE_VERBOSE_DEBUG
  55. bool is_hal_verbose_debug_enabled;
  56. #endif
  57. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  58. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  59. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  60. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  61. #ifdef ENABLE_HAL_REG_WR_HISTORY
  62. struct hal_reg_write_fail_history hal_reg_wr_hist;
  63. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  64. uint32_t offset,
  65. uint32_t wr_val, uint32_t rd_val)
  66. {
  67. struct hal_reg_write_fail_entry *record;
  68. int idx;
  69. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  70. HAL_REG_WRITE_HIST_SIZE);
  71. record = &hal_soc->reg_wr_fail_hist->record[idx];
  72. record->timestamp = qdf_get_log_timestamp();
  73. record->reg_offset = offset;
  74. record->write_val = wr_val;
  75. record->read_val = rd_val;
  76. }
  77. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  78. {
  79. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  80. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  81. }
  82. #else
  83. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  84. {
  85. }
  86. #endif
  87. /**
  88. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  89. * @hal: hal_soc data structure
  90. * @ring_type: type enum describing the ring
  91. * @ring_num: which ring of the ring type
  92. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  93. *
  94. * Return: the ring id or -EINVAL if the ring does not exist.
  95. */
  96. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  97. int ring_num, int mac_id)
  98. {
  99. struct hal_hw_srng_config *ring_config =
  100. HAL_SRNG_CONFIG(hal, ring_type);
  101. int ring_id;
  102. if (ring_num >= ring_config->max_rings) {
  103. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  104. "%s: ring_num exceeded maximum no. of supported rings",
  105. __func__);
  106. /* TODO: This is a programming error. Assert if this happens */
  107. return -EINVAL;
  108. }
  109. if (ring_config->lmac_ring) {
  110. ring_id = ring_config->start_ring_id + ring_num +
  111. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  112. } else {
  113. ring_id = ring_config->start_ring_id + ring_num;
  114. }
  115. return ring_id;
  116. }
  117. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  118. {
  119. /* TODO: Should we allocate srng structures dynamically? */
  120. return &(hal->srng_list[ring_id]);
  121. }
  122. #define HP_OFFSET_IN_REG_START 1
  123. #define OFFSET_FROM_HP_TO_TP 4
  124. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  125. int shadow_config_index,
  126. int ring_type,
  127. int ring_num)
  128. {
  129. struct hal_srng *srng;
  130. int ring_id;
  131. struct hal_hw_srng_config *ring_config =
  132. HAL_SRNG_CONFIG(hal_soc, ring_type);
  133. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  134. if (ring_id < 0)
  135. return;
  136. srng = hal_get_srng(hal_soc, ring_id);
  137. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  138. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  139. + hal_soc->dev_base_addr;
  140. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  141. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  142. shadow_config_index);
  143. } else {
  144. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  145. + hal_soc->dev_base_addr;
  146. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  147. srng->u.src_ring.hp_addr,
  148. hal_soc->dev_base_addr, shadow_config_index);
  149. }
  150. }
  151. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  152. void hal_set_one_target_reg_config(struct hal_soc *hal,
  153. uint32_t target_reg_offset,
  154. int list_index)
  155. {
  156. int i = list_index;
  157. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  158. hal->list_shadow_reg_config[i].target_register =
  159. target_reg_offset;
  160. hal->num_generic_shadow_regs_configured++;
  161. }
  162. qdf_export_symbol(hal_set_one_target_reg_config);
  163. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  164. #define MAX_REO_REMAP_SHADOW_REGS 4
  165. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  166. {
  167. uint32_t target_reg_offset;
  168. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  169. int i;
  170. struct hal_hw_srng_config *srng_config =
  171. &hal->hw_srng_table[WBM2SW_RELEASE];
  172. uint32_t reo_reg_base;
  173. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  174. target_reg_offset =
  175. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  176. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  177. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  178. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  179. }
  180. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  181. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  182. * HAL_IPA_TX_COMP_RING_IDX);
  183. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  184. return QDF_STATUS_SUCCESS;
  185. }
  186. qdf_export_symbol(hal_set_shadow_regs);
  187. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  188. {
  189. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  190. int shadow_config_index = hal->num_shadow_registers_configured;
  191. int i;
  192. int num_regs = hal->num_generic_shadow_regs_configured;
  193. for (i = 0; i < num_regs; i++) {
  194. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  195. hal->shadow_config[shadow_config_index].addr =
  196. hal->list_shadow_reg_config[i].target_register;
  197. hal->list_shadow_reg_config[i].shadow_config_index =
  198. shadow_config_index;
  199. hal->list_shadow_reg_config[i].va =
  200. SHADOW_REGISTER(shadow_config_index) +
  201. (uintptr_t)hal->dev_base_addr;
  202. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  203. hal->shadow_config[shadow_config_index].addr,
  204. SHADOW_REGISTER(shadow_config_index),
  205. shadow_config_index);
  206. shadow_config_index++;
  207. hal->num_shadow_registers_configured++;
  208. }
  209. return QDF_STATUS_SUCCESS;
  210. }
  211. qdf_export_symbol(hal_construct_shadow_regs);
  212. #endif
  213. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  214. int ring_type,
  215. int ring_num)
  216. {
  217. uint32_t target_register;
  218. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  219. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  220. int shadow_config_index = hal->num_shadow_registers_configured;
  221. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  222. QDF_ASSERT(0);
  223. return QDF_STATUS_E_RESOURCES;
  224. }
  225. hal->num_shadow_registers_configured++;
  226. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  227. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  228. *ring_num);
  229. /* if the ring is a dst ring, we need to shadow the tail pointer */
  230. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  231. target_register += OFFSET_FROM_HP_TO_TP;
  232. hal->shadow_config[shadow_config_index].addr = target_register;
  233. /* update hp/tp addr in the hal_soc structure*/
  234. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  235. ring_num);
  236. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  237. target_register,
  238. SHADOW_REGISTER(shadow_config_index),
  239. shadow_config_index,
  240. ring_type, ring_num);
  241. return QDF_STATUS_SUCCESS;
  242. }
  243. qdf_export_symbol(hal_set_one_shadow_config);
  244. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  245. {
  246. int ring_type, ring_num;
  247. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  248. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  249. struct hal_hw_srng_config *srng_config =
  250. &hal->hw_srng_table[ring_type];
  251. if (ring_type == CE_SRC ||
  252. ring_type == CE_DST ||
  253. ring_type == CE_DST_STATUS)
  254. continue;
  255. if (srng_config->lmac_ring)
  256. continue;
  257. for (ring_num = 0; ring_num < srng_config->max_rings;
  258. ring_num++)
  259. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  260. }
  261. return QDF_STATUS_SUCCESS;
  262. }
  263. qdf_export_symbol(hal_construct_srng_shadow_regs);
  264. void hal_get_shadow_config(void *hal_soc,
  265. struct pld_shadow_reg_v2_cfg **shadow_config,
  266. int *num_shadow_registers_configured)
  267. {
  268. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  269. *shadow_config = hal->shadow_config;
  270. *num_shadow_registers_configured =
  271. hal->num_shadow_registers_configured;
  272. }
  273. qdf_export_symbol(hal_get_shadow_config);
  274. static void hal_validate_shadow_register(struct hal_soc *hal,
  275. uint32_t *destination,
  276. uint32_t *shadow_address)
  277. {
  278. unsigned int index;
  279. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  280. int destination_ba_offset =
  281. ((char *)destination) - (char *)hal->dev_base_addr;
  282. index = shadow_address - shadow_0_offset;
  283. if (index >= MAX_SHADOW_REGISTERS) {
  284. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  285. "%s: index %x out of bounds", __func__, index);
  286. goto error;
  287. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  288. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  289. "%s: sanity check failure, expected %x, found %x",
  290. __func__, destination_ba_offset,
  291. hal->shadow_config[index].addr);
  292. goto error;
  293. }
  294. return;
  295. error:
  296. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  297. hal->dev_base_addr, destination, shadow_address,
  298. shadow_0_offset, index);
  299. QDF_BUG(0);
  300. return;
  301. }
  302. static void hal_target_based_configure(struct hal_soc *hal)
  303. {
  304. /**
  305. * Indicate Initialization of srngs to avoid force wake
  306. * as umac power collapse is not enabled yet
  307. */
  308. hal->init_phase = true;
  309. switch (hal->target_type) {
  310. #ifdef QCA_WIFI_QCA6290
  311. case TARGET_TYPE_QCA6290:
  312. hal->use_register_windowing = true;
  313. hal_qca6290_attach(hal);
  314. break;
  315. #endif
  316. #ifdef QCA_WIFI_QCA6390
  317. case TARGET_TYPE_QCA6390:
  318. hal->use_register_windowing = true;
  319. hal_qca6390_attach(hal);
  320. break;
  321. #endif
  322. #ifdef QCA_WIFI_QCA6490
  323. case TARGET_TYPE_QCA6490:
  324. hal->use_register_windowing = true;
  325. hal_qca6490_attach(hal);
  326. break;
  327. #endif
  328. #ifdef QCA_WIFI_QCA6750
  329. case TARGET_TYPE_QCA6750:
  330. hal->use_register_windowing = true;
  331. hal->static_window_map = true;
  332. hal_qca6750_attach(hal);
  333. break;
  334. #endif
  335. #ifdef QCA_WIFI_WCN7850
  336. case TARGET_TYPE_WCN7850:
  337. hal->use_register_windowing = true;
  338. hal_wcn7850_attach(hal);
  339. hal->init_phase = false;
  340. break;
  341. #endif
  342. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  343. case TARGET_TYPE_QCA8074:
  344. hal_qca8074_attach(hal);
  345. break;
  346. #endif
  347. #if defined(QCA_WIFI_QCA8074V2)
  348. case TARGET_TYPE_QCA8074V2:
  349. hal_qca8074v2_attach(hal);
  350. break;
  351. #endif
  352. #if defined(QCA_WIFI_QCA6018)
  353. case TARGET_TYPE_QCA6018:
  354. hal_qca8074v2_attach(hal);
  355. break;
  356. #endif
  357. #if defined(QCA_WIFI_QCN6122)
  358. case TARGET_TYPE_QCN6122:
  359. hal->use_register_windowing = true;
  360. /*
  361. * Static window map is enabled for qcn9000 to use 2mb bar
  362. * size and use multiple windows to write into registers.
  363. */
  364. hal->static_window_map = true;
  365. hal_qcn6122_attach(hal);
  366. break;
  367. #endif
  368. #ifdef QCA_WIFI_QCN9000
  369. case TARGET_TYPE_QCN9000:
  370. hal->use_register_windowing = true;
  371. /*
  372. * Static window map is enabled for qcn9000 to use 2mb bar
  373. * size and use multiple windows to write into registers.
  374. */
  375. hal->static_window_map = true;
  376. hal_qcn9000_attach(hal);
  377. break;
  378. #endif
  379. #ifdef QCA_WIFI_QCA5018
  380. case TARGET_TYPE_QCA5018:
  381. hal->use_register_windowing = true;
  382. hal->static_window_map = true;
  383. hal_qca5018_attach(hal);
  384. break;
  385. #endif
  386. default:
  387. break;
  388. }
  389. }
  390. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  391. {
  392. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  393. struct hif_target_info *tgt_info =
  394. hif_get_target_info_handle(hal_soc->hif_handle);
  395. return tgt_info->target_type;
  396. }
  397. qdf_export_symbol(hal_get_target_type);
  398. #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  399. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  400. /**
  401. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  402. * @hal: hal_soc pointer
  403. *
  404. * Return: true if throughput is high, else false.
  405. */
  406. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  407. {
  408. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  409. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  410. }
  411. static inline
  412. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  413. char *buf, qdf_size_t size)
  414. {
  415. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  416. srng->wstats.enqueues, srng->wstats.dequeues,
  417. srng->wstats.coalesces, srng->wstats.direct);
  418. return buf;
  419. }
  420. /* bytes for local buffer */
  421. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  422. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  423. {
  424. struct hal_srng *srng;
  425. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  426. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  427. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  428. hal_debug("SW2TCL1: %s",
  429. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  430. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  431. hal_debug("WBM2SW0: %s",
  432. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  433. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  434. hal_debug("REO2SW1: %s",
  435. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  436. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  437. hal_debug("REO2SW2: %s",
  438. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  439. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  440. hal_debug("REO2SW3: %s",
  441. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  442. }
  443. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  444. /**
  445. * hal_dump_tcl_stats() - dump the TCL reg write stats
  446. * @hal: hal_soc pointer
  447. *
  448. * Return: None
  449. */
  450. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  451. {
  452. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  453. uint32_t *hist = hal->tcl_stats.sched_delay;
  454. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  455. hal_debug("TCL: %s sched-delay hist %u %u %u %u",
  456. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)),
  457. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  458. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  459. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  460. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  461. hal_debug("wq_dly %u wq_dir %u tim_enq %u tim_dir %u enq_tim_cnt %u dir_tim_cnt %u rst_tim_cnt %u",
  462. hal->tcl_stats.wq_delayed,
  463. hal->tcl_stats.wq_direct,
  464. hal->tcl_stats.timer_enq,
  465. hal->tcl_stats.timer_direct,
  466. hal->tcl_stats.enq_timer_set,
  467. hal->tcl_stats.direct_timer_set,
  468. hal->tcl_stats.timer_reset);
  469. }
  470. #else
  471. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  472. {
  473. }
  474. #endif
  475. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  476. {
  477. uint32_t *hist;
  478. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  479. hist = hal->stats.wstats.sched_delay;
  480. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  481. qdf_atomic_read(&hal->stats.wstats.enqueues),
  482. hal->stats.wstats.dequeues,
  483. qdf_atomic_read(&hal->stats.wstats.coalesces),
  484. qdf_atomic_read(&hal->stats.wstats.direct),
  485. qdf_atomic_read(&hal->stats.wstats.q_depth),
  486. hal->stats.wstats.max_q_depth,
  487. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  488. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  489. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  490. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  491. hal_dump_tcl_stats(hal);
  492. }
  493. int hal_get_reg_write_pending_work(void *hal_soc)
  494. {
  495. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  496. return qdf_atomic_read(&hal->active_work_cnt);
  497. }
  498. #endif
  499. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  500. #ifdef MEMORY_DEBUG
  501. /*
  502. * Length of the queue(array) used to hold delayed register writes.
  503. * Must be a multiple of 2.
  504. */
  505. #define HAL_REG_WRITE_QUEUE_LEN 128
  506. #else
  507. #define HAL_REG_WRITE_QUEUE_LEN 32
  508. #endif
  509. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  510. /**
  511. * hal_process_reg_write_q_elem() - process a regiter write queue element
  512. * @hal: hal_soc pointer
  513. * @q_elem: pointer to hal regiter write queue element
  514. *
  515. * Return: The value which was written to the address
  516. */
  517. static uint32_t
  518. hal_process_reg_write_q_elem(struct hal_soc *hal,
  519. struct hal_reg_write_q_elem *q_elem)
  520. {
  521. struct hal_srng *srng = q_elem->srng;
  522. uint32_t write_val;
  523. SRNG_LOCK(&srng->lock);
  524. srng->reg_write_in_progress = false;
  525. srng->wstats.dequeues++;
  526. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  527. write_val = srng->u.src_ring.hp;
  528. q_elem->dequeue_val = write_val;
  529. q_elem->valid = 0;
  530. SRNG_UNLOCK(&srng->lock);
  531. hal_write_address_32_mb(hal,
  532. srng->u.src_ring.hp_addr,
  533. write_val, false);
  534. } else {
  535. write_val = srng->u.dst_ring.tp;
  536. q_elem->dequeue_val = write_val;
  537. q_elem->valid = 0;
  538. SRNG_UNLOCK(&srng->lock);
  539. hal_write_address_32_mb(hal,
  540. srng->u.dst_ring.tp_addr,
  541. write_val, false);
  542. }
  543. return write_val;
  544. }
  545. #else
  546. /**
  547. * hal_process_reg_write_q_elem() - process a regiter write queue element
  548. * @hal: hal_soc pointer
  549. * @q_elem: pointer to hal regiter write queue element
  550. *
  551. * Return: The value which was written to the address
  552. */
  553. static uint32_t
  554. hal_process_reg_write_q_elem(struct hal_soc *hal,
  555. struct hal_reg_write_q_elem *q_elem)
  556. {
  557. struct hal_srng *srng = q_elem->srng;
  558. uint32_t write_val;
  559. SRNG_LOCK(&srng->lock);
  560. srng->reg_write_in_progress = false;
  561. srng->wstats.dequeues++;
  562. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  563. q_elem->dequeue_val = srng->u.src_ring.hp;
  564. hal_write_address_32_mb(hal,
  565. srng->u.src_ring.hp_addr,
  566. srng->u.src_ring.hp, false);
  567. write_val = srng->u.src_ring.hp;
  568. } else {
  569. q_elem->dequeue_val = srng->u.dst_ring.tp;
  570. hal_write_address_32_mb(hal,
  571. srng->u.dst_ring.tp_addr,
  572. srng->u.dst_ring.tp, false);
  573. write_val = srng->u.dst_ring.tp;
  574. }
  575. q_elem->valid = 0;
  576. SRNG_UNLOCK(&srng->lock);
  577. return write_val;
  578. }
  579. #endif
  580. /**
  581. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  582. * @hal: hal_soc pointer
  583. * @delay: delay in us
  584. *
  585. * Return: None
  586. */
  587. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  588. uint64_t delay_us)
  589. {
  590. uint32_t *hist;
  591. hist = hal->stats.wstats.sched_delay;
  592. if (delay_us < 100)
  593. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  594. else if (delay_us < 1000)
  595. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  596. else if (delay_us < 5000)
  597. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  598. else
  599. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  600. }
  601. /**
  602. * hal_reg_write_work() - Worker to process delayed writes
  603. * @arg: hal_soc pointer
  604. *
  605. * Return: None
  606. */
  607. static void hal_reg_write_work(void *arg)
  608. {
  609. int32_t q_depth, write_val;
  610. struct hal_soc *hal = arg;
  611. struct hal_reg_write_q_elem *q_elem;
  612. uint64_t delta_us;
  613. uint8_t ring_id;
  614. uint32_t *addr;
  615. uint32_t num_processed = 0;
  616. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  617. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  618. /* Make sure q_elem consistent in the memory for multi-cores */
  619. qdf_rmb();
  620. if (!q_elem->valid)
  621. return;
  622. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  623. if (q_depth > hal->stats.wstats.max_q_depth)
  624. hal->stats.wstats.max_q_depth = q_depth;
  625. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  626. hal->stats.wstats.prevent_l1_fails++;
  627. return;
  628. }
  629. while (true) {
  630. qdf_rmb();
  631. if (!q_elem->valid)
  632. break;
  633. q_elem->dequeue_time = qdf_get_log_timestamp();
  634. ring_id = q_elem->srng->ring_id;
  635. addr = q_elem->addr;
  636. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  637. q_elem->enqueue_time);
  638. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  639. hal->stats.wstats.dequeues++;
  640. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  641. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  642. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  643. hal->read_idx, ring_id, addr, write_val, delta_us);
  644. num_processed++;
  645. hal->read_idx = (hal->read_idx + 1) &
  646. (HAL_REG_WRITE_QUEUE_LEN - 1);
  647. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  648. }
  649. hif_allow_link_low_power_states(hal->hif_handle);
  650. /*
  651. * Decrement active_work_cnt by the number of elements dequeued after
  652. * hif_allow_link_low_power_states.
  653. * This makes sure that hif_try_complete_tasks will wait till we make
  654. * the bus access in hif_allow_link_low_power_states. This will avoid
  655. * race condition between delayed register worker and bus suspend
  656. * (system suspend or runtime suspend).
  657. *
  658. * The following decrement should be done at the end!
  659. */
  660. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  661. }
  662. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  663. {
  664. qdf_cancel_work(&hal->reg_write_work);
  665. }
  666. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  667. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  668. }
  669. /**
  670. * hal_reg_write_enqueue() - enqueue register writes into kworker
  671. * @hal_soc: hal_soc pointer
  672. * @srng: srng pointer
  673. * @addr: iomem address of regiter
  674. * @value: value to be written to iomem address
  675. *
  676. * This function executes from within the SRNG LOCK
  677. *
  678. * Return: None
  679. */
  680. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  681. struct hal_srng *srng,
  682. void __iomem *addr,
  683. uint32_t value)
  684. {
  685. struct hal_reg_write_q_elem *q_elem;
  686. uint32_t write_idx;
  687. if (srng->reg_write_in_progress) {
  688. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  689. srng->ring_id, addr, value);
  690. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  691. srng->wstats.coalesces++;
  692. return;
  693. }
  694. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  695. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  696. q_elem = &hal_soc->reg_write_queue[write_idx];
  697. if (q_elem->valid) {
  698. hal_err("queue full");
  699. QDF_BUG(0);
  700. return;
  701. }
  702. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  703. srng->wstats.enqueues++;
  704. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  705. q_elem->srng = srng;
  706. q_elem->addr = addr;
  707. q_elem->enqueue_val = value;
  708. q_elem->enqueue_time = qdf_get_log_timestamp();
  709. /*
  710. * Before the valid flag is set to true, all the other
  711. * fields in the q_elem needs to be updated in memory.
  712. * Else there is a chance that the dequeuing worker thread
  713. * might read stale entries and process incorrect srng.
  714. */
  715. qdf_wmb();
  716. q_elem->valid = true;
  717. /*
  718. * After all other fields in the q_elem has been updated
  719. * in memory successfully, the valid flag needs to be updated
  720. * in memory in time too.
  721. * Else there is a chance that the dequeuing worker thread
  722. * might read stale valid flag and the work will be bypassed
  723. * for this round. And if there is no other work scheduled
  724. * later, this hal register writing won't be updated any more.
  725. */
  726. qdf_wmb();
  727. srng->reg_write_in_progress = true;
  728. qdf_atomic_inc(&hal_soc->active_work_cnt);
  729. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  730. write_idx, srng->ring_id, addr, value);
  731. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  732. &hal_soc->reg_write_work);
  733. }
  734. /**
  735. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  736. * @hal_soc: hal_soc pointer
  737. *
  738. * Initialize main data structures to process register writes in a delayed
  739. * workqueue.
  740. *
  741. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  742. */
  743. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  744. {
  745. hal->reg_write_wq =
  746. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  747. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  748. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  749. sizeof(*hal->reg_write_queue));
  750. if (!hal->reg_write_queue) {
  751. hal_err("unable to allocate memory");
  752. QDF_BUG(0);
  753. return QDF_STATUS_E_NOMEM;
  754. }
  755. /* Initial value of indices */
  756. hal->read_idx = 0;
  757. qdf_atomic_set(&hal->write_idx, -1);
  758. return QDF_STATUS_SUCCESS;
  759. }
  760. /**
  761. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  762. * @hal_soc: hal_soc pointer
  763. *
  764. * De-initialize main data structures to process register writes in a delayed
  765. * workqueue.
  766. *
  767. * Return: None
  768. */
  769. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  770. {
  771. __hal_flush_reg_write_work(hal);
  772. qdf_flush_workqueue(0, hal->reg_write_wq);
  773. qdf_destroy_workqueue(0, hal->reg_write_wq);
  774. qdf_mem_free(hal->reg_write_queue);
  775. }
  776. #else
  777. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  778. {
  779. return QDF_STATUS_SUCCESS;
  780. }
  781. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  782. {
  783. }
  784. #endif
  785. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  786. #ifdef MEMORY_DEBUG
  787. /**
  788. * hal_reg_write_get_timestamp() - Function to get the timestamp
  789. *
  790. * Return: return present simestamp
  791. */
  792. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  793. {
  794. return qdf_get_log_timestamp();
  795. }
  796. /**
  797. * hal_del_reg_write_ts_usecs() - Convert the timestamp to micro secs
  798. * @ts: timestamp value to be converted
  799. *
  800. * Return: return the timestamp in micro secs
  801. */
  802. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  803. {
  804. return qdf_log_timestamp_to_usecs(ts);
  805. }
  806. /**
  807. * hal_tcl_write_fill_sched_delay_hist() - fill TCL reg write delay histogram
  808. * @hal: hal_soc pointer
  809. * @delay: delay in us
  810. *
  811. * Return: None
  812. */
  813. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  814. {
  815. uint32_t *hist;
  816. uint32_t delay_us;
  817. hal->tcl_stats.deq_time = hal_del_reg_write_get_ts();
  818. delay_us = hal_del_reg_write_ts_usecs(hal->tcl_stats.deq_time -
  819. hal->tcl_stats.enq_time);
  820. hist = hal->tcl_stats.sched_delay;
  821. if (delay_us < 100)
  822. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  823. else if (delay_us < 1000)
  824. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  825. else if (delay_us < 5000)
  826. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  827. else
  828. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  829. }
  830. #else
  831. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  832. {
  833. return 0;
  834. }
  835. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  836. {
  837. return 0;
  838. }
  839. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  840. {
  841. }
  842. #endif
  843. /**
  844. * hal_tcl_reg_write_work() - Worker to process delayed SW2TCL1 writes
  845. * @arg: hal_soc pointer
  846. *
  847. * Return: None
  848. */
  849. static void hal_tcl_reg_write_work(void *arg)
  850. {
  851. struct hal_soc *hal = arg;
  852. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  853. SRNG_LOCK(&srng->lock);
  854. srng->wstats.dequeues++;
  855. hal_tcl_write_fill_sched_delay_hist(hal);
  856. /*
  857. * During the tranition of low to high tput scenario, reg write moves
  858. * from delayed to direct write context, there is a little chance that
  859. * worker thread gets scheduled later than direct context write which
  860. * already wrote the latest HP value. This check can catch that case
  861. * and avoid the repetitive writing of the same HP value.
  862. */
  863. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  864. srng->last_reg_wr_val = srng->u.src_ring.hp;
  865. if (hal->tcl_direct) {
  866. /*
  867. * TCL reg writes have been moved to direct context and
  868. * the assumption is that PCIe bus stays in Active state
  869. * during high tput, hence its fine to write the HP
  870. * while the SRNG_LOCK is being held.
  871. */
  872. hal->tcl_stats.wq_direct++;
  873. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  874. srng->last_reg_wr_val, false);
  875. srng->reg_write_in_progress = false;
  876. SRNG_UNLOCK(&srng->lock);
  877. } else {
  878. /*
  879. * TCL reg write to happen in delayed context,
  880. * write operation might take time due to possibility of
  881. * PCIe bus stays in low power state during low tput,
  882. * Hence release the SRNG_LOCK before writing.
  883. */
  884. hal->tcl_stats.wq_delayed++;
  885. srng->reg_write_in_progress = false;
  886. SRNG_UNLOCK(&srng->lock);
  887. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  888. srng->last_reg_wr_val, false);
  889. }
  890. } else {
  891. srng->reg_write_in_progress = false;
  892. SRNG_UNLOCK(&srng->lock);
  893. }
  894. /*
  895. * Decrement active_work_cnt to make sure that hif_try_complete_tasks
  896. * will wait. This will avoid race condition between delayed register
  897. * worker and bus suspend (system suspend or runtime suspend).
  898. *
  899. * The following decrement should be done at the end!
  900. */
  901. qdf_atomic_dec(&hal->active_work_cnt);
  902. qdf_atomic_set(&hal->tcl_work_active, false);
  903. }
  904. static void __hal_flush_tcl_reg_write_work(struct hal_soc *hal)
  905. {
  906. qdf_cancel_work(&hal->tcl_reg_write_work);
  907. }
  908. /**
  909. * hal_tcl_reg_write_enqueue() - enqueue TCL register writes into kworker
  910. * @hal_soc: hal_soc pointer
  911. * @srng: srng pointer
  912. * @addr: iomem address of regiter
  913. * @value: value to be written to iomem address
  914. *
  915. * This function executes from within the SRNG LOCK
  916. *
  917. * Return: None
  918. */
  919. static void hal_tcl_reg_write_enqueue(struct hal_soc *hal_soc,
  920. struct hal_srng *srng,
  921. void __iomem *addr,
  922. uint32_t value)
  923. {
  924. hal_soc->tcl_stats.enq_time = hal_del_reg_write_get_ts();
  925. if (qdf_queue_work(hal_soc->qdf_dev, hal_soc->tcl_reg_write_wq,
  926. &hal_soc->tcl_reg_write_work)) {
  927. srng->reg_write_in_progress = true;
  928. qdf_atomic_inc(&hal_soc->active_work_cnt);
  929. qdf_atomic_set(&hal_soc->tcl_work_active, true);
  930. srng->wstats.enqueues++;
  931. } else {
  932. hal_soc->tcl_stats.enq_timer_set++;
  933. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  934. }
  935. }
  936. /**
  937. * hal_tcl_reg_write_timer() - timer handler to take care of pending TCL writes
  938. * @arg: srng handle
  939. *
  940. * This function handles the pending TCL reg writes missed due to the previous
  941. * scheduled worker running.
  942. *
  943. * Return: None
  944. */
  945. static void hal_tcl_reg_write_timer(void *arg)
  946. {
  947. hal_ring_handle_t srng_hdl = arg;
  948. struct hal_srng *srng;
  949. struct hal_soc *hal;
  950. srng = (struct hal_srng *)srng_hdl;
  951. hal = srng->hal_soc;
  952. if (hif_pm_runtime_get(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE,
  953. true)) {
  954. hal_srng_set_event(srng_hdl, HAL_SRNG_FLUSH_EVENT);
  955. hal_srng_inc_flush_cnt(srng_hdl);
  956. goto fail;
  957. }
  958. SRNG_LOCK(&srng->lock);
  959. if (hal->tcl_direct) {
  960. /*
  961. * Due to the previous scheduled worker still running,
  962. * direct reg write cannot be performed, so posted the
  963. * pending writes to timer context.
  964. */
  965. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  966. srng->last_reg_wr_val = srng->u.src_ring.hp;
  967. srng->wstats.direct++;
  968. hal->tcl_stats.timer_direct++;
  969. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  970. srng->last_reg_wr_val, false);
  971. }
  972. } else {
  973. /*
  974. * Due to the previous scheduled worker still running,
  975. * queue_work from delayed context would fail,
  976. * so retry from timer context.
  977. */
  978. if (qdf_queue_work(hal->qdf_dev, hal->tcl_reg_write_wq,
  979. &hal->tcl_reg_write_work)) {
  980. srng->reg_write_in_progress = true;
  981. qdf_atomic_inc(&hal->active_work_cnt);
  982. qdf_atomic_set(&hal->tcl_work_active, true);
  983. srng->wstats.enqueues++;
  984. hal->tcl_stats.timer_enq++;
  985. } else {
  986. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  987. hal->tcl_stats.timer_reset++;
  988. qdf_timer_mod(&hal->tcl_reg_write_timer, 1);
  989. }
  990. }
  991. }
  992. SRNG_UNLOCK(&srng->lock);
  993. hif_pm_runtime_put(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE);
  994. fail:
  995. return;
  996. }
  997. /**
  998. * hal_delayed_tcl_reg_write_init() - Initialization for delayed TCL reg writes
  999. * @hal_soc: hal_soc pointer
  1000. *
  1001. * Initialize main data structures to process TCL register writes in a delayed
  1002. * workqueue.
  1003. *
  1004. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  1005. */
  1006. static QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1007. {
  1008. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  1009. QDF_STATUS status;
  1010. hal->tcl_reg_write_wq =
  1011. qdf_alloc_high_prior_ordered_workqueue("hal_tcl_reg_write_wq");
  1012. if (!hal->tcl_reg_write_wq) {
  1013. hal_err("hal_tcl_reg_write_wq alloc failed");
  1014. return QDF_STATUS_E_NOMEM;
  1015. }
  1016. status = qdf_create_work(0, &hal->tcl_reg_write_work,
  1017. hal_tcl_reg_write_work, hal);
  1018. if (status != QDF_STATUS_SUCCESS) {
  1019. hal_err("tcl_reg_write_work create failed");
  1020. goto fail;
  1021. }
  1022. status = qdf_timer_init(hal->qdf_dev, &hal->tcl_reg_write_timer,
  1023. hal_tcl_reg_write_timer, (void *)srng,
  1024. QDF_TIMER_TYPE_WAKE_APPS);
  1025. if (status != QDF_STATUS_SUCCESS) {
  1026. hal_err("tcl_reg_write_timer init failed");
  1027. goto fail;
  1028. }
  1029. qdf_atomic_init(&hal->tcl_work_active);
  1030. return QDF_STATUS_SUCCESS;
  1031. fail:
  1032. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1033. return status;
  1034. }
  1035. /**
  1036. * hal_delayed_tcl_reg_write_deinit() - De-Initialize delayed TCL reg writes
  1037. * @hal_soc: hal_soc pointer
  1038. *
  1039. * De-initialize main data structures to process TCL register writes in a
  1040. * delayed workqueue.
  1041. *
  1042. * Return: None
  1043. */
  1044. static void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1045. {
  1046. qdf_timer_stop(&hal->tcl_reg_write_timer);
  1047. qdf_timer_free(&hal->tcl_reg_write_timer);
  1048. __hal_flush_tcl_reg_write_work(hal);
  1049. qdf_flush_workqueue(0, hal->tcl_reg_write_wq);
  1050. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1051. }
  1052. #else
  1053. static inline QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1054. {
  1055. return QDF_STATUS_SUCCESS;
  1056. }
  1057. static inline void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1058. {
  1059. }
  1060. #endif
  1061. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  1062. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1063. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1064. struct hal_srng *srng,
  1065. void __iomem *addr,
  1066. uint32_t value)
  1067. {
  1068. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1069. }
  1070. #else
  1071. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1072. struct hal_srng *srng,
  1073. void __iomem *addr,
  1074. uint32_t value)
  1075. {
  1076. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1077. srng->wstats.direct++;
  1078. hal_write_address_32_mb(hal_soc, addr, value, false);
  1079. }
  1080. #endif
  1081. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1082. struct hal_srng *srng,
  1083. void __iomem *addr,
  1084. uint32_t value)
  1085. {
  1086. switch (srng->ring_type) {
  1087. case TCL_DATA:
  1088. if (hal_is_reg_write_tput_level_high(hal_soc)) {
  1089. hal_soc->tcl_direct = true;
  1090. if (srng->reg_write_in_progress ||
  1091. !qdf_atomic_read(&hal_soc->tcl_work_active)) {
  1092. /*
  1093. * Now the delayed work have either completed
  1094. * the writing or not even scheduled and would
  1095. * be blocked by SRNG_LOCK, hence it is fine to
  1096. * do direct write here.
  1097. */
  1098. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1099. srng->wstats.direct++;
  1100. hal_write_address_32_mb(hal_soc, addr,
  1101. srng->last_reg_wr_val,
  1102. false);
  1103. } else {
  1104. hal_soc->tcl_stats.direct_timer_set++;
  1105. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  1106. }
  1107. } else {
  1108. hal_soc->tcl_direct = false;
  1109. if (srng->reg_write_in_progress) {
  1110. srng->wstats.coalesces++;
  1111. } else {
  1112. hal_tcl_reg_write_enqueue(hal_soc, srng,
  1113. addr, value);
  1114. }
  1115. }
  1116. break;
  1117. case CE_SRC:
  1118. case CE_DST:
  1119. case CE_DST_STATUS:
  1120. hal_reg_write_enqueue_v2(hal_soc, srng, addr, value);
  1121. break;
  1122. default:
  1123. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1124. srng->wstats.direct++;
  1125. hal_write_address_32_mb(hal_soc, addr, value, false);
  1126. break;
  1127. }
  1128. }
  1129. #else
  1130. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1131. #ifdef QCA_WIFI_QCA6750
  1132. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1133. struct hal_srng *srng,
  1134. void __iomem *addr,
  1135. uint32_t value)
  1136. {
  1137. uint8_t vote_access;
  1138. switch (srng->ring_type) {
  1139. case CE_SRC:
  1140. case CE_DST:
  1141. case CE_DST_STATUS:
  1142. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  1143. HIF_EP_VOTE_NONDP_ACCESS);
  1144. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  1145. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  1146. PLD_MHI_STATE_L0 ==
  1147. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  1148. hal_write_address_32_mb(hal_soc, addr, value, false);
  1149. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1150. srng->wstats.direct++;
  1151. } else {
  1152. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1153. }
  1154. break;
  1155. default:
  1156. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  1157. HIF_EP_VOTE_DP_ACCESS) ==
  1158. HIF_EP_VOTE_ACCESS_DISABLE ||
  1159. hal_is_reg_write_tput_level_high(hal_soc) ||
  1160. PLD_MHI_STATE_L0 ==
  1161. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  1162. hal_write_address_32_mb(hal_soc, addr, value, false);
  1163. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1164. srng->wstats.direct++;
  1165. } else {
  1166. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1167. }
  1168. break;
  1169. }
  1170. }
  1171. #else
  1172. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1173. struct hal_srng *srng,
  1174. void __iomem *addr,
  1175. uint32_t value)
  1176. {
  1177. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  1178. hal_is_reg_write_tput_level_high(hal_soc)) {
  1179. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1180. srng->wstats.direct++;
  1181. hal_write_address_32_mb(hal_soc, addr, value, false);
  1182. } else {
  1183. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1184. }
  1185. }
  1186. #endif
  1187. #endif
  1188. #endif
  1189. /**
  1190. * hal_attach - Initialize HAL layer
  1191. * @hif_handle: Opaque HIF handle
  1192. * @qdf_dev: QDF device
  1193. *
  1194. * Return: Opaque HAL SOC handle
  1195. * NULL on failure (if given ring is not available)
  1196. *
  1197. * This function should be called as part of HIF initialization (for accessing
  1198. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1199. *
  1200. */
  1201. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1202. {
  1203. struct hal_soc *hal;
  1204. int i;
  1205. hal = qdf_mem_malloc(sizeof(*hal));
  1206. if (!hal) {
  1207. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1208. "%s: hal_soc allocation failed", __func__);
  1209. goto fail0;
  1210. }
  1211. hal->hif_handle = hif_handle;
  1212. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1213. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1214. hal->qdf_dev = qdf_dev;
  1215. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1216. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1217. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1218. if (!hal->shadow_rdptr_mem_paddr) {
  1219. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1220. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1221. __func__);
  1222. goto fail1;
  1223. }
  1224. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1225. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1226. hal->shadow_wrptr_mem_vaddr =
  1227. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1228. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1229. &(hal->shadow_wrptr_mem_paddr));
  1230. if (!hal->shadow_wrptr_mem_vaddr) {
  1231. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1232. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1233. __func__);
  1234. goto fail2;
  1235. }
  1236. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1237. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1238. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1239. hal->srng_list[i].initialized = 0;
  1240. hal->srng_list[i].ring_id = i;
  1241. }
  1242. qdf_spinlock_create(&hal->register_access_lock);
  1243. hal->register_window = 0;
  1244. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1245. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  1246. if (!hal->ops) {
  1247. hal_err("unable to allocable memory for HAL ops");
  1248. goto fail3;
  1249. }
  1250. hal_target_based_configure(hal);
  1251. hal_reg_write_fail_history_init(hal);
  1252. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1253. qdf_atomic_init(&hal->active_work_cnt);
  1254. hal_delayed_reg_write_init(hal);
  1255. hal_delayed_tcl_reg_write_init(hal);
  1256. return (void *)hal;
  1257. fail3:
  1258. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1259. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1260. HAL_MAX_LMAC_RINGS,
  1261. hal->shadow_wrptr_mem_vaddr,
  1262. hal->shadow_wrptr_mem_paddr, 0);
  1263. fail2:
  1264. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1265. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1266. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1267. fail1:
  1268. qdf_mem_free(hal);
  1269. fail0:
  1270. return NULL;
  1271. }
  1272. qdf_export_symbol(hal_attach);
  1273. /**
  1274. * hal_mem_info - Retrieve hal memory base address
  1275. *
  1276. * @hal_soc: Opaque HAL SOC handle
  1277. * @mem: pointer to structure to be updated with hal mem info
  1278. */
  1279. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1280. {
  1281. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1282. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1283. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1284. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1285. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1286. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1287. hif_read_phy_mem_base((void *)hal->hif_handle,
  1288. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1289. return;
  1290. }
  1291. qdf_export_symbol(hal_get_meminfo);
  1292. /**
  1293. * hal_detach - Detach HAL layer
  1294. * @hal_soc: HAL SOC handle
  1295. *
  1296. * Return: Opaque HAL SOC handle
  1297. * NULL on failure (if given ring is not available)
  1298. *
  1299. * This function should be called as part of HIF initialization (for accessing
  1300. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1301. *
  1302. */
  1303. extern void hal_detach(void *hal_soc)
  1304. {
  1305. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1306. hal_delayed_reg_write_deinit(hal);
  1307. hal_delayed_tcl_reg_write_deinit(hal);
  1308. qdf_mem_free(hal->ops);
  1309. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1310. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1311. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1312. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1313. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1314. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1315. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1316. qdf_mem_free(hal);
  1317. return;
  1318. }
  1319. qdf_export_symbol(hal_detach);
  1320. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1321. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1322. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1323. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1324. /**
  1325. * hal_ce_dst_setup - Initialize CE destination ring registers
  1326. * @hal_soc: HAL SOC handle
  1327. * @srng: SRNG ring pointer
  1328. */
  1329. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1330. int ring_num)
  1331. {
  1332. uint32_t reg_val = 0;
  1333. uint32_t reg_addr;
  1334. struct hal_hw_srng_config *ring_config =
  1335. HAL_SRNG_CONFIG(hal, CE_DST);
  1336. /* set DEST_MAX_LENGTH according to ce assignment */
  1337. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1338. ring_config->reg_start[R0_INDEX] +
  1339. (ring_num * ring_config->reg_size[R0_INDEX]));
  1340. reg_val = HAL_REG_READ(hal, reg_addr);
  1341. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1342. reg_val |= srng->u.dst_ring.max_buffer_length &
  1343. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1344. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1345. if (srng->prefetch_timer) {
  1346. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1347. ring_config->reg_start[R0_INDEX] +
  1348. (ring_num * ring_config->reg_size[R0_INDEX]));
  1349. reg_val = HAL_REG_READ(hal, reg_addr);
  1350. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1351. reg_val |= srng->prefetch_timer;
  1352. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1353. reg_val = HAL_REG_READ(hal, reg_addr);
  1354. }
  1355. }
  1356. /**
  1357. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1358. * @hal: HAL SOC handle
  1359. * @read: boolean value to indicate if read or write
  1360. * @ix0: pointer to store IX0 reg value
  1361. * @ix1: pointer to store IX1 reg value
  1362. * @ix2: pointer to store IX2 reg value
  1363. * @ix3: pointer to store IX3 reg value
  1364. */
  1365. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1366. uint32_t *ix0, uint32_t *ix1,
  1367. uint32_t *ix2, uint32_t *ix3)
  1368. {
  1369. uint32_t reg_offset;
  1370. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1371. uint32_t reo_reg_base;
  1372. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1373. if (read) {
  1374. if (ix0) {
  1375. reg_offset =
  1376. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1377. reo_reg_base);
  1378. *ix0 = HAL_REG_READ(hal, reg_offset);
  1379. }
  1380. if (ix1) {
  1381. reg_offset =
  1382. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1383. reo_reg_base);
  1384. *ix1 = HAL_REG_READ(hal, reg_offset);
  1385. }
  1386. if (ix2) {
  1387. reg_offset =
  1388. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1389. reo_reg_base);
  1390. *ix2 = HAL_REG_READ(hal, reg_offset);
  1391. }
  1392. if (ix3) {
  1393. reg_offset =
  1394. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1395. reo_reg_base);
  1396. *ix3 = HAL_REG_READ(hal, reg_offset);
  1397. }
  1398. } else {
  1399. if (ix0) {
  1400. reg_offset =
  1401. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1402. reo_reg_base);
  1403. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1404. *ix0, true);
  1405. }
  1406. if (ix1) {
  1407. reg_offset =
  1408. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1409. reo_reg_base);
  1410. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1411. *ix1, true);
  1412. }
  1413. if (ix2) {
  1414. reg_offset =
  1415. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1416. reo_reg_base);
  1417. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1418. *ix2, true);
  1419. }
  1420. if (ix3) {
  1421. reg_offset =
  1422. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1423. reo_reg_base);
  1424. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1425. *ix3, true);
  1426. }
  1427. }
  1428. }
  1429. /**
  1430. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1431. * pointer and confirm that write went through by reading back the value
  1432. * @srng: sring pointer
  1433. * @paddr: physical address
  1434. *
  1435. * Return: None
  1436. */
  1437. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1438. {
  1439. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1440. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1441. }
  1442. /**
  1443. * hal_srng_dst_init_hp() - Initialize destination ring head
  1444. * pointer
  1445. * @hal_soc: hal_soc handle
  1446. * @srng: sring pointer
  1447. * @vaddr: virtual address
  1448. */
  1449. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1450. struct hal_srng *srng,
  1451. uint32_t *vaddr)
  1452. {
  1453. uint32_t reg_offset;
  1454. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1455. if (!srng)
  1456. return;
  1457. srng->u.dst_ring.hp_addr = vaddr;
  1458. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1459. HAL_REG_WRITE_CONFIRM_RETRY(
  1460. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1461. if (vaddr) {
  1462. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1463. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1464. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1465. (void *)srng->u.dst_ring.hp_addr,
  1466. srng->u.dst_ring.cached_hp,
  1467. *srng->u.dst_ring.hp_addr);
  1468. }
  1469. }
  1470. /**
  1471. * hal_srng_hw_init - Private function to initialize SRNG HW
  1472. * @hal_soc: HAL SOC handle
  1473. * @srng: SRNG ring pointer
  1474. */
  1475. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1476. struct hal_srng *srng)
  1477. {
  1478. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1479. hal_srng_src_hw_init(hal, srng);
  1480. else
  1481. hal_srng_dst_hw_init(hal, srng);
  1482. }
  1483. #ifdef CONFIG_SHADOW_V2
  1484. #define ignore_shadow false
  1485. #define CHECK_SHADOW_REGISTERS true
  1486. #else
  1487. #define ignore_shadow true
  1488. #define CHECK_SHADOW_REGISTERS false
  1489. #endif
  1490. /**
  1491. * hal_srng_setup - Initialize HW SRNG ring.
  1492. * @hal_soc: Opaque HAL SOC handle
  1493. * @ring_type: one of the types from hal_ring_type
  1494. * @ring_num: Ring number if there are multiple rings of same type (staring
  1495. * from 0)
  1496. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1497. * @ring_params: SRNG ring params in hal_srng_params structure.
  1498. * Callers are expected to allocate contiguous ring memory of size
  1499. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1500. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1501. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1502. * and size of each ring entry should be queried using the API
  1503. * hal_srng_get_entrysize
  1504. *
  1505. * Return: Opaque pointer to ring on success
  1506. * NULL on failure (if given ring is not available)
  1507. */
  1508. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1509. int mac_id, struct hal_srng_params *ring_params)
  1510. {
  1511. int ring_id;
  1512. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1513. struct hal_srng *srng;
  1514. struct hal_hw_srng_config *ring_config =
  1515. HAL_SRNG_CONFIG(hal, ring_type);
  1516. void *dev_base_addr;
  1517. int i;
  1518. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1519. if (ring_id < 0)
  1520. return NULL;
  1521. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1522. srng = hal_get_srng(hal_soc, ring_id);
  1523. if (srng->initialized) {
  1524. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1525. return NULL;
  1526. }
  1527. dev_base_addr = hal->dev_base_addr;
  1528. srng->ring_id = ring_id;
  1529. srng->ring_type = ring_type;
  1530. srng->ring_dir = ring_config->ring_dir;
  1531. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1532. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1533. srng->entry_size = ring_config->entry_size;
  1534. srng->num_entries = ring_params->num_entries;
  1535. srng->ring_size = srng->num_entries * srng->entry_size;
  1536. srng->ring_size_mask = srng->ring_size - 1;
  1537. srng->msi_addr = ring_params->msi_addr;
  1538. srng->msi_data = ring_params->msi_data;
  1539. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1540. srng->intr_batch_cntr_thres_entries =
  1541. ring_params->intr_batch_cntr_thres_entries;
  1542. srng->prefetch_timer = ring_params->prefetch_timer;
  1543. srng->hal_soc = hal_soc;
  1544. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1545. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1546. + (ring_num * ring_config->reg_size[i]);
  1547. }
  1548. /* Zero out the entire ring memory */
  1549. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1550. srng->num_entries) << 2);
  1551. srng->flags = ring_params->flags;
  1552. #ifdef BIG_ENDIAN_HOST
  1553. /* TODO: See if we should we get these flags from caller */
  1554. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1555. srng->flags |= HAL_SRNG_MSI_SWAP;
  1556. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1557. #endif
  1558. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1559. srng->u.src_ring.hp = 0;
  1560. srng->u.src_ring.reap_hp = srng->ring_size -
  1561. srng->entry_size;
  1562. srng->u.src_ring.tp_addr =
  1563. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1564. srng->u.src_ring.low_threshold =
  1565. ring_params->low_threshold * srng->entry_size;
  1566. if (ring_config->lmac_ring) {
  1567. /* For LMAC rings, head pointer updates will be done
  1568. * through FW by writing to a shared memory location
  1569. */
  1570. srng->u.src_ring.hp_addr =
  1571. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1572. HAL_SRNG_LMAC1_ID_START]);
  1573. srng->flags |= HAL_SRNG_LMAC_RING;
  1574. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1575. srng->u.src_ring.hp_addr =
  1576. hal_get_window_address(hal,
  1577. SRNG_SRC_ADDR(srng, HP));
  1578. if (CHECK_SHADOW_REGISTERS) {
  1579. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1580. QDF_TRACE_LEVEL_ERROR,
  1581. "%s: Ring (%d, %d) missing shadow config",
  1582. __func__, ring_type, ring_num);
  1583. }
  1584. } else {
  1585. hal_validate_shadow_register(hal,
  1586. SRNG_SRC_ADDR(srng, HP),
  1587. srng->u.src_ring.hp_addr);
  1588. }
  1589. } else {
  1590. /* During initialization loop count in all the descriptors
  1591. * will be set to zero, and HW will set it to 1 on completing
  1592. * descriptor update in first loop, and increments it by 1 on
  1593. * subsequent loops (loop count wraps around after reaching
  1594. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1595. * loop count in descriptors updated by HW (to be processed
  1596. * by SW).
  1597. */
  1598. srng->u.dst_ring.loop_cnt = 1;
  1599. srng->u.dst_ring.tp = 0;
  1600. srng->u.dst_ring.hp_addr =
  1601. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1602. if (ring_config->lmac_ring) {
  1603. /* For LMAC rings, tail pointer updates will be done
  1604. * through FW by writing to a shared memory location
  1605. */
  1606. srng->u.dst_ring.tp_addr =
  1607. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1608. HAL_SRNG_LMAC1_ID_START]);
  1609. srng->flags |= HAL_SRNG_LMAC_RING;
  1610. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1611. srng->u.dst_ring.tp_addr =
  1612. hal_get_window_address(hal,
  1613. SRNG_DST_ADDR(srng, TP));
  1614. if (CHECK_SHADOW_REGISTERS) {
  1615. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1616. QDF_TRACE_LEVEL_ERROR,
  1617. "%s: Ring (%d, %d) missing shadow config",
  1618. __func__, ring_type, ring_num);
  1619. }
  1620. } else {
  1621. hal_validate_shadow_register(hal,
  1622. SRNG_DST_ADDR(srng, TP),
  1623. srng->u.dst_ring.tp_addr);
  1624. }
  1625. }
  1626. if (!(ring_config->lmac_ring)) {
  1627. hal_srng_hw_init(hal, srng);
  1628. if (ring_type == CE_DST) {
  1629. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1630. hal_ce_dst_setup(hal, srng, ring_num);
  1631. }
  1632. }
  1633. SRNG_LOCK_INIT(&srng->lock);
  1634. srng->srng_event = 0;
  1635. srng->initialized = true;
  1636. return (void *)srng;
  1637. }
  1638. qdf_export_symbol(hal_srng_setup);
  1639. /**
  1640. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1641. * @hal_soc: Opaque HAL SOC handle
  1642. * @hal_srng: Opaque HAL SRNG pointer
  1643. */
  1644. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1645. {
  1646. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1647. SRNG_LOCK_DESTROY(&srng->lock);
  1648. srng->initialized = 0;
  1649. }
  1650. qdf_export_symbol(hal_srng_cleanup);
  1651. /**
  1652. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1653. * @hal_soc: Opaque HAL SOC handle
  1654. * @ring_type: one of the types from hal_ring_type
  1655. *
  1656. */
  1657. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1658. {
  1659. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1660. struct hal_hw_srng_config *ring_config =
  1661. HAL_SRNG_CONFIG(hal, ring_type);
  1662. return ring_config->entry_size << 2;
  1663. }
  1664. qdf_export_symbol(hal_srng_get_entrysize);
  1665. /**
  1666. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1667. * @hal_soc: Opaque HAL SOC handle
  1668. * @ring_type: one of the types from hal_ring_type
  1669. *
  1670. * Return: Maximum number of entries for the given ring_type
  1671. */
  1672. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1673. {
  1674. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1675. struct hal_hw_srng_config *ring_config =
  1676. HAL_SRNG_CONFIG(hal, ring_type);
  1677. return ring_config->max_size / ring_config->entry_size;
  1678. }
  1679. qdf_export_symbol(hal_srng_max_entries);
  1680. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1681. {
  1682. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1683. struct hal_hw_srng_config *ring_config =
  1684. HAL_SRNG_CONFIG(hal, ring_type);
  1685. return ring_config->ring_dir;
  1686. }
  1687. /**
  1688. * hal_srng_dump - Dump ring status
  1689. * @srng: hal srng pointer
  1690. */
  1691. void hal_srng_dump(struct hal_srng *srng)
  1692. {
  1693. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1694. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1695. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1696. srng->u.src_ring.hp,
  1697. srng->u.src_ring.reap_hp,
  1698. *srng->u.src_ring.tp_addr,
  1699. srng->u.src_ring.cached_tp);
  1700. } else {
  1701. hal_debug("=== DST RING %d ===", srng->ring_id);
  1702. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1703. srng->u.dst_ring.tp,
  1704. *srng->u.dst_ring.hp_addr,
  1705. srng->u.dst_ring.cached_hp,
  1706. srng->u.dst_ring.loop_cnt);
  1707. }
  1708. }
  1709. /**
  1710. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1711. *
  1712. * @hal_soc: Opaque HAL SOC handle
  1713. * @hal_ring: Ring pointer (Source or Destination ring)
  1714. * @ring_params: SRNG parameters will be returned through this structure
  1715. */
  1716. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1717. hal_ring_handle_t hal_ring_hdl,
  1718. struct hal_srng_params *ring_params)
  1719. {
  1720. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1721. int i =0;
  1722. ring_params->ring_id = srng->ring_id;
  1723. ring_params->ring_dir = srng->ring_dir;
  1724. ring_params->entry_size = srng->entry_size;
  1725. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1726. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1727. ring_params->num_entries = srng->num_entries;
  1728. ring_params->msi_addr = srng->msi_addr;
  1729. ring_params->msi_data = srng->msi_data;
  1730. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1731. ring_params->intr_batch_cntr_thres_entries =
  1732. srng->intr_batch_cntr_thres_entries;
  1733. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1734. ring_params->flags = srng->flags;
  1735. ring_params->ring_id = srng->ring_id;
  1736. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1737. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1738. }
  1739. qdf_export_symbol(hal_get_srng_params);
  1740. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1741. uint32_t low_threshold)
  1742. {
  1743. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1744. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1745. }
  1746. qdf_export_symbol(hal_set_low_threshold);
  1747. #ifdef FORCE_WAKE
  1748. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1749. {
  1750. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1751. hal_soc->init_phase = init_phase;
  1752. }
  1753. #endif /* FORCE_WAKE */