sde_hw_ctl.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/delay.h>
  6. #include "sde_hwio.h"
  7. #include "sde_hw_ctl.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #include "sde_reg_dma.h"
  11. #define CTL_LAYER(lm) \
  12. (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
  13. #define CTL_LAYER_EXT(lm) \
  14. (0x40 + (((lm) - LM_0) * 0x004))
  15. #define CTL_LAYER_EXT2(lm) \
  16. (0x70 + (((lm) - LM_0) * 0x004))
  17. #define CTL_LAYER_EXT3(lm) \
  18. (0xA0 + (((lm) - LM_0) * 0x004))
  19. #define CTL_TOP 0x014
  20. #define CTL_FLUSH 0x018
  21. #define CTL_START 0x01C
  22. #define CTL_PREPARE 0x0d0
  23. #define CTL_SW_RESET 0x030
  24. #define CTL_SW_RESET_OVERRIDE 0x060
  25. #define CTL_STATUS 0x064
  26. #define CTL_LAYER_EXTN_OFFSET 0x40
  27. #define CTL_ROT_TOP 0x0C0
  28. #define CTL_ROT_FLUSH 0x0C4
  29. #define CTL_ROT_START 0x0CC
  30. #define CTL_MERGE_3D_ACTIVE 0x0E4
  31. #define CTL_DSC_ACTIVE 0x0E8
  32. #define CTL_WB_ACTIVE 0x0EC
  33. #define CTL_CWB_ACTIVE 0x0F0
  34. #define CTL_INTF_ACTIVE 0x0F4
  35. #define CTL_CDM_ACTIVE 0x0F8
  36. #define CTL_FETCH_PIPE_ACTIVE 0x0FC
  37. #define CTL_MERGE_3D_FLUSH 0x100
  38. #define CTL_DSC_FLUSH 0x104
  39. #define CTL_WB_FLUSH 0x108
  40. #define CTL_CWB_FLUSH 0x10C
  41. #define CTL_INTF_FLUSH 0x110
  42. #define CTL_CDM_FLUSH 0x114
  43. #define CTL_PERIPH_FLUSH 0x128
  44. #define CTL_DSPP_0_FLUSH 0x13c
  45. #define CTL_INTF_MASTER 0x134
  46. #define CTL_UIDLE_ACTIVE 0x138
  47. #define CTL_MIXER_BORDER_OUT BIT(24)
  48. #define CTL_FLUSH_MASK_ROT BIT(27)
  49. #define CTL_FLUSH_MASK_CTL BIT(17)
  50. #define CTL_NUM_EXT 4
  51. #define CTL_SSPP_MAX_RECTS 2
  52. #define SDE_REG_RESET_TIMEOUT_US 2000
  53. #define SDE_REG_WAIT_RESET_TIMEOUT_US 100000
  54. #define UPDATE_MASK(m, idx, en) \
  55. ((m) = (en) ? ((m) | BIT((idx))) : ((m) & ~BIT((idx))))
  56. #define CTL_INVALID_BIT 0xffff
  57. #define VDC_IDX(i) ((i) + 16)
  58. #define UPDATE_ACTIVE(r, idx, en) UPDATE_MASK((r), (idx), (en))
  59. /**
  60. * List of SSPP bits in CTL_FLUSH
  61. */
  62. static const u32 sspp_tbl[SSPP_MAX] = { SDE_NONE, 0, 1, 2, 18, 3, 4, 5,
  63. 19, 11, 12, 24, 25, SDE_NONE, SDE_NONE};
  64. /**
  65. * List of layer mixer bits in CTL_FLUSH
  66. */
  67. static const u32 mixer_tbl[LM_MAX] = {SDE_NONE, 6, 7, 8, 9, 10, 20,
  68. SDE_NONE};
  69. /**
  70. * List of DSPP bits in CTL_FLUSH
  71. */
  72. static const u32 dspp_tbl[DSPP_MAX] = {SDE_NONE, 13, 14, 15, 21};
  73. /**
  74. * List of DSPP PA LUT bits in CTL_FLUSH
  75. */
  76. static const u32 dspp_pav_tbl[DSPP_MAX] = {SDE_NONE, 3, 4, 5, 19};
  77. /**
  78. * List of CDM LUT bits in CTL_FLUSH
  79. */
  80. static const u32 cdm_tbl[CDM_MAX] = {SDE_NONE, 26};
  81. /**
  82. * List of WB bits in CTL_FLUSH
  83. */
  84. static const u32 wb_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 16};
  85. /**
  86. * List of ROT bits in CTL_FLUSH
  87. */
  88. static const u32 rot_tbl[ROT_MAX] = {SDE_NONE, 27};
  89. /**
  90. * List of INTF bits in CTL_FLUSH
  91. */
  92. static const u32 intf_tbl[INTF_MAX] = {SDE_NONE, 31, 30, 29, 28};
  93. /**
  94. * Below definitions are for CTL supporting SDE_CTL_ACTIVE_CFG,
  95. * certain blocks have the individual flush control as well,
  96. * for such blocks flush is done by flushing individual control and
  97. * top level control.
  98. */
  99. /**
  100. * List of SSPP bits in CTL_FETCH_PIPE_ACTIVE
  101. */
  102. static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
  103. CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
  104. 1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
  105. /**
  106. * list of WB bits in CTL_WB_FLUSH
  107. */
  108. static const u32 wb_flush_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 2};
  109. /**
  110. * list of INTF bits in CTL_INTF_FLUSH
  111. */
  112. static const u32 intf_flush_tbl[INTF_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  113. /**
  114. * list of DSC bits in CTL_DSC_FLUSH
  115. */
  116. static const u32 dsc_flush_tbl[DSC_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  117. /**
  118. * list of VDC bits in CTL_DSC_FLUSH
  119. */
  120. static const u32 vdc_flush_tbl[DSC_MAX] = {SDE_NONE, 16, 17};
  121. /**
  122. * list of MERGE_3D bits in CTL_MERGE_3D_FLUSH
  123. */
  124. static const u32 merge_3d_tbl[MERGE_3D_MAX] = {SDE_NONE, 0, 1, 2};
  125. /**
  126. * list of CDM bits in CTL_CDM_FLUSH
  127. */
  128. static const u32 cdm_flush_tbl[CDM_MAX] = {SDE_NONE, 0};
  129. /**
  130. * list of CWB bits in CTL_CWB_FLUSH
  131. */
  132. static const u32 cwb_flush_tbl[CWB_MAX] = {SDE_NONE, SDE_NONE, 1, 2, 3,
  133. 4, 5};
  134. /**
  135. * list of DSPP sub-blk flush bits in CTL_DSPP_x_FLUSH
  136. */
  137. static const u32 dspp_sub_blk_flush_tbl[SDE_DSPP_MAX] = {
  138. [SDE_DSPP_IGC] = 2,
  139. [SDE_DSPP_PCC] = 4,
  140. [SDE_DSPP_GC] = 5,
  141. [SDE_DSPP_HSIC] = 0,
  142. [SDE_DSPP_MEMCOLOR] = 0,
  143. [SDE_DSPP_SIXZONE] = 0,
  144. [SDE_DSPP_GAMUT] = 3,
  145. [SDE_DSPP_DITHER] = 0,
  146. [SDE_DSPP_HIST] = 0,
  147. [SDE_DSPP_VLUT] = 1,
  148. [SDE_DSPP_AD] = 0,
  149. [SDE_DSPP_LTM] = 7,
  150. [SDE_DSPP_SPR] = 8,
  151. [SDE_DSPP_DEMURA] = 9,
  152. [SDE_DSPP_RC] = 10,
  153. [SDE_DSPP_SB] = 31,
  154. };
  155. /**
  156. * struct ctl_sspp_stage_reg_map: Describes bit layout for a sspp stage cfg
  157. * @ext: Index to indicate LAYER_x_EXT id for given sspp
  158. * @start: Start position of blend stage bits for given sspp
  159. * @bits: Number of bits from @start assigned for given sspp
  160. * @sec_bit_mask: Bitmask to add to LAYER_x_EXT1 for missing bit of sspp
  161. */
  162. struct ctl_sspp_stage_reg_map {
  163. u32 ext;
  164. u32 start;
  165. u32 bits;
  166. u32 sec_bit_mask;
  167. };
  168. /* list of ctl_sspp_stage_reg_map for all the sppp */
  169. static const struct ctl_sspp_stage_reg_map
  170. sspp_reg_cfg_tbl[SSPP_MAX][CTL_SSPP_MAX_RECTS] = {
  171. /* SSPP_NONE */{ {0, 0, 0, 0}, {0, 0, 0, 0} },
  172. /* SSPP_VIG0 */{ {0, 0, 3, BIT(0)}, {3, 0, 4, 0} },
  173. /* SSPP_VIG1 */{ {0, 3, 3, BIT(2)}, {3, 4, 4, 0} },
  174. /* SSPP_VIG2 */{ {0, 6, 3, BIT(4)}, {3, 8, 4, 0} },
  175. /* SSPP_VIG3 */{ {0, 26, 3, BIT(6)}, {3, 12, 4, 0} },
  176. /* SSPP_RGB0 */{ {0, 9, 3, BIT(8)}, {0, 0, 0, 0} },
  177. /* SSPP_RGB1 */{ {0, 12, 3, BIT(10)}, {0, 0, 0, 0} },
  178. /* SSPP_RGB2 */{ {0, 15, 3, BIT(12)}, {0, 0, 0, 0} },
  179. /* SSPP_RGB3 */{ {0, 29, 3, BIT(14)}, {0, 0, 0, 0} },
  180. /* SSPP_DMA0 */{ {0, 18, 3, BIT(16)}, {2, 8, 4, 0} },
  181. /* SSPP_DMA1 */{ {0, 21, 3, BIT(18)}, {2, 12, 4, 0} },
  182. /* SSPP_DMA2 */{ {2, 0, 4, 0}, {2, 16, 4, 0} },
  183. /* SSPP_DMA3 */{ {2, 4, 4, 0}, {2, 20, 4, 0} },
  184. /* SSPP_CURSOR0 */{ {1, 20, 4, 0}, {0, 0, 0, 0} },
  185. /* SSPP_CURSOR1 */{ {0, 26, 4, 0}, {0, 0, 0, 0} }
  186. };
  187. /**
  188. * Individual flush bit in CTL_FLUSH
  189. */
  190. #define WB_IDX 16
  191. #define DSC_IDX 22
  192. #define MERGE_3D_IDX 23
  193. #define CDM_IDX 26
  194. #define CWB_IDX 28
  195. #define DSPP_IDX 29
  196. #define PERIPH_IDX 30
  197. #define INTF_IDX 31
  198. /* struct ctl_hw_flush_cfg: Defines the active ctl hw flush config,
  199. * See enum ctl_hw_flush_type for types
  200. * @blk_max: Maximum hw idx
  201. * @flush_reg: Register with corresponding active ctl hw
  202. * @flush_idx: Corresponding index in ctl flush
  203. * @flush_mask_idx: Index of hw flush mask to use
  204. * @flush_tbl: Pointer to flush table
  205. */
  206. struct ctl_hw_flush_cfg {
  207. u32 blk_max;
  208. u32 flush_reg;
  209. u32 flush_idx;
  210. u32 flush_mask_idx;
  211. const u32 *flush_tbl;
  212. };
  213. static const struct ctl_hw_flush_cfg
  214. ctl_hw_flush_cfg_tbl_v1[SDE_HW_FLUSH_MAX] = {
  215. {WB_MAX, CTL_WB_FLUSH, WB_IDX, SDE_HW_FLUSH_WB,
  216. wb_flush_tbl}, /* SDE_HW_FLUSH_WB */
  217. {DSC_MAX, CTL_DSC_FLUSH, DSC_IDX, SDE_HW_FLUSH_DSC,
  218. dsc_flush_tbl}, /* SDE_HW_FLUSH_DSC */
  219. /* VDC is flushed to dsc, flush_reg = 0 so flush is done only once */
  220. {VDC_MAX, 0, DSC_IDX, SDE_HW_FLUSH_DSC,
  221. vdc_flush_tbl}, /* SDE_HW_FLUSH_VDC */
  222. {MERGE_3D_MAX, CTL_MERGE_3D_FLUSH, MERGE_3D_IDX, SDE_HW_FLUSH_MERGE_3D,
  223. merge_3d_tbl}, /* SDE_HW_FLUSH_MERGE_3D */
  224. {CDM_MAX, CTL_CDM_FLUSH, CDM_IDX, SDE_HW_FLUSH_CDM,
  225. cdm_flush_tbl}, /* SDE_HW_FLUSH_CDM */
  226. {CWB_MAX, CTL_CWB_FLUSH, CWB_IDX, SDE_HW_FLUSH_CWB,
  227. cwb_flush_tbl}, /* SDE_HW_FLUSH_CWB */
  228. {INTF_MAX, CTL_PERIPH_FLUSH, PERIPH_IDX, SDE_HW_FLUSH_PERIPH,
  229. intf_flush_tbl }, /* SDE_HW_FLUSH_PERIPH */
  230. {INTF_MAX, CTL_INTF_FLUSH, INTF_IDX, SDE_HW_FLUSH_INTF,
  231. intf_flush_tbl } /* SDE_HW_FLUSH_INTF */
  232. };
  233. static struct sde_ctl_cfg *_ctl_offset(enum sde_ctl ctl,
  234. struct sde_mdss_cfg *m,
  235. void __iomem *addr,
  236. struct sde_hw_blk_reg_map *b)
  237. {
  238. int i;
  239. for (i = 0; i < m->ctl_count; i++) {
  240. if (ctl == m->ctl[i].id) {
  241. b->base_off = addr;
  242. b->blk_off = m->ctl[i].base;
  243. b->length = m->ctl[i].len;
  244. b->hwversion = m->hwversion;
  245. b->log_mask = SDE_DBG_MASK_CTL;
  246. return &m->ctl[i];
  247. }
  248. }
  249. return ERR_PTR(-ENOMEM);
  250. }
  251. static int _mixer_stages(const struct sde_lm_cfg *mixer, int count,
  252. enum sde_lm lm)
  253. {
  254. int i;
  255. int stages = -EINVAL;
  256. for (i = 0; i < count; i++) {
  257. if (lm == mixer[i].id) {
  258. stages = mixer[i].sblk->maxblendstages;
  259. break;
  260. }
  261. }
  262. return stages;
  263. }
  264. static inline bool _is_dspp_flush_pending(struct sde_hw_ctl *ctx)
  265. {
  266. int i;
  267. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  268. if (ctx->flush.pending_dspp_flush_masks[i])
  269. return true;
  270. }
  271. return false;
  272. }
  273. static inline int sde_hw_ctl_trigger_start(struct sde_hw_ctl *ctx)
  274. {
  275. if (!ctx)
  276. return -EINVAL;
  277. SDE_REG_WRITE(&ctx->hw, CTL_START, 0x1);
  278. return 0;
  279. }
  280. static inline int sde_hw_ctl_get_start_state(struct sde_hw_ctl *ctx)
  281. {
  282. if (!ctx)
  283. return -EINVAL;
  284. return SDE_REG_READ(&ctx->hw, CTL_START);
  285. }
  286. static inline int sde_hw_ctl_trigger_pending(struct sde_hw_ctl *ctx)
  287. {
  288. if (!ctx)
  289. return -EINVAL;
  290. SDE_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
  291. return 0;
  292. }
  293. static inline int sde_hw_ctl_clear_pending_flush(struct sde_hw_ctl *ctx)
  294. {
  295. if (!ctx)
  296. return -EINVAL;
  297. memset(&ctx->flush, 0, sizeof(ctx->flush));
  298. return 0;
  299. }
  300. static inline int sde_hw_ctl_update_pending_flush(struct sde_hw_ctl *ctx,
  301. struct sde_ctl_flush_cfg *cfg)
  302. {
  303. if (!ctx || !cfg)
  304. return -EINVAL;
  305. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  306. return 0;
  307. }
  308. static int sde_hw_ctl_get_pending_flush(struct sde_hw_ctl *ctx,
  309. struct sde_ctl_flush_cfg *cfg)
  310. {
  311. if (!ctx || !cfg)
  312. return -EINVAL;
  313. memcpy(cfg, &ctx->flush, sizeof(*cfg));
  314. return 0;
  315. }
  316. static inline int sde_hw_ctl_trigger_flush(struct sde_hw_ctl *ctx)
  317. {
  318. if (!ctx)
  319. return -EINVAL;
  320. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  321. return 0;
  322. }
  323. static inline u32 sde_hw_ctl_get_flush_register(struct sde_hw_ctl *ctx)
  324. {
  325. struct sde_hw_blk_reg_map *c;
  326. u32 rot_op_mode;
  327. if (!ctx)
  328. return 0;
  329. c = &ctx->hw;
  330. rot_op_mode = SDE_REG_READ(c, CTL_ROT_TOP) & 0x3;
  331. /* rotate flush bit is undefined if offline mode, so ignore it */
  332. if (rot_op_mode == SDE_CTL_ROT_OP_MODE_OFFLINE)
  333. return SDE_REG_READ(c, CTL_FLUSH) & ~CTL_FLUSH_MASK_ROT;
  334. return SDE_REG_READ(c, CTL_FLUSH);
  335. }
  336. static inline void sde_hw_ctl_uidle_enable(struct sde_hw_ctl *ctx, bool enable)
  337. {
  338. u32 val;
  339. if (!ctx)
  340. return;
  341. val = SDE_REG_READ(&ctx->hw, CTL_UIDLE_ACTIVE);
  342. val = (val & ~BIT(0)) | (enable ? BIT(0) : 0);
  343. SDE_REG_WRITE(&ctx->hw, CTL_UIDLE_ACTIVE, val);
  344. }
  345. static inline int sde_hw_ctl_update_bitmask_sspp(struct sde_hw_ctl *ctx,
  346. enum sde_sspp sspp,
  347. bool enable)
  348. {
  349. if (!ctx)
  350. return -EINVAL;
  351. if (!(sspp > SSPP_NONE) || !(sspp < SSPP_MAX)) {
  352. SDE_ERROR("Unsupported pipe %d\n", sspp);
  353. return -EINVAL;
  354. }
  355. UPDATE_MASK(ctx->flush.pending_flush_mask, sspp_tbl[sspp], enable);
  356. return 0;
  357. }
  358. static inline int sde_hw_ctl_update_bitmask_mixer(struct sde_hw_ctl *ctx,
  359. enum sde_lm lm,
  360. bool enable)
  361. {
  362. if (!ctx)
  363. return -EINVAL;
  364. if (!(lm > SDE_NONE) || !(lm < LM_MAX)) {
  365. SDE_ERROR("Unsupported mixer %d\n", lm);
  366. return -EINVAL;
  367. }
  368. UPDATE_MASK(ctx->flush.pending_flush_mask, mixer_tbl[lm], enable);
  369. ctx->flush.pending_flush_mask |= CTL_FLUSH_MASK_CTL;
  370. return 0;
  371. }
  372. static inline int sde_hw_ctl_update_bitmask_dspp(struct sde_hw_ctl *ctx,
  373. enum sde_dspp dspp,
  374. bool enable)
  375. {
  376. if (!ctx)
  377. return -EINVAL;
  378. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  379. SDE_ERROR("Unsupported dspp %d\n", dspp);
  380. return -EINVAL;
  381. }
  382. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_tbl[dspp], enable);
  383. return 0;
  384. }
  385. static inline int sde_hw_ctl_update_bitmask_dspp_pavlut(struct sde_hw_ctl *ctx,
  386. enum sde_dspp dspp, bool enable)
  387. {
  388. if (!ctx)
  389. return -EINVAL;
  390. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  391. SDE_ERROR("Unsupported dspp %d\n", dspp);
  392. return -EINVAL;
  393. }
  394. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_pav_tbl[dspp], enable);
  395. return 0;
  396. }
  397. static inline int sde_hw_ctl_update_bitmask_cdm(struct sde_hw_ctl *ctx,
  398. enum sde_cdm cdm,
  399. bool enable)
  400. {
  401. if (!ctx)
  402. return -EINVAL;
  403. if (!(cdm > SDE_NONE) || !(cdm < CDM_MAX) || (cdm == CDM_1)) {
  404. SDE_ERROR("Unsupported cdm %d\n", cdm);
  405. return -EINVAL;
  406. }
  407. UPDATE_MASK(ctx->flush.pending_flush_mask, cdm_tbl[cdm], enable);
  408. return 0;
  409. }
  410. static inline int sde_hw_ctl_update_bitmask_wb(struct sde_hw_ctl *ctx,
  411. enum sde_wb wb, bool enable)
  412. {
  413. if (!ctx)
  414. return -EINVAL;
  415. if (!(wb > SDE_NONE) || !(wb < WB_MAX) ||
  416. (wb == WB_0) || (wb == WB_1)) {
  417. SDE_ERROR("Unsupported wb %d\n", wb);
  418. return -EINVAL;
  419. }
  420. UPDATE_MASK(ctx->flush.pending_flush_mask, wb_tbl[wb], enable);
  421. return 0;
  422. }
  423. static inline int sde_hw_ctl_update_bitmask_intf(struct sde_hw_ctl *ctx,
  424. enum sde_intf intf, bool enable)
  425. {
  426. if (!ctx)
  427. return -EINVAL;
  428. if (!(intf > SDE_NONE) || !(intf < INTF_MAX) || (intf > INTF_4)) {
  429. SDE_ERROR("Unsupported intf %d\n", intf);
  430. return -EINVAL;
  431. }
  432. UPDATE_MASK(ctx->flush.pending_flush_mask, intf_tbl[intf], enable);
  433. return 0;
  434. }
  435. static inline int sde_hw_ctl_update_bitmask(struct sde_hw_ctl *ctx,
  436. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  437. {
  438. int ret = 0;
  439. if (!ctx)
  440. return -EINVAL;
  441. switch (type) {
  442. case SDE_HW_FLUSH_CDM:
  443. ret = sde_hw_ctl_update_bitmask_cdm(ctx, blk_idx, enable);
  444. break;
  445. case SDE_HW_FLUSH_WB:
  446. ret = sde_hw_ctl_update_bitmask_wb(ctx, blk_idx, enable);
  447. break;
  448. case SDE_HW_FLUSH_INTF:
  449. ret = sde_hw_ctl_update_bitmask_intf(ctx, blk_idx, enable);
  450. break;
  451. default:
  452. break;
  453. }
  454. return ret;
  455. }
  456. static inline int sde_hw_ctl_update_bitmask_v1(struct sde_hw_ctl *ctx,
  457. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  458. {
  459. const struct ctl_hw_flush_cfg *cfg;
  460. if (!ctx || !(type < SDE_HW_FLUSH_MAX))
  461. return -EINVAL;
  462. cfg = &ctl_hw_flush_cfg_tbl_v1[type];
  463. if ((blk_idx <= SDE_NONE) || (blk_idx >= cfg->blk_max)) {
  464. SDE_ERROR("Unsupported hw idx, type:%d, blk_idx:%d, blk_max:%d",
  465. type, blk_idx, cfg->blk_max);
  466. return -EINVAL;
  467. }
  468. UPDATE_MASK(ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx],
  469. cfg->flush_tbl[blk_idx], enable);
  470. if (ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx])
  471. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 1);
  472. else
  473. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 0);
  474. return 0;
  475. }
  476. static inline int sde_hw_ctl_update_pending_flush_v1(
  477. struct sde_hw_ctl *ctx,
  478. struct sde_ctl_flush_cfg *cfg)
  479. {
  480. int i = 0;
  481. if (!ctx || !cfg)
  482. return -EINVAL;
  483. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  484. ctx->flush.pending_hw_flush_mask[i] |=
  485. cfg->pending_hw_flush_mask[i];
  486. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++)
  487. ctx->flush.pending_dspp_flush_masks[i] |=
  488. cfg->pending_dspp_flush_masks[i];
  489. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  490. return 0;
  491. }
  492. static inline int sde_hw_ctl_update_bitmask_dspp_subblk(struct sde_hw_ctl *ctx,
  493. enum sde_dspp dspp, u32 sub_blk, bool enable)
  494. {
  495. if (!ctx || dspp < DSPP_0 || dspp >= DSPP_MAX ||
  496. sub_blk < SDE_DSPP_IGC || sub_blk >= SDE_DSPP_MAX) {
  497. SDE_ERROR("invalid args - ctx %s, dspp %d sub_block %d\n",
  498. ctx ? "valid" : "invalid", dspp, sub_blk);
  499. return -EINVAL;
  500. }
  501. UPDATE_MASK(ctx->flush.pending_dspp_flush_masks[dspp - DSPP_0],
  502. dspp_sub_blk_flush_tbl[sub_blk], enable);
  503. if (_is_dspp_flush_pending(ctx))
  504. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 1);
  505. else
  506. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 0);
  507. return 0;
  508. }
  509. static inline void _sde_hw_ctl_write_dspp_flushes(struct sde_hw_ctl *ctx) {
  510. int i;
  511. bool has_dspp_flushes = ctx->caps->features &
  512. BIT(SDE_CTL_UNIFIED_DSPP_FLUSH);
  513. if (!has_dspp_flushes)
  514. return;
  515. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  516. u32 pending = ctx->flush.pending_dspp_flush_masks[i];
  517. if (pending)
  518. SDE_REG_WRITE(&ctx->hw, CTL_DSPP_0_FLUSH + (i * 4),
  519. pending);
  520. }
  521. }
  522. static inline int sde_hw_ctl_trigger_flush_v1(struct sde_hw_ctl *ctx)
  523. {
  524. int i = 0;
  525. const struct ctl_hw_flush_cfg *cfg = &ctl_hw_flush_cfg_tbl_v1[0];
  526. if (!ctx)
  527. return -EINVAL;
  528. if (ctx->flush.pending_flush_mask & BIT(DSPP_IDX))
  529. _sde_hw_ctl_write_dspp_flushes(ctx);
  530. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  531. if (cfg[i].flush_reg &&
  532. ctx->flush.pending_flush_mask &
  533. BIT(cfg[i].flush_idx))
  534. SDE_REG_WRITE(&ctx->hw,
  535. cfg[i].flush_reg,
  536. ctx->flush.pending_hw_flush_mask[i]);
  537. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  538. return 0;
  539. }
  540. static inline u32 sde_hw_ctl_get_intf_v1(struct sde_hw_ctl *ctx)
  541. {
  542. struct sde_hw_blk_reg_map *c;
  543. u32 intf_active;
  544. if (!ctx) {
  545. pr_err("Invalid input argument\n");
  546. return 0;
  547. }
  548. c = &ctx->hw;
  549. intf_active = SDE_REG_READ(c, CTL_INTF_ACTIVE);
  550. return intf_active;
  551. }
  552. static inline u32 sde_hw_ctl_get_intf(struct sde_hw_ctl *ctx)
  553. {
  554. struct sde_hw_blk_reg_map *c;
  555. u32 ctl_top;
  556. u32 intf_active = 0;
  557. if (!ctx) {
  558. pr_err("Invalid input argument\n");
  559. return 0;
  560. }
  561. c = &ctx->hw;
  562. ctl_top = SDE_REG_READ(c, CTL_TOP);
  563. intf_active = (ctl_top > 0) ?
  564. BIT(ctl_top - 1) : 0;
  565. return intf_active;
  566. }
  567. static u32 sde_hw_ctl_poll_reset_status(struct sde_hw_ctl *ctx, u32 timeout_us)
  568. {
  569. struct sde_hw_blk_reg_map *c;
  570. ktime_t timeout;
  571. u32 status;
  572. if (!ctx)
  573. return 0;
  574. c = &ctx->hw;
  575. timeout = ktime_add_us(ktime_get(), timeout_us);
  576. /*
  577. * it takes around 30us to have mdp finish resetting its ctl path
  578. * poll every 50us so that reset should be completed at 1st poll
  579. */
  580. do {
  581. status = SDE_REG_READ(c, CTL_SW_RESET);
  582. status &= 0x1;
  583. if (status)
  584. usleep_range(20, 50);
  585. } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
  586. return status;
  587. }
  588. static u32 sde_hw_ctl_get_reset_status(struct sde_hw_ctl *ctx)
  589. {
  590. if (!ctx)
  591. return 0;
  592. return (u32)SDE_REG_READ(&ctx->hw, CTL_SW_RESET);
  593. }
  594. static u32 sde_hw_ctl_get_scheduler_status(struct sde_hw_ctl *ctx)
  595. {
  596. if (!ctx)
  597. return INVALID_CTL_STATUS;
  598. return (u32)SDE_REG_READ(&ctx->hw, CTL_STATUS);
  599. }
  600. static int sde_hw_ctl_reset_control(struct sde_hw_ctl *ctx)
  601. {
  602. struct sde_hw_blk_reg_map *c;
  603. if (!ctx)
  604. return 0;
  605. c = &ctx->hw;
  606. pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
  607. SDE_REG_WRITE(c, CTL_SW_RESET, 0x1);
  608. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_RESET_TIMEOUT_US))
  609. return -EINVAL;
  610. return 0;
  611. }
  612. static void sde_hw_ctl_hard_reset(struct sde_hw_ctl *ctx, bool enable)
  613. {
  614. struct sde_hw_blk_reg_map *c;
  615. if (!ctx)
  616. return;
  617. c = &ctx->hw;
  618. pr_debug("hw ctl hard reset for ctl:%d, %d\n",
  619. ctx->idx - CTL_0, enable);
  620. SDE_REG_WRITE(c, CTL_SW_RESET_OVERRIDE, enable);
  621. }
  622. static int sde_hw_ctl_wait_reset_status(struct sde_hw_ctl *ctx)
  623. {
  624. struct sde_hw_blk_reg_map *c;
  625. u32 status;
  626. if (!ctx)
  627. return 0;
  628. c = &ctx->hw;
  629. status = SDE_REG_READ(c, CTL_SW_RESET);
  630. status &= 0x01;
  631. if (!status)
  632. return 0;
  633. pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
  634. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_WAIT_RESET_TIMEOUT_US)) {
  635. pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
  636. return -EINVAL;
  637. }
  638. return 0;
  639. }
  640. static void sde_hw_ctl_clear_all_blendstages(struct sde_hw_ctl *ctx)
  641. {
  642. struct sde_hw_blk_reg_map *c;
  643. int i;
  644. if (!ctx)
  645. return;
  646. c = &ctx->hw;
  647. for (i = 0; i < ctx->mixer_count; i++) {
  648. int mixer_id = ctx->mixer_hw_caps[i].id;
  649. SDE_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
  650. SDE_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
  651. SDE_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
  652. SDE_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
  653. }
  654. SDE_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
  655. }
  656. static void sde_hw_ctl_setup_blendstage(struct sde_hw_ctl *ctx,
  657. enum sde_lm lm, struct sde_hw_stage_cfg *stage_cfg,
  658. struct sde_hw_stage_cfg *active_cfg)
  659. {
  660. struct sde_hw_blk_reg_map *c;
  661. u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
  662. u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
  663. u32 active_fetch_pipes = 0;
  664. int i, j;
  665. u8 stages;
  666. int pipes_per_stage;
  667. if (!ctx)
  668. return;
  669. c = &ctx->hw;
  670. stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
  671. if ((int)stages < 0)
  672. return;
  673. if (test_bit(SDE_MIXER_SOURCESPLIT,
  674. &ctx->mixer_hw_caps->features))
  675. pipes_per_stage = PIPES_PER_STAGE;
  676. else
  677. pipes_per_stage = 1;
  678. if (!stage_cfg)
  679. goto exit;
  680. for (i = 0; i <= stages; i++) {
  681. /* overflow to ext register if 'i + 1 > 7' */
  682. mix = (i + 1) & 0x7;
  683. ext = i >= 7;
  684. for (j = 0 ; j < pipes_per_stage; j++) {
  685. enum sde_sspp pipe = stage_cfg->stage[i][j];
  686. enum sde_sspp_multirect_index rect_index =
  687. stage_cfg->multirect_index[i][j];
  688. switch (pipe) {
  689. case SSPP_VIG0:
  690. if (rect_index == SDE_SSPP_RECT_1) {
  691. mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
  692. } else {
  693. mixercfg |= mix << 0;
  694. mixercfg_ext |= ext << 0;
  695. }
  696. break;
  697. case SSPP_VIG1:
  698. if (rect_index == SDE_SSPP_RECT_1) {
  699. mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
  700. } else {
  701. mixercfg |= mix << 3;
  702. mixercfg_ext |= ext << 2;
  703. }
  704. break;
  705. case SSPP_VIG2:
  706. if (rect_index == SDE_SSPP_RECT_1) {
  707. mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
  708. } else {
  709. mixercfg |= mix << 6;
  710. mixercfg_ext |= ext << 4;
  711. }
  712. break;
  713. case SSPP_VIG3:
  714. if (rect_index == SDE_SSPP_RECT_1) {
  715. mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
  716. } else {
  717. mixercfg |= mix << 26;
  718. mixercfg_ext |= ext << 6;
  719. }
  720. break;
  721. case SSPP_RGB0:
  722. mixercfg |= mix << 9;
  723. mixercfg_ext |= ext << 8;
  724. break;
  725. case SSPP_RGB1:
  726. mixercfg |= mix << 12;
  727. mixercfg_ext |= ext << 10;
  728. break;
  729. case SSPP_RGB2:
  730. mixercfg |= mix << 15;
  731. mixercfg_ext |= ext << 12;
  732. break;
  733. case SSPP_RGB3:
  734. mixercfg |= mix << 29;
  735. mixercfg_ext |= ext << 14;
  736. break;
  737. case SSPP_DMA0:
  738. if (rect_index == SDE_SSPP_RECT_1) {
  739. mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
  740. } else {
  741. mixercfg |= mix << 18;
  742. mixercfg_ext |= ext << 16;
  743. }
  744. break;
  745. case SSPP_DMA1:
  746. if (rect_index == SDE_SSPP_RECT_1) {
  747. mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
  748. } else {
  749. mixercfg |= mix << 21;
  750. mixercfg_ext |= ext << 18;
  751. }
  752. break;
  753. case SSPP_DMA2:
  754. if (rect_index == SDE_SSPP_RECT_1) {
  755. mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
  756. } else {
  757. mix |= (i + 1) & 0xF;
  758. mixercfg_ext2 |= mix << 0;
  759. }
  760. break;
  761. case SSPP_DMA3:
  762. if (rect_index == SDE_SSPP_RECT_1) {
  763. mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
  764. } else {
  765. mix |= (i + 1) & 0xF;
  766. mixercfg_ext2 |= mix << 4;
  767. }
  768. break;
  769. case SSPP_CURSOR0:
  770. mixercfg_ext |= ((i + 1) & 0xF) << 20;
  771. break;
  772. case SSPP_CURSOR1:
  773. mixercfg_ext |= ((i + 1) & 0xF) << 26;
  774. break;
  775. default:
  776. break;
  777. }
  778. if (fetch_tbl[pipe] != CTL_INVALID_BIT)
  779. active_fetch_pipes |= BIT(fetch_tbl[pipe]);
  780. }
  781. }
  782. for (i = 0; i <= stages && active_cfg; i++) {
  783. enum sde_sspp pipe = active_cfg->stage[i][0];
  784. if (pipe == SSPP_NONE)
  785. break;
  786. if (fetch_tbl[pipe] != CTL_INVALID_BIT) {
  787. active_fetch_pipes |= BIT(fetch_tbl[pipe]);
  788. SDE_DEBUG("fetch pipe %d active pipes %x\n",
  789. pipe, active_fetch_pipes);
  790. }
  791. }
  792. exit:
  793. if ((!mixercfg && !mixercfg_ext && !mixercfg_ext2 && !mixercfg_ext3) ||
  794. (stage_cfg && !stage_cfg->stage[0][0]))
  795. mixercfg |= CTL_MIXER_BORDER_OUT;
  796. SDE_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
  797. SDE_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
  798. SDE_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
  799. SDE_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
  800. SDE_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, active_fetch_pipes);
  801. }
  802. static u32 sde_hw_ctl_get_staged_sspp(struct sde_hw_ctl *ctx, enum sde_lm lm,
  803. struct sde_sspp_index_info *info, u32 info_max_cnt)
  804. {
  805. int i, j;
  806. u32 count = 0;
  807. u32 mask = 0;
  808. bool staged;
  809. u32 mixercfg[CTL_NUM_EXT];
  810. struct sde_hw_blk_reg_map *c;
  811. const struct ctl_sspp_stage_reg_map *sspp_cfg;
  812. if (!ctx || (lm >= LM_MAX) || !info)
  813. return count;
  814. c = &ctx->hw;
  815. mixercfg[0] = SDE_REG_READ(c, CTL_LAYER(lm));
  816. mixercfg[1] = SDE_REG_READ(c, CTL_LAYER_EXT(lm));
  817. mixercfg[2] = SDE_REG_READ(c, CTL_LAYER_EXT2(lm));
  818. mixercfg[3] = SDE_REG_READ(c, CTL_LAYER_EXT3(lm));
  819. for (i = SSPP_VIG0; i < SSPP_MAX; i++) {
  820. for (j = 0; j < CTL_SSPP_MAX_RECTS; j++) {
  821. if (count >= info_max_cnt)
  822. goto end;
  823. sspp_cfg = &sspp_reg_cfg_tbl[i][j];
  824. if (!sspp_cfg->bits || sspp_cfg->ext >= CTL_NUM_EXT)
  825. continue;
  826. mask = ((0x1 << sspp_cfg->bits) - 1) << sspp_cfg->start;
  827. staged = mixercfg[sspp_cfg->ext] & mask;
  828. if (!staged)
  829. staged = mixercfg[1] & sspp_cfg->sec_bit_mask;
  830. if (staged) {
  831. info[count].sspp = i;
  832. info[count].is_virtual = j;
  833. count++;
  834. }
  835. }
  836. }
  837. end:
  838. return count;
  839. }
  840. static int sde_hw_ctl_intf_cfg_v1(struct sde_hw_ctl *ctx,
  841. struct sde_hw_intf_cfg_v1 *cfg)
  842. {
  843. struct sde_hw_blk_reg_map *c;
  844. u32 intf_active = 0;
  845. u32 wb_active = 0;
  846. u32 merge_3d_active = 0;
  847. u32 cwb_active = 0;
  848. u32 mode_sel = 0xf0000000;
  849. u32 cdm_active = 0;
  850. u32 intf_master = 0;
  851. u32 i;
  852. if (!ctx)
  853. return -EINVAL;
  854. c = &ctx->hw;
  855. for (i = 0; i < cfg->intf_count; i++) {
  856. if (cfg->intf[i])
  857. intf_active |= BIT(cfg->intf[i] - INTF_0);
  858. }
  859. if (cfg->intf_count > 1)
  860. intf_master = BIT(cfg->intf_master - INTF_0);
  861. for (i = 0; i < cfg->wb_count; i++) {
  862. if (cfg->wb[i])
  863. wb_active |= BIT(cfg->wb[i] - WB_0);
  864. }
  865. for (i = 0; i < cfg->merge_3d_count; i++) {
  866. if (cfg->merge_3d[i])
  867. merge_3d_active |= BIT(cfg->merge_3d[i] - MERGE_3D_0);
  868. }
  869. for (i = 0; i < cfg->cwb_count; i++) {
  870. if (cfg->cwb[i])
  871. cwb_active |= BIT(cfg->cwb[i] - CWB_0);
  872. }
  873. for (i = 0; i < cfg->cdm_count; i++) {
  874. if (cfg->cdm[i])
  875. cdm_active |= BIT(cfg->cdm[i] - CDM_0);
  876. }
  877. if (cfg->intf_mode_sel == SDE_CTL_MODE_SEL_CMD)
  878. mode_sel |= BIT(17);
  879. SDE_REG_WRITE(c, CTL_TOP, mode_sel);
  880. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  881. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  882. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  883. SDE_REG_WRITE(c, CTL_CDM_ACTIVE, cdm_active);
  884. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  885. SDE_REG_WRITE(c, CTL_INTF_MASTER, intf_master);
  886. return 0;
  887. }
  888. static int sde_hw_ctl_reset_post_disable(struct sde_hw_ctl *ctx,
  889. struct sde_hw_intf_cfg_v1 *cfg, u32 merge_3d_idx)
  890. {
  891. struct sde_hw_blk_reg_map *c;
  892. u32 intf_active = 0, wb_active = 0, merge_3d_active = 0;
  893. u32 intf_flush = 0, wb_flush = 0;
  894. u32 i;
  895. if (!ctx || !cfg) {
  896. SDE_ERROR("invalid hw_ctl or hw_intf blk\n");
  897. return -EINVAL;
  898. }
  899. c = &ctx->hw;
  900. for (i = 0; i < cfg->intf_count; i++) {
  901. if (cfg->intf[i]) {
  902. intf_active &= ~BIT(cfg->intf[i] - INTF_0);
  903. intf_flush |= BIT(cfg->intf[i] - INTF_0);
  904. }
  905. }
  906. for (i = 0; i < cfg->wb_count; i++) {
  907. if (cfg->wb[i]) {
  908. wb_active &= ~BIT(cfg->wb[i] - WB_0);
  909. wb_flush |= BIT(cfg->wb[i] - WB_0);
  910. }
  911. }
  912. if (merge_3d_idx) {
  913. /* disable and flush merge3d_blk */
  914. merge_3d_active &= ~BIT(merge_3d_idx - MERGE_3D_0);
  915. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_MERGE_3D] =
  916. BIT(merge_3d_idx - MERGE_3D_0);
  917. UPDATE_MASK(ctx->flush.pending_flush_mask, MERGE_3D_IDX, 1);
  918. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  919. }
  920. sde_hw_ctl_clear_all_blendstages(ctx);
  921. if (cfg->intf_count) {
  922. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_INTF] =
  923. intf_flush;
  924. UPDATE_MASK(ctx->flush.pending_flush_mask, INTF_IDX, 1);
  925. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  926. }
  927. if (cfg->wb_count) {
  928. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_WB] = wb_flush;
  929. UPDATE_MASK(ctx->flush.pending_flush_mask, WB_IDX, 1);
  930. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  931. }
  932. return 0;
  933. }
  934. static int sde_hw_ctl_update_intf_cfg(struct sde_hw_ctl *ctx,
  935. struct sde_hw_intf_cfg_v1 *cfg, bool enable)
  936. {
  937. int i;
  938. u32 cwb_active = 0;
  939. u32 merge_3d_active = 0;
  940. u32 wb_active = 0;
  941. u32 dsc_active = 0;
  942. u32 vdc_active = 0;
  943. struct sde_hw_blk_reg_map *c;
  944. if (!ctx)
  945. return -EINVAL;
  946. c = &ctx->hw;
  947. if (cfg->cwb_count) {
  948. cwb_active = SDE_REG_READ(c, CTL_CWB_ACTIVE);
  949. for (i = 0; i < cfg->cwb_count; i++) {
  950. if (cfg->cwb[i])
  951. UPDATE_ACTIVE(cwb_active,
  952. (cfg->cwb[i] - CWB_0),
  953. enable);
  954. }
  955. wb_active = enable ? BIT(2) : 0;
  956. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  957. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  958. }
  959. if (cfg->merge_3d_count) {
  960. merge_3d_active = SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE);
  961. for (i = 0; i < cfg->merge_3d_count; i++) {
  962. if (cfg->merge_3d[i])
  963. UPDATE_ACTIVE(merge_3d_active,
  964. (cfg->merge_3d[i] - MERGE_3D_0),
  965. enable);
  966. }
  967. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  968. }
  969. if (cfg->dsc_count) {
  970. dsc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  971. for (i = 0; i < cfg->dsc_count; i++) {
  972. if (cfg->dsc[i])
  973. UPDATE_ACTIVE(dsc_active,
  974. (cfg->dsc[i] - DSC_0), enable);
  975. }
  976. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active);
  977. }
  978. if (cfg->vdc_count) {
  979. vdc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  980. for (i = 0; i < cfg->vdc_count; i++) {
  981. if (cfg->vdc[i])
  982. UPDATE_ACTIVE(vdc_active,
  983. VDC_IDX(cfg->vdc[i] - VDC_0), enable);
  984. }
  985. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, vdc_active);
  986. }
  987. return 0;
  988. }
  989. static int sde_hw_ctl_intf_cfg(struct sde_hw_ctl *ctx,
  990. struct sde_hw_intf_cfg *cfg)
  991. {
  992. struct sde_hw_blk_reg_map *c;
  993. u32 intf_cfg = 0;
  994. if (!ctx)
  995. return -EINVAL;
  996. c = &ctx->hw;
  997. intf_cfg |= (cfg->intf & 0xF) << 4;
  998. if (cfg->wb)
  999. intf_cfg |= (cfg->wb & 0x3) + 2;
  1000. if (cfg->mode_3d) {
  1001. intf_cfg |= BIT(19);
  1002. intf_cfg |= (cfg->mode_3d - 0x1) << 20;
  1003. }
  1004. switch (cfg->intf_mode_sel) {
  1005. case SDE_CTL_MODE_SEL_VID:
  1006. intf_cfg &= ~BIT(17);
  1007. intf_cfg &= ~(0x3 << 15);
  1008. break;
  1009. case SDE_CTL_MODE_SEL_CMD:
  1010. intf_cfg |= BIT(17);
  1011. intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
  1012. break;
  1013. default:
  1014. pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
  1015. return -EINVAL;
  1016. }
  1017. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  1018. return 0;
  1019. }
  1020. static void sde_hw_ctl_update_wb_cfg(struct sde_hw_ctl *ctx,
  1021. struct sde_hw_intf_cfg *cfg, bool enable)
  1022. {
  1023. struct sde_hw_blk_reg_map *c = &ctx->hw;
  1024. u32 intf_cfg = 0;
  1025. if (!cfg->wb)
  1026. return;
  1027. intf_cfg = SDE_REG_READ(c, CTL_TOP);
  1028. if (enable)
  1029. intf_cfg |= (cfg->wb & 0x3) + 2;
  1030. else
  1031. intf_cfg &= ~((cfg->wb & 0x3) + 2);
  1032. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  1033. }
  1034. static inline u32 sde_hw_ctl_read_ctl_top(struct sde_hw_ctl *ctx)
  1035. {
  1036. struct sde_hw_blk_reg_map *c;
  1037. u32 ctl_top;
  1038. if (!ctx) {
  1039. pr_err("Invalid input argument\n");
  1040. return 0;
  1041. }
  1042. c = &ctx->hw;
  1043. ctl_top = SDE_REG_READ(c, CTL_TOP);
  1044. return ctl_top;
  1045. }
  1046. static inline u32 sde_hw_ctl_read_ctl_layers(struct sde_hw_ctl *ctx, int index)
  1047. {
  1048. struct sde_hw_blk_reg_map *c;
  1049. u32 ctl_top;
  1050. if (!ctx) {
  1051. pr_err("Invalid input argument\n");
  1052. return 0;
  1053. }
  1054. c = &ctx->hw;
  1055. ctl_top = SDE_REG_READ(c, CTL_LAYER(index));
  1056. pr_debug("Ctl_layer value = 0x%x\n", ctl_top);
  1057. return ctl_top;
  1058. }
  1059. static inline bool sde_hw_ctl_read_active_status(struct sde_hw_ctl *ctx,
  1060. enum sde_hw_blk_type blk, int index)
  1061. {
  1062. struct sde_hw_blk_reg_map *c;
  1063. if (!ctx) {
  1064. pr_err("Invalid input argument\n");
  1065. return 0;
  1066. }
  1067. c = &ctx->hw;
  1068. switch (blk) {
  1069. case SDE_HW_BLK_MERGE_3D:
  1070. return (SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE) &
  1071. BIT(index - MERGE_3D_0)) ? true : false;
  1072. case SDE_HW_BLK_DSC:
  1073. return (SDE_REG_READ(c, CTL_DSC_ACTIVE) &
  1074. BIT(index - DSC_0)) ? true : false;
  1075. case SDE_HW_BLK_WB:
  1076. return (SDE_REG_READ(c, CTL_WB_ACTIVE) &
  1077. BIT(index - WB_0)) ? true : false;
  1078. case SDE_HW_BLK_CDM:
  1079. return (SDE_REG_READ(c, CTL_CDM_ACTIVE) &
  1080. BIT(index - CDM_0)) ? true : false;
  1081. case SDE_HW_BLK_INTF:
  1082. return (SDE_REG_READ(c, CTL_INTF_ACTIVE) &
  1083. BIT(index - INTF_0)) ? true : false;
  1084. default:
  1085. pr_err("unsupported blk %d\n", blk);
  1086. return false;
  1087. };
  1088. return false;
  1089. }
  1090. static int sde_hw_reg_dma_flush(struct sde_hw_ctl *ctx, bool blocking)
  1091. {
  1092. struct sde_hw_reg_dma_ops *ops = sde_reg_dma_get_ops();
  1093. if (!ctx)
  1094. return -EINVAL;
  1095. if (ops && ops->last_command)
  1096. return ops->last_command(ctx, DMA_CTL_QUEUE0,
  1097. (blocking ? REG_DMA_WAIT4_COMP : REG_DMA_NOWAIT));
  1098. return 0;
  1099. }
  1100. static void _setup_ctl_ops(struct sde_hw_ctl_ops *ops,
  1101. unsigned long cap)
  1102. {
  1103. if (cap & BIT(SDE_CTL_ACTIVE_CFG)) {
  1104. ops->update_pending_flush =
  1105. sde_hw_ctl_update_pending_flush_v1;
  1106. ops->trigger_flush = sde_hw_ctl_trigger_flush_v1;
  1107. ops->setup_intf_cfg_v1 = sde_hw_ctl_intf_cfg_v1;
  1108. ops->update_intf_cfg = sde_hw_ctl_update_intf_cfg;
  1109. ops->update_bitmask = sde_hw_ctl_update_bitmask_v1;
  1110. ops->get_ctl_intf = sde_hw_ctl_get_intf_v1;
  1111. ops->reset_post_disable = sde_hw_ctl_reset_post_disable;
  1112. ops->get_scheduler_status = sde_hw_ctl_get_scheduler_status;
  1113. ops->read_active_status = sde_hw_ctl_read_active_status;
  1114. } else {
  1115. ops->update_pending_flush = sde_hw_ctl_update_pending_flush;
  1116. ops->trigger_flush = sde_hw_ctl_trigger_flush;
  1117. ops->setup_intf_cfg = sde_hw_ctl_intf_cfg;
  1118. ops->update_bitmask = sde_hw_ctl_update_bitmask;
  1119. ops->get_ctl_intf = sde_hw_ctl_get_intf;
  1120. }
  1121. ops->clear_pending_flush = sde_hw_ctl_clear_pending_flush;
  1122. ops->get_pending_flush = sde_hw_ctl_get_pending_flush;
  1123. ops->get_flush_register = sde_hw_ctl_get_flush_register;
  1124. ops->trigger_start = sde_hw_ctl_trigger_start;
  1125. ops->trigger_pending = sde_hw_ctl_trigger_pending;
  1126. ops->read_ctl_top = sde_hw_ctl_read_ctl_top;
  1127. ops->read_ctl_layers = sde_hw_ctl_read_ctl_layers;
  1128. ops->update_wb_cfg = sde_hw_ctl_update_wb_cfg;
  1129. ops->reset = sde_hw_ctl_reset_control;
  1130. ops->get_reset = sde_hw_ctl_get_reset_status;
  1131. ops->hard_reset = sde_hw_ctl_hard_reset;
  1132. ops->wait_reset_status = sde_hw_ctl_wait_reset_status;
  1133. ops->clear_all_blendstages = sde_hw_ctl_clear_all_blendstages;
  1134. ops->setup_blendstage = sde_hw_ctl_setup_blendstage;
  1135. ops->get_staged_sspp = sde_hw_ctl_get_staged_sspp;
  1136. ops->update_bitmask_sspp = sde_hw_ctl_update_bitmask_sspp;
  1137. ops->update_bitmask_mixer = sde_hw_ctl_update_bitmask_mixer;
  1138. ops->reg_dma_flush = sde_hw_reg_dma_flush;
  1139. ops->get_start_state = sde_hw_ctl_get_start_state;
  1140. if (cap & BIT(SDE_CTL_UNIFIED_DSPP_FLUSH)) {
  1141. ops->update_bitmask_dspp_subblk =
  1142. sde_hw_ctl_update_bitmask_dspp_subblk;
  1143. } else {
  1144. ops->update_bitmask_dspp = sde_hw_ctl_update_bitmask_dspp;
  1145. ops->update_bitmask_dspp_pavlut =
  1146. sde_hw_ctl_update_bitmask_dspp_pavlut;
  1147. }
  1148. if (cap & BIT(SDE_CTL_UIDLE))
  1149. ops->uidle_enable = sde_hw_ctl_uidle_enable;
  1150. };
  1151. static struct sde_hw_blk_ops sde_hw_ops = {
  1152. .start = NULL,
  1153. .stop = NULL,
  1154. };
  1155. struct sde_hw_ctl *sde_hw_ctl_init(enum sde_ctl idx,
  1156. void __iomem *addr,
  1157. struct sde_mdss_cfg *m)
  1158. {
  1159. struct sde_hw_ctl *c;
  1160. struct sde_ctl_cfg *cfg;
  1161. int rc;
  1162. c = kzalloc(sizeof(*c), GFP_KERNEL);
  1163. if (!c)
  1164. return ERR_PTR(-ENOMEM);
  1165. cfg = _ctl_offset(idx, m, addr, &c->hw);
  1166. if (IS_ERR_OR_NULL(cfg)) {
  1167. kfree(c);
  1168. pr_err("failed to create sde_hw_ctl %d\n", idx);
  1169. return ERR_PTR(-EINVAL);
  1170. }
  1171. c->caps = cfg;
  1172. _setup_ctl_ops(&c->ops, c->caps->features);
  1173. c->idx = idx;
  1174. c->mixer_count = m->mixer_count;
  1175. c->mixer_hw_caps = m->mixer;
  1176. rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_CTL, idx, &sde_hw_ops);
  1177. if (rc) {
  1178. SDE_ERROR("failed to init hw blk %d\n", rc);
  1179. goto blk_init_error;
  1180. }
  1181. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
  1182. c->hw.blk_off + c->hw.length, c->hw.xin_id);
  1183. return c;
  1184. blk_init_error:
  1185. kzfree(c);
  1186. return ERR_PTR(rc);
  1187. }
  1188. void sde_hw_ctl_destroy(struct sde_hw_ctl *ctx)
  1189. {
  1190. if (ctx)
  1191. sde_hw_blk_destroy(&ctx->base);
  1192. kfree(ctx);
  1193. }