dp_peer.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include <qdf_types.h>
  19. #include <qdf_lock.h>
  20. #include <hal_hw_headers.h>
  21. #include "dp_htt.h"
  22. #include "dp_types.h"
  23. #include "dp_internal.h"
  24. #include "dp_peer.h"
  25. #include "dp_rx_defrag.h"
  26. #include "dp_rx.h"
  27. #include <hal_api.h>
  28. #include <hal_reo.h>
  29. #include <cdp_txrx_handle.h>
  30. #include <wlan_cfg.h>
  31. #ifdef WLAN_TX_PKT_CAPTURE_ENH
  32. #include "dp_tx_capture.h"
  33. #endif
  34. static inline void
  35. dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
  36. uint8_t valid)
  37. {
  38. params->u.upd_queue_params.update_svld = 1;
  39. params->u.upd_queue_params.svld = valid;
  40. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  41. "%s: Setting SSN valid bit to %d",
  42. __func__, valid);
  43. }
  44. static inline int dp_peer_find_mac_addr_cmp(
  45. union dp_align_mac_addr *mac_addr1,
  46. union dp_align_mac_addr *mac_addr2)
  47. {
  48. /*
  49. * Intentionally use & rather than &&.
  50. * because the operands are binary rather than generic boolean,
  51. * the functionality is equivalent.
  52. * Using && has the advantage of short-circuited evaluation,
  53. * but using & has the advantage of no conditional branching,
  54. * which is a more significant benefit.
  55. */
  56. return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd)
  57. & (mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef));
  58. }
  59. static int dp_peer_ast_table_attach(struct dp_soc *soc)
  60. {
  61. uint32_t max_ast_index;
  62. max_ast_index = wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx);
  63. /* allocate ast_table for ast entry to ast_index map */
  64. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  65. "\n<=== cfg max ast idx %d ====>", max_ast_index);
  66. soc->ast_table = qdf_mem_malloc(max_ast_index *
  67. sizeof(struct dp_ast_entry *));
  68. if (!soc->ast_table) {
  69. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  70. "%s: ast_table memory allocation failed", __func__);
  71. return QDF_STATUS_E_NOMEM;
  72. }
  73. return 0; /* success */
  74. }
  75. static int dp_peer_find_map_attach(struct dp_soc *soc)
  76. {
  77. uint32_t max_peers, peer_map_size;
  78. max_peers = soc->max_peers;
  79. /* allocate the peer ID -> peer object map */
  80. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  81. "\n<=== cfg max peer id %d ====>", max_peers);
  82. peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]);
  83. soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size);
  84. if (!soc->peer_id_to_obj_map) {
  85. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  86. "%s: peer map memory allocation failed", __func__);
  87. return QDF_STATUS_E_NOMEM;
  88. }
  89. /*
  90. * The peer_id_to_obj_map doesn't really need to be initialized,
  91. * since elements are only used after they have been individually
  92. * initialized.
  93. * However, it is convenient for debugging to have all elements
  94. * that are not in use set to 0.
  95. */
  96. qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size);
  97. return 0; /* success */
  98. }
  99. static int dp_log2_ceil(unsigned int value)
  100. {
  101. unsigned int tmp = value;
  102. int log2 = -1;
  103. while (tmp) {
  104. log2++;
  105. tmp >>= 1;
  106. }
  107. if (1 << log2 != value)
  108. log2++;
  109. return log2;
  110. }
  111. static int dp_peer_find_add_id_to_obj(
  112. struct dp_peer *peer,
  113. uint16_t peer_id)
  114. {
  115. int i;
  116. for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
  117. if (peer->peer_ids[i] == HTT_INVALID_PEER) {
  118. peer->peer_ids[i] = peer_id;
  119. return 0; /* success */
  120. }
  121. }
  122. return QDF_STATUS_E_FAILURE; /* failure */
  123. }
  124. #define DP_PEER_HASH_LOAD_MULT 2
  125. #define DP_PEER_HASH_LOAD_SHIFT 0
  126. #define DP_AST_HASH_LOAD_MULT 2
  127. #define DP_AST_HASH_LOAD_SHIFT 0
  128. static int dp_peer_find_hash_attach(struct dp_soc *soc)
  129. {
  130. int i, hash_elems, log2;
  131. /* allocate the peer MAC address -> peer object hash table */
  132. hash_elems = soc->max_peers;
  133. hash_elems *= DP_PEER_HASH_LOAD_MULT;
  134. hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
  135. log2 = dp_log2_ceil(hash_elems);
  136. hash_elems = 1 << log2;
  137. soc->peer_hash.mask = hash_elems - 1;
  138. soc->peer_hash.idx_bits = log2;
  139. /* allocate an array of TAILQ peer object lists */
  140. soc->peer_hash.bins = qdf_mem_malloc(
  141. hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
  142. if (!soc->peer_hash.bins)
  143. return QDF_STATUS_E_NOMEM;
  144. for (i = 0; i < hash_elems; i++)
  145. TAILQ_INIT(&soc->peer_hash.bins[i]);
  146. return 0;
  147. }
  148. static void dp_peer_find_hash_detach(struct dp_soc *soc)
  149. {
  150. if (soc->peer_hash.bins) {
  151. qdf_mem_free(soc->peer_hash.bins);
  152. soc->peer_hash.bins = NULL;
  153. }
  154. }
  155. static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc,
  156. union dp_align_mac_addr *mac_addr)
  157. {
  158. unsigned index;
  159. index =
  160. mac_addr->align2.bytes_ab ^
  161. mac_addr->align2.bytes_cd ^
  162. mac_addr->align2.bytes_ef;
  163. index ^= index >> soc->peer_hash.idx_bits;
  164. index &= soc->peer_hash.mask;
  165. return index;
  166. }
  167. void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer)
  168. {
  169. unsigned index;
  170. index = dp_peer_find_hash_index(soc, &peer->mac_addr);
  171. qdf_spin_lock_bh(&soc->peer_ref_mutex);
  172. /*
  173. * It is important to add the new peer at the tail of the peer list
  174. * with the bin index. Together with having the hash_find function
  175. * search from head to tail, this ensures that if two entries with
  176. * the same MAC address are stored, the one added first will be
  177. * found first.
  178. */
  179. TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem);
  180. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  181. }
  182. #ifdef FEATURE_AST
  183. /*
  184. * dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table
  185. * @soc: SoC handle
  186. *
  187. * Return: None
  188. */
  189. static int dp_peer_ast_hash_attach(struct dp_soc *soc)
  190. {
  191. int i, hash_elems, log2;
  192. unsigned int max_ast_idx = wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx);
  193. hash_elems = ((max_ast_idx * DP_AST_HASH_LOAD_MULT) >>
  194. DP_AST_HASH_LOAD_SHIFT);
  195. log2 = dp_log2_ceil(hash_elems);
  196. hash_elems = 1 << log2;
  197. soc->ast_hash.mask = hash_elems - 1;
  198. soc->ast_hash.idx_bits = log2;
  199. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  200. "ast hash_elems: %d, max_ast_idx: %d",
  201. hash_elems, max_ast_idx);
  202. /* allocate an array of TAILQ peer object lists */
  203. soc->ast_hash.bins = qdf_mem_malloc(
  204. hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q,
  205. dp_ast_entry)));
  206. if (!soc->ast_hash.bins)
  207. return QDF_STATUS_E_NOMEM;
  208. for (i = 0; i < hash_elems; i++)
  209. TAILQ_INIT(&soc->ast_hash.bins[i]);
  210. return 0;
  211. }
  212. /*
  213. * dp_peer_ast_cleanup() - cleanup the references
  214. * @soc: SoC handle
  215. * @ast: ast entry
  216. *
  217. * Return: None
  218. */
  219. static inline void dp_peer_ast_cleanup(struct dp_soc *soc,
  220. struct dp_ast_entry *ast)
  221. {
  222. txrx_ast_free_cb cb = ast->callback;
  223. void *cookie = ast->cookie;
  224. /* Call the callbacks to free up the cookie */
  225. if (cb) {
  226. ast->callback = NULL;
  227. ast->cookie = NULL;
  228. cb(soc->ctrl_psoc,
  229. dp_soc_to_cdp_soc(soc),
  230. cookie,
  231. CDP_TXRX_AST_DELETE_IN_PROGRESS);
  232. }
  233. }
  234. /*
  235. * dp_peer_ast_hash_detach() - Free AST Hash table
  236. * @soc: SoC handle
  237. *
  238. * Return: None
  239. */
  240. static void dp_peer_ast_hash_detach(struct dp_soc *soc)
  241. {
  242. unsigned int index;
  243. struct dp_ast_entry *ast, *ast_next;
  244. if (!soc->ast_hash.mask)
  245. return;
  246. if (!soc->ast_hash.bins)
  247. return;
  248. qdf_spin_lock_bh(&soc->ast_lock);
  249. for (index = 0; index <= soc->ast_hash.mask; index++) {
  250. if (!TAILQ_EMPTY(&soc->ast_hash.bins[index])) {
  251. TAILQ_FOREACH_SAFE(ast, &soc->ast_hash.bins[index],
  252. hash_list_elem, ast_next) {
  253. TAILQ_REMOVE(&soc->ast_hash.bins[index], ast,
  254. hash_list_elem);
  255. dp_peer_ast_cleanup(soc, ast);
  256. qdf_mem_free(ast);
  257. }
  258. }
  259. }
  260. qdf_spin_unlock_bh(&soc->ast_lock);
  261. qdf_mem_free(soc->ast_hash.bins);
  262. soc->ast_hash.bins = NULL;
  263. }
  264. /*
  265. * dp_peer_ast_hash_index() - Compute the AST hash from MAC address
  266. * @soc: SoC handle
  267. *
  268. * Return: AST hash
  269. */
  270. static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc,
  271. union dp_align_mac_addr *mac_addr)
  272. {
  273. uint32_t index;
  274. index =
  275. mac_addr->align2.bytes_ab ^
  276. mac_addr->align2.bytes_cd ^
  277. mac_addr->align2.bytes_ef;
  278. index ^= index >> soc->ast_hash.idx_bits;
  279. index &= soc->ast_hash.mask;
  280. return index;
  281. }
  282. /*
  283. * dp_peer_ast_hash_add() - Add AST entry into hash table
  284. * @soc: SoC handle
  285. *
  286. * This function adds the AST entry into SoC AST hash table
  287. * It assumes caller has taken the ast lock to protect the access to this table
  288. *
  289. * Return: None
  290. */
  291. static inline void dp_peer_ast_hash_add(struct dp_soc *soc,
  292. struct dp_ast_entry *ase)
  293. {
  294. uint32_t index;
  295. index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
  296. TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem);
  297. }
  298. /*
  299. * dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table
  300. * @soc: SoC handle
  301. *
  302. * This function removes the AST entry from soc AST hash table
  303. * It assumes caller has taken the ast lock to protect the access to this table
  304. *
  305. * Return: None
  306. */
  307. void dp_peer_ast_hash_remove(struct dp_soc *soc,
  308. struct dp_ast_entry *ase)
  309. {
  310. unsigned index;
  311. struct dp_ast_entry *tmpase;
  312. int found = 0;
  313. index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
  314. /* Check if tail is not empty before delete*/
  315. QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index]));
  316. TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) {
  317. if (tmpase == ase) {
  318. found = 1;
  319. break;
  320. }
  321. }
  322. QDF_ASSERT(found);
  323. TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem);
  324. }
  325. /*
  326. * dp_peer_ast_list_find() - Find AST entry by MAC address from peer ast list
  327. * @soc: SoC handle
  328. * @peer: peer handle
  329. * @ast_mac_addr: mac address
  330. *
  331. * It assumes caller has taken the ast lock to protect the access to ast list
  332. *
  333. * Return: AST entry
  334. */
  335. struct dp_ast_entry *dp_peer_ast_list_find(struct dp_soc *soc,
  336. struct dp_peer *peer,
  337. uint8_t *ast_mac_addr)
  338. {
  339. struct dp_ast_entry *ast_entry = NULL;
  340. union dp_align_mac_addr *mac_addr =
  341. (union dp_align_mac_addr *)ast_mac_addr;
  342. TAILQ_FOREACH(ast_entry, &peer->ast_entry_list, ase_list_elem) {
  343. if (!dp_peer_find_mac_addr_cmp(mac_addr,
  344. &ast_entry->mac_addr)) {
  345. return ast_entry;
  346. }
  347. }
  348. return NULL;
  349. }
  350. /*
  351. * dp_peer_ast_hash_find_by_pdevid() - Find AST entry by MAC address
  352. * @soc: SoC handle
  353. *
  354. * It assumes caller has taken the ast lock to protect the access to
  355. * AST hash table
  356. *
  357. * Return: AST entry
  358. */
  359. struct dp_ast_entry *dp_peer_ast_hash_find_by_pdevid(struct dp_soc *soc,
  360. uint8_t *ast_mac_addr,
  361. uint8_t pdev_id)
  362. {
  363. union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
  364. uint32_t index;
  365. struct dp_ast_entry *ase;
  366. qdf_mem_copy(&local_mac_addr_aligned.raw[0],
  367. ast_mac_addr, QDF_MAC_ADDR_SIZE);
  368. mac_addr = &local_mac_addr_aligned;
  369. index = dp_peer_ast_hash_index(soc, mac_addr);
  370. TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
  371. if ((pdev_id == ase->pdev_id) &&
  372. !dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr)) {
  373. return ase;
  374. }
  375. }
  376. return NULL;
  377. }
  378. /*
  379. * dp_peer_ast_hash_find_soc() - Find AST entry by MAC address
  380. * @soc: SoC handle
  381. *
  382. * It assumes caller has taken the ast lock to protect the access to
  383. * AST hash table
  384. *
  385. * Return: AST entry
  386. */
  387. struct dp_ast_entry *dp_peer_ast_hash_find_soc(struct dp_soc *soc,
  388. uint8_t *ast_mac_addr)
  389. {
  390. union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
  391. unsigned index;
  392. struct dp_ast_entry *ase;
  393. qdf_mem_copy(&local_mac_addr_aligned.raw[0],
  394. ast_mac_addr, QDF_MAC_ADDR_SIZE);
  395. mac_addr = &local_mac_addr_aligned;
  396. index = dp_peer_ast_hash_index(soc, mac_addr);
  397. TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
  398. if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) {
  399. return ase;
  400. }
  401. }
  402. return NULL;
  403. }
  404. /*
  405. * dp_peer_map_ast() - Map the ast entry with HW AST Index
  406. * @soc: SoC handle
  407. * @peer: peer to which ast node belongs
  408. * @mac_addr: MAC address of ast node
  409. * @hw_peer_id: HW AST Index returned by target in peer map event
  410. * @vdev_id: vdev id for VAP to which the peer belongs to
  411. * @ast_hash: ast hash value in HW
  412. *
  413. * Return: None
  414. */
  415. static inline void dp_peer_map_ast(struct dp_soc *soc,
  416. struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
  417. uint8_t vdev_id, uint16_t ast_hash)
  418. {
  419. struct dp_ast_entry *ast_entry = NULL;
  420. enum cdp_txrx_ast_entry_type peer_type = CDP_TXRX_AST_TYPE_STATIC;
  421. if (!peer) {
  422. return;
  423. }
  424. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  425. "%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x",
  426. __func__, peer, hw_peer_id, vdev_id, mac_addr[0],
  427. mac_addr[1], mac_addr[2], mac_addr[3],
  428. mac_addr[4], mac_addr[5]);
  429. qdf_spin_lock_bh(&soc->ast_lock);
  430. ast_entry = dp_peer_ast_list_find(soc, peer, mac_addr);
  431. if (ast_entry) {
  432. ast_entry->ast_idx = hw_peer_id;
  433. soc->ast_table[hw_peer_id] = ast_entry;
  434. ast_entry->is_active = TRUE;
  435. peer_type = ast_entry->type;
  436. ast_entry->ast_hash_value = ast_hash;
  437. ast_entry->is_mapped = TRUE;
  438. }
  439. if (ast_entry || (peer->vdev && peer->vdev->proxysta_vdev)) {
  440. if (soc->cdp_soc.ol_ops->peer_map_event) {
  441. soc->cdp_soc.ol_ops->peer_map_event(
  442. soc->ctrl_psoc, peer->peer_ids[0],
  443. hw_peer_id, vdev_id,
  444. mac_addr, peer_type, ast_hash);
  445. }
  446. } else {
  447. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  448. "AST entry not found");
  449. }
  450. qdf_spin_unlock_bh(&soc->ast_lock);
  451. return;
  452. }
  453. void dp_peer_free_hmwds_cb(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
  454. struct cdp_soc *dp_soc,
  455. void *cookie,
  456. enum cdp_ast_free_status status)
  457. {
  458. struct dp_ast_free_cb_params *param =
  459. (struct dp_ast_free_cb_params *)cookie;
  460. struct dp_soc *soc = (struct dp_soc *)dp_soc;
  461. struct dp_peer *peer = NULL;
  462. if (status != CDP_TXRX_AST_DELETED) {
  463. qdf_mem_free(cookie);
  464. return;
  465. }
  466. peer = dp_peer_find_hash_find(soc, &param->peer_mac_addr.raw[0],
  467. 0, param->vdev_id);
  468. if (peer) {
  469. dp_peer_add_ast(soc, peer,
  470. &param->mac_addr.raw[0],
  471. param->type,
  472. param->flags);
  473. dp_peer_unref_delete(peer);
  474. }
  475. qdf_mem_free(cookie);
  476. }
  477. /*
  478. * dp_peer_add_ast() - Allocate and add AST entry into peer list
  479. * @soc: SoC handle
  480. * @peer: peer to which ast node belongs
  481. * @mac_addr: MAC address of ast node
  482. * @is_self: Is this base AST entry with peer mac address
  483. *
  484. * This API is used by WDS source port learning function to
  485. * add a new AST entry into peer AST list
  486. *
  487. * Return: 0 if new entry is allocated,
  488. * -1 if entry add failed
  489. */
  490. int dp_peer_add_ast(struct dp_soc *soc,
  491. struct dp_peer *peer,
  492. uint8_t *mac_addr,
  493. enum cdp_txrx_ast_entry_type type,
  494. uint32_t flags)
  495. {
  496. struct dp_ast_entry *ast_entry = NULL;
  497. struct dp_vdev *vdev = NULL, *tmp_vdev = NULL;
  498. struct dp_pdev *pdev = NULL;
  499. uint8_t next_node_mac[6];
  500. int ret = -1;
  501. txrx_ast_free_cb cb = NULL;
  502. void *cookie = NULL;
  503. struct dp_peer *tmp_peer = NULL;
  504. bool is_peer_found = false;
  505. vdev = peer->vdev;
  506. if (!vdev) {
  507. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  508. FL("Peers vdev is NULL"));
  509. QDF_ASSERT(0);
  510. return ret;
  511. }
  512. pdev = vdev->pdev;
  513. tmp_peer = dp_peer_find_hash_find(soc, mac_addr, 0,
  514. DP_VDEV_ALL);
  515. if (tmp_peer) {
  516. tmp_vdev = tmp_peer->vdev;
  517. if (!tmp_vdev) {
  518. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  519. FL("Peers vdev is NULL"));
  520. QDF_ASSERT(0);
  521. dp_peer_unref_delete(tmp_peer);
  522. return ret;
  523. }
  524. if (tmp_vdev->pdev->pdev_id == pdev->pdev_id)
  525. is_peer_found = true;
  526. dp_peer_unref_delete(tmp_peer);
  527. }
  528. qdf_spin_lock_bh(&soc->ast_lock);
  529. if (peer->delete_in_progress) {
  530. qdf_spin_unlock_bh(&soc->ast_lock);
  531. return ret;
  532. }
  533. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  534. "%s: pdevid: %u vdev: %u ast_entry->type: %d flags: 0x%x peer_mac: %pM peer: %pK mac %pM",
  535. __func__, pdev->pdev_id, vdev->vdev_id, type, flags,
  536. peer->mac_addr.raw, peer, mac_addr);
  537. /* fw supports only 2 times the max_peers ast entries */
  538. if (soc->num_ast_entries >=
  539. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx)) {
  540. qdf_spin_unlock_bh(&soc->ast_lock);
  541. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  542. FL("Max ast entries reached"));
  543. return ret;
  544. }
  545. /* If AST entry already exists , just return from here
  546. * ast entry with same mac address can exist on different radios
  547. * if ast_override support is enabled use search by pdev in this
  548. * case
  549. */
  550. if (soc->ast_override_support) {
  551. ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr,
  552. pdev->pdev_id);
  553. if (ast_entry) {
  554. if ((type == CDP_TXRX_AST_TYPE_MEC) &&
  555. (ast_entry->type == CDP_TXRX_AST_TYPE_MEC))
  556. ast_entry->is_active = TRUE;
  557. qdf_spin_unlock_bh(&soc->ast_lock);
  558. return 0;
  559. }
  560. if (is_peer_found) {
  561. /* During WDS to static roaming, peer is added
  562. * to the list before static AST entry create.
  563. * So, allow AST entry for STATIC type
  564. * even if peer is present
  565. */
  566. if (type != CDP_TXRX_AST_TYPE_STATIC) {
  567. qdf_spin_unlock_bh(&soc->ast_lock);
  568. return 0;
  569. }
  570. }
  571. } else {
  572. /* For HWMWDS_SEC entries can be added for same mac address
  573. * do not check for existing entry
  574. */
  575. if (type == CDP_TXRX_AST_TYPE_WDS_HM_SEC)
  576. goto add_ast_entry;
  577. ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
  578. if (ast_entry) {
  579. if ((type == CDP_TXRX_AST_TYPE_MEC) &&
  580. (ast_entry->type == CDP_TXRX_AST_TYPE_MEC))
  581. ast_entry->is_active = TRUE;
  582. if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) &&
  583. !ast_entry->delete_in_progress) {
  584. qdf_spin_unlock_bh(&soc->ast_lock);
  585. return 0;
  586. }
  587. /* Add for HMWDS entry we cannot be ignored if there
  588. * is AST entry with same mac address
  589. *
  590. * if ast entry exists with the requested mac address
  591. * send a delete command and register callback which
  592. * can take care of adding HMWDS ast enty on delete
  593. * confirmation from target
  594. */
  595. if ((type == CDP_TXRX_AST_TYPE_WDS_HM) &&
  596. soc->is_peer_map_unmap_v2) {
  597. struct dp_ast_free_cb_params *param = NULL;
  598. if (ast_entry->type ==
  599. CDP_TXRX_AST_TYPE_WDS_HM_SEC)
  600. goto add_ast_entry;
  601. /* save existing callback */
  602. if (ast_entry->callback) {
  603. cb = ast_entry->callback;
  604. cookie = ast_entry->cookie;
  605. }
  606. param = qdf_mem_malloc(sizeof(*param));
  607. if (!param) {
  608. QDF_TRACE(QDF_MODULE_ID_TXRX,
  609. QDF_TRACE_LEVEL_ERROR,
  610. "Allocation failed");
  611. qdf_spin_unlock_bh(&soc->ast_lock);
  612. return ret;
  613. }
  614. qdf_mem_copy(&param->mac_addr.raw[0], mac_addr,
  615. QDF_MAC_ADDR_SIZE);
  616. qdf_mem_copy(&param->peer_mac_addr.raw[0],
  617. &peer->mac_addr.raw[0],
  618. QDF_MAC_ADDR_SIZE);
  619. param->type = type;
  620. param->flags = flags;
  621. param->vdev_id = vdev->vdev_id;
  622. ast_entry->callback = dp_peer_free_hmwds_cb;
  623. ast_entry->pdev_id = vdev->pdev->pdev_id;
  624. ast_entry->type = type;
  625. ast_entry->cookie = (void *)param;
  626. if (!ast_entry->delete_in_progress)
  627. dp_peer_del_ast(soc, ast_entry);
  628. }
  629. /* Modify an already existing AST entry from type
  630. * WDS to MEC on promption. This serves as a fix when
  631. * backbone of interfaces are interchanged wherein
  632. * wds entr becomes its own MEC. The entry should be
  633. * replaced only when the ast_entry peer matches the
  634. * peer received in mec event. This additional check
  635. * is needed in wds repeater cases where a multicast
  636. * packet from station to the root via the repeater
  637. * should not remove the wds entry.
  638. */
  639. if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS) &&
  640. (type == CDP_TXRX_AST_TYPE_MEC) &&
  641. (ast_entry->peer == peer)) {
  642. ast_entry->is_active = FALSE;
  643. dp_peer_del_ast(soc, ast_entry);
  644. }
  645. qdf_spin_unlock_bh(&soc->ast_lock);
  646. /* Call the saved callback*/
  647. if (cb) {
  648. cb(soc->ctrl_psoc,
  649. dp_soc_to_cdp_soc(soc),
  650. cookie,
  651. CDP_TXRX_AST_DELETE_IN_PROGRESS);
  652. }
  653. return 0;
  654. }
  655. }
  656. add_ast_entry:
  657. ast_entry = (struct dp_ast_entry *)
  658. qdf_mem_malloc(sizeof(struct dp_ast_entry));
  659. if (!ast_entry) {
  660. qdf_spin_unlock_bh(&soc->ast_lock);
  661. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  662. FL("fail to allocate ast_entry"));
  663. QDF_ASSERT(0);
  664. return ret;
  665. }
  666. qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, QDF_MAC_ADDR_SIZE);
  667. ast_entry->pdev_id = vdev->pdev->pdev_id;
  668. ast_entry->is_mapped = false;
  669. ast_entry->delete_in_progress = false;
  670. switch (type) {
  671. case CDP_TXRX_AST_TYPE_STATIC:
  672. peer->self_ast_entry = ast_entry;
  673. ast_entry->type = CDP_TXRX_AST_TYPE_STATIC;
  674. if (peer->vdev->opmode == wlan_op_mode_sta)
  675. ast_entry->type = CDP_TXRX_AST_TYPE_STA_BSS;
  676. break;
  677. case CDP_TXRX_AST_TYPE_SELF:
  678. peer->self_ast_entry = ast_entry;
  679. ast_entry->type = CDP_TXRX_AST_TYPE_SELF;
  680. break;
  681. case CDP_TXRX_AST_TYPE_WDS:
  682. ast_entry->next_hop = 1;
  683. ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
  684. break;
  685. case CDP_TXRX_AST_TYPE_WDS_HM:
  686. ast_entry->next_hop = 1;
  687. ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM;
  688. break;
  689. case CDP_TXRX_AST_TYPE_WDS_HM_SEC:
  690. ast_entry->next_hop = 1;
  691. ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM_SEC;
  692. break;
  693. case CDP_TXRX_AST_TYPE_MEC:
  694. ast_entry->next_hop = 1;
  695. ast_entry->type = CDP_TXRX_AST_TYPE_MEC;
  696. break;
  697. case CDP_TXRX_AST_TYPE_DA:
  698. peer = peer->vdev->vap_bss_peer;
  699. ast_entry->next_hop = 1;
  700. ast_entry->type = CDP_TXRX_AST_TYPE_DA;
  701. break;
  702. default:
  703. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  704. FL("Incorrect AST entry type"));
  705. }
  706. ast_entry->is_active = TRUE;
  707. DP_STATS_INC(soc, ast.added, 1);
  708. soc->num_ast_entries++;
  709. dp_peer_ast_hash_add(soc, ast_entry);
  710. ast_entry->peer = peer;
  711. if (type == CDP_TXRX_AST_TYPE_MEC)
  712. qdf_mem_copy(next_node_mac, peer->vdev->mac_addr.raw, 6);
  713. else
  714. qdf_mem_copy(next_node_mac, peer->mac_addr.raw, 6);
  715. TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
  716. if ((ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) &&
  717. (ast_entry->type != CDP_TXRX_AST_TYPE_SELF) &&
  718. (ast_entry->type != CDP_TXRX_AST_TYPE_STA_BSS) &&
  719. (ast_entry->type != CDP_TXRX_AST_TYPE_WDS_HM_SEC)) {
  720. if (QDF_STATUS_SUCCESS ==
  721. soc->cdp_soc.ol_ops->peer_add_wds_entry(
  722. soc->ctrl_psoc,
  723. peer->vdev->vdev_id,
  724. peer->mac_addr.raw,
  725. mac_addr,
  726. next_node_mac,
  727. flags,
  728. ast_entry->type)) {
  729. qdf_spin_unlock_bh(&soc->ast_lock);
  730. return 0;
  731. }
  732. }
  733. qdf_spin_unlock_bh(&soc->ast_lock);
  734. return ret;
  735. }
  736. /*
  737. * dp_peer_del_ast() - Delete and free AST entry
  738. * @soc: SoC handle
  739. * @ast_entry: AST entry of the node
  740. *
  741. * This function removes the AST entry from peer and soc tables
  742. * It assumes caller has taken the ast lock to protect the access to these
  743. * tables
  744. *
  745. * Return: None
  746. */
  747. void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
  748. {
  749. struct dp_peer *peer;
  750. if (!ast_entry)
  751. return;
  752. peer = ast_entry->peer;
  753. dp_peer_ast_send_wds_del(soc, ast_entry);
  754. /*
  755. * release the reference only if it is mapped
  756. * to ast_table
  757. */
  758. if (ast_entry->is_mapped)
  759. soc->ast_table[ast_entry->ast_idx] = NULL;
  760. /*
  761. * if peer map v2 is enabled we are not freeing ast entry
  762. * here and it is supposed to be freed in unmap event (after
  763. * we receive delete confirmation from target)
  764. *
  765. * if peer_id is invalid we did not get the peer map event
  766. * for the peer free ast entry from here only in this case
  767. */
  768. if (soc->is_peer_map_unmap_v2) {
  769. /*
  770. * For HM_SEC and SELF type we do not receive unmap event
  771. * free ast_entry from here it self
  772. */
  773. if ((ast_entry->type != CDP_TXRX_AST_TYPE_WDS_HM_SEC) &&
  774. (ast_entry->type != CDP_TXRX_AST_TYPE_SELF))
  775. return;
  776. }
  777. /* SELF and STATIC entries are removed in teardown itself */
  778. if (ast_entry->next_hop)
  779. TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
  780. DP_STATS_INC(soc, ast.deleted, 1);
  781. dp_peer_ast_hash_remove(soc, ast_entry);
  782. dp_peer_ast_cleanup(soc, ast_entry);
  783. qdf_mem_free(ast_entry);
  784. soc->num_ast_entries--;
  785. }
  786. /*
  787. * dp_peer_update_ast() - Delete and free AST entry
  788. * @soc: SoC handle
  789. * @peer: peer to which ast node belongs
  790. * @ast_entry: AST entry of the node
  791. * @flags: wds or hmwds
  792. *
  793. * This function update the AST entry to the roamed peer and soc tables
  794. * It assumes caller has taken the ast lock to protect the access to these
  795. * tables
  796. *
  797. * Return: 0 if ast entry is updated successfully
  798. * -1 failure
  799. */
  800. int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
  801. struct dp_ast_entry *ast_entry, uint32_t flags)
  802. {
  803. int ret = -1;
  804. struct dp_peer *old_peer;
  805. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  806. "%s: ast_entry->type: %d pdevid: %u vdevid: %u flags: 0x%x mac_addr: %pM peer_mac: %pM\n",
  807. __func__, ast_entry->type, peer->vdev->pdev->pdev_id,
  808. peer->vdev->vdev_id, flags, ast_entry->mac_addr.raw,
  809. peer->mac_addr.raw);
  810. /* Do not send AST update in below cases
  811. * 1) Ast entry delete has already triggered
  812. * 2) Peer delete is already triggered
  813. * 3) We did not get the HTT map for create event
  814. */
  815. if (ast_entry->delete_in_progress || peer->delete_in_progress ||
  816. !ast_entry->is_mapped)
  817. return ret;
  818. if ((ast_entry->type == CDP_TXRX_AST_TYPE_STATIC) ||
  819. (ast_entry->type == CDP_TXRX_AST_TYPE_SELF) ||
  820. (ast_entry->type == CDP_TXRX_AST_TYPE_STA_BSS) ||
  821. (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
  822. return 0;
  823. /*
  824. * Avoids flood of WMI update messages sent to FW for same peer.
  825. */
  826. if (qdf_unlikely(ast_entry->peer == peer) &&
  827. (ast_entry->type == CDP_TXRX_AST_TYPE_WDS) &&
  828. (ast_entry->peer->vdev == peer->vdev) &&
  829. (ast_entry->is_active))
  830. return 0;
  831. old_peer = ast_entry->peer;
  832. TAILQ_REMOVE(&old_peer->ast_entry_list, ast_entry, ase_list_elem);
  833. ast_entry->peer = peer;
  834. ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
  835. ast_entry->pdev_id = peer->vdev->pdev->pdev_id;
  836. ast_entry->is_active = TRUE;
  837. TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
  838. ret = soc->cdp_soc.ol_ops->peer_update_wds_entry(
  839. soc->ctrl_psoc,
  840. peer->vdev->vdev_id,
  841. ast_entry->mac_addr.raw,
  842. peer->mac_addr.raw,
  843. flags);
  844. return ret;
  845. }
  846. /*
  847. * dp_peer_ast_get_pdev_id() - get pdev_id from the ast entry
  848. * @soc: SoC handle
  849. * @ast_entry: AST entry of the node
  850. *
  851. * This function gets the pdev_id from the ast entry.
  852. *
  853. * Return: (uint8_t) pdev_id
  854. */
  855. uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
  856. struct dp_ast_entry *ast_entry)
  857. {
  858. return ast_entry->pdev_id;
  859. }
  860. /*
  861. * dp_peer_ast_get_next_hop() - get next_hop from the ast entry
  862. * @soc: SoC handle
  863. * @ast_entry: AST entry of the node
  864. *
  865. * This function gets the next hop from the ast entry.
  866. *
  867. * Return: (uint8_t) next_hop
  868. */
  869. uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
  870. struct dp_ast_entry *ast_entry)
  871. {
  872. return ast_entry->next_hop;
  873. }
  874. /*
  875. * dp_peer_ast_set_type() - set type from the ast entry
  876. * @soc: SoC handle
  877. * @ast_entry: AST entry of the node
  878. *
  879. * This function sets the type in the ast entry.
  880. *
  881. * Return:
  882. */
  883. void dp_peer_ast_set_type(struct dp_soc *soc,
  884. struct dp_ast_entry *ast_entry,
  885. enum cdp_txrx_ast_entry_type type)
  886. {
  887. ast_entry->type = type;
  888. }
  889. #else
  890. int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer,
  891. uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type,
  892. uint32_t flags)
  893. {
  894. return 1;
  895. }
  896. void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
  897. {
  898. }
  899. int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
  900. struct dp_ast_entry *ast_entry, uint32_t flags)
  901. {
  902. return 1;
  903. }
  904. struct dp_ast_entry *dp_peer_ast_hash_find_soc(struct dp_soc *soc,
  905. uint8_t *ast_mac_addr)
  906. {
  907. return NULL;
  908. }
  909. struct dp_ast_entry *dp_peer_ast_hash_find_by_pdevid(struct dp_soc *soc,
  910. uint8_t *ast_mac_addr,
  911. uint8_t pdev_id)
  912. {
  913. return NULL;
  914. }
  915. static int dp_peer_ast_hash_attach(struct dp_soc *soc)
  916. {
  917. return 0;
  918. }
  919. static inline void dp_peer_map_ast(struct dp_soc *soc,
  920. struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
  921. uint8_t vdev_id, uint16_t ast_hash)
  922. {
  923. return;
  924. }
  925. static void dp_peer_ast_hash_detach(struct dp_soc *soc)
  926. {
  927. }
  928. void dp_peer_ast_set_type(struct dp_soc *soc,
  929. struct dp_ast_entry *ast_entry,
  930. enum cdp_txrx_ast_entry_type type)
  931. {
  932. }
  933. uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
  934. struct dp_ast_entry *ast_entry)
  935. {
  936. return 0xff;
  937. }
  938. uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
  939. struct dp_ast_entry *ast_entry)
  940. {
  941. return 0xff;
  942. }
  943. int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
  944. struct dp_ast_entry *ast_entry, uint32_t flags)
  945. {
  946. return 1;
  947. }
  948. #endif
  949. void dp_peer_ast_send_wds_del(struct dp_soc *soc,
  950. struct dp_ast_entry *ast_entry)
  951. {
  952. struct dp_peer *peer = ast_entry->peer;
  953. struct cdp_soc_t *cdp_soc = &soc->cdp_soc;
  954. if (ast_entry->delete_in_progress)
  955. return;
  956. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_TRACE,
  957. "%s: ast_entry->type: %d pdevid: %u vdev: %u mac_addr: %pM next_hop: %u peer_mac: %pM\n",
  958. __func__, ast_entry->type, peer->vdev->pdev->pdev_id,
  959. peer->vdev->vdev_id, ast_entry->mac_addr.raw,
  960. ast_entry->next_hop, ast_entry->peer->mac_addr.raw);
  961. if (ast_entry->next_hop) {
  962. cdp_soc->ol_ops->peer_del_wds_entry(soc->ctrl_psoc,
  963. peer->vdev->vdev_id,
  964. ast_entry->mac_addr.raw,
  965. ast_entry->type);
  966. }
  967. /* Remove SELF and STATIC entries in teardown itself */
  968. if (!ast_entry->next_hop) {
  969. TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
  970. peer->self_ast_entry = NULL;
  971. ast_entry->peer = NULL;
  972. }
  973. ast_entry->delete_in_progress = true;
  974. }
  975. /**
  976. * dp_peer_ast_free_entry_by_mac() - find ast entry by MAC address and delete
  977. * @soc: soc handle
  978. * @peer: peer handle
  979. * @mac_addr: mac address of the AST entry to searc and delete
  980. *
  981. * find the ast entry from the peer list using the mac address and free
  982. * the entry.
  983. *
  984. * Return: SUCCESS or NOENT
  985. */
  986. static int dp_peer_ast_free_entry_by_mac(struct dp_soc *soc,
  987. struct dp_peer *peer,
  988. uint8_t *mac_addr)
  989. {
  990. struct dp_ast_entry *ast_entry;
  991. void *cookie = NULL;
  992. txrx_ast_free_cb cb = NULL;
  993. /*
  994. * release the reference only if it is mapped
  995. * to ast_table
  996. */
  997. qdf_spin_lock_bh(&soc->ast_lock);
  998. ast_entry = dp_peer_ast_list_find(soc, peer, mac_addr);
  999. if (!ast_entry) {
  1000. qdf_spin_unlock_bh(&soc->ast_lock);
  1001. return QDF_STATUS_E_NOENT;
  1002. } else if (ast_entry->is_mapped) {
  1003. soc->ast_table[ast_entry->ast_idx] = NULL;
  1004. }
  1005. TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
  1006. DP_STATS_INC(soc, ast.deleted, 1);
  1007. dp_peer_ast_hash_remove(soc, ast_entry);
  1008. cb = ast_entry->callback;
  1009. cookie = ast_entry->cookie;
  1010. ast_entry->callback = NULL;
  1011. ast_entry->cookie = NULL;
  1012. if (ast_entry == peer->self_ast_entry)
  1013. peer->self_ast_entry = NULL;
  1014. soc->num_ast_entries--;
  1015. qdf_spin_unlock_bh(&soc->ast_lock);
  1016. if (cb) {
  1017. cb(soc->ctrl_psoc,
  1018. dp_soc_to_cdp_soc(soc),
  1019. cookie,
  1020. CDP_TXRX_AST_DELETED);
  1021. }
  1022. qdf_mem_free(ast_entry);
  1023. return QDF_STATUS_SUCCESS;
  1024. }
  1025. struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
  1026. uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id)
  1027. {
  1028. union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
  1029. unsigned index;
  1030. struct dp_peer *peer;
  1031. if (mac_addr_is_aligned) {
  1032. mac_addr = (union dp_align_mac_addr *) peer_mac_addr;
  1033. } else {
  1034. qdf_mem_copy(
  1035. &local_mac_addr_aligned.raw[0],
  1036. peer_mac_addr, QDF_MAC_ADDR_SIZE);
  1037. mac_addr = &local_mac_addr_aligned;
  1038. }
  1039. index = dp_peer_find_hash_index(soc, mac_addr);
  1040. qdf_spin_lock_bh(&soc->peer_ref_mutex);
  1041. TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
  1042. if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
  1043. ((peer->vdev->vdev_id == vdev_id) ||
  1044. (vdev_id == DP_VDEV_ALL))) {
  1045. /* found it - increment the ref count before releasing
  1046. * the lock
  1047. */
  1048. qdf_atomic_inc(&peer->ref_cnt);
  1049. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  1050. return peer;
  1051. }
  1052. }
  1053. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  1054. return NULL; /* failure */
  1055. }
  1056. void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer)
  1057. {
  1058. unsigned index;
  1059. struct dp_peer *tmppeer = NULL;
  1060. int found = 0;
  1061. index = dp_peer_find_hash_index(soc, &peer->mac_addr);
  1062. /* Check if tail is not empty before delete*/
  1063. QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index]));
  1064. /*
  1065. * DO NOT take the peer_ref_mutex lock here - it needs to be taken
  1066. * by the caller.
  1067. * The caller needs to hold the lock from the time the peer object's
  1068. * reference count is decremented and tested up through the time the
  1069. * reference to the peer object is removed from the hash table, by
  1070. * this function.
  1071. * Holding the lock only while removing the peer object reference
  1072. * from the hash table keeps the hash table consistent, but does not
  1073. * protect against a new HL tx context starting to use the peer object
  1074. * if it looks up the peer object from its MAC address just after the
  1075. * peer ref count is decremented to zero, but just before the peer
  1076. * object reference is removed from the hash table.
  1077. */
  1078. TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) {
  1079. if (tmppeer == peer) {
  1080. found = 1;
  1081. break;
  1082. }
  1083. }
  1084. QDF_ASSERT(found);
  1085. TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem);
  1086. }
  1087. void dp_peer_find_hash_erase(struct dp_soc *soc)
  1088. {
  1089. int i;
  1090. /*
  1091. * Not really necessary to take peer_ref_mutex lock - by this point,
  1092. * it's known that the soc is no longer in use.
  1093. */
  1094. for (i = 0; i <= soc->peer_hash.mask; i++) {
  1095. if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) {
  1096. struct dp_peer *peer, *peer_next;
  1097. /*
  1098. * TAILQ_FOREACH_SAFE must be used here to avoid any
  1099. * memory access violation after peer is freed
  1100. */
  1101. TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i],
  1102. hash_list_elem, peer_next) {
  1103. /*
  1104. * Don't remove the peer from the hash table -
  1105. * that would modify the list we are currently
  1106. * traversing, and it's not necessary anyway.
  1107. */
  1108. /*
  1109. * Artificially adjust the peer's ref count to
  1110. * 1, so it will get deleted by
  1111. * dp_peer_unref_delete.
  1112. */
  1113. /* set to zero */
  1114. qdf_atomic_init(&peer->ref_cnt);
  1115. /* incr to one */
  1116. qdf_atomic_inc(&peer->ref_cnt);
  1117. dp_peer_unref_delete(peer);
  1118. }
  1119. }
  1120. }
  1121. }
  1122. static void dp_peer_ast_table_detach(struct dp_soc *soc)
  1123. {
  1124. if (soc->ast_table) {
  1125. qdf_mem_free(soc->ast_table);
  1126. soc->ast_table = NULL;
  1127. }
  1128. }
  1129. static void dp_peer_find_map_detach(struct dp_soc *soc)
  1130. {
  1131. if (soc->peer_id_to_obj_map) {
  1132. qdf_mem_free(soc->peer_id_to_obj_map);
  1133. soc->peer_id_to_obj_map = NULL;
  1134. }
  1135. }
  1136. int dp_peer_find_attach(struct dp_soc *soc)
  1137. {
  1138. if (dp_peer_find_map_attach(soc))
  1139. return 1;
  1140. if (dp_peer_find_hash_attach(soc)) {
  1141. dp_peer_find_map_detach(soc);
  1142. return 1;
  1143. }
  1144. if (dp_peer_ast_table_attach(soc)) {
  1145. dp_peer_find_hash_detach(soc);
  1146. dp_peer_find_map_detach(soc);
  1147. return 1;
  1148. }
  1149. if (dp_peer_ast_hash_attach(soc)) {
  1150. dp_peer_ast_table_detach(soc);
  1151. dp_peer_find_hash_detach(soc);
  1152. dp_peer_find_map_detach(soc);
  1153. return 1;
  1154. }
  1155. return 0; /* success */
  1156. }
  1157. void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
  1158. union hal_reo_status *reo_status)
  1159. {
  1160. struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
  1161. struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
  1162. if (queue_status->header.status == HAL_REO_CMD_DRAIN)
  1163. return;
  1164. if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
  1165. DP_PRINT_STATS("REO stats failure %d for TID %d\n",
  1166. queue_status->header.status, rx_tid->tid);
  1167. return;
  1168. }
  1169. DP_PRINT_STATS("REO queue stats (TID: %d):\n"
  1170. "ssn: %d\n"
  1171. "curr_idx : %d\n"
  1172. "pn_31_0 : %08x\n"
  1173. "pn_63_32 : %08x\n"
  1174. "pn_95_64 : %08x\n"
  1175. "pn_127_96 : %08x\n"
  1176. "last_rx_enq_tstamp : %08x\n"
  1177. "last_rx_deq_tstamp : %08x\n"
  1178. "rx_bitmap_31_0 : %08x\n"
  1179. "rx_bitmap_63_32 : %08x\n"
  1180. "rx_bitmap_95_64 : %08x\n"
  1181. "rx_bitmap_127_96 : %08x\n"
  1182. "rx_bitmap_159_128 : %08x\n"
  1183. "rx_bitmap_191_160 : %08x\n"
  1184. "rx_bitmap_223_192 : %08x\n"
  1185. "rx_bitmap_255_224 : %08x\n",
  1186. rx_tid->tid,
  1187. queue_status->ssn, queue_status->curr_idx,
  1188. queue_status->pn_31_0, queue_status->pn_63_32,
  1189. queue_status->pn_95_64, queue_status->pn_127_96,
  1190. queue_status->last_rx_enq_tstamp,
  1191. queue_status->last_rx_deq_tstamp,
  1192. queue_status->rx_bitmap_31_0,
  1193. queue_status->rx_bitmap_63_32,
  1194. queue_status->rx_bitmap_95_64,
  1195. queue_status->rx_bitmap_127_96,
  1196. queue_status->rx_bitmap_159_128,
  1197. queue_status->rx_bitmap_191_160,
  1198. queue_status->rx_bitmap_223_192,
  1199. queue_status->rx_bitmap_255_224);
  1200. DP_PRINT_STATS(
  1201. "curr_mpdu_cnt : %d\n"
  1202. "curr_msdu_cnt : %d\n"
  1203. "fwd_timeout_cnt : %d\n"
  1204. "fwd_bar_cnt : %d\n"
  1205. "dup_cnt : %d\n"
  1206. "frms_in_order_cnt : %d\n"
  1207. "bar_rcvd_cnt : %d\n"
  1208. "mpdu_frms_cnt : %d\n"
  1209. "msdu_frms_cnt : %d\n"
  1210. "total_byte_cnt : %d\n"
  1211. "late_recv_mpdu_cnt : %d\n"
  1212. "win_jump_2k : %d\n"
  1213. "hole_cnt : %d\n",
  1214. queue_status->curr_mpdu_cnt,
  1215. queue_status->curr_msdu_cnt,
  1216. queue_status->fwd_timeout_cnt,
  1217. queue_status->fwd_bar_cnt,
  1218. queue_status->dup_cnt,
  1219. queue_status->frms_in_order_cnt,
  1220. queue_status->bar_rcvd_cnt,
  1221. queue_status->mpdu_frms_cnt,
  1222. queue_status->msdu_frms_cnt,
  1223. queue_status->total_cnt,
  1224. queue_status->late_recv_mpdu_cnt,
  1225. queue_status->win_jump_2k,
  1226. queue_status->hole_cnt);
  1227. DP_PRINT_STATS("Addba Req : %d\n"
  1228. "Addba Resp : %d\n"
  1229. "Addba Resp success : %d\n"
  1230. "Addba Resp failed : %d\n"
  1231. "Delba Req received : %d\n"
  1232. "Delba Tx success : %d\n"
  1233. "Delba Tx Fail : %d\n"
  1234. "BA window size : %d\n"
  1235. "Pn size : %d\n",
  1236. rx_tid->num_of_addba_req,
  1237. rx_tid->num_of_addba_resp,
  1238. rx_tid->num_addba_rsp_success,
  1239. rx_tid->num_addba_rsp_failed,
  1240. rx_tid->num_of_delba_req,
  1241. rx_tid->delba_tx_success_cnt,
  1242. rx_tid->delba_tx_fail_cnt,
  1243. rx_tid->ba_win_size,
  1244. rx_tid->pn_size);
  1245. }
  1246. static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc,
  1247. uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id,
  1248. uint8_t vdev_id)
  1249. {
  1250. struct dp_peer *peer;
  1251. QDF_ASSERT(peer_id <= soc->max_peers);
  1252. /* check if there's already a peer object with this MAC address */
  1253. peer = dp_peer_find_hash_find(soc, peer_mac_addr,
  1254. 0 /* is aligned */, vdev_id);
  1255. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1256. "%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x",
  1257. __func__, peer, peer_id, vdev_id, peer_mac_addr[0],
  1258. peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3],
  1259. peer_mac_addr[4], peer_mac_addr[5]);
  1260. if (peer) {
  1261. /* peer's ref count was already incremented by
  1262. * peer_find_hash_find
  1263. */
  1264. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1265. "%s: ref_cnt: %d", __func__,
  1266. qdf_atomic_read(&peer->ref_cnt));
  1267. if (!soc->peer_id_to_obj_map[peer_id])
  1268. soc->peer_id_to_obj_map[peer_id] = peer;
  1269. else {
  1270. /* Peer map event came for peer_id which
  1271. * is already mapped, this is not expected
  1272. */
  1273. QDF_ASSERT(0);
  1274. }
  1275. if (dp_peer_find_add_id_to_obj(peer, peer_id)) {
  1276. /* TBDXXX: assert for now */
  1277. QDF_ASSERT(0);
  1278. }
  1279. return peer;
  1280. }
  1281. return NULL;
  1282. }
  1283. /**
  1284. * dp_rx_peer_map_handler() - handle peer map event from firmware
  1285. * @soc_handle - genereic soc handle
  1286. * @peeri_id - peer_id from firmware
  1287. * @hw_peer_id - ast index for this peer
  1288. * @vdev_id - vdev ID
  1289. * @peer_mac_addr - mac address of the peer
  1290. * @ast_hash - ast hash value
  1291. * @is_wds - flag to indicate peer map event for WDS ast entry
  1292. *
  1293. * associate the peer_id that firmware provided with peer entry
  1294. * and update the ast table in the host with the hw_peer_id.
  1295. *
  1296. * Return: none
  1297. */
  1298. void
  1299. dp_rx_peer_map_handler(struct dp_soc *soc, uint16_t peer_id,
  1300. uint16_t hw_peer_id, uint8_t vdev_id,
  1301. uint8_t *peer_mac_addr, uint16_t ast_hash,
  1302. uint8_t is_wds)
  1303. {
  1304. struct dp_peer *peer = NULL;
  1305. enum cdp_txrx_ast_entry_type type = CDP_TXRX_AST_TYPE_STATIC;
  1306. dp_info("peer_map_event (soc:%pK): peer_id %d, hw_peer_id %d, peer_mac %02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d",
  1307. soc, peer_id, hw_peer_id, peer_mac_addr[0], peer_mac_addr[1],
  1308. peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4],
  1309. peer_mac_addr[5], vdev_id);
  1310. /* Peer map event for WDS ast entry get the peer from
  1311. * obj map
  1312. */
  1313. if (is_wds) {
  1314. peer = soc->peer_id_to_obj_map[peer_id];
  1315. /*
  1316. * In certain cases like Auth attack on a repeater
  1317. * can result in the number of ast_entries falling
  1318. * in the same hash bucket to exceed the max_skid
  1319. * length supported by HW in root AP. In these cases
  1320. * the FW will return the hw_peer_id (ast_index) as
  1321. * 0xffff indicating HW could not add the entry in
  1322. * its table. Host has to delete the entry from its
  1323. * table in these cases.
  1324. */
  1325. if (hw_peer_id == HTT_INVALID_PEER) {
  1326. DP_STATS_INC(soc, ast.map_err, 1);
  1327. if (!dp_peer_ast_free_entry_by_mac(soc,
  1328. peer,
  1329. peer_mac_addr))
  1330. return;
  1331. dp_alert("AST entry not found with peer %pK peer_id %u peer_mac %pM mac_addr %pM vdev_id %u next_hop %u",
  1332. peer, peer->peer_ids[0],
  1333. peer->mac_addr.raw, peer_mac_addr, vdev_id,
  1334. is_wds);
  1335. return;
  1336. }
  1337. } else {
  1338. /*
  1339. * It's the responsibility of the CP and FW to ensure
  1340. * that peer is created successfully. Ideally DP should
  1341. * not hit the below condition for directly assocaited
  1342. * peers.
  1343. */
  1344. if ((hw_peer_id < 0) ||
  1345. (hw_peer_id >=
  1346. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) {
  1347. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1348. "invalid hw_peer_id: %d", hw_peer_id);
  1349. qdf_assert_always(0);
  1350. }
  1351. peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id,
  1352. hw_peer_id, vdev_id);
  1353. if (peer) {
  1354. if (wlan_op_mode_sta == peer->vdev->opmode &&
  1355. qdf_mem_cmp(peer->mac_addr.raw,
  1356. peer->vdev->mac_addr.raw,
  1357. QDF_MAC_ADDR_SIZE) != 0) {
  1358. dp_info("STA vdev bss_peer!!!!");
  1359. peer->bss_peer = 1;
  1360. peer->vdev->vap_bss_peer = peer;
  1361. }
  1362. if (peer->vdev->opmode == wlan_op_mode_sta) {
  1363. peer->vdev->bss_ast_hash = ast_hash;
  1364. peer->vdev->bss_ast_idx = hw_peer_id;
  1365. }
  1366. /* Add ast entry incase self ast entry is
  1367. * deleted due to DP CP sync issue
  1368. *
  1369. * self_ast_entry is modified in peer create
  1370. * and peer unmap path which cannot run in
  1371. * parllel with peer map, no lock need before
  1372. * referring it
  1373. */
  1374. if (!peer->self_ast_entry) {
  1375. dp_info("Add self ast from map %pM",
  1376. peer_mac_addr);
  1377. dp_peer_add_ast(soc, peer,
  1378. peer_mac_addr,
  1379. type, 0);
  1380. }
  1381. }
  1382. }
  1383. dp_peer_map_ast(soc, peer, peer_mac_addr,
  1384. hw_peer_id, vdev_id, ast_hash);
  1385. }
  1386. /**
  1387. * dp_rx_peer_unmap_handler() - handle peer unmap event from firmware
  1388. * @soc_handle - genereic soc handle
  1389. * @peeri_id - peer_id from firmware
  1390. * @vdev_id - vdev ID
  1391. * @mac_addr - mac address of the peer or wds entry
  1392. * @is_wds - flag to indicate peer map event for WDS ast entry
  1393. *
  1394. * Return: none
  1395. */
  1396. void
  1397. dp_rx_peer_unmap_handler(struct dp_soc *soc, uint16_t peer_id,
  1398. uint8_t vdev_id, uint8_t *mac_addr,
  1399. uint8_t is_wds)
  1400. {
  1401. struct dp_peer *peer;
  1402. uint8_t i;
  1403. peer = __dp_peer_find_by_id(soc, peer_id);
  1404. /*
  1405. * Currently peer IDs are assigned for vdevs as well as peers.
  1406. * If the peer ID is for a vdev, then the peer pointer stored
  1407. * in peer_id_to_obj_map will be NULL.
  1408. */
  1409. if (!peer) {
  1410. dp_err("Received unmap event for invalid peer_id %u", peer_id);
  1411. return;
  1412. }
  1413. /* If V2 Peer map messages are enabled AST entry has to be freed here
  1414. */
  1415. if (soc->is_peer_map_unmap_v2 && is_wds) {
  1416. if (!dp_peer_ast_free_entry_by_mac(soc, peer, mac_addr))
  1417. return;
  1418. dp_alert("AST entry not found with peer %pK peer_id %u peer_mac %pM mac_addr %pM vdev_id %u next_hop %u",
  1419. peer, peer->peer_ids[0],
  1420. peer->mac_addr.raw, mac_addr, vdev_id,
  1421. is_wds);
  1422. return;
  1423. }
  1424. dp_info("peer_unmap_event (soc:%pK) peer_id %d peer %pK",
  1425. soc, peer_id, peer);
  1426. soc->peer_id_to_obj_map[peer_id] = NULL;
  1427. for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
  1428. if (peer->peer_ids[i] == peer_id) {
  1429. peer->peer_ids[i] = HTT_INVALID_PEER;
  1430. break;
  1431. }
  1432. }
  1433. if (soc->cdp_soc.ol_ops->peer_unmap_event) {
  1434. soc->cdp_soc.ol_ops->peer_unmap_event(soc->ctrl_psoc,
  1435. peer_id, vdev_id);
  1436. }
  1437. /*
  1438. * Remove a reference to the peer.
  1439. * If there are no more references, delete the peer object.
  1440. */
  1441. dp_peer_unref_delete(peer);
  1442. }
  1443. void
  1444. dp_peer_find_detach(struct dp_soc *soc)
  1445. {
  1446. dp_peer_find_map_detach(soc);
  1447. dp_peer_find_hash_detach(soc);
  1448. dp_peer_ast_hash_detach(soc);
  1449. dp_peer_ast_table_detach(soc);
  1450. }
  1451. static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt,
  1452. union hal_reo_status *reo_status)
  1453. {
  1454. struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
  1455. if ((reo_status->rx_queue_status.header.status !=
  1456. HAL_REO_CMD_SUCCESS) &&
  1457. (reo_status->rx_queue_status.header.status !=
  1458. HAL_REO_CMD_DRAIN)) {
  1459. /* Should not happen normally. Just print error for now */
  1460. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1461. "%s: Rx tid HW desc update failed(%d): tid %d",
  1462. __func__,
  1463. reo_status->rx_queue_status.header.status,
  1464. rx_tid->tid);
  1465. }
  1466. }
  1467. /*
  1468. * dp_find_peer_by_addr - find peer instance by mac address
  1469. * @dev: physical device instance
  1470. * @peer_mac_addr: peer mac address
  1471. *
  1472. * Return: peer instance pointer
  1473. */
  1474. void *dp_find_peer_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr)
  1475. {
  1476. struct dp_pdev *pdev = (struct dp_pdev *)dev;
  1477. struct dp_peer *peer;
  1478. peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL);
  1479. if (!peer)
  1480. return NULL;
  1481. dp_verbose_debug("peer %pK mac: %pM", peer,
  1482. peer->mac_addr.raw);
  1483. /* ref_cnt is incremented inside dp_peer_find_hash_find().
  1484. * Decrement it here.
  1485. */
  1486. dp_peer_unref_delete(peer);
  1487. return peer;
  1488. }
  1489. static bool dp_get_peer_vdev_roaming_in_progress(struct dp_peer *peer)
  1490. {
  1491. struct ol_if_ops *ol_ops = NULL;
  1492. bool is_roaming = false;
  1493. uint8_t vdev_id = -1;
  1494. struct cdp_soc_t *soc;
  1495. if (!peer) {
  1496. dp_info("Peer is NULL. No roaming possible");
  1497. return false;
  1498. }
  1499. soc = dp_soc_to_cdp_soc_t(peer->vdev->pdev->soc);
  1500. ol_ops = peer->vdev->pdev->soc->cdp_soc.ol_ops;
  1501. if (ol_ops && ol_ops->is_roam_inprogress) {
  1502. dp_get_vdevid(soc, peer->mac_addr.raw, &vdev_id);
  1503. is_roaming = ol_ops->is_roam_inprogress(vdev_id);
  1504. }
  1505. dp_info("peer: %pM, vdev_id: %d, is_roaming: %d",
  1506. peer->mac_addr.raw, vdev_id, is_roaming);
  1507. return is_roaming;
  1508. }
  1509. QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
  1510. ba_window_size, uint32_t start_seq)
  1511. {
  1512. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1513. struct dp_soc *soc = peer->vdev->pdev->soc;
  1514. struct hal_reo_cmd_params params;
  1515. qdf_mem_zero(&params, sizeof(params));
  1516. params.std.need_status = 1;
  1517. params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
  1518. params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1519. params.u.upd_queue_params.update_ba_window_size = 1;
  1520. params.u.upd_queue_params.ba_window_size = ba_window_size;
  1521. if (start_seq < IEEE80211_SEQ_MAX) {
  1522. params.u.upd_queue_params.update_ssn = 1;
  1523. params.u.upd_queue_params.ssn = start_seq;
  1524. } else {
  1525. dp_set_ssn_valid_flag(&params, 0);
  1526. }
  1527. if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
  1528. dp_rx_tid_update_cb, rx_tid)) {
  1529. dp_err_log("failed to send reo cmd CMD_UPDATE_RX_REO_QUEUE");
  1530. DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1);
  1531. }
  1532. rx_tid->ba_win_size = ba_window_size;
  1533. if (dp_get_peer_vdev_roaming_in_progress(peer))
  1534. return QDF_STATUS_E_PERM;
  1535. if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup)
  1536. soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
  1537. soc->ctrl_psoc, peer->vdev->pdev->pdev_id,
  1538. peer->vdev->vdev_id, peer->mac_addr.raw,
  1539. rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size);
  1540. return QDF_STATUS_SUCCESS;
  1541. }
  1542. /*
  1543. * dp_reo_desc_free() - Callback free reo descriptor memory after
  1544. * HW cache flush
  1545. *
  1546. * @soc: DP SOC handle
  1547. * @cb_ctxt: Callback context
  1548. * @reo_status: REO command status
  1549. */
  1550. static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt,
  1551. union hal_reo_status *reo_status)
  1552. {
  1553. struct reo_desc_list_node *freedesc =
  1554. (struct reo_desc_list_node *)cb_ctxt;
  1555. struct dp_rx_tid *rx_tid = &freedesc->rx_tid;
  1556. if ((reo_status->fl_cache_status.header.status !=
  1557. HAL_REO_CMD_SUCCESS) &&
  1558. (reo_status->fl_cache_status.header.status !=
  1559. HAL_REO_CMD_DRAIN)) {
  1560. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1561. "%s: Rx tid HW desc flush failed(%d): tid %d",
  1562. __func__,
  1563. reo_status->rx_queue_status.header.status,
  1564. freedesc->rx_tid.tid);
  1565. }
  1566. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  1567. "%s: hw_qdesc_paddr: %pK, tid:%d", __func__,
  1568. (void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid);
  1569. qdf_mem_unmap_nbytes_single(soc->osdev,
  1570. rx_tid->hw_qdesc_paddr,
  1571. QDF_DMA_BIDIRECTIONAL,
  1572. rx_tid->hw_qdesc_alloc_size);
  1573. qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
  1574. qdf_mem_free(freedesc);
  1575. }
  1576. #if defined(QCA_WIFI_QCA8074_VP) && defined(BUILD_X86)
  1577. /* Hawkeye emulation requires bus address to be >= 0x50000000 */
  1578. static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
  1579. {
  1580. if (dma_addr < 0x50000000)
  1581. return QDF_STATUS_E_FAILURE;
  1582. else
  1583. return QDF_STATUS_SUCCESS;
  1584. }
  1585. #else
  1586. static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
  1587. {
  1588. return QDF_STATUS_SUCCESS;
  1589. }
  1590. #endif
  1591. /*
  1592. * dp_rx_tid_setup_wifi3() – Setup receive TID state
  1593. * @peer: Datapath peer handle
  1594. * @tid: TID
  1595. * @ba_window_size: BlockAck window size
  1596. * @start_seq: Starting sequence number
  1597. *
  1598. * Return: QDF_STATUS code
  1599. */
  1600. QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
  1601. uint32_t ba_window_size, uint32_t start_seq)
  1602. {
  1603. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1604. struct dp_vdev *vdev = peer->vdev;
  1605. struct dp_soc *soc = vdev->pdev->soc;
  1606. uint32_t hw_qdesc_size;
  1607. uint32_t hw_qdesc_align;
  1608. int hal_pn_type;
  1609. void *hw_qdesc_vaddr;
  1610. uint32_t alloc_tries = 0;
  1611. QDF_STATUS err = QDF_STATUS_SUCCESS;
  1612. if (peer->delete_in_progress ||
  1613. !qdf_atomic_read(&peer->is_default_route_set))
  1614. return QDF_STATUS_E_FAILURE;
  1615. rx_tid->ba_win_size = ba_window_size;
  1616. if (rx_tid->hw_qdesc_vaddr_unaligned)
  1617. return dp_rx_tid_update_wifi3(peer, tid, ba_window_size,
  1618. start_seq);
  1619. rx_tid->delba_tx_status = 0;
  1620. rx_tid->ppdu_id_2k = 0;
  1621. rx_tid->num_of_addba_req = 0;
  1622. rx_tid->num_of_delba_req = 0;
  1623. rx_tid->num_of_addba_resp = 0;
  1624. rx_tid->num_addba_rsp_failed = 0;
  1625. rx_tid->num_addba_rsp_success = 0;
  1626. rx_tid->delba_tx_success_cnt = 0;
  1627. rx_tid->delba_tx_fail_cnt = 0;
  1628. rx_tid->statuscode = 0;
  1629. /* TODO: Allocating HW queue descriptors based on max BA window size
  1630. * for all QOS TIDs so that same descriptor can be used later when
  1631. * ADDBA request is recevied. This should be changed to allocate HW
  1632. * queue descriptors based on BA window size being negotiated (0 for
  1633. * non BA cases), and reallocate when BA window size changes and also
  1634. * send WMI message to FW to change the REO queue descriptor in Rx
  1635. * peer entry as part of dp_rx_tid_update.
  1636. */
  1637. if (tid != DP_NON_QOS_TID)
  1638. hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
  1639. HAL_RX_MAX_BA_WINDOW, tid);
  1640. else
  1641. hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
  1642. ba_window_size, tid);
  1643. hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc);
  1644. /* To avoid unnecessary extra allocation for alignment, try allocating
  1645. * exact size and see if we already have aligned address.
  1646. */
  1647. rx_tid->hw_qdesc_alloc_size = hw_qdesc_size;
  1648. try_desc_alloc:
  1649. rx_tid->hw_qdesc_vaddr_unaligned =
  1650. qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size);
  1651. if (!rx_tid->hw_qdesc_vaddr_unaligned) {
  1652. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1653. "%s: Rx tid HW desc alloc failed: tid %d",
  1654. __func__, tid);
  1655. return QDF_STATUS_E_NOMEM;
  1656. }
  1657. if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
  1658. hw_qdesc_align) {
  1659. /* Address allocated above is not alinged. Allocate extra
  1660. * memory for alignment
  1661. */
  1662. qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
  1663. rx_tid->hw_qdesc_vaddr_unaligned =
  1664. qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size +
  1665. hw_qdesc_align - 1);
  1666. if (!rx_tid->hw_qdesc_vaddr_unaligned) {
  1667. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1668. "%s: Rx tid HW desc alloc failed: tid %d",
  1669. __func__, tid);
  1670. return QDF_STATUS_E_NOMEM;
  1671. }
  1672. hw_qdesc_vaddr = (void *)qdf_align((unsigned long)
  1673. rx_tid->hw_qdesc_vaddr_unaligned,
  1674. hw_qdesc_align);
  1675. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1676. "%s: Total Size %d Aligned Addr %pK",
  1677. __func__, rx_tid->hw_qdesc_alloc_size,
  1678. hw_qdesc_vaddr);
  1679. } else {
  1680. hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned;
  1681. }
  1682. /* TODO: Ensure that sec_type is set before ADDBA is received.
  1683. * Currently this is set based on htt indication
  1684. * HTT_T2H_MSG_TYPE_SEC_IND from target
  1685. */
  1686. switch (peer->security[dp_sec_ucast].sec_type) {
  1687. case cdp_sec_type_tkip_nomic:
  1688. case cdp_sec_type_aes_ccmp:
  1689. case cdp_sec_type_aes_ccmp_256:
  1690. case cdp_sec_type_aes_gcmp:
  1691. case cdp_sec_type_aes_gcmp_256:
  1692. hal_pn_type = HAL_PN_WPA;
  1693. break;
  1694. case cdp_sec_type_wapi:
  1695. if (vdev->opmode == wlan_op_mode_ap)
  1696. hal_pn_type = HAL_PN_WAPI_EVEN;
  1697. else
  1698. hal_pn_type = HAL_PN_WAPI_UNEVEN;
  1699. break;
  1700. default:
  1701. hal_pn_type = HAL_PN_NONE;
  1702. break;
  1703. }
  1704. hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq,
  1705. hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type);
  1706. qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr,
  1707. QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size,
  1708. &(rx_tid->hw_qdesc_paddr));
  1709. if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) !=
  1710. QDF_STATUS_SUCCESS) {
  1711. if (alloc_tries++ < 10) {
  1712. qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
  1713. rx_tid->hw_qdesc_vaddr_unaligned = NULL;
  1714. goto try_desc_alloc;
  1715. } else {
  1716. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1717. "%s: Rx tid HW desc alloc failed (lowmem): tid %d",
  1718. __func__, tid);
  1719. err = QDF_STATUS_E_NOMEM;
  1720. goto error;
  1721. }
  1722. }
  1723. if (dp_get_peer_vdev_roaming_in_progress(peer)) {
  1724. err = QDF_STATUS_E_PERM;
  1725. goto error;
  1726. }
  1727. if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
  1728. if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
  1729. soc->ctrl_psoc,
  1730. peer->vdev->pdev->pdev_id,
  1731. peer->vdev->vdev_id,
  1732. peer->mac_addr.raw, rx_tid->hw_qdesc_paddr, tid, tid,
  1733. 1, ba_window_size)) {
  1734. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1735. "%s: Failed to send reo queue setup to FW - tid %d\n",
  1736. __func__, tid);
  1737. err = QDF_STATUS_E_FAILURE;
  1738. goto error;
  1739. }
  1740. }
  1741. return 0;
  1742. error:
  1743. if (rx_tid->hw_qdesc_vaddr_unaligned) {
  1744. if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) ==
  1745. QDF_STATUS_SUCCESS)
  1746. qdf_mem_unmap_nbytes_single(
  1747. soc->osdev,
  1748. rx_tid->hw_qdesc_paddr,
  1749. QDF_DMA_BIDIRECTIONAL,
  1750. rx_tid->hw_qdesc_alloc_size);
  1751. qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
  1752. rx_tid->hw_qdesc_vaddr_unaligned = NULL;
  1753. }
  1754. return err;
  1755. }
  1756. #ifdef REO_DESC_DEFER_FREE
  1757. /*
  1758. * dp_reo_desc_clean_up() - If cmd to flush base desc fails add
  1759. * desc back to freelist and defer the deletion
  1760. *
  1761. * @soc: DP SOC handle
  1762. * @desc: Base descriptor to be freed
  1763. * @reo_status: REO command status
  1764. */
  1765. static void dp_reo_desc_clean_up(struct dp_soc *soc,
  1766. struct reo_desc_list_node *desc,
  1767. union hal_reo_status *reo_status)
  1768. {
  1769. desc->free_ts = qdf_get_system_timestamp();
  1770. DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1);
  1771. qdf_list_insert_back(&soc->reo_desc_freelist,
  1772. (qdf_list_node_t *)desc);
  1773. }
  1774. #else
  1775. /*
  1776. * dp_reo_desc_clean_up() - If send cmd to REO inorder to flush
  1777. * cache fails free the base REO desc anyway
  1778. *
  1779. * @soc: DP SOC handle
  1780. * @desc: Base descriptor to be freed
  1781. * @reo_status: REO command status
  1782. */
  1783. static void dp_reo_desc_clean_up(struct dp_soc *soc,
  1784. struct reo_desc_list_node *desc,
  1785. union hal_reo_status *reo_status)
  1786. {
  1787. if (reo_status) {
  1788. qdf_mem_zero(reo_status, sizeof(*reo_status));
  1789. reo_status->fl_cache_status.header.status = 0;
  1790. dp_reo_desc_free(soc, (void *)desc, reo_status);
  1791. }
  1792. }
  1793. #endif
  1794. /*
  1795. * dp_resend_update_reo_cmd() - Resend the UPDATE_REO_QUEUE
  1796. * cmd and re-insert desc into free list if send fails.
  1797. *
  1798. * @soc: DP SOC handle
  1799. * @desc: desc with resend update cmd flag set
  1800. * @rx_tid: Desc RX tid associated with update cmd for resetting
  1801. * valid field to 0 in h/w
  1802. */
  1803. static void dp_resend_update_reo_cmd(struct dp_soc *soc,
  1804. struct reo_desc_list_node *desc,
  1805. struct dp_rx_tid *rx_tid)
  1806. {
  1807. struct hal_reo_cmd_params params;
  1808. qdf_mem_zero(&params, sizeof(params));
  1809. params.std.need_status = 1;
  1810. params.std.addr_lo =
  1811. rx_tid->hw_qdesc_paddr & 0xffffffff;
  1812. params.std.addr_hi =
  1813. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1814. params.u.upd_queue_params.update_vld = 1;
  1815. params.u.upd_queue_params.vld = 0;
  1816. desc->resend_update_reo_cmd = false;
  1817. /*
  1818. * If the cmd send fails then set resend_update_reo_cmd flag
  1819. * and insert the desc at the end of the free list to retry.
  1820. */
  1821. if (dp_reo_send_cmd(soc,
  1822. CMD_UPDATE_RX_REO_QUEUE,
  1823. &params,
  1824. dp_rx_tid_delete_cb,
  1825. (void *)desc)
  1826. != QDF_STATUS_SUCCESS) {
  1827. desc->resend_update_reo_cmd = true;
  1828. desc->free_ts = qdf_get_system_timestamp();
  1829. qdf_list_insert_back(&soc->reo_desc_freelist,
  1830. (qdf_list_node_t *)desc);
  1831. dp_err_log("failed to send reo cmd CMD_UPDATE_RX_REO_QUEUE");
  1832. DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1);
  1833. }
  1834. }
  1835. /*
  1836. * dp_rx_tid_delete_cb() - Callback to flush reo descriptor HW cache
  1837. * after deleting the entries (ie., setting valid=0)
  1838. *
  1839. * @soc: DP SOC handle
  1840. * @cb_ctxt: Callback context
  1841. * @reo_status: REO command status
  1842. */
  1843. void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt,
  1844. union hal_reo_status *reo_status)
  1845. {
  1846. struct reo_desc_list_node *freedesc =
  1847. (struct reo_desc_list_node *)cb_ctxt;
  1848. uint32_t list_size;
  1849. struct reo_desc_list_node *desc;
  1850. unsigned long curr_ts = qdf_get_system_timestamp();
  1851. uint32_t desc_size, tot_desc_size;
  1852. struct hal_reo_cmd_params params;
  1853. if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) {
  1854. qdf_mem_zero(reo_status, sizeof(*reo_status));
  1855. reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN;
  1856. dp_reo_desc_free(soc, (void *)freedesc, reo_status);
  1857. return;
  1858. } else if (reo_status->rx_queue_status.header.status !=
  1859. HAL_REO_CMD_SUCCESS) {
  1860. /* Should not happen normally. Just print error for now */
  1861. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1862. "%s: Rx tid HW desc deletion failed(%d): tid %d",
  1863. __func__,
  1864. reo_status->rx_queue_status.header.status,
  1865. freedesc->rx_tid.tid);
  1866. }
  1867. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
  1868. "%s: rx_tid: %d status: %d", __func__,
  1869. freedesc->rx_tid.tid,
  1870. reo_status->rx_queue_status.header.status);
  1871. qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
  1872. freedesc->free_ts = curr_ts;
  1873. qdf_list_insert_back_size(&soc->reo_desc_freelist,
  1874. (qdf_list_node_t *)freedesc, &list_size);
  1875. while ((qdf_list_peek_front(&soc->reo_desc_freelist,
  1876. (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) &&
  1877. ((list_size >= REO_DESC_FREELIST_SIZE) ||
  1878. (curr_ts > (desc->free_ts + REO_DESC_FREE_DEFER_MS)) ||
  1879. (desc->resend_update_reo_cmd && list_size))) {
  1880. struct dp_rx_tid *rx_tid;
  1881. qdf_list_remove_front(&soc->reo_desc_freelist,
  1882. (qdf_list_node_t **)&desc);
  1883. list_size--;
  1884. rx_tid = &desc->rx_tid;
  1885. /* First process descs with resend_update_reo_cmd set */
  1886. if (desc->resend_update_reo_cmd) {
  1887. dp_resend_update_reo_cmd(soc, desc, rx_tid);
  1888. continue;
  1889. }
  1890. /* Flush and invalidate REO descriptor from HW cache: Base and
  1891. * extension descriptors should be flushed separately */
  1892. tot_desc_size = rx_tid->hw_qdesc_alloc_size;
  1893. /* Get base descriptor size by passing non-qos TID */
  1894. desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0,
  1895. DP_NON_QOS_TID);
  1896. /* Flush reo extension descriptors */
  1897. while ((tot_desc_size -= desc_size) > 0) {
  1898. qdf_mem_zero(&params, sizeof(params));
  1899. params.std.addr_lo =
  1900. ((uint64_t)(rx_tid->hw_qdesc_paddr) +
  1901. tot_desc_size) & 0xffffffff;
  1902. params.std.addr_hi =
  1903. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1904. if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
  1905. CMD_FLUSH_CACHE,
  1906. &params,
  1907. NULL,
  1908. NULL)) {
  1909. dp_err_rl("fail to send CMD_CACHE_FLUSH:"
  1910. "tid %d desc %pK", rx_tid->tid,
  1911. (void *)(rx_tid->hw_qdesc_paddr));
  1912. DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1);
  1913. }
  1914. }
  1915. /* Flush base descriptor */
  1916. qdf_mem_zero(&params, sizeof(params));
  1917. params.std.need_status = 1;
  1918. params.std.addr_lo =
  1919. (uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff;
  1920. params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1921. if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
  1922. CMD_FLUSH_CACHE,
  1923. &params,
  1924. dp_reo_desc_free,
  1925. (void *)desc)) {
  1926. union hal_reo_status reo_status;
  1927. /*
  1928. * If dp_reo_send_cmd return failure, related TID queue desc
  1929. * should be unmapped. Also locally reo_desc, together with
  1930. * TID queue desc also need to be freed accordingly.
  1931. *
  1932. * Here invoke desc_free function directly to do clean up.
  1933. *
  1934. * In case of MCL path add the desc back to the free
  1935. * desc list and defer deletion.
  1936. */
  1937. dp_err_log("%s: fail to send REO cmd to flush cache: tid %d",
  1938. __func__, rx_tid->tid);
  1939. dp_reo_desc_clean_up(soc, desc, &reo_status);
  1940. DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1);
  1941. }
  1942. }
  1943. qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
  1944. }
  1945. /*
  1946. * dp_rx_tid_delete_wifi3() – Delete receive TID queue
  1947. * @peer: Datapath peer handle
  1948. * @tid: TID
  1949. *
  1950. * Return: 0 on success, error code on failure
  1951. */
  1952. static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid)
  1953. {
  1954. struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]);
  1955. struct dp_soc *soc = peer->vdev->pdev->soc;
  1956. struct hal_reo_cmd_params params;
  1957. struct reo_desc_list_node *freedesc =
  1958. qdf_mem_malloc(sizeof(*freedesc));
  1959. if (!freedesc) {
  1960. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1961. "%s: malloc failed for freedesc: tid %d",
  1962. __func__, tid);
  1963. return -ENOMEM;
  1964. }
  1965. freedesc->rx_tid = *rx_tid;
  1966. freedesc->resend_update_reo_cmd = false;
  1967. qdf_mem_zero(&params, sizeof(params));
  1968. params.std.need_status = 1;
  1969. params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
  1970. params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1971. params.u.upd_queue_params.update_vld = 1;
  1972. params.u.upd_queue_params.vld = 0;
  1973. if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
  1974. dp_rx_tid_delete_cb, (void *)freedesc)
  1975. != QDF_STATUS_SUCCESS) {
  1976. /* Defer the clean up to the call back context */
  1977. qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
  1978. freedesc->free_ts = qdf_get_system_timestamp();
  1979. freedesc->resend_update_reo_cmd = true;
  1980. qdf_list_insert_front(&soc->reo_desc_freelist,
  1981. (qdf_list_node_t *)freedesc);
  1982. DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1);
  1983. qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
  1984. dp_info("Failed to send CMD_UPDATE_RX_REO_QUEUE");
  1985. }
  1986. rx_tid->hw_qdesc_vaddr_unaligned = NULL;
  1987. rx_tid->hw_qdesc_alloc_size = 0;
  1988. rx_tid->hw_qdesc_paddr = 0;
  1989. return 0;
  1990. }
  1991. #ifdef DP_LFR
  1992. static void dp_peer_setup_remaining_tids(struct dp_peer *peer)
  1993. {
  1994. int tid;
  1995. for (tid = 1; tid < DP_MAX_TIDS-1; tid++) {
  1996. dp_rx_tid_setup_wifi3(peer, tid, 1, 0);
  1997. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1998. "Setting up TID %d for peer %pK peer->local_id %d",
  1999. tid, peer, peer->local_id);
  2000. }
  2001. }
  2002. #else
  2003. static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {};
  2004. #endif
  2005. #ifndef WLAN_TX_PKT_CAPTURE_ENH
  2006. /*
  2007. * dp_peer_tid_queue_init() – Initialize ppdu stats queue per TID
  2008. * @peer: Datapath peer
  2009. *
  2010. */
  2011. static inline void dp_peer_tid_queue_init(struct dp_peer *peer)
  2012. {
  2013. }
  2014. /*
  2015. * dp_peer_tid_queue_cleanup() – remove ppdu stats queue per TID
  2016. * @peer: Datapath peer
  2017. *
  2018. */
  2019. static inline void dp_peer_tid_queue_cleanup(struct dp_peer *peer)
  2020. {
  2021. }
  2022. /*
  2023. * dp_peer_update_80211_hdr() – dp peer update 80211 hdr
  2024. * @vdev: Datapath vdev
  2025. * @peer: Datapath peer
  2026. *
  2027. */
  2028. static inline void
  2029. dp_peer_update_80211_hdr(struct dp_vdev *vdev, struct dp_peer *peer)
  2030. {
  2031. }
  2032. #endif
  2033. /*
  2034. * dp_peer_tx_init() – Initialize receive TID state
  2035. * @pdev: Datapath pdev
  2036. * @peer: Datapath peer
  2037. *
  2038. */
  2039. void dp_peer_tx_init(struct dp_pdev *pdev, struct dp_peer *peer)
  2040. {
  2041. dp_peer_tid_queue_init(peer);
  2042. dp_peer_update_80211_hdr(peer->vdev, peer);
  2043. }
  2044. /*
  2045. * dp_peer_tx_cleanup() – Deinitialize receive TID state
  2046. * @vdev: Datapath vdev
  2047. * @peer: Datapath peer
  2048. *
  2049. */
  2050. static inline void
  2051. dp_peer_tx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
  2052. {
  2053. dp_peer_tid_queue_cleanup(peer);
  2054. }
  2055. /*
  2056. * dp_peer_rx_init() – Initialize receive TID state
  2057. * @pdev: Datapath pdev
  2058. * @peer: Datapath peer
  2059. *
  2060. */
  2061. void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer)
  2062. {
  2063. int tid;
  2064. struct dp_rx_tid *rx_tid;
  2065. for (tid = 0; tid < DP_MAX_TIDS; tid++) {
  2066. rx_tid = &peer->rx_tid[tid];
  2067. rx_tid->array = &rx_tid->base;
  2068. rx_tid->base.head = rx_tid->base.tail = NULL;
  2069. rx_tid->tid = tid;
  2070. rx_tid->defrag_timeout_ms = 0;
  2071. rx_tid->ba_win_size = 0;
  2072. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  2073. rx_tid->defrag_waitlist_elem.tqe_next = NULL;
  2074. rx_tid->defrag_waitlist_elem.tqe_prev = NULL;
  2075. }
  2076. peer->active_ba_session_cnt = 0;
  2077. peer->hw_buffer_size = 0;
  2078. peer->kill_256_sessions = 0;
  2079. /* Setup default (non-qos) rx tid queue */
  2080. dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0);
  2081. /* Setup rx tid queue for TID 0.
  2082. * Other queues will be setup on receiving first packet, which will cause
  2083. * NULL REO queue error
  2084. */
  2085. dp_rx_tid_setup_wifi3(peer, 0, 1, 0);
  2086. /*
  2087. * Setup the rest of TID's to handle LFR
  2088. */
  2089. dp_peer_setup_remaining_tids(peer);
  2090. /*
  2091. * Set security defaults: no PN check, no security. The target may
  2092. * send a HTT SEC_IND message to overwrite these defaults.
  2093. */
  2094. peer->security[dp_sec_ucast].sec_type =
  2095. peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none;
  2096. }
  2097. /*
  2098. * dp_peer_rx_cleanup() – Cleanup receive TID state
  2099. * @vdev: Datapath vdev
  2100. * @peer: Datapath peer
  2101. * @reuse: Peer reference reuse
  2102. *
  2103. */
  2104. void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer, bool reuse)
  2105. {
  2106. int tid;
  2107. uint32_t tid_delete_mask = 0;
  2108. dp_info("Remove tids for peer: %pK", peer);
  2109. for (tid = 0; tid < DP_MAX_TIDS; tid++) {
  2110. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  2111. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2112. if (!peer->bss_peer || peer->vdev->opmode == wlan_op_mode_sta) {
  2113. /* Cleanup defrag related resource */
  2114. dp_rx_defrag_waitlist_remove(peer, tid);
  2115. dp_rx_reorder_flush_frag(peer, tid);
  2116. }
  2117. if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned) {
  2118. dp_rx_tid_delete_wifi3(peer, tid);
  2119. tid_delete_mask |= (1 << tid);
  2120. }
  2121. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2122. }
  2123. #ifdef notyet /* See if FW can remove queues as part of peer cleanup */
  2124. if (soc->ol_ops->peer_rx_reorder_queue_remove) {
  2125. soc->ol_ops->peer_rx_reorder_queue_remove(soc->ctrl_psoc,
  2126. peer->vdev->pdev->pdev_id,
  2127. peer->vdev->vdev_id, peer->mac_addr.raw,
  2128. tid_delete_mask);
  2129. }
  2130. #endif
  2131. if (!reuse)
  2132. for (tid = 0; tid < DP_MAX_TIDS; tid++)
  2133. qdf_spinlock_destroy(&peer->rx_tid[tid].tid_lock);
  2134. }
  2135. #ifdef FEATURE_PERPKT_INFO
  2136. /*
  2137. * dp_peer_ppdu_delayed_ba_init() Initialize ppdu in peer
  2138. * @peer: Datapath peer
  2139. *
  2140. * return: void
  2141. */
  2142. void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
  2143. {
  2144. qdf_mem_zero(&peer->delayed_ba_ppdu_stats,
  2145. sizeof(struct cdp_delayed_tx_completion_ppdu_user));
  2146. peer->last_delayed_ba = false;
  2147. peer->last_delayed_ba_ppduid = 0;
  2148. }
  2149. #else
  2150. /*
  2151. * dp_peer_ppdu_delayed_ba_init() Initialize ppdu in peer
  2152. * @peer: Datapath peer
  2153. *
  2154. * return: void
  2155. */
  2156. void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
  2157. {
  2158. }
  2159. #endif
  2160. /*
  2161. * dp_peer_cleanup() – Cleanup peer information
  2162. * @vdev: Datapath vdev
  2163. * @peer: Datapath peer
  2164. * @reuse: Peer reference reuse
  2165. *
  2166. */
  2167. void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer, bool reuse)
  2168. {
  2169. dp_peer_tx_cleanup(vdev, peer);
  2170. /* cleanup the Rx reorder queues for this peer */
  2171. dp_peer_rx_cleanup(vdev, peer, reuse);
  2172. }
  2173. /* dp_teardown_256_ba_session() - Teardown sessions using 256
  2174. * window size when a request with
  2175. * 64 window size is received.
  2176. * This is done as a WAR since HW can
  2177. * have only one setting per peer (64 or 256).
  2178. * For HKv2, we use per tid buffersize setting
  2179. * for 0 to per_tid_basize_max_tid. For tid
  2180. * more than per_tid_basize_max_tid we use HKv1
  2181. * method.
  2182. * @peer: Datapath peer
  2183. *
  2184. * Return: void
  2185. */
  2186. static void dp_teardown_256_ba_sessions(struct dp_peer *peer)
  2187. {
  2188. uint8_t delba_rcode = 0;
  2189. int tid;
  2190. struct dp_rx_tid *rx_tid = NULL;
  2191. tid = peer->vdev->pdev->soc->per_tid_basize_max_tid;
  2192. for (; tid < DP_MAX_TIDS; tid++) {
  2193. rx_tid = &peer->rx_tid[tid];
  2194. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2195. if (rx_tid->ba_win_size <= 64) {
  2196. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2197. continue;
  2198. } else {
  2199. if (rx_tid->ba_status == DP_RX_BA_ACTIVE ||
  2200. rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
  2201. /* send delba */
  2202. if (!rx_tid->delba_tx_status) {
  2203. rx_tid->delba_tx_retry++;
  2204. rx_tid->delba_tx_status = 1;
  2205. rx_tid->delba_rcode =
  2206. IEEE80211_REASON_QOS_SETUP_REQUIRED;
  2207. delba_rcode = rx_tid->delba_rcode;
  2208. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2209. if (peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba)
  2210. peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba(
  2211. peer->vdev->pdev->soc->ctrl_psoc,
  2212. peer->vdev->vdev_id,
  2213. peer->mac_addr.raw,
  2214. tid, delba_rcode);
  2215. } else {
  2216. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2217. }
  2218. } else {
  2219. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2220. }
  2221. }
  2222. }
  2223. }
  2224. /*
  2225. * dp_rx_addba_resp_tx_completion_wifi3() – Update Rx Tid State
  2226. *
  2227. * @soc: Datapath soc handle
  2228. * @peer_mac: Datapath peer mac address
  2229. * @vdev_id: id of atapath vdev
  2230. * @tid: TID number
  2231. * @status: tx completion status
  2232. * Return: 0 on success, error code on failure
  2233. */
  2234. int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
  2235. uint8_t *peer_mac,
  2236. uint16_t vdev_id,
  2237. uint8_t tid, int status)
  2238. {
  2239. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc,
  2240. peer_mac, 0, vdev_id);
  2241. struct dp_rx_tid *rx_tid = NULL;
  2242. if (!peer || peer->delete_in_progress) {
  2243. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2244. "%s: Peer is NULL!\n", __func__);
  2245. goto fail;
  2246. }
  2247. rx_tid = &peer->rx_tid[tid];
  2248. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2249. if (status) {
  2250. rx_tid->num_addba_rsp_failed++;
  2251. dp_rx_tid_update_wifi3(peer, tid, 1,
  2252. IEEE80211_SEQ_MAX);
  2253. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  2254. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2255. dp_err("RxTid- %d addba rsp tx completion failed", tid);
  2256. goto success;
  2257. }
  2258. rx_tid->num_addba_rsp_success++;
  2259. if (rx_tid->ba_status == DP_RX_BA_INACTIVE) {
  2260. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2261. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  2262. "%s: Rx Tid- %d hw qdesc is not in IN_PROGRESS",
  2263. __func__, tid);
  2264. goto fail;
  2265. }
  2266. if (!qdf_atomic_read(&peer->is_default_route_set)) {
  2267. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2268. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2269. "%s: default route is not set for peer: %pM",
  2270. __func__, peer->mac_addr.raw);
  2271. goto fail;
  2272. }
  2273. /* First Session */
  2274. if (peer->active_ba_session_cnt == 0) {
  2275. if (rx_tid->ba_win_size > 64 && rx_tid->ba_win_size <= 256)
  2276. peer->hw_buffer_size = 256;
  2277. else
  2278. peer->hw_buffer_size = 64;
  2279. }
  2280. rx_tid->ba_status = DP_RX_BA_ACTIVE;
  2281. peer->active_ba_session_cnt++;
  2282. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2283. /* Kill any session having 256 buffer size
  2284. * when 64 buffer size request is received.
  2285. * Also, latch on to 64 as new buffer size.
  2286. */
  2287. if (peer->kill_256_sessions) {
  2288. dp_teardown_256_ba_sessions(peer);
  2289. peer->kill_256_sessions = 0;
  2290. }
  2291. success:
  2292. dp_peer_unref_delete(peer);
  2293. return QDF_STATUS_SUCCESS;
  2294. fail:
  2295. if (peer)
  2296. dp_peer_unref_delete(peer);
  2297. return QDF_STATUS_E_FAILURE;
  2298. }
  2299. /*
  2300. * dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer
  2301. *
  2302. * @soc: Datapath soc handle
  2303. * @peer_mac: Datapath peer mac address
  2304. * @vdev_id: id of atapath vdev
  2305. * @tid: TID number
  2306. * @dialogtoken: output dialogtoken
  2307. * @statuscode: output dialogtoken
  2308. * @buffersize: Output BA window size
  2309. * @batimeout: Output BA timeout
  2310. */
  2311. QDF_STATUS
  2312. dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
  2313. uint16_t vdev_id, uint8_t tid,
  2314. uint8_t *dialogtoken, uint16_t *statuscode,
  2315. uint16_t *buffersize, uint16_t *batimeout)
  2316. {
  2317. struct dp_rx_tid *rx_tid = NULL;
  2318. QDF_STATUS status = QDF_STATUS_SUCCESS;
  2319. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc,
  2320. peer_mac, 0, vdev_id);
  2321. if (!peer || peer->delete_in_progress) {
  2322. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2323. "%s: Peer is NULL!\n", __func__);
  2324. status = QDF_STATUS_E_FAILURE;
  2325. goto fail;
  2326. }
  2327. rx_tid = &peer->rx_tid[tid];
  2328. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2329. rx_tid->num_of_addba_resp++;
  2330. /* setup ADDBA response parameters */
  2331. *dialogtoken = rx_tid->dialogtoken;
  2332. *statuscode = rx_tid->statuscode;
  2333. *buffersize = rx_tid->ba_win_size;
  2334. *batimeout = 0;
  2335. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2336. fail:
  2337. if (peer)
  2338. dp_peer_unref_delete(peer);
  2339. return status;
  2340. }
  2341. /* dp_check_ba_buffersize() - Check buffer size in request
  2342. * and latch onto this size based on
  2343. * size used in first active session.
  2344. * @peer: Datapath peer
  2345. * @tid: Tid
  2346. * @buffersize: Block ack window size
  2347. *
  2348. * Return: void
  2349. */
  2350. static void dp_check_ba_buffersize(struct dp_peer *peer,
  2351. uint16_t tid,
  2352. uint16_t buffersize)
  2353. {
  2354. struct dp_rx_tid *rx_tid = NULL;
  2355. rx_tid = &peer->rx_tid[tid];
  2356. if (peer->vdev->pdev->soc->per_tid_basize_max_tid &&
  2357. tid < peer->vdev->pdev->soc->per_tid_basize_max_tid) {
  2358. rx_tid->ba_win_size = buffersize;
  2359. return;
  2360. } else {
  2361. if (peer->active_ba_session_cnt == 0) {
  2362. rx_tid->ba_win_size = buffersize;
  2363. } else {
  2364. if (peer->hw_buffer_size == 64) {
  2365. if (buffersize <= 64)
  2366. rx_tid->ba_win_size = buffersize;
  2367. else
  2368. rx_tid->ba_win_size = peer->hw_buffer_size;
  2369. } else if (peer->hw_buffer_size == 256) {
  2370. if (buffersize > 64) {
  2371. rx_tid->ba_win_size = buffersize;
  2372. } else {
  2373. rx_tid->ba_win_size = buffersize;
  2374. peer->hw_buffer_size = 64;
  2375. peer->kill_256_sessions = 1;
  2376. }
  2377. }
  2378. }
  2379. }
  2380. }
  2381. /*
  2382. * dp_addba_requestprocess_wifi3() - Process ADDBA request from peer
  2383. *
  2384. * @soc: Datapath soc handle
  2385. * @peer_mac: Datapath peer mac address
  2386. * @vdev_id: id of atapath vdev
  2387. * @dialogtoken: dialogtoken from ADDBA frame
  2388. * @tid: TID number
  2389. * @batimeout: BA timeout
  2390. * @buffersize: BA window size
  2391. * @startseqnum: Start seq. number received in BA sequence control
  2392. *
  2393. * Return: 0 on success, error code on failure
  2394. */
  2395. int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
  2396. uint8_t *peer_mac,
  2397. uint16_t vdev_id,
  2398. uint8_t dialogtoken,
  2399. uint16_t tid, uint16_t batimeout,
  2400. uint16_t buffersize,
  2401. uint16_t startseqnum)
  2402. {
  2403. QDF_STATUS status = QDF_STATUS_SUCCESS;
  2404. struct dp_rx_tid *rx_tid = NULL;
  2405. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc,
  2406. peer_mac, 0, vdev_id);
  2407. if (!peer || peer->delete_in_progress) {
  2408. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2409. "%s: Peer is NULL!\n", __func__);
  2410. status = QDF_STATUS_E_FAILURE;
  2411. goto fail;
  2412. }
  2413. rx_tid = &peer->rx_tid[tid];
  2414. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2415. rx_tid->num_of_addba_req++;
  2416. if ((rx_tid->ba_status == DP_RX_BA_ACTIVE &&
  2417. rx_tid->hw_qdesc_vaddr_unaligned)) {
  2418. dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX);
  2419. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  2420. peer->active_ba_session_cnt--;
  2421. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2422. "%s: Rx Tid- %d hw qdesc is already setup",
  2423. __func__, tid);
  2424. }
  2425. if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
  2426. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2427. status = QDF_STATUS_E_FAILURE;
  2428. goto fail;
  2429. }
  2430. dp_check_ba_buffersize(peer, tid, buffersize);
  2431. if (dp_rx_tid_setup_wifi3(peer, tid,
  2432. rx_tid->ba_win_size, startseqnum)) {
  2433. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  2434. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2435. status = QDF_STATUS_E_FAILURE;
  2436. goto fail;
  2437. }
  2438. rx_tid->ba_status = DP_RX_BA_IN_PROGRESS;
  2439. rx_tid->dialogtoken = dialogtoken;
  2440. rx_tid->startseqnum = startseqnum;
  2441. if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS)
  2442. rx_tid->statuscode = rx_tid->userstatuscode;
  2443. else
  2444. rx_tid->statuscode = IEEE80211_STATUS_SUCCESS;
  2445. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2446. fail:
  2447. if (peer)
  2448. dp_peer_unref_delete(peer);
  2449. return status;
  2450. }
  2451. /*
  2452. * dp_set_addba_response() – Set a user defined ADDBA response status code
  2453. *
  2454. * @soc: Datapath soc handle
  2455. * @peer_mac: Datapath peer mac address
  2456. * @vdev_id: id of atapath vdev
  2457. * @tid: TID number
  2458. * @statuscode: response status code to be set
  2459. */
  2460. QDF_STATUS
  2461. dp_set_addba_response(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
  2462. uint16_t vdev_id, uint8_t tid, uint16_t statuscode)
  2463. {
  2464. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc,
  2465. peer_mac, 0, vdev_id);
  2466. struct dp_rx_tid *rx_tid;
  2467. QDF_STATUS status = QDF_STATUS_SUCCESS;
  2468. if (!peer || peer->delete_in_progress) {
  2469. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2470. "%s: Peer is NULL!\n", __func__);
  2471. status = QDF_STATUS_E_FAILURE;
  2472. goto fail;
  2473. }
  2474. rx_tid = &peer->rx_tid[tid];
  2475. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2476. rx_tid->userstatuscode = statuscode;
  2477. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2478. fail:
  2479. if (peer)
  2480. dp_peer_unref_delete(peer);
  2481. return status;
  2482. }
  2483. /*
  2484. * dp_rx_delba_process_wifi3() – Process DELBA from peer
  2485. * @soc: Datapath soc handle
  2486. * @peer_mac: Datapath peer mac address
  2487. * @vdev_id: id of atapath vdev
  2488. * @tid: TID number
  2489. * @reasoncode: Reason code received in DELBA frame
  2490. *
  2491. * Return: 0 on success, error code on failure
  2492. */
  2493. int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
  2494. uint16_t vdev_id, int tid, uint16_t reasoncode)
  2495. {
  2496. QDF_STATUS status = QDF_STATUS_SUCCESS;
  2497. struct dp_rx_tid *rx_tid;
  2498. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc,
  2499. peer_mac, 0, vdev_id);
  2500. if (!peer || peer->delete_in_progress) {
  2501. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2502. "%s: Peer is NULL!\n", __func__);
  2503. status = QDF_STATUS_E_FAILURE;
  2504. goto fail;
  2505. }
  2506. rx_tid = &peer->rx_tid[tid];
  2507. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2508. if (rx_tid->ba_status == DP_RX_BA_INACTIVE ||
  2509. rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
  2510. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2511. status = QDF_STATUS_E_FAILURE;
  2512. goto fail;
  2513. }
  2514. /* TODO: See if we can delete the existing REO queue descriptor and
  2515. * replace with a new one without queue extenstion descript to save
  2516. * memory
  2517. */
  2518. rx_tid->delba_rcode = reasoncode;
  2519. rx_tid->num_of_delba_req++;
  2520. dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX);
  2521. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  2522. peer->active_ba_session_cnt--;
  2523. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2524. fail:
  2525. if (peer)
  2526. dp_peer_unref_delete(peer);
  2527. return status;
  2528. }
  2529. /*
  2530. * dp_rx_delba_tx_completion_wifi3() – Send Delba Request
  2531. *
  2532. * @soc: Datapath soc handle
  2533. * @peer_mac: Datapath peer mac address
  2534. * @vdev_id: id of atapath vdev
  2535. * @tid: TID number
  2536. * @status: tx completion status
  2537. * Return: 0 on success, error code on failure
  2538. */
  2539. int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
  2540. uint16_t vdev_id,
  2541. uint8_t tid, int status)
  2542. {
  2543. QDF_STATUS ret = QDF_STATUS_SUCCESS;
  2544. struct dp_rx_tid *rx_tid = NULL;
  2545. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc,
  2546. peer_mac, 0, vdev_id);
  2547. if (!peer || peer->delete_in_progress) {
  2548. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2549. "%s: Peer is NULL!", __func__);
  2550. ret = QDF_STATUS_E_FAILURE;
  2551. goto end;
  2552. }
  2553. rx_tid = &peer->rx_tid[tid];
  2554. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2555. if (status) {
  2556. rx_tid->delba_tx_fail_cnt++;
  2557. if (rx_tid->delba_tx_retry >= DP_MAX_DELBA_RETRY) {
  2558. rx_tid->delba_tx_retry = 0;
  2559. rx_tid->delba_tx_status = 0;
  2560. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2561. } else {
  2562. rx_tid->delba_tx_retry++;
  2563. rx_tid->delba_tx_status = 1;
  2564. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2565. if (peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba)
  2566. peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba(
  2567. peer->vdev->pdev->soc->ctrl_psoc,
  2568. peer->vdev->vdev_id,
  2569. peer->mac_addr.raw, tid,
  2570. rx_tid->delba_rcode);
  2571. }
  2572. goto end;
  2573. } else {
  2574. rx_tid->delba_tx_success_cnt++;
  2575. rx_tid->delba_tx_retry = 0;
  2576. rx_tid->delba_tx_status = 0;
  2577. }
  2578. if (rx_tid->ba_status == DP_RX_BA_ACTIVE) {
  2579. dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX);
  2580. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  2581. peer->active_ba_session_cnt--;
  2582. }
  2583. if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
  2584. dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX);
  2585. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  2586. }
  2587. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2588. end:
  2589. if (peer)
  2590. dp_peer_unref_delete(peer);
  2591. return ret;
  2592. }
  2593. /**
  2594. * dp_set_pn_check_wifi3() - enable PN check in REO for security
  2595. * @soc: Datapath soc handle
  2596. * @peer_mac: Datapath peer mac address
  2597. * @vdev_id: id of atapath vdev
  2598. * @vdev: Datapath vdev
  2599. * @pdev - data path device instance
  2600. * @sec_type - security type
  2601. * @rx_pn - Receive pn starting number
  2602. *
  2603. */
  2604. QDF_STATUS
  2605. dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
  2606. uint8_t *peer_mac, enum cdp_sec_type sec_type,
  2607. uint32_t *rx_pn)
  2608. {
  2609. struct dp_pdev *pdev;
  2610. int i;
  2611. uint8_t pn_size;
  2612. struct hal_reo_cmd_params params;
  2613. QDF_STATUS status = QDF_STATUS_SUCCESS;
  2614. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  2615. peer_mac, 0, vdev_id);
  2616. struct dp_vdev *vdev =
  2617. dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc,
  2618. vdev_id);
  2619. if (!vdev || !peer || peer->delete_in_progress) {
  2620. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2621. "%s: Peer is NULL!\n", __func__);
  2622. status = QDF_STATUS_E_FAILURE;
  2623. goto fail;
  2624. }
  2625. pdev = vdev->pdev;
  2626. qdf_mem_zero(&params, sizeof(params));
  2627. params.std.need_status = 1;
  2628. params.u.upd_queue_params.update_pn_valid = 1;
  2629. params.u.upd_queue_params.update_pn_size = 1;
  2630. params.u.upd_queue_params.update_pn = 1;
  2631. params.u.upd_queue_params.update_pn_check_needed = 1;
  2632. params.u.upd_queue_params.update_svld = 1;
  2633. params.u.upd_queue_params.svld = 0;
  2634. peer->security[dp_sec_ucast].sec_type = sec_type;
  2635. switch (sec_type) {
  2636. case cdp_sec_type_tkip_nomic:
  2637. case cdp_sec_type_aes_ccmp:
  2638. case cdp_sec_type_aes_ccmp_256:
  2639. case cdp_sec_type_aes_gcmp:
  2640. case cdp_sec_type_aes_gcmp_256:
  2641. params.u.upd_queue_params.pn_check_needed = 1;
  2642. params.u.upd_queue_params.pn_size = 48;
  2643. pn_size = 48;
  2644. break;
  2645. case cdp_sec_type_wapi:
  2646. params.u.upd_queue_params.pn_check_needed = 1;
  2647. params.u.upd_queue_params.pn_size = 128;
  2648. pn_size = 128;
  2649. if (vdev->opmode == wlan_op_mode_ap) {
  2650. params.u.upd_queue_params.pn_even = 1;
  2651. params.u.upd_queue_params.update_pn_even = 1;
  2652. } else {
  2653. params.u.upd_queue_params.pn_uneven = 1;
  2654. params.u.upd_queue_params.update_pn_uneven = 1;
  2655. }
  2656. break;
  2657. default:
  2658. params.u.upd_queue_params.pn_check_needed = 0;
  2659. pn_size = 0;
  2660. break;
  2661. }
  2662. for (i = 0; i < DP_MAX_TIDS; i++) {
  2663. struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
  2664. qdf_spin_lock_bh(&rx_tid->tid_lock);
  2665. if (rx_tid->hw_qdesc_vaddr_unaligned) {
  2666. params.std.addr_lo =
  2667. rx_tid->hw_qdesc_paddr & 0xffffffff;
  2668. params.std.addr_hi =
  2669. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  2670. if (pn_size) {
  2671. QDF_TRACE(QDF_MODULE_ID_DP,
  2672. QDF_TRACE_LEVEL_INFO_HIGH,
  2673. "%s PN set for TID:%d pn:%x:%x:%x:%x",
  2674. __func__, i, rx_pn[3], rx_pn[2],
  2675. rx_pn[1], rx_pn[0]);
  2676. params.u.upd_queue_params.update_pn_valid = 1;
  2677. params.u.upd_queue_params.pn_31_0 = rx_pn[0];
  2678. params.u.upd_queue_params.pn_63_32 = rx_pn[1];
  2679. params.u.upd_queue_params.pn_95_64 = rx_pn[2];
  2680. params.u.upd_queue_params.pn_127_96 = rx_pn[3];
  2681. }
  2682. rx_tid->pn_size = pn_size;
  2683. if (dp_reo_send_cmd(cdp_soc_t_to_dp_soc(soc),
  2684. CMD_UPDATE_RX_REO_QUEUE,
  2685. &params, dp_rx_tid_update_cb,
  2686. rx_tid)) {
  2687. dp_err_log("fail to send CMD_UPDATE_RX_REO_QUEUE"
  2688. "tid %d desc %pK", rx_tid->tid,
  2689. (void *)(rx_tid->hw_qdesc_paddr));
  2690. DP_STATS_INC(cdp_soc_t_to_dp_soc(soc),
  2691. rx.err.reo_cmd_send_fail, 1);
  2692. }
  2693. } else {
  2694. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  2695. "PN Check not setup for TID :%d ", i);
  2696. }
  2697. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  2698. }
  2699. fail:
  2700. if (peer)
  2701. dp_peer_unref_delete(peer);
  2702. return status;
  2703. }
  2704. void
  2705. dp_rx_sec_ind_handler(struct dp_soc *soc, uint16_t peer_id,
  2706. enum cdp_sec_type sec_type, int is_unicast,
  2707. u_int32_t *michael_key,
  2708. u_int32_t *rx_pn)
  2709. {
  2710. struct dp_peer *peer;
  2711. int sec_index;
  2712. peer = dp_peer_find_by_id(soc, peer_id);
  2713. if (!peer) {
  2714. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  2715. "Couldn't find peer from ID %d - skipping security inits",
  2716. peer_id);
  2717. return;
  2718. }
  2719. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  2720. "sec spec for peer %pK (%02x:%02x:%02x:%02x:%02x:%02x): %s key of type %d",
  2721. peer,
  2722. peer->mac_addr.raw[0], peer->mac_addr.raw[1],
  2723. peer->mac_addr.raw[2], peer->mac_addr.raw[3],
  2724. peer->mac_addr.raw[4], peer->mac_addr.raw[5],
  2725. is_unicast ? "ucast" : "mcast",
  2726. sec_type);
  2727. sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast;
  2728. peer->security[sec_index].sec_type = sec_type;
  2729. #ifdef notyet /* TODO: See if this is required for defrag support */
  2730. /* michael key only valid for TKIP, but for simplicity,
  2731. * copy it anyway
  2732. */
  2733. qdf_mem_copy(
  2734. &peer->security[sec_index].michael_key[0],
  2735. michael_key,
  2736. sizeof(peer->security[sec_index].michael_key));
  2737. #ifdef BIG_ENDIAN_HOST
  2738. OL_IF_SWAPBO(peer->security[sec_index].michael_key[0],
  2739. sizeof(peer->security[sec_index].michael_key));
  2740. #endif /* BIG_ENDIAN_HOST */
  2741. #endif
  2742. #ifdef notyet /* TODO: Check if this is required for wifi3.0 */
  2743. if (sec_type != cdp_sec_type_wapi) {
  2744. qdf_mem_zero(peer->tids_last_pn_valid, _EXT_TIDS);
  2745. } else {
  2746. for (i = 0; i < DP_MAX_TIDS; i++) {
  2747. /*
  2748. * Setting PN valid bit for WAPI sec_type,
  2749. * since WAPI PN has to be started with predefined value
  2750. */
  2751. peer->tids_last_pn_valid[i] = 1;
  2752. qdf_mem_copy(
  2753. (u_int8_t *) &peer->tids_last_pn[i],
  2754. (u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t));
  2755. peer->tids_last_pn[i].pn128[1] =
  2756. qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]);
  2757. peer->tids_last_pn[i].pn128[0] =
  2758. qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]);
  2759. }
  2760. }
  2761. #endif
  2762. /* TODO: Update HW TID queue with PN check parameters (pn type for
  2763. * all security types and last pn for WAPI) once REO command API
  2764. * is available
  2765. */
  2766. dp_peer_unref_del_find_by_id(peer);
  2767. }
  2768. #ifdef DP_PEER_EXTENDED_API
  2769. QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
  2770. struct ol_txrx_desc_type *sta_desc)
  2771. {
  2772. struct dp_peer *peer;
  2773. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2774. struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
  2775. peer = dp_find_peer_by_addr((struct cdp_pdev *)pdev,
  2776. sta_desc->peer_addr.bytes);
  2777. if (!pdev)
  2778. return QDF_STATUS_E_FAULT;
  2779. if (!peer)
  2780. return QDF_STATUS_E_FAULT;
  2781. qdf_spin_lock_bh(&peer->peer_info_lock);
  2782. peer->state = OL_TXRX_PEER_STATE_CONN;
  2783. qdf_spin_unlock_bh(&peer->peer_info_lock);
  2784. dp_rx_flush_rx_cached(peer, false);
  2785. return QDF_STATUS_SUCCESS;
  2786. }
  2787. QDF_STATUS
  2788. dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
  2789. struct qdf_mac_addr peer_addr)
  2790. {
  2791. struct dp_peer *peer;
  2792. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2793. struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
  2794. if (!pdev)
  2795. return QDF_STATUS_E_FAULT;
  2796. peer = dp_find_peer_by_addr((struct cdp_pdev *)pdev, peer_addr.bytes);
  2797. if (!peer)
  2798. return QDF_STATUS_E_FAULT;
  2799. qdf_spin_lock_bh(&peer->peer_info_lock);
  2800. peer->state = OL_TXRX_PEER_STATE_DISC;
  2801. qdf_spin_unlock_bh(&peer->peer_info_lock);
  2802. dp_rx_flush_rx_cached(peer, true);
  2803. return QDF_STATUS_SUCCESS;
  2804. }
  2805. /**
  2806. * dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev
  2807. * @pdev - data path device instance
  2808. * @vdev - virtual interface instance
  2809. * @peer_addr - peer mac address
  2810. *
  2811. * Find peer by peer mac address within vdev
  2812. *
  2813. * Return: peer instance void pointer
  2814. * NULL cannot find target peer
  2815. */
  2816. void *dp_find_peer_by_addr_and_vdev(struct cdp_pdev *pdev_handle,
  2817. struct cdp_vdev *vdev_handle,
  2818. uint8_t *peer_addr)
  2819. {
  2820. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  2821. struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
  2822. struct dp_peer *peer;
  2823. peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0, DP_VDEV_ALL);
  2824. if (!peer)
  2825. return NULL;
  2826. if (peer->vdev != vdev) {
  2827. dp_peer_unref_delete(peer);
  2828. return NULL;
  2829. }
  2830. /* ref_cnt is incremented inside dp_peer_find_hash_find().
  2831. * Decrement it here.
  2832. */
  2833. dp_peer_unref_delete(peer);
  2834. return peer;
  2835. }
  2836. QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
  2837. enum ol_txrx_peer_state state)
  2838. {
  2839. struct dp_peer *peer;
  2840. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2841. peer = dp_peer_find_hash_find(soc, peer_mac, 0, DP_VDEV_ALL);
  2842. if (!peer) {
  2843. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  2844. "Failed to find peer for: [%pM]", peer_mac);
  2845. return QDF_STATUS_E_FAILURE;
  2846. }
  2847. peer->state = state;
  2848. dp_info("peer %pK state %d", peer, peer->state);
  2849. /* ref_cnt is incremented inside dp_peer_find_hash_find().
  2850. * Decrement it here.
  2851. */
  2852. dp_peer_unref_delete(peer);
  2853. return QDF_STATUS_SUCCESS;
  2854. }
  2855. QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
  2856. uint8_t *vdev_id)
  2857. {
  2858. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2859. struct dp_peer *peer =
  2860. dp_peer_find_hash_find(soc, peer_mac, 0, DP_VDEV_ALL);
  2861. if (!peer)
  2862. return QDF_STATUS_E_FAILURE;
  2863. dp_info("peer %pK vdev %pK vdev id %d",
  2864. peer, peer->vdev, peer->vdev->vdev_id);
  2865. *vdev_id = peer->vdev->vdev_id;
  2866. /* ref_cnt is incremented inside dp_peer_find_hash_find().
  2867. * Decrement it here.
  2868. */
  2869. dp_peer_unref_delete(peer);
  2870. return QDF_STATUS_SUCCESS;
  2871. }
  2872. struct cdp_vdev *
  2873. dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
  2874. struct qdf_mac_addr peer_addr)
  2875. {
  2876. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  2877. struct dp_peer *peer = NULL;
  2878. if (!pdev) {
  2879. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  2880. "PDEV not found for peer_addr: " QDF_MAC_ADDR_STR,
  2881. QDF_MAC_ADDR_ARRAY(peer_addr.bytes));
  2882. return NULL;
  2883. }
  2884. peer = dp_find_peer_by_addr((struct cdp_pdev *)pdev, peer_addr.bytes);
  2885. if (!peer) {
  2886. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  2887. "PDEV not found for peer_addr:" QDF_MAC_ADDR_STR,
  2888. QDF_MAC_ADDR_ARRAY(peer_addr.bytes));
  2889. return NULL;
  2890. }
  2891. return (struct cdp_vdev *)peer->vdev;
  2892. }
  2893. /**
  2894. * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
  2895. * @peer - peer instance
  2896. *
  2897. * Get virtual interface instance which peer belongs
  2898. *
  2899. * Return: virtual interface instance pointer
  2900. * NULL in case cannot find
  2901. */
  2902. struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle)
  2903. {
  2904. struct dp_peer *peer = peer_handle;
  2905. DP_TRACE(DEBUG, "peer %pK vdev %pK", peer, peer->vdev);
  2906. return (struct cdp_vdev *)peer->vdev;
  2907. }
  2908. /**
  2909. * dp_peer_get_peer_mac_addr() - Get peer mac address
  2910. * @peer - peer instance
  2911. *
  2912. * Get peer mac address
  2913. *
  2914. * Return: peer mac address pointer
  2915. * NULL in case cannot find
  2916. */
  2917. uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle)
  2918. {
  2919. struct dp_peer *peer = peer_handle;
  2920. uint8_t *mac;
  2921. mac = peer->mac_addr.raw;
  2922. dp_info("peer %pK mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
  2923. peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  2924. return peer->mac_addr.raw;
  2925. }
  2926. int dp_get_peer_state(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  2927. uint8_t *peer_mac)
  2928. {
  2929. enum ol_txrx_peer_state peer_state;
  2930. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2931. struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0,
  2932. vdev_id);
  2933. if (!peer)
  2934. return QDF_STATUS_E_FAILURE;
  2935. DP_TRACE(DEBUG, "peer %pK stats %d", peer, peer->state);
  2936. peer_state = peer->state;
  2937. dp_peer_unref_delete(peer);
  2938. return peer_state;
  2939. }
  2940. /**
  2941. * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
  2942. * @pdev - data path device instance
  2943. *
  2944. * local peer id pool alloc for physical device
  2945. *
  2946. * Return: none
  2947. */
  2948. void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
  2949. {
  2950. int i;
  2951. /* point the freelist to the first ID */
  2952. pdev->local_peer_ids.freelist = 0;
  2953. /* link each ID to the next one */
  2954. for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) {
  2955. pdev->local_peer_ids.pool[i] = i + 1;
  2956. pdev->local_peer_ids.map[i] = NULL;
  2957. }
  2958. /* link the last ID to itself, to mark the end of the list */
  2959. i = OL_TXRX_NUM_LOCAL_PEER_IDS;
  2960. pdev->local_peer_ids.pool[i] = i;
  2961. qdf_spinlock_create(&pdev->local_peer_ids.lock);
  2962. DP_TRACE(INFO, "Peer pool init");
  2963. }
  2964. /**
  2965. * dp_local_peer_id_alloc() - allocate local peer id
  2966. * @pdev - data path device instance
  2967. * @peer - new peer instance
  2968. *
  2969. * allocate local peer id
  2970. *
  2971. * Return: none
  2972. */
  2973. void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
  2974. {
  2975. int i;
  2976. qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
  2977. i = pdev->local_peer_ids.freelist;
  2978. if (pdev->local_peer_ids.pool[i] == i) {
  2979. /* the list is empty, except for the list-end marker */
  2980. peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID;
  2981. } else {
  2982. /* take the head ID and advance the freelist */
  2983. peer->local_id = i;
  2984. pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i];
  2985. pdev->local_peer_ids.map[i] = peer;
  2986. }
  2987. qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
  2988. dp_info("peer %pK, local id %d", peer, peer->local_id);
  2989. }
  2990. /**
  2991. * dp_local_peer_id_free() - remove local peer id
  2992. * @pdev - data path device instance
  2993. * @peer - peer instance should be removed
  2994. *
  2995. * remove local peer id
  2996. *
  2997. * Return: none
  2998. */
  2999. void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
  3000. {
  3001. int i = peer->local_id;
  3002. if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) ||
  3003. (i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) {
  3004. return;
  3005. }
  3006. /* put this ID on the head of the freelist */
  3007. qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
  3008. pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist;
  3009. pdev->local_peer_ids.freelist = i;
  3010. pdev->local_peer_ids.map[i] = NULL;
  3011. qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
  3012. }
  3013. bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl,
  3014. uint8_t vdev_id, uint8_t *peer_addr)
  3015. {
  3016. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3017. struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  3018. if (!vdev)
  3019. return false;
  3020. return !!dp_find_peer_by_addr_and_vdev(
  3021. dp_pdev_to_cdp_pdev(vdev->pdev),
  3022. dp_vdev_to_cdp_vdev(vdev),
  3023. peer_addr);
  3024. }
  3025. bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
  3026. uint8_t vdev_id, uint8_t *peer_addr,
  3027. uint16_t max_bssid)
  3028. {
  3029. int i;
  3030. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3031. struct dp_vdev *vdev;
  3032. for (i = 0; i < max_bssid; i++) {
  3033. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  3034. /* Need to check vdevs other than the vdev_id */
  3035. if (vdev_id == i || !vdev)
  3036. continue;
  3037. if (dp_find_peer_by_addr_and_vdev(
  3038. dp_pdev_to_cdp_pdev(vdev->pdev),
  3039. dp_vdev_to_cdp_vdev(vdev),
  3040. peer_addr)) {
  3041. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  3042. "%s: Duplicate peer %pM already exist on vdev %d",
  3043. __func__, peer_addr, i);
  3044. return true;
  3045. }
  3046. }
  3047. return false;
  3048. }
  3049. bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
  3050. uint8_t *peer_addr)
  3051. {
  3052. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3053. struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
  3054. if (!pdev)
  3055. return false;
  3056. return !!dp_find_peer_by_addr(dp_pdev_to_cdp_pdev(pdev), peer_addr);
  3057. }
  3058. #endif
  3059. /**
  3060. * dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW
  3061. * @peer: DP peer handle
  3062. * @dp_stats_cmd_cb: REO command callback function
  3063. * @cb_ctxt: Callback context
  3064. *
  3065. * Return: none
  3066. */
  3067. void dp_peer_rxtid_stats(struct dp_peer *peer, void (*dp_stats_cmd_cb),
  3068. void *cb_ctxt)
  3069. {
  3070. struct dp_soc *soc = peer->vdev->pdev->soc;
  3071. struct hal_reo_cmd_params params;
  3072. int i;
  3073. if (!dp_stats_cmd_cb)
  3074. return;
  3075. qdf_mem_zero(&params, sizeof(params));
  3076. for (i = 0; i < DP_MAX_TIDS; i++) {
  3077. struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
  3078. if (rx_tid->hw_qdesc_vaddr_unaligned) {
  3079. params.std.need_status = 1;
  3080. params.std.addr_lo =
  3081. rx_tid->hw_qdesc_paddr & 0xffffffff;
  3082. params.std.addr_hi =
  3083. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  3084. if (cb_ctxt) {
  3085. dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
  3086. &params, dp_stats_cmd_cb, cb_ctxt);
  3087. } else {
  3088. dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
  3089. &params, dp_stats_cmd_cb, rx_tid);
  3090. }
  3091. /* Flush REO descriptor from HW cache to update stats
  3092. * in descriptor memory. This is to help debugging */
  3093. qdf_mem_zero(&params, sizeof(params));
  3094. params.std.need_status = 0;
  3095. params.std.addr_lo =
  3096. rx_tid->hw_qdesc_paddr & 0xffffffff;
  3097. params.std.addr_hi =
  3098. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  3099. params.u.fl_cache_params.flush_no_inval = 1;
  3100. dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, &params, NULL,
  3101. NULL);
  3102. }
  3103. }
  3104. }
  3105. QDF_STATUS
  3106. dp_set_michael_key(struct cdp_soc_t *soc,
  3107. uint8_t vdev_id,
  3108. uint8_t *peer_mac,
  3109. bool is_unicast, uint32_t *key)
  3110. {
  3111. QDF_STATUS status = QDF_STATUS_SUCCESS;
  3112. uint8_t sec_index = is_unicast ? 1 : 0;
  3113. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  3114. peer_mac, 0, vdev_id);
  3115. if (!peer || peer->delete_in_progress) {
  3116. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  3117. "peer not found ");
  3118. status = QDF_STATUS_E_FAILURE;
  3119. goto fail;
  3120. }
  3121. qdf_mem_copy(&peer->security[sec_index].michael_key[0],
  3122. key, IEEE80211_WEP_MICLEN);
  3123. fail:
  3124. if (peer)
  3125. dp_peer_unref_delete(peer);
  3126. return status;
  3127. }
  3128. bool dp_peer_find_by_id_valid(struct dp_soc *soc, uint16_t peer_id)
  3129. {
  3130. struct dp_peer *peer = dp_peer_find_by_id(soc, peer_id);
  3131. if (peer) {
  3132. /*
  3133. * Decrement the peer ref which is taken as part of
  3134. * dp_peer_find_by_id if PEER_LOCK_REF_PROTECT is enabled
  3135. */
  3136. dp_peer_unref_del_find_by_id(peer);
  3137. return true;
  3138. }
  3139. return false;
  3140. }