hal_api_mon.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. /* Multiply rate by 2 to avoid float point
  71. * and get rate in units of 500kbps
  72. */
  73. #define HAL_11B_RATE_0MCS 11*2
  74. #define HAL_11B_RATE_1MCS 5.5*2
  75. #define HAL_11B_RATE_2MCS 2*2
  76. #define HAL_11B_RATE_3MCS 1*2
  77. #define HAL_11B_RATE_4MCS 11*2
  78. #define HAL_11B_RATE_5MCS 5.5*2
  79. #define HAL_11B_RATE_6MCS 2*2
  80. #define HAL_11A_RATE_0MCS 48*2
  81. #define HAL_11A_RATE_1MCS 24*2
  82. #define HAL_11A_RATE_2MCS 12*2
  83. #define HAL_11A_RATE_3MCS 6*2
  84. #define HAL_11A_RATE_4MCS 54*2
  85. #define HAL_11A_RATE_5MCS 36*2
  86. #define HAL_11A_RATE_6MCS 18*2
  87. #define HAL_11A_RATE_7MCS 9*2
  88. #define HE_GI_0_8 0
  89. #define HE_GI_1_6 1
  90. #define HE_GI_3_2 2
  91. #define HE_LTF_1_X 0
  92. #define HE_LTF_2_X 1
  93. #define HE_LTF_4_X 2
  94. #define VHT_SIG_SU_NSS_MASK 0x7
  95. #define HAL_TID_INVALID 31
  96. #define HAL_AST_IDX_INVALID 0xFFFF
  97. enum {
  98. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  99. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  100. HAL_HW_RX_DECAP_FORMAT_ETH2,
  101. HAL_HW_RX_DECAP_FORMAT_8023,
  102. };
  103. enum {
  104. DP_PPDU_STATUS_START,
  105. DP_PPDU_STATUS_DONE,
  106. };
  107. static inline
  108. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  109. {
  110. /* return the HW_RX_DESC size */
  111. return sizeof(struct rx_pkt_tlvs);
  112. }
  113. static inline
  114. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  115. {
  116. return data;
  117. }
  118. static inline
  119. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  120. {
  121. struct rx_attention *rx_attn;
  122. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  123. rx_attn = &rx_desc->attn_tlv.rx_attn;
  124. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  125. }
  126. static inline
  127. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  128. {
  129. struct rx_attention *rx_attn;
  130. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  131. rx_attn = &rx_desc->attn_tlv.rx_attn;
  132. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  133. }
  134. static inline
  135. uint32_t
  136. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  137. struct rx_msdu_start *rx_msdu_start;
  138. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  139. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  140. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  141. }
  142. static inline
  143. uint8_t *
  144. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  145. uint8_t *rx_pkt_hdr;
  146. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  147. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  148. return rx_pkt_hdr;
  149. }
  150. static inline
  151. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  152. {
  153. struct rx_mpdu_info *rx_mpdu_info;
  154. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  155. rx_mpdu_info =
  156. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  157. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  158. }
  159. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  160. static inline
  161. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  162. {
  163. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  164. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  165. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  166. }
  167. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  168. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  169. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  170. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  171. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  172. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  173. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  174. (((struct reo_entrance_ring *)reo_ent_desc) \
  175. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  176. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  177. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  178. (((struct reo_entrance_ring *)reo_ent_desc) \
  179. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  180. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  181. (HAL_RX_BUF_COOKIE_GET(& \
  182. (((struct reo_entrance_ring *)reo_ent_desc) \
  183. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  184. /**
  185. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  186. * cookie from the REO entrance ring element
  187. *
  188. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  189. * the current descriptor
  190. * @ buf_info: structure to return the buffer information
  191. * @ msdu_cnt: pointer to msdu count in MPDU
  192. * Return: void
  193. */
  194. static inline
  195. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  196. struct hal_buf_info *buf_info,
  197. void **pp_buf_addr_info,
  198. uint32_t *msdu_cnt
  199. )
  200. {
  201. struct reo_entrance_ring *reo_ent_ring =
  202. (struct reo_entrance_ring *)rx_desc;
  203. struct buffer_addr_info *buf_addr_info;
  204. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  205. uint32_t loop_cnt;
  206. rx_mpdu_desc_info_details =
  207. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  208. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  209. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  210. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  211. buf_addr_info =
  212. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  213. buf_info->paddr =
  214. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  215. ((uint64_t)
  216. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  217. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  218. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  219. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  220. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  221. (unsigned long long)buf_info->paddr, loop_cnt);
  222. *pp_buf_addr_info = (void *)buf_addr_info;
  223. }
  224. static inline
  225. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  226. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  227. {
  228. struct rx_msdu_link *msdu_link =
  229. (struct rx_msdu_link *)rx_msdu_link_desc;
  230. struct buffer_addr_info *buf_addr_info;
  231. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  232. buf_info->paddr =
  233. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  234. ((uint64_t)
  235. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  236. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  237. *pp_buf_addr_info = (void *)buf_addr_info;
  238. }
  239. /**
  240. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  241. *
  242. * @ soc : HAL version of the SOC pointer
  243. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  244. * @ buf_addr_info : void pointer to the buffer_addr_info
  245. *
  246. * Return: void
  247. */
  248. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  249. void *src_srng_desc, void *buf_addr_info)
  250. {
  251. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  252. (struct buffer_addr_info *)src_srng_desc;
  253. uint64_t paddr;
  254. struct buffer_addr_info *p_buffer_addr_info =
  255. (struct buffer_addr_info *)buf_addr_info;
  256. paddr =
  257. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  258. ((uint64_t)
  259. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  260. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  261. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  262. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  263. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  264. /* Structure copy !!! */
  265. *wbm_srng_buffer_addr_info =
  266. *((struct buffer_addr_info *)buf_addr_info);
  267. }
  268. static inline
  269. uint32 hal_get_rx_msdu_link_desc_size(void)
  270. {
  271. return sizeof(struct rx_msdu_link);
  272. }
  273. enum {
  274. HAL_PKT_TYPE_OFDM = 0,
  275. HAL_PKT_TYPE_CCK,
  276. HAL_PKT_TYPE_HT,
  277. HAL_PKT_TYPE_VHT,
  278. HAL_PKT_TYPE_HE,
  279. };
  280. enum {
  281. HAL_SGI_0_8_US,
  282. HAL_SGI_0_4_US,
  283. HAL_SGI_1_6_US,
  284. HAL_SGI_3_2_US,
  285. };
  286. enum {
  287. HAL_FULL_RX_BW_20,
  288. HAL_FULL_RX_BW_40,
  289. HAL_FULL_RX_BW_80,
  290. HAL_FULL_RX_BW_160,
  291. };
  292. enum {
  293. HAL_RX_TYPE_SU,
  294. HAL_RX_TYPE_MU_MIMO,
  295. HAL_RX_TYPE_MU_OFDMA,
  296. HAL_RX_TYPE_MU_OFDMA_MIMO,
  297. };
  298. /**
  299. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  300. *
  301. * @ hw_desc_addr: Start address of Rx HW TLVs
  302. * @ rs: Status for monitor mode
  303. *
  304. * Return: void
  305. */
  306. static inline
  307. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  308. struct mon_rx_status *rs)
  309. {
  310. struct rx_msdu_start *rx_msdu_start;
  311. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  312. uint32_t reg_value;
  313. static uint32_t sgi_hw_to_cdp[] = {
  314. CDP_SGI_0_8_US,
  315. CDP_SGI_0_4_US,
  316. CDP_SGI_1_6_US,
  317. CDP_SGI_3_2_US,
  318. };
  319. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  320. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  321. RX_MSDU_START_5, USER_RSSI);
  322. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  323. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  324. rs->sgi = sgi_hw_to_cdp[reg_value];
  325. #if !defined(QCA_WIFI_QCA6290_11AX)
  326. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  327. #endif
  328. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, PKT_TYPE);
  329. switch (reg_value) {
  330. case HAL_RX_PKT_TYPE_11N:
  331. rs->ht_flags = 1;
  332. break;
  333. case HAL_RX_PKT_TYPE_11AC:
  334. rs->vht_flags = 1;
  335. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
  336. RECEIVE_BANDWIDTH);
  337. rs->vht_flag_values2 = reg_value;
  338. break;
  339. case HAL_RX_PKT_TYPE_11AX:
  340. rs->he_flags = 1;
  341. break;
  342. default:
  343. break;
  344. }
  345. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  346. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  347. /* TODO: rs->beamformed should be set for SU beamforming also */
  348. }
  349. struct hal_rx_ppdu_user_info {
  350. };
  351. struct hal_rx_ppdu_common_info {
  352. uint32_t ppdu_id;
  353. uint32_t last_ppdu_id;
  354. uint32_t ppdu_timestamp;
  355. uint32_t mpdu_cnt_fcs_ok;
  356. uint32_t mpdu_cnt_fcs_err;
  357. };
  358. struct hal_rx_ppdu_info {
  359. struct hal_rx_ppdu_common_info com_info;
  360. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  361. struct mon_rx_status rx_status;
  362. uint8_t *first_msdu_payload;
  363. };
  364. static inline uint32_t
  365. hal_get_rx_status_buf_size(void) {
  366. /* RX status buffer size is hard coded for now */
  367. return 2048;
  368. }
  369. static inline uint8_t*
  370. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  371. uint32_t tlv_len, tlv_tag;
  372. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  373. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  374. /* The actual length of PPDU_END is the combined lenght of many PHY
  375. * TLVs that follow. Skip the TLV header and
  376. * rx_rxpcu_classification_overview that follows the header to get to
  377. * next TLV.
  378. */
  379. if (tlv_tag == WIFIRX_PPDU_END_E)
  380. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  381. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  382. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  383. }
  384. static inline uint32_t
  385. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  386. {
  387. uint32_t tlv_tag, user_id, tlv_len, value;
  388. uint8_t group_id = 0;
  389. uint16_t he_gi = 0;
  390. uint16_t he_ltf = 0;
  391. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  392. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  393. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  394. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  395. switch (tlv_tag) {
  396. case WIFIRX_PPDU_START_E:
  397. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  398. "[%s][%d] ppdu_start_e len=%d\n",
  399. __func__, __LINE__, tlv_len);
  400. ppdu_info->com_info.ppdu_id =
  401. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  402. PHY_PPDU_ID);
  403. /* TODO: Ensure channel number is set in PHY meta data */
  404. ppdu_info->rx_status.chan_freq =
  405. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  406. SW_PHY_META_DATA);
  407. ppdu_info->com_info.ppdu_timestamp =
  408. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  409. PPDU_START_TIMESTAMP);
  410. break;
  411. case WIFIRX_PPDU_START_USER_INFO_E:
  412. break;
  413. case WIFIRX_PPDU_END_E:
  414. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  415. "[%s][%d] ppdu_end_e len=%d\n",
  416. __func__, __LINE__, tlv_len);
  417. /* This is followed by sub-TLVs of PPDU_END */
  418. ppdu_info->rx_status.duration =
  419. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  420. RX_PPDU_DURATION);
  421. break;
  422. case WIFIRXPCU_PPDU_END_INFO_E:
  423. ppdu_info->rx_status.tsft =
  424. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  425. WB_TIMESTAMP_UPPER_32);
  426. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  427. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  428. WB_TIMESTAMP_LOWER_32);
  429. break;
  430. case WIFIRX_PPDU_END_USER_STATS_E:
  431. {
  432. unsigned long tid = 0;
  433. uint16_t seq = 0;
  434. ppdu_info->rx_status.ast_index =
  435. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  436. AST_INDEX);
  437. ppdu_info->rx_status.mcs =
  438. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, MCS);
  439. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  440. RECEIVED_QOS_DATA_TID_BITMAP);
  441. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  442. if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
  443. ppdu_info->rx_status.tid = HAL_TID_INVALID;
  444. ppdu_info->rx_status.tcp_msdu_count =
  445. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  446. TCP_MSDU_COUNT) +
  447. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  448. TCP_ACK_MSDU_COUNT);
  449. ppdu_info->rx_status.udp_msdu_count =
  450. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  451. UDP_MSDU_COUNT);
  452. ppdu_info->rx_status.other_msdu_count =
  453. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  454. OTHER_MSDU_COUNT);
  455. ppdu_info->rx_status.nss =
  456. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, NSS);
  457. ppdu_info->rx_status.frame_control_info_valid =
  458. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  459. DATA_SEQUENCE_CONTROL_INFO_VALID);
  460. seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
  461. FIRST_DATA_SEQ_CTRL);
  462. if (ppdu_info->rx_status.frame_control_info_valid)
  463. ppdu_info->rx_status.first_data_seq_ctrl = seq;
  464. ppdu_info->rx_status.preamble_type =
  465. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  466. HT_CONTROL_FIELD_PKT_TYPE);
  467. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  468. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  469. MPDU_CNT_FCS_OK);
  470. ppdu_info->com_info.mpdu_cnt_fcs_err =
  471. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  472. MPDU_CNT_FCS_ERR);
  473. break;
  474. }
  475. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  476. break;
  477. case WIFIRX_PPDU_END_STATUS_DONE_E:
  478. return HAL_TLV_STATUS_PPDU_DONE;
  479. case WIFIDUMMY_E:
  480. return HAL_TLV_STATUS_BUF_DONE;
  481. case WIFIPHYRX_HT_SIG_E:
  482. {
  483. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  484. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  485. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  486. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  487. FEC_CODING);
  488. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  489. 1 : 0;
  490. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  491. HT_SIG_INFO_0, MCS);
  492. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  493. HT_SIG_INFO_0, CBW);
  494. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  495. HT_SIG_INFO_1, SHORT_GI);
  496. break;
  497. }
  498. case WIFIPHYRX_L_SIG_B_E:
  499. {
  500. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  501. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  502. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  503. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  504. switch (value) {
  505. case 1:
  506. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  507. break;
  508. case 2:
  509. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  510. break;
  511. case 3:
  512. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  513. break;
  514. case 4:
  515. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  516. break;
  517. case 5:
  518. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  519. break;
  520. case 6:
  521. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  522. break;
  523. case 7:
  524. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  525. break;
  526. default:
  527. break;
  528. }
  529. break;
  530. }
  531. case WIFIPHYRX_L_SIG_A_E:
  532. {
  533. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  534. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  535. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  536. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  537. switch (value) {
  538. case 8:
  539. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  540. break;
  541. case 9:
  542. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  543. break;
  544. case 10:
  545. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  546. break;
  547. case 11:
  548. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  549. break;
  550. case 12:
  551. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  552. break;
  553. case 13:
  554. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  555. break;
  556. case 14:
  557. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  558. break;
  559. case 15:
  560. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  561. break;
  562. default:
  563. break;
  564. }
  565. break;
  566. }
  567. case WIFIPHYRX_VHT_SIG_A_E:
  568. {
  569. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  570. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  571. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  572. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  573. SU_MU_CODING);
  574. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  575. 1 : 0;
  576. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  577. ppdu_info->rx_status.vht_flag_values5 = group_id;
  578. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  579. VHT_SIG_A_INFO_1, MCS);
  580. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  581. VHT_SIG_A_INFO_1, GI_SETTING);
  582. #if !defined(QCA_WIFI_QCA6290_11AX)
  583. value = HAL_RX_GET(vht_sig_a_info,
  584. VHT_SIG_A_INFO_0, N_STS);
  585. ppdu_info->rx_status.nss = ((value & VHT_SIG_SU_NSS_MASK) + 1);
  586. #else
  587. ppdu_info->rx_status.nss = 0;
  588. #endif
  589. ppdu_info->rx_status.vht_flag_values3[0] =
  590. (((ppdu_info->rx_status.mcs) << 4)
  591. | ppdu_info->rx_status.nss);
  592. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  593. VHT_SIG_A_INFO_0, BANDWIDTH);
  594. break;
  595. }
  596. case WIFIPHYRX_HE_SIG_A_SU_E:
  597. {
  598. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  599. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  600. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  601. ppdu_info->rx_status.he_flags = 1;
  602. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  603. FORMAT_INDICATION);
  604. if (value == 0) {
  605. ppdu_info->rx_status.he_data1 =
  606. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  607. } else {
  608. ppdu_info->rx_status.he_data1 =
  609. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  610. }
  611. /*data1*/
  612. ppdu_info->rx_status.he_data1 |=
  613. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  614. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  615. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  616. QDF_MON_STATUS_HE_MCS_KNOWN |
  617. QDF_MON_STATUS_HE_DCM_KNOWN |
  618. QDF_MON_STATUS_HE_CODING_KNOWN |
  619. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  620. QDF_MON_STATUS_HE_STBC_KNOWN |
  621. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  622. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  623. /*data2*/
  624. ppdu_info->rx_status.he_data2 =
  625. QDF_MON_STATUS_HE_GI_KNOWN;
  626. ppdu_info->rx_status.he_data2 |=
  627. QDF_MON_STATUS_TXBF_KNOWN |
  628. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  629. QDF_MON_STATUS_TXOP_KNOWN |
  630. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  631. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  632. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  633. /*data3*/
  634. value = HAL_RX_GET(he_sig_a_su_info,
  635. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  636. ppdu_info->rx_status.he_data3 = value;
  637. value = HAL_RX_GET(he_sig_a_su_info,
  638. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  639. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  640. ppdu_info->rx_status.he_data3 |= value;
  641. value = HAL_RX_GET(he_sig_a_su_info,
  642. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  643. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  644. ppdu_info->rx_status.he_data3 |= value;
  645. value = HAL_RX_GET(he_sig_a_su_info,
  646. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  647. ppdu_info->rx_status.mcs = value;
  648. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  649. ppdu_info->rx_status.he_data3 |= value;
  650. value = HAL_RX_GET(he_sig_a_su_info,
  651. HE_SIG_A_SU_INFO_0, DCM);
  652. value = value << QDF_MON_STATUS_DCM_SHIFT;
  653. ppdu_info->rx_status.he_data3 |= value;
  654. value = HAL_RX_GET(he_sig_a_su_info,
  655. HE_SIG_A_SU_INFO_1, CODING);
  656. value = value << QDF_MON_STATUS_CODING_SHIFT;
  657. ppdu_info->rx_status.he_data3 |= value;
  658. value = HAL_RX_GET(he_sig_a_su_info,
  659. HE_SIG_A_SU_INFO_1,
  660. LDPC_EXTRA_SYMBOL);
  661. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  662. ppdu_info->rx_status.he_data3 |= value;
  663. value = HAL_RX_GET(he_sig_a_su_info,
  664. HE_SIG_A_SU_INFO_1, STBC);
  665. value = value << QDF_MON_STATUS_STBC_SHIFT;
  666. ppdu_info->rx_status.he_data3 |= value;
  667. /*data4*/
  668. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  669. SPATIAL_REUSE);
  670. ppdu_info->rx_status.he_data4 = value;
  671. /*data5*/
  672. value = HAL_RX_GET(he_sig_a_su_info,
  673. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  674. ppdu_info->rx_status.he_data5 = value;
  675. ppdu_info->rx_status.bw = value;
  676. value = HAL_RX_GET(he_sig_a_su_info,
  677. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  678. switch (value) {
  679. case 0:
  680. he_gi = HE_GI_0_8;
  681. he_ltf = HE_LTF_1_X;
  682. break;
  683. case 1:
  684. he_gi = HE_GI_0_8;
  685. he_ltf = HE_LTF_2_X;
  686. break;
  687. case 2:
  688. he_gi = HE_GI_1_6;
  689. he_ltf = HE_LTF_2_X;
  690. break;
  691. case 3:
  692. he_gi = HE_GI_3_2;
  693. he_ltf = HE_LTF_4_X;
  694. break;
  695. }
  696. ppdu_info->rx_status.sgi = he_gi;
  697. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  698. ppdu_info->rx_status.he_data5 |= value;
  699. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  700. ppdu_info->rx_status.he_data5 |= value;
  701. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  702. PACKET_EXTENSION_A_FACTOR);
  703. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  704. ppdu_info->rx_status.he_data5 |= value;
  705. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  706. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  707. ppdu_info->rx_status.he_data5 |= value;
  708. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  709. PACKET_EXTENSION_PE_DISAMBIGUITY);
  710. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  711. ppdu_info->rx_status.he_data5 |= value;
  712. /*data6*/
  713. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  714. value++;
  715. ppdu_info->rx_status.nss = value;
  716. ppdu_info->rx_status.he_data6 = value;
  717. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  718. DOPPLER_INDICATION);
  719. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  720. ppdu_info->rx_status.he_data6 |= value;
  721. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  722. TXOP_DURATION);
  723. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  724. ppdu_info->rx_status.he_data6 |= value;
  725. break;
  726. }
  727. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  728. ppdu_info->rx_status.he_sig_A1 =
  729. *((uint32_t *)((uint8_t *)rx_tlv +
  730. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  731. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  732. ppdu_info->rx_status.he_sig_A1 |=
  733. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  734. ppdu_info->rx_status.he_sig_A1_known =
  735. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  736. ppdu_info->rx_status.he_sig_A2 =
  737. *((uint32_t *)((uint8_t *)rx_tlv +
  738. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  739. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  740. ppdu_info->rx_status.he_sig_A2_known =
  741. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  742. break;
  743. case WIFIPHYRX_HE_SIG_B1_MU_E:
  744. {
  745. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  746. *((uint32_t *)((uint8_t *)rx_tlv +
  747. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  748. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  749. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  750. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  751. RU_ALLOCATION);
  752. ppdu_info->rx_status.he_sig_b_common_known =
  753. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  754. /* TODO: Check on the availability of other fields in
  755. * sig_b_common
  756. */
  757. break;
  758. }
  759. case WIFIPHYRX_HE_SIG_B2_MU_E:
  760. ppdu_info->rx_status.he_sig_b_user =
  761. *((uint32_t *)((uint8_t *)rx_tlv +
  762. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  763. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  764. ppdu_info->rx_status.he_sig_b_user_known =
  765. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  766. break;
  767. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  768. ppdu_info->rx_status.he_sig_b_user =
  769. *((uint32_t *)((uint8_t *)rx_tlv +
  770. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  771. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  772. ppdu_info->rx_status.he_sig_b_user_known =
  773. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  774. break;
  775. case WIFIPHYRX_RSSI_LEGACY_E:
  776. {
  777. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  778. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  779. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  780. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  781. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  782. ppdu_info->rx_status.bw = HAL_RX_GET(rx_tlv,
  783. #if !defined(QCA_WIFI_QCA6290_11AX)
  784. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  785. #else
  786. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  787. #endif
  788. ppdu_info->rx_status.he_re = 0;
  789. ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
  790. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  791. value = HAL_RX_GET(rssi_info_tlv,
  792. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  793. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  794. "RSSI_PRI20_CHAIN0: %d\n", value);
  795. value = HAL_RX_GET(rssi_info_tlv,
  796. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  797. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  798. "RSSI_EXT20_CHAIN0: %d\n", value);
  799. value = HAL_RX_GET(rssi_info_tlv,
  800. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  801. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  802. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  803. value = HAL_RX_GET(rssi_info_tlv,
  804. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  805. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  806. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  807. value = HAL_RX_GET(rssi_info_tlv,
  808. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  809. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  810. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  811. value = HAL_RX_GET(rssi_info_tlv,
  812. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  813. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  814. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  815. value = HAL_RX_GET(rssi_info_tlv,
  816. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  817. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  818. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  819. value = HAL_RX_GET(rssi_info_tlv,
  820. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  821. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  822. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  823. break;
  824. }
  825. case WIFIRX_HEADER_E:
  826. ppdu_info->first_msdu_payload = rx_tlv;
  827. break;
  828. case 0:
  829. return HAL_TLV_STATUS_PPDU_DONE;
  830. default:
  831. break;
  832. }
  833. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  834. "%s TLV type: %d, TLV len:%d\n",
  835. __func__, tlv_tag, tlv_len);
  836. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  837. }
  838. static inline
  839. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  840. {
  841. return HAL_RX_TLV32_HDR_SIZE;
  842. }
  843. static inline QDF_STATUS
  844. hal_get_rx_status_done(uint8_t *rx_tlv)
  845. {
  846. uint32_t tlv_tag;
  847. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  848. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  849. return QDF_STATUS_SUCCESS;
  850. else
  851. return QDF_STATUS_E_EMPTY;
  852. }
  853. static inline QDF_STATUS
  854. hal_clear_rx_status_done(uint8_t *rx_tlv)
  855. {
  856. *(uint32_t *)rx_tlv = 0;
  857. return QDF_STATUS_SUCCESS;
  858. }
  859. #endif