dp_rx_defrag.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_rx_defrag.h"
  26. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  27. #include "dp_rx_defrag.h"
  28. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  29. "AES-CCM",
  30. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  31. IEEE80211_WEP_MICLEN,
  32. 0,
  33. };
  34. const struct dp_rx_defrag_cipher dp_f_tkip = {
  35. "TKIP",
  36. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  37. IEEE80211_WEP_CRCLEN,
  38. IEEE80211_WEP_MICLEN,
  39. };
  40. const struct dp_rx_defrag_cipher dp_f_wep = {
  41. "WEP",
  42. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  43. IEEE80211_WEP_CRCLEN,
  44. 0,
  45. };
  46. /*
  47. * dp_rx_defrag_frames_free(): Free fragment chain
  48. * @frames: Fragment chain
  49. *
  50. * Iterates through the fragment chain and frees them
  51. * Returns: None
  52. */
  53. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  54. {
  55. qdf_nbuf_t next, frag = frames;
  56. while (frag) {
  57. next = qdf_nbuf_next(frag);
  58. qdf_nbuf_free(frag);
  59. frag = next;
  60. }
  61. }
  62. /*
  63. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  64. * @peer: Pointer to the peer data structure
  65. * @tid: Transmit ID (TID)
  66. *
  67. * Saves MPDU descriptor info and MSDU link pointer from REO
  68. * ring descriptor. The cache is created per peer, per TID
  69. *
  70. * Returns: None
  71. */
  72. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  73. {
  74. if (peer->rx_tid[tid].dst_ring_desc)
  75. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  76. peer->rx_tid[tid].dst_ring_desc = NULL;
  77. }
  78. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  79. unsigned int tid)
  80. {
  81. struct dp_soc *soc;
  82. struct dp_pdev *pdev;
  83. struct dp_srng *dp_rxdma_srng;
  84. struct rx_desc_pool *rx_desc_pool;
  85. union dp_rx_desc_list_elem_t *head = NULL;
  86. union dp_rx_desc_list_elem_t *tail = NULL;
  87. if (peer->rx_tid[tid].head_frag_desc) {
  88. pdev = peer->vdev->pdev;
  89. soc = pdev->soc;
  90. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  91. rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
  92. dp_rx_add_to_free_desc_list(&head, &tail,
  93. peer->rx_tid[tid].head_frag_desc);
  94. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  95. 1, &head, &tail);
  96. }
  97. }
  98. /*
  99. * dp_rx_reorder_flush_frag(): Flush the frag list
  100. * @peer: Pointer to the peer data structure
  101. * @tid: Transmit ID (TID)
  102. *
  103. * Flush the per-TID frag list
  104. *
  105. * Returns: None
  106. */
  107. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  108. unsigned int tid)
  109. {
  110. struct dp_soc *soc;
  111. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  112. FL("Flushing TID %d"), tid);
  113. if (!peer) {
  114. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  115. "%s: NULL peer", __func__);
  116. return;
  117. }
  118. soc = peer->vdev->pdev->soc;
  119. if (peer->rx_tid[tid].dst_ring_desc) {
  120. if (dp_rx_link_desc_return(soc,
  121. peer->rx_tid[tid].dst_ring_desc,
  122. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  123. QDF_STATUS_SUCCESS)
  124. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  125. "%s: Failed to return link desc",
  126. __func__);
  127. }
  128. dp_rx_return_head_frag_desc(peer, tid);
  129. dp_rx_defrag_cleanup(peer, tid);
  130. }
  131. /*
  132. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  133. * @soc: DP SOC
  134. *
  135. * Flush fragments of all waitlisted TID's
  136. *
  137. * Returns: None
  138. */
  139. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  140. {
  141. struct dp_rx_tid *rx_reorder;
  142. struct dp_rx_tid *tmp;
  143. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  144. TAILQ_HEAD(, dp_rx_tid) temp_list;
  145. TAILQ_INIT(&temp_list);
  146. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  147. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  148. defrag_waitlist_elem, tmp) {
  149. unsigned int tid;
  150. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  151. FL("Current time %u"), now_ms);
  152. if (rx_reorder->defrag_timeout_ms > now_ms)
  153. break;
  154. tid = rx_reorder->tid;
  155. if (tid >= DP_MAX_TIDS) {
  156. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  157. "%s: TID out of bounds: %d", __func__, tid);
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  162. defrag_waitlist_elem);
  163. /* Move to temp list and clean-up later */
  164. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  165. defrag_waitlist_elem);
  166. }
  167. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  168. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  169. defrag_waitlist_elem, tmp) {
  170. struct dp_peer *peer;
  171. /* get address of current peer */
  172. peer =
  173. container_of(rx_reorder, struct dp_peer,
  174. rx_tid[rx_reorder->tid]);
  175. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  176. }
  177. }
  178. /*
  179. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  180. * @peer: Pointer to the peer data structure
  181. * @tid: Transmit ID (TID)
  182. *
  183. * Appends per-tid fragments to global fragment wait list
  184. *
  185. * Returns: None
  186. */
  187. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  188. {
  189. struct dp_soc *psoc = peer->vdev->pdev->soc;
  190. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  191. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  192. FL("Adding TID %u to waitlist for peer %pK"),
  193. tid, peer);
  194. /* TODO: use LIST macros instead of TAIL macros */
  195. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  196. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  197. defrag_waitlist_elem);
  198. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  199. }
  200. /*
  201. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  202. * @peer: Pointer to the peer data structure
  203. * @tid: Transmit ID (TID)
  204. *
  205. * Remove fragments from waitlist
  206. *
  207. * Returns: None
  208. */
  209. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  210. {
  211. struct dp_pdev *pdev = peer->vdev->pdev;
  212. struct dp_soc *soc = pdev->soc;
  213. struct dp_rx_tid *rx_reorder;
  214. if (tid > DP_MAX_TIDS) {
  215. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  216. "TID out of bounds: %d", tid);
  217. qdf_assert(0);
  218. return;
  219. }
  220. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  221. TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
  222. defrag_waitlist_elem) {
  223. struct dp_peer *peer_on_waitlist;
  224. /* get address of current peer */
  225. peer_on_waitlist =
  226. container_of(rx_reorder, struct dp_peer,
  227. rx_tid[rx_reorder->tid]);
  228. /* Ensure it is TID for same peer */
  229. if (peer_on_waitlist == peer && rx_reorder->tid == tid)
  230. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  231. rx_reorder, defrag_waitlist_elem);
  232. }
  233. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  234. }
  235. /*
  236. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  237. * @peer: Pointer to the peer data structure
  238. * @tid: Transmit ID (TID)
  239. * @head_addr: Pointer to head list
  240. * @tail_addr: Pointer to tail list
  241. * @frag: Incoming fragment
  242. * @all_frag_present: Flag to indicate whether all fragments are received
  243. *
  244. * Build a per-tid, per-sequence fragment list.
  245. *
  246. * Returns: Success, if inserted
  247. */
  248. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  249. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  250. uint8_t *all_frag_present)
  251. {
  252. qdf_nbuf_t next;
  253. qdf_nbuf_t prev = NULL;
  254. qdf_nbuf_t cur;
  255. uint16_t head_fragno, cur_fragno, next_fragno;
  256. uint8_t last_morefrag = 1, count = 0;
  257. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  258. uint8_t *rx_desc_info;
  259. qdf_assert(frag);
  260. qdf_assert(head_addr);
  261. qdf_assert(tail_addr);
  262. *all_frag_present = 0;
  263. rx_desc_info = qdf_nbuf_data(frag);
  264. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  265. /* If this is the first fragment */
  266. if (!(*head_addr)) {
  267. *head_addr = *tail_addr = frag;
  268. qdf_nbuf_set_next(*tail_addr, NULL);
  269. rx_tid->curr_frag_num = cur_fragno;
  270. goto insert_done;
  271. }
  272. /* In sequence fragment */
  273. if (cur_fragno > rx_tid->curr_frag_num) {
  274. qdf_nbuf_set_next(*tail_addr, frag);
  275. *tail_addr = frag;
  276. qdf_nbuf_set_next(*tail_addr, NULL);
  277. rx_tid->curr_frag_num = cur_fragno;
  278. } else {
  279. /* Out of sequence fragment */
  280. cur = *head_addr;
  281. rx_desc_info = qdf_nbuf_data(cur);
  282. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  283. if (cur_fragno == head_fragno) {
  284. qdf_nbuf_free(frag);
  285. goto insert_fail;
  286. } else if (head_fragno > cur_fragno) {
  287. qdf_nbuf_set_next(frag, cur);
  288. cur = frag;
  289. *head_addr = frag; /* head pointer to be updated */
  290. } else {
  291. while ((cur_fragno > head_fragno) && cur != NULL) {
  292. prev = cur;
  293. cur = qdf_nbuf_next(cur);
  294. rx_desc_info = qdf_nbuf_data(cur);
  295. head_fragno =
  296. dp_rx_frag_get_mpdu_frag_number(
  297. rx_desc_info);
  298. }
  299. if (cur_fragno == head_fragno) {
  300. qdf_nbuf_free(frag);
  301. goto insert_fail;
  302. }
  303. qdf_nbuf_set_next(prev, frag);
  304. qdf_nbuf_set_next(frag, cur);
  305. }
  306. }
  307. next = qdf_nbuf_next(*head_addr);
  308. rx_desc_info = qdf_nbuf_data(*tail_addr);
  309. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  310. /* TODO: optimize the loop */
  311. if (!last_morefrag) {
  312. /* Check if all fragments are present */
  313. do {
  314. rx_desc_info = qdf_nbuf_data(next);
  315. next_fragno =
  316. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  317. count++;
  318. if (next_fragno != count)
  319. break;
  320. next = qdf_nbuf_next(next);
  321. } while (next);
  322. if (!next) {
  323. *all_frag_present = 1;
  324. return QDF_STATUS_SUCCESS;
  325. }
  326. }
  327. insert_done:
  328. return QDF_STATUS_SUCCESS;
  329. insert_fail:
  330. return QDF_STATUS_E_FAILURE;
  331. }
  332. /*
  333. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  334. * @msdu: Pointer to the fragment
  335. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  336. *
  337. * decap tkip encrypted fragment
  338. *
  339. * Returns: QDF_STATUS
  340. */
  341. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  342. {
  343. uint8_t *ivp, *orig_hdr;
  344. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  345. /* start of 802.11 header info */
  346. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  347. /* TKIP header is located post 802.11 header */
  348. ivp = orig_hdr + hdrlen;
  349. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  350. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  351. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  352. return QDF_STATUS_E_DEFRAG_ERROR;
  353. }
  354. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  355. return QDF_STATUS_SUCCESS;
  356. }
  357. /*
  358. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  359. * @nbuf: Pointer to the fragment buffer
  360. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  361. *
  362. * Remove MIC information from CCMP fragment
  363. *
  364. * Returns: QDF_STATUS
  365. */
  366. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  367. {
  368. uint8_t *ivp, *orig_hdr;
  369. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  370. /* start of the 802.11 header */
  371. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  372. /* CCMP header is located after 802.11 header */
  373. ivp = orig_hdr + hdrlen;
  374. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  375. return QDF_STATUS_E_DEFRAG_ERROR;
  376. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  377. return QDF_STATUS_SUCCESS;
  378. }
  379. /*
  380. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  381. * @nbuf: Pointer to the fragment
  382. * @hdrlen: length of the header information
  383. *
  384. * decap CCMP encrypted fragment
  385. *
  386. * Returns: QDF_STATUS
  387. */
  388. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  389. {
  390. uint8_t *ivp, *origHdr;
  391. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  392. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  393. ivp = origHdr + hdrlen;
  394. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  395. return QDF_STATUS_E_DEFRAG_ERROR;
  396. /* Let's pull the header later */
  397. return QDF_STATUS_SUCCESS;
  398. }
  399. /*
  400. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  401. * @msdu: Pointer to the fragment
  402. * @hdrlen: length of the header information
  403. *
  404. * decap WEP encrypted fragment
  405. *
  406. * Returns: QDF_STATUS
  407. */
  408. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  409. {
  410. uint8_t *origHdr;
  411. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  412. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  413. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  414. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  415. return QDF_STATUS_SUCCESS;
  416. }
  417. /*
  418. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  419. * @nbuf: Pointer to the fragment
  420. *
  421. * Calculate the header size of the received fragment
  422. *
  423. * Returns: header size (uint16_t)
  424. */
  425. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  426. {
  427. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  428. uint16_t size = sizeof(struct ieee80211_frame);
  429. uint16_t fc = 0;
  430. uint32_t to_ds, fr_ds;
  431. uint8_t frm_ctrl_valid;
  432. uint16_t frm_ctrl_field;
  433. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  434. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  435. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  436. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  437. if (to_ds && fr_ds)
  438. size += IEEE80211_ADDR_LEN;
  439. if (frm_ctrl_valid) {
  440. fc = frm_ctrl_field;
  441. /* use 1-st byte for validation */
  442. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  443. size += sizeof(uint16_t);
  444. /* use 2-nd byte for validation */
  445. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  446. size += sizeof(struct ieee80211_htc);
  447. }
  448. }
  449. return size;
  450. }
  451. /*
  452. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  453. * @wh0: Pointer to the wireless header of the fragment
  454. * @hdr: Array to hold the pseudo header
  455. *
  456. * Calculate a pseudo MIC header
  457. *
  458. * Returns: None
  459. */
  460. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  461. uint8_t hdr[])
  462. {
  463. const struct ieee80211_frame_addr4 *wh =
  464. (const struct ieee80211_frame_addr4 *)wh0;
  465. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  466. case IEEE80211_FC1_DIR_NODS:
  467. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  468. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  469. wh->i_addr2);
  470. break;
  471. case IEEE80211_FC1_DIR_TODS:
  472. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  473. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  474. wh->i_addr2);
  475. break;
  476. case IEEE80211_FC1_DIR_FROMDS:
  477. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  478. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  479. wh->i_addr3);
  480. break;
  481. case IEEE80211_FC1_DIR_DSTODS:
  482. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  483. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  484. wh->i_addr4);
  485. break;
  486. }
  487. /*
  488. * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  489. * it could also be set for deauth, disassoc, action, etc. for
  490. * a mgt type frame. It comes into picture for MFP.
  491. */
  492. if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
  493. const struct ieee80211_qosframe *qwh =
  494. (const struct ieee80211_qosframe *)wh;
  495. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  496. } else {
  497. hdr[12] = 0;
  498. }
  499. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  500. }
  501. /*
  502. * dp_rx_defrag_mic(): Calculate MIC header
  503. * @key: Pointer to the key
  504. * @wbuf: fragment buffer
  505. * @off: Offset
  506. * @data_len: Data length
  507. * @mic: Array to hold MIC
  508. *
  509. * Calculate a pseudo MIC header
  510. *
  511. * Returns: QDF_STATUS
  512. */
  513. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  514. uint16_t off, uint16_t data_len, uint8_t mic[])
  515. {
  516. uint8_t hdr[16] = { 0, };
  517. uint32_t l, r;
  518. const uint8_t *data;
  519. uint32_t space;
  520. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  521. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  522. + rx_desc_len), hdr);
  523. l = dp_rx_get_le32(key);
  524. r = dp_rx_get_le32(key + 4);
  525. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  526. l ^= dp_rx_get_le32(hdr);
  527. dp_rx_michael_block(l, r);
  528. l ^= dp_rx_get_le32(&hdr[4]);
  529. dp_rx_michael_block(l, r);
  530. l ^= dp_rx_get_le32(&hdr[8]);
  531. dp_rx_michael_block(l, r);
  532. l ^= dp_rx_get_le32(&hdr[12]);
  533. dp_rx_michael_block(l, r);
  534. /* first buffer has special handling */
  535. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  536. space = qdf_nbuf_len(wbuf) - off;
  537. for (;; ) {
  538. if (space > data_len)
  539. space = data_len;
  540. /* collect 32-bit blocks from current buffer */
  541. while (space >= sizeof(uint32_t)) {
  542. l ^= dp_rx_get_le32(data);
  543. dp_rx_michael_block(l, r);
  544. data += sizeof(uint32_t);
  545. space -= sizeof(uint32_t);
  546. data_len -= sizeof(uint32_t);
  547. }
  548. if (data_len < sizeof(uint32_t))
  549. break;
  550. wbuf = qdf_nbuf_next(wbuf);
  551. if (wbuf == NULL)
  552. return QDF_STATUS_E_DEFRAG_ERROR;
  553. if (space != 0) {
  554. const uint8_t *data_next;
  555. /*
  556. * Block straddles buffers, split references.
  557. */
  558. data_next =
  559. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  560. if ((qdf_nbuf_len(wbuf)) <
  561. sizeof(uint32_t) - space) {
  562. return QDF_STATUS_E_DEFRAG_ERROR;
  563. }
  564. switch (space) {
  565. case 1:
  566. l ^= dp_rx_get_le32_split(data[0],
  567. data_next[0], data_next[1],
  568. data_next[2]);
  569. data = data_next + 3;
  570. space = (qdf_nbuf_len(wbuf) - off) - 3;
  571. break;
  572. case 2:
  573. l ^= dp_rx_get_le32_split(data[0], data[1],
  574. data_next[0], data_next[1]);
  575. data = data_next + 2;
  576. space = (qdf_nbuf_len(wbuf) - off) - 2;
  577. break;
  578. case 3:
  579. l ^= dp_rx_get_le32_split(data[0], data[1],
  580. data[2], data_next[0]);
  581. data = data_next + 1;
  582. space = (qdf_nbuf_len(wbuf) - off) - 1;
  583. break;
  584. }
  585. dp_rx_michael_block(l, r);
  586. data_len -= sizeof(uint32_t);
  587. } else {
  588. /*
  589. * Setup for next buffer.
  590. */
  591. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  592. space = qdf_nbuf_len(wbuf) - off;
  593. }
  594. }
  595. /* Last block and padding (0x5a, 4..7 x 0) */
  596. switch (data_len) {
  597. case 0:
  598. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  599. break;
  600. case 1:
  601. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  602. break;
  603. case 2:
  604. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  605. break;
  606. case 3:
  607. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  608. break;
  609. }
  610. dp_rx_michael_block(l, r);
  611. dp_rx_michael_block(l, r);
  612. dp_rx_put_le32(mic, l);
  613. dp_rx_put_le32(mic + 4, r);
  614. return QDF_STATUS_SUCCESS;
  615. }
  616. /*
  617. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  618. * @key: Pointer to the key
  619. * @msdu: fragment buffer
  620. * @hdrlen: Length of the header information
  621. *
  622. * Remove MIC information from the TKIP frame
  623. *
  624. * Returns: QDF_STATUS
  625. */
  626. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  627. qdf_nbuf_t msdu, uint16_t hdrlen)
  628. {
  629. QDF_STATUS status;
  630. uint32_t pktlen = 0;
  631. uint8_t mic[IEEE80211_WEP_MICLEN];
  632. uint8_t mic0[IEEE80211_WEP_MICLEN];
  633. qdf_nbuf_t prev = NULL, next;
  634. next = msdu;
  635. while (next) {
  636. pktlen += (qdf_nbuf_len(next) - hdrlen);
  637. prev = next;
  638. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  639. "%s pktlen %ld", __func__,
  640. qdf_nbuf_len(next) - hdrlen);
  641. next = qdf_nbuf_next(next);
  642. }
  643. if (!prev) {
  644. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  645. "%s Defrag chaining failed !\n", __func__);
  646. return QDF_STATUS_E_DEFRAG_ERROR;
  647. }
  648. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  649. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  650. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  651. pktlen -= dp_f_tkip.ic_miclen;
  652. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  653. pktlen, mic);
  654. if (QDF_IS_STATUS_ERROR(status))
  655. return status;
  656. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  657. return QDF_STATUS_E_DEFRAG_ERROR;
  658. return QDF_STATUS_SUCCESS;
  659. }
  660. /*
  661. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  662. * @nbuf: buffer pointer
  663. * @hdrsize: size of the header to be pulled
  664. *
  665. * Pull the RXTLV & the 802.11 headers
  666. *
  667. * Returns: None
  668. */
  669. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  670. {
  671. qdf_nbuf_pull_head(nbuf,
  672. RX_PKT_TLVS_LEN + hdrsize);
  673. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  674. "%s: final pktlen %d .11len %d",
  675. __func__,
  676. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  677. }
  678. /*
  679. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  680. * @peer: Pointer to the peer
  681. * @head: Pointer to list of fragments
  682. * @hdrsize: Size of the header to be pulled
  683. *
  684. * Construct a nbuf fraglist
  685. *
  686. * Returns: None
  687. */
  688. static void
  689. dp_rx_construct_fraglist(struct dp_peer *peer,
  690. qdf_nbuf_t head, uint16_t hdrsize)
  691. {
  692. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  693. qdf_nbuf_t rx_nbuf = msdu;
  694. uint32_t len = 0;
  695. while (msdu) {
  696. dp_rx_frag_pull_hdr(msdu, hdrsize);
  697. len += qdf_nbuf_len(msdu);
  698. msdu = qdf_nbuf_next(msdu);
  699. }
  700. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  701. qdf_nbuf_set_next(head, NULL);
  702. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  703. "%s: head len %d ext len %d data len %d ",
  704. __func__,
  705. (uint32_t)qdf_nbuf_len(head),
  706. (uint32_t)qdf_nbuf_len(rx_nbuf),
  707. (uint32_t)(head->data_len));
  708. }
  709. /**
  710. * dp_rx_defrag_err() - rx err handler
  711. * @pdev: handle to pdev object
  712. * @vdev_id: vdev id
  713. * @peer_mac_addr: peer mac address
  714. * @tid: TID
  715. * @tsf32: TSF
  716. * @err_type: error type
  717. * @rx_frame: rx frame
  718. * @pn: PN Number
  719. * @key_id: key id
  720. *
  721. * This function handles rx error and send MIC error notification
  722. *
  723. * Return: None
  724. */
  725. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  726. {
  727. struct ol_if_ops *tops = NULL;
  728. struct dp_pdev *pdev = vdev->pdev;
  729. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  730. uint8_t *orig_hdr;
  731. struct ieee80211_frame *wh;
  732. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  733. wh = (struct ieee80211_frame *)orig_hdr;
  734. tops = pdev->soc->cdp_soc.ol_ops;
  735. if (tops->rx_mic_error)
  736. tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
  737. }
  738. /*
  739. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  740. * @nbuf: Pointer to the fragment buffer
  741. * @hdrsize: Size of headers
  742. *
  743. * Transcap the fragment from 802.11 to 802.3
  744. *
  745. * Returns: None
  746. */
  747. static void
  748. dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
  749. {
  750. struct llc_snap_hdr_t *llchdr;
  751. struct ethernet_hdr_t *eth_hdr;
  752. uint8_t ether_type[2];
  753. uint16_t fc = 0;
  754. union dp_align_mac_addr mac_addr;
  755. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  756. if (rx_desc_info == NULL) {
  757. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  758. "%s: Memory alloc failed ! ", __func__);
  759. QDF_ASSERT(0);
  760. return;
  761. }
  762. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  763. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  764. RX_PKT_TLVS_LEN + hdrsize);
  765. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  766. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  767. sizeof(struct llc_snap_hdr_t) -
  768. sizeof(struct ethernet_hdr_t)));
  769. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  770. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  771. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  772. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  773. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  774. "%s: frame control type: 0x%x", __func__, fc);
  775. case IEEE80211_FC1_DIR_NODS:
  776. hal_rx_mpdu_get_addr1(rx_desc_info,
  777. &mac_addr.raw[0]);
  778. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  779. IEEE80211_ADDR_LEN);
  780. hal_rx_mpdu_get_addr2(rx_desc_info,
  781. &mac_addr.raw[0]);
  782. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  783. IEEE80211_ADDR_LEN);
  784. break;
  785. case IEEE80211_FC1_DIR_TODS:
  786. hal_rx_mpdu_get_addr3(rx_desc_info,
  787. &mac_addr.raw[0]);
  788. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  789. IEEE80211_ADDR_LEN);
  790. hal_rx_mpdu_get_addr2(rx_desc_info,
  791. &mac_addr.raw[0]);
  792. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  793. IEEE80211_ADDR_LEN);
  794. break;
  795. case IEEE80211_FC1_DIR_FROMDS:
  796. hal_rx_mpdu_get_addr1(rx_desc_info,
  797. &mac_addr.raw[0]);
  798. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  799. IEEE80211_ADDR_LEN);
  800. hal_rx_mpdu_get_addr3(rx_desc_info,
  801. &mac_addr.raw[0]);
  802. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  803. IEEE80211_ADDR_LEN);
  804. break;
  805. case IEEE80211_FC1_DIR_DSTODS:
  806. hal_rx_mpdu_get_addr3(rx_desc_info,
  807. &mac_addr.raw[0]);
  808. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  809. IEEE80211_ADDR_LEN);
  810. hal_rx_mpdu_get_addr4(rx_desc_info,
  811. &mac_addr.raw[0]);
  812. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  813. IEEE80211_ADDR_LEN);
  814. break;
  815. default:
  816. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  817. "%s: Unknown frame control type: 0x%x", __func__, fc);
  818. }
  819. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  820. sizeof(ether_type));
  821. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  822. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  823. qdf_mem_free(rx_desc_info);
  824. }
  825. /*
  826. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  827. * @peer: Pointer to the peer
  828. * @tid: Transmit Identifier
  829. * @head: Buffer to be reinjected back
  830. *
  831. * Reinject the fragment chain back into REO
  832. *
  833. * Returns: QDF_STATUS
  834. */
  835. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  836. unsigned tid, qdf_nbuf_t head)
  837. {
  838. struct dp_pdev *pdev = peer->vdev->pdev;
  839. struct dp_soc *soc = pdev->soc;
  840. struct hal_buf_info buf_info;
  841. void *link_desc_va;
  842. void *msdu0, *msdu_desc_info;
  843. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  844. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  845. qdf_dma_addr_t paddr;
  846. uint32_t nbuf_len, seq_no, dst_ind;
  847. uint32_t *mpdu_wrd;
  848. uint32_t ret, cookie;
  849. void *dst_ring_desc =
  850. peer->rx_tid[tid].dst_ring_desc;
  851. void *hal_srng = soc->reo_reinject_ring.hal_srng;
  852. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  853. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  854. qdf_assert(link_desc_va);
  855. msdu0 = (uint8_t *)link_desc_va +
  856. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  857. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  858. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  859. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  860. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  861. /* msdu reconfig */
  862. msdu_desc_info = (uint8_t *)msdu0 +
  863. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  864. dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
  865. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  866. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  867. FIRST_MSDU_IN_MPDU_FLAG, 1);
  868. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  869. LAST_MSDU_IN_MPDU_FLAG, 1);
  870. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  871. MSDU_CONTINUATION, 0x0);
  872. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  873. REO_DESTINATION_INDICATION, dst_ind);
  874. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  875. MSDU_LENGTH, nbuf_len);
  876. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  877. SA_IS_VALID, 1);
  878. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  879. DA_IS_VALID, 1);
  880. /* change RX TLV's */
  881. hal_rx_msdu_start_msdu_len_set(
  882. qdf_nbuf_data(head), nbuf_len);
  883. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  884. /* map the nbuf before reinject it into HW */
  885. ret = qdf_nbuf_map_single(soc->osdev, head,
  886. QDF_DMA_BIDIRECTIONAL);
  887. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  888. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  889. "%s: nbuf map failed !", __func__);
  890. qdf_nbuf_free(head);
  891. return QDF_STATUS_E_FAILURE;
  892. }
  893. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  894. ret = check_x86_paddr(soc, &head, &paddr, pdev);
  895. if (ret == QDF_STATUS_E_FAILURE) {
  896. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  897. "%s: x86 check failed !", __func__);
  898. return QDF_STATUS_E_FAILURE;
  899. }
  900. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
  901. /* Lets fill entrance ring now !!! */
  902. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  903. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  904. "HAL RING Access For REO entrance SRNG Failed: %pK",
  905. hal_srng);
  906. return QDF_STATUS_E_FAILURE;
  907. }
  908. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  909. qdf_assert(ent_ring_desc);
  910. paddr = (uint64_t)buf_info.paddr;
  911. /* buf addr */
  912. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  913. buf_info.sw_cookie,
  914. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  915. /* mpdu desc info */
  916. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  917. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  918. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  919. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  920. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  921. sizeof(struct rx_mpdu_desc_info));
  922. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  923. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  924. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  925. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  926. MSDU_COUNT, 0x1);
  927. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  928. MPDU_SEQUENCE_NUMBER, seq_no);
  929. /* unset frag bit */
  930. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  931. FRAGMENT_FLAG, 0x0);
  932. /* set sa/da valid bits */
  933. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  934. SA_IS_VALID, 0x1);
  935. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  936. DA_IS_VALID, 0x1);
  937. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  938. RAW_MPDU, 0x0);
  939. /* qdesc addr */
  940. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  941. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  942. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  943. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  944. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  945. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  946. REO_DESTINATION_INDICATION, dst_ind);
  947. hal_srng_access_end(soc->hal_soc, hal_srng);
  948. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  949. "%s: reinjection done !", __func__);
  950. return QDF_STATUS_SUCCESS;
  951. }
  952. /*
  953. * dp_rx_defrag(): Defragment the fragment chain
  954. * @peer: Pointer to the peer
  955. * @tid: Transmit Identifier
  956. * @frag_list_head: Pointer to head list
  957. * @frag_list_tail: Pointer to tail list
  958. *
  959. * Defragment the fragment chain
  960. *
  961. * Returns: QDF_STATUS
  962. */
  963. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  964. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  965. {
  966. qdf_nbuf_t tmp_next, prev;
  967. qdf_nbuf_t cur = frag_list_head, msdu;
  968. uint32_t index, tkip_demic = 0;
  969. uint16_t hdr_space;
  970. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  971. struct dp_vdev *vdev = peer->vdev;
  972. struct dp_soc *soc = vdev->pdev->soc;
  973. uint8_t status = 0;
  974. hdr_space = dp_rx_defrag_hdrsize(cur);
  975. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  976. dp_sec_mcast : dp_sec_ucast;
  977. /* Remove FCS from all fragments */
  978. while (cur) {
  979. tmp_next = qdf_nbuf_next(cur);
  980. qdf_nbuf_set_next(cur, NULL);
  981. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  982. prev = cur;
  983. qdf_nbuf_set_next(cur, tmp_next);
  984. cur = tmp_next;
  985. }
  986. cur = frag_list_head;
  987. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  988. "%s: index %d Security type: %d", __func__,
  989. index, peer->security[index].sec_type);
  990. switch (peer->security[index].sec_type) {
  991. case htt_sec_type_tkip:
  992. tkip_demic = 1;
  993. case htt_sec_type_tkip_nomic:
  994. while (cur) {
  995. tmp_next = qdf_nbuf_next(cur);
  996. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  997. QDF_TRACE(QDF_MODULE_ID_TXRX,
  998. QDF_TRACE_LEVEL_ERROR,
  999. "dp_rx_defrag: TKIP decap failed");
  1000. return QDF_STATUS_E_DEFRAG_ERROR;
  1001. }
  1002. cur = tmp_next;
  1003. }
  1004. /* If success, increment header to be stripped later */
  1005. hdr_space += dp_f_tkip.ic_header;
  1006. break;
  1007. case htt_sec_type_aes_ccmp:
  1008. while (cur) {
  1009. tmp_next = qdf_nbuf_next(cur);
  1010. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1011. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1012. QDF_TRACE_LEVEL_ERROR,
  1013. "dp_rx_defrag: CCMP demic failed");
  1014. return QDF_STATUS_E_DEFRAG_ERROR;
  1015. }
  1016. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1017. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1018. QDF_TRACE_LEVEL_ERROR,
  1019. "dp_rx_defrag: CCMP decap failed");
  1020. return QDF_STATUS_E_DEFRAG_ERROR;
  1021. }
  1022. cur = tmp_next;
  1023. }
  1024. /* If success, increment header to be stripped later */
  1025. hdr_space += dp_f_ccmp.ic_header;
  1026. break;
  1027. case htt_sec_type_wep40:
  1028. case htt_sec_type_wep104:
  1029. case htt_sec_type_wep128:
  1030. while (cur) {
  1031. tmp_next = qdf_nbuf_next(cur);
  1032. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1033. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1034. QDF_TRACE_LEVEL_ERROR,
  1035. "dp_rx_defrag: WEP decap failed");
  1036. return QDF_STATUS_E_DEFRAG_ERROR;
  1037. }
  1038. cur = tmp_next;
  1039. }
  1040. /* If success, increment header to be stripped later */
  1041. hdr_space += dp_f_wep.ic_header;
  1042. break;
  1043. default:
  1044. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1045. QDF_TRACE_LEVEL_ERROR,
  1046. "dp_rx_defrag: Did not match any security type");
  1047. break;
  1048. }
  1049. if (tkip_demic) {
  1050. msdu = frag_list_head;
  1051. if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
  1052. status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
  1053. (void *)peer->ctrl_peer, msdu, hdr_space);
  1054. } else {
  1055. qdf_mem_copy(key,
  1056. &peer->security[index].michael_key[0],
  1057. IEEE80211_WEP_MICLEN);
  1058. status = dp_rx_defrag_tkip_demic(key, msdu,
  1059. RX_PKT_TLVS_LEN +
  1060. hdr_space);
  1061. if (status) {
  1062. dp_rx_defrag_err(vdev, frag_list_head);
  1063. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1064. QDF_TRACE_LEVEL_ERROR,
  1065. "%s: TKIP demic failed status %d",
  1066. __func__, status);
  1067. return QDF_STATUS_E_DEFRAG_ERROR;
  1068. }
  1069. }
  1070. }
  1071. /* Convert the header to 802.3 header */
  1072. dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
  1073. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1074. return QDF_STATUS_SUCCESS;
  1075. }
  1076. /*
  1077. * dp_rx_defrag_cleanup(): Clean up activities
  1078. * @peer: Pointer to the peer
  1079. * @tid: Transmit Identifier
  1080. *
  1081. * Returns: None
  1082. */
  1083. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1084. {
  1085. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1086. peer->rx_tid[tid].array;
  1087. if (!rx_reorder_array_elem) {
  1088. /*
  1089. * if this condition is hit then somebody
  1090. * must have reset this pointer to NULL.
  1091. * array pointer usually points to base variable
  1092. * of TID queue structure: "struct dp_rx_tid"
  1093. */
  1094. QDF_ASSERT(0);
  1095. return;
  1096. }
  1097. /* Free up nbufs */
  1098. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1099. /* Free up saved ring descriptors */
  1100. dp_rx_clear_saved_desc_info(peer, tid);
  1101. rx_reorder_array_elem->head = NULL;
  1102. rx_reorder_array_elem->tail = NULL;
  1103. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1104. peer->rx_tid[tid].curr_frag_num = 0;
  1105. peer->rx_tid[tid].curr_seq_num = 0;
  1106. peer->rx_tid[tid].head_frag_desc = NULL;
  1107. }
  1108. /*
  1109. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1110. * @ring_desc: Pointer to the dst ring descriptor
  1111. * @peer: Pointer to the peer
  1112. * @tid: Transmit Identifier
  1113. *
  1114. * Returns: None
  1115. */
  1116. static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
  1117. struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
  1118. {
  1119. void *dst_ring_desc = qdf_mem_malloc(
  1120. sizeof(struct reo_destination_ring));
  1121. if (dst_ring_desc == NULL) {
  1122. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1123. "%s: Memory alloc failed !", __func__);
  1124. QDF_ASSERT(0);
  1125. return QDF_STATUS_E_NOMEM;
  1126. }
  1127. qdf_mem_copy(dst_ring_desc, ring_desc,
  1128. sizeof(struct reo_destination_ring));
  1129. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1130. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1131. return QDF_STATUS_SUCCESS;
  1132. }
  1133. /*
  1134. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1135. * @soc: Pointer to the SOC data structure
  1136. * @ring_desc: Pointer to the ring descriptor
  1137. * @mpdu_desc_info: MPDU descriptor info
  1138. * @tid: Traffic Identifier
  1139. * @rx_desc: Pointer to rx descriptor
  1140. * @rx_bfs: Number of bfs consumed
  1141. *
  1142. * Returns: QDF_STATUS
  1143. */
  1144. static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1145. void *ring_desc,
  1146. union dp_rx_desc_list_elem_t **head,
  1147. union dp_rx_desc_list_elem_t **tail,
  1148. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1149. unsigned tid, struct dp_rx_desc *rx_desc,
  1150. uint32_t *rx_bfs)
  1151. {
  1152. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1153. struct dp_pdev *pdev;
  1154. struct dp_peer *peer;
  1155. uint16_t peer_id;
  1156. uint8_t fragno, more_frag, all_frag_present = 0;
  1157. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1158. QDF_STATUS status;
  1159. struct dp_rx_tid *rx_tid;
  1160. uint8_t mpdu_sequence_control_valid;
  1161. uint8_t mpdu_frame_control_valid;
  1162. qdf_nbuf_t frag = rx_desc->nbuf;
  1163. /* Check if the packet is from a valid peer */
  1164. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1165. mpdu_desc_info->peer_meta_data);
  1166. peer = dp_peer_find_by_id(soc, peer_id);
  1167. if (!peer) {
  1168. /* We should not receive anything from unknown peer
  1169. * however, that might happen while we are in the monitor mode.
  1170. * We don't need to handle that here
  1171. */
  1172. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1173. "Unknown peer, dropping the fragment");
  1174. qdf_nbuf_free(frag);
  1175. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1176. *rx_bfs = 1;
  1177. return QDF_STATUS_E_DEFRAG_ERROR;
  1178. }
  1179. pdev = peer->vdev->pdev;
  1180. rx_tid = &peer->rx_tid[tid];
  1181. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1182. mpdu_sequence_control_valid =
  1183. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1184. /* Invalid MPDU sequence control field, MPDU is of no use */
  1185. if (!mpdu_sequence_control_valid) {
  1186. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1187. "Invalid MPDU seq control field, dropping MPDU");
  1188. qdf_nbuf_free(frag);
  1189. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1190. *rx_bfs = 1;
  1191. qdf_assert(0);
  1192. goto end;
  1193. }
  1194. mpdu_frame_control_valid =
  1195. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1196. /* Invalid frame control field */
  1197. if (!mpdu_frame_control_valid) {
  1198. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1199. "Invalid frame control field, dropping MPDU");
  1200. qdf_nbuf_free(frag);
  1201. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1202. *rx_bfs = 1;
  1203. qdf_assert(0);
  1204. goto end;
  1205. }
  1206. /* Current mpdu sequence */
  1207. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1208. /* HW does not populate the fragment number as of now
  1209. * need to get from the 802.11 header
  1210. */
  1211. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1212. /*
  1213. * !more_frag: no more fragments to be delivered
  1214. * !frag_no: packet is not fragmented
  1215. * !rx_reorder_array_elem->head: no saved fragments so far
  1216. */
  1217. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1218. /* We should not get into this situation here.
  1219. * It means an unfragmented packet with fragment flag
  1220. * is delivered over the REO exception ring.
  1221. * Typically it follows normal rx path.
  1222. */
  1223. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1224. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1225. qdf_nbuf_free(frag);
  1226. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1227. *rx_bfs = 1;
  1228. qdf_assert(0);
  1229. goto end;
  1230. }
  1231. /* Check if the fragment is for the same sequence or a different one */
  1232. if (rx_reorder_array_elem->head) {
  1233. if (rxseq != rx_tid->curr_seq_num) {
  1234. /* Drop stored fragments if out of sequence
  1235. * fragment is received
  1236. */
  1237. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1238. rx_reorder_array_elem->head = NULL;
  1239. rx_reorder_array_elem->tail = NULL;
  1240. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1241. "%s mismatch, dropping earlier sequence ",
  1242. (rxseq == rx_tid->curr_seq_num)
  1243. ? "address"
  1244. : "seq number");
  1245. /*
  1246. * The sequence number for this fragment becomes the
  1247. * new sequence number to be processed
  1248. */
  1249. rx_tid->curr_seq_num = rxseq;
  1250. }
  1251. } else {
  1252. /* Start of a new sequence */
  1253. dp_rx_defrag_cleanup(peer, tid);
  1254. rx_tid->curr_seq_num = rxseq;
  1255. }
  1256. /*
  1257. * If the earlier sequence was dropped, this will be the fresh start.
  1258. * Else, continue with next fragment in a given sequence
  1259. */
  1260. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1261. &rx_reorder_array_elem->tail, frag,
  1262. &all_frag_present);
  1263. /*
  1264. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1265. * packet sequence has more than 6 MSDUs for some reason, we will
  1266. * have to use the next MSDU link descriptor and chain them together
  1267. * before reinjection
  1268. */
  1269. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1270. (rx_reorder_array_elem->head == frag)) {
  1271. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1272. rx_desc, peer, tid);
  1273. if (status != QDF_STATUS_SUCCESS) {
  1274. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1275. "%s: Unable to store ring desc !", __func__);
  1276. goto end;
  1277. }
  1278. } else {
  1279. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1280. *rx_bfs = 1;
  1281. /* Return the non-head link desc */
  1282. if (dp_rx_link_desc_return(soc, ring_desc,
  1283. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1284. QDF_STATUS_SUCCESS)
  1285. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1286. "%s: Failed to return link desc",
  1287. __func__);
  1288. }
  1289. if (pdev->soc->rx.flags.defrag_timeout_check)
  1290. dp_rx_defrag_waitlist_remove(peer, tid);
  1291. /* Yet to receive more fragments for this sequence number */
  1292. if (!all_frag_present) {
  1293. uint32_t now_ms =
  1294. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1295. peer->rx_tid[tid].defrag_timeout_ms =
  1296. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1297. dp_rx_defrag_waitlist_add(peer, tid);
  1298. return QDF_STATUS_SUCCESS;
  1299. }
  1300. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1301. "All fragments received for sequence: %d", rxseq);
  1302. /* Process the fragments */
  1303. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1304. rx_reorder_array_elem->tail);
  1305. if (QDF_IS_STATUS_ERROR(status)) {
  1306. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1307. "Fragment processing failed");
  1308. dp_rx_add_to_free_desc_list(head, tail,
  1309. peer->rx_tid[tid].head_frag_desc);
  1310. *rx_bfs = 1;
  1311. if (dp_rx_link_desc_return(soc,
  1312. peer->rx_tid[tid].dst_ring_desc,
  1313. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1314. QDF_STATUS_SUCCESS)
  1315. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1316. "%s: Failed to return link desc",
  1317. __func__);
  1318. dp_rx_defrag_cleanup(peer, tid);
  1319. goto end;
  1320. }
  1321. /* Re-inject the fragments back to REO for further processing */
  1322. status = dp_rx_defrag_reo_reinject(peer, tid,
  1323. rx_reorder_array_elem->head);
  1324. if (QDF_IS_STATUS_SUCCESS(status)) {
  1325. rx_reorder_array_elem->head = NULL;
  1326. rx_reorder_array_elem->tail = NULL;
  1327. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1328. "Fragmented sequence successfully reinjected");
  1329. } else {
  1330. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1331. "Fragmented sequence reinjection failed");
  1332. dp_rx_return_head_frag_desc(peer, tid);
  1333. }
  1334. dp_rx_defrag_cleanup(peer, tid);
  1335. return QDF_STATUS_SUCCESS;
  1336. end:
  1337. return QDF_STATUS_E_DEFRAG_ERROR;
  1338. }
  1339. /**
  1340. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1341. *
  1342. * @soc: core txrx main context
  1343. * @ring_desc: opaque pointer to the REO error ring descriptor
  1344. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1345. * @head: head of the local descriptor free-list
  1346. * @tail: tail of the local descriptor free-list
  1347. * @quota: No. of units (packets) that can be serviced in one shot.
  1348. *
  1349. * This function implements RX 802.11 fragmentation handling
  1350. * The handling is mostly same as legacy fragmentation handling.
  1351. * If required, this function can re-inject the frames back to
  1352. * REO ring (with proper setting to by-pass fragmentation check
  1353. * but use duplicate detection / re-ordering and routing these frames
  1354. * to a different core.
  1355. *
  1356. * Return: uint32_t: No. of elements processed
  1357. */
  1358. uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
  1359. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1360. union dp_rx_desc_list_elem_t **head,
  1361. union dp_rx_desc_list_elem_t **tail,
  1362. uint32_t quota)
  1363. {
  1364. uint32_t rx_bufs_used = 0;
  1365. void *link_desc_va;
  1366. struct hal_buf_info buf_info;
  1367. struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
  1368. qdf_nbuf_t msdu = NULL;
  1369. uint32_t tid, msdu_len;
  1370. int idx, rx_bfs = 0;
  1371. QDF_STATUS status;
  1372. qdf_assert(soc);
  1373. qdf_assert(mpdu_desc_info);
  1374. /* Fragment from a valid peer */
  1375. hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
  1376. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1377. qdf_assert(link_desc_va);
  1378. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1379. "Number of MSDUs to process, num_msdus: %d",
  1380. mpdu_desc_info->msdu_count);
  1381. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1382. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1383. "Not sufficient MSDUs to process");
  1384. return rx_bufs_used;
  1385. }
  1386. /* Get msdu_list for the given MPDU */
  1387. hal_rx_msdu_list_get(link_desc_va, &msdu_list,
  1388. &mpdu_desc_info->msdu_count);
  1389. /* Process all MSDUs in the current MPDU */
  1390. for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
  1391. struct dp_rx_desc *rx_desc =
  1392. dp_rx_cookie_2_va_rxdma_buf(soc,
  1393. msdu_list.sw_cookie[idx]);
  1394. qdf_assert(rx_desc);
  1395. msdu = rx_desc->nbuf;
  1396. qdf_nbuf_unmap_single(soc->osdev, msdu,
  1397. QDF_DMA_BIDIRECTIONAL);
  1398. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1399. msdu_len = hal_rx_msdu_start_msdu_len_get(
  1400. rx_desc->rx_buf_start);
  1401. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1402. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
  1403. rx_desc->rx_buf_start);
  1404. /* Process fragment-by-fragment */
  1405. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1406. head, tail, mpdu_desc_info,
  1407. tid, rx_desc, &rx_bfs);
  1408. if (rx_bfs)
  1409. rx_bufs_used++;
  1410. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1411. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1412. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1413. mpdu_desc_info->mpdu_seq,
  1414. mpdu_desc_info->msdu_count,
  1415. mpdu_desc_info->mpdu_flags);
  1416. /* No point in processing rest of the fragments */
  1417. break;
  1418. }
  1419. }
  1420. return rx_bufs_used;
  1421. }
  1422. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1423. struct dp_peer *peer, uint16_t tid,
  1424. uint16_t rxseq, qdf_nbuf_t nbuf)
  1425. {
  1426. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1427. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1428. uint8_t all_frag_present;
  1429. uint32_t msdu_len;
  1430. QDF_STATUS status;
  1431. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1432. if (rx_reorder_array_elem->head &&
  1433. rxseq != rx_tid->curr_seq_num) {
  1434. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1435. "%s: No list found for TID %d Seq# %d",
  1436. __func__, tid, rxseq);
  1437. qdf_nbuf_free(nbuf);
  1438. goto fail;
  1439. }
  1440. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1441. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1442. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1443. &rx_reorder_array_elem->head,
  1444. &rx_reorder_array_elem->tail, nbuf,
  1445. &all_frag_present);
  1446. if (QDF_IS_STATUS_ERROR(status)) {
  1447. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1448. "%s Fragment insert failed", __func__);
  1449. goto fail;
  1450. }
  1451. if (soc->rx.flags.defrag_timeout_check)
  1452. dp_rx_defrag_waitlist_remove(peer, tid);
  1453. if (!all_frag_present) {
  1454. uint32_t now_ms =
  1455. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1456. peer->rx_tid[tid].defrag_timeout_ms =
  1457. now_ms + soc->rx.defrag.timeout_ms;
  1458. dp_rx_defrag_waitlist_add(peer, tid);
  1459. return QDF_STATUS_SUCCESS;
  1460. }
  1461. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1462. rx_reorder_array_elem->tail);
  1463. if (QDF_IS_STATUS_ERROR(status)) {
  1464. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1465. "%s Fragment processing failed", __func__);
  1466. dp_rx_return_head_frag_desc(peer, tid);
  1467. dp_rx_defrag_cleanup(peer, tid);
  1468. goto fail;
  1469. }
  1470. /* Re-inject the fragments back to REO for further processing */
  1471. status = dp_rx_defrag_reo_reinject(peer, tid,
  1472. rx_reorder_array_elem->head);
  1473. if (QDF_IS_STATUS_SUCCESS(status)) {
  1474. rx_reorder_array_elem->head = NULL;
  1475. rx_reorder_array_elem->tail = NULL;
  1476. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1477. "%s: Frag seq successfully reinjected",
  1478. __func__);
  1479. } else {
  1480. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1481. "%s: Frag seq reinjection failed",
  1482. __func__);
  1483. dp_rx_return_head_frag_desc(peer, tid);
  1484. }
  1485. dp_rx_defrag_cleanup(peer, tid);
  1486. return QDF_STATUS_SUCCESS;
  1487. fail:
  1488. return QDF_STATUS_E_DEFRAG_ERROR;
  1489. }