Files
android_kernel_samsung_sm86…/qcom/opensource/synx-kernel/msm/synx/ipclite.c
David Wronek 51ff30338b Add 'qcom/opensource/synx-kernel/' from commit '2657c18a7869feec83f4383bf72623b8d6a2ef18'
git-subtree-dir: qcom/opensource/synx-kernel
git-subtree-mainline: fe7b3b613f
git-subtree-split: 2657c18a78
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/opensource/synx-kernel
tag: LA.VENDOR.14.3.0.r1-17300-lanai.QSSI15.0
2024-10-06 16:45:32 +02:00

1882 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021-2023, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__
#include <linux/module.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <asm/memory.h>
#include <linux/sizes.h>
#include <linux/hwspinlock.h>
#include <linux/sysfs.h>
#include "ipclite_client.h"
#include "ipclite.h"
static struct ipclite_info *ipclite;
static struct ipclite_client synx_client;
static struct ipclite_client test_client;
static struct ipclite_debug_info *ipclite_dbg_info;
static struct ipclite_debug_struct *ipclite_dbg_struct;
static struct ipclite_debug_inmem_buf *ipclite_dbg_inmem;
static struct mutex ssr_mutex;
static struct kobject *sysfs_kobj;
static uint32_t ipclite_debug_level = IPCLITE_ERR | IPCLITE_WARN | IPCLITE_INFO;
static uint32_t ipclite_debug_control = IPCLITE_DMESG_LOG, ipclite_debug_dump;
static uint32_t enabled_hosts, partitions, major_ver, minor_ver;
static uint64_t feature_mask;
static inline bool is_host_enabled(uint32_t host)
{
return (1U & (enabled_hosts >> host));
}
static inline bool is_loopback_except_apps(uint32_t h0, uint32_t h1)
{
return (h0 == h1 && h0 != IPCMEM_APPS);
}
static void ipclite_inmem_log(const char *psztStr, ...)
{
uint32_t local_index = 0;
va_list pArgs;
va_start(pArgs, psztStr);
/* Incrementing the index atomically and storing the index in local variable */
local_index = ipclite_global_atomic_inc((ipclite_atomic_int32_t *)
&ipclite_dbg_info->debug_log_index);
local_index %= IPCLITE_LOG_BUF_SIZE;
/* Writes data on the index location */
vsnprintf(ipclite_dbg_inmem->IPCLITELog[local_index], IPCLITE_LOG_MSG_SIZE, psztStr, pArgs);
va_end(pArgs);
}
static void ipclite_dump_debug_struct(void)
{
int i = 0, host = 0;
struct ipclite_debug_struct *temp_dbg_struct;
/* Check if debug structures are initialized */
if (!ipclite_dbg_info || !ipclite_dbg_struct) {
pr_err("Debug Structures not initialized\n");
return;
}
/* Check if debug structures are enabled before printing */
if (!(IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT))) {
pr_err("Debug Structures not enabled\n");
return;
}
/* Dumping the debug structures */
pr_info("------------------- Dumping IPCLite Debug Structure -------------------\n");
for (host = 0; host < IPCMEM_NUM_HOSTS; host++) {
if (!is_host_enabled(host))
continue;
temp_dbg_struct = (struct ipclite_debug_struct *)
(((char *)ipclite_dbg_struct) +
(sizeof(*temp_dbg_struct) * host));
pr_info("---------- Host ID: %d dbg_mem:%p ----------\n",
host, temp_dbg_struct);
pr_info("Total Signals Sent : %d Total Signals Received : %d\n",
temp_dbg_struct->dbg_info_overall.total_numsig_sent,
temp_dbg_struct->dbg_info_overall.total_numsig_recv);
pr_info("Last Signal Sent to Host ID : %d Last Signal Received from Host ID : %d\n",
temp_dbg_struct->dbg_info_overall.last_sent_host_id,
temp_dbg_struct->dbg_info_overall.last_recv_host_id);
pr_info("Last Signal ID Sent : %d Last Signal ID Received : %d\n",
temp_dbg_struct->dbg_info_overall.last_sigid_sent,
temp_dbg_struct->dbg_info_overall.last_sigid_recv);
for (i = 0; i < IPCMEM_NUM_HOSTS; i++) {
if (!is_host_enabled(i))
continue;
pr_info("----------> Host ID : %d Host ID : %d\n", host, i);
pr_info("No. of Messages Sent : %d No. of Messages Received : %d\n",
temp_dbg_struct->dbg_info_host[i].numsig_sent,
temp_dbg_struct->dbg_info_host[i].numsig_recv);
pr_info("No. of Interrupts Received : %d\n",
temp_dbg_struct->dbg_info_host[i].num_intr);
pr_info("TX Write Index : %d TX Read Index : %d\n",
temp_dbg_struct->dbg_info_host[i].tx_wr_index,
temp_dbg_struct->dbg_info_host[i].tx_rd_index);
pr_info("TX Write Index[0] : %d TX Read Index[0] : %d\n",
temp_dbg_struct->dbg_info_host[i].prev_tx_wr_index[0],
temp_dbg_struct->dbg_info_host[i].prev_tx_rd_index[0]);
pr_info("TX Write Index[1] : %d TX Read Index[1] : %d\n",
temp_dbg_struct->dbg_info_host[i].prev_tx_wr_index[1],
temp_dbg_struct->dbg_info_host[i].prev_tx_rd_index[1]);
pr_info("RX Write Index : %d RX Read Index : %d\n",
temp_dbg_struct->dbg_info_host[i].rx_wr_index,
temp_dbg_struct->dbg_info_host[i].rx_rd_index);
pr_info("RX Write Index[0] : %d RX Read Index[0] : %d\n",
temp_dbg_struct->dbg_info_host[i].prev_rx_wr_index[0],
temp_dbg_struct->dbg_info_host[i].prev_rx_rd_index[0]);
pr_info("RX Write Index[1] : %d RX Read Index[1] : %d\n",
temp_dbg_struct->dbg_info_host[i].prev_rx_wr_index[1],
temp_dbg_struct->dbg_info_host[i].prev_rx_rd_index[1]);
}
}
return;
}
static void ipclite_dump_inmem_logs(void)
{
int i = 0;
uint32_t local_index = 0;
/* Check if debug and inmem structures are initialized */
if (!ipclite_dbg_info || !ipclite_dbg_inmem) {
pr_err("Debug structures not initialized\n");
return;
}
/* Check if debug structures are enabled before printing */
if (!(IS_DEBUG_CONFIG(IPCLITE_INMEM_LOG))) {
pr_err("In-Memory Logs not enabled\n");
return;
}
/* Dumping the debug in-memory logs */
pr_info("------------------- Dumping In-Memory Logs -------------------\n");
/* Storing the index atomically in local variable */
local_index = ipclite_global_atomic_load_u32((ipclite_atomic_uint32_t *)
&ipclite_dbg_info->debug_log_index);
/* Printing from current index till the end of buffer */
for (i = local_index % IPCLITE_LOG_BUF_SIZE; i < IPCLITE_LOG_BUF_SIZE; i++) {
if (ipclite_dbg_inmem->IPCLITELog[i][0])
pr_info("%s\n", ipclite_dbg_inmem->IPCLITELog[i]);
}
/* Printing from 0th index to current-1 index */
for (i = 0; i < local_index % IPCLITE_LOG_BUF_SIZE; i++) {
if (ipclite_dbg_inmem->IPCLITELog[i][0])
pr_info("%s\n", ipclite_dbg_inmem->IPCLITELog[i]);
}
return;
}
int ipclite_hw_mutex_acquire(void)
{
int ret;
if (unlikely(!ipclite)) {
pr_err("IPCLite not initialized\n");
return -ENOMEM;
}
ret = hwspin_lock_timeout_irqsave(ipclite->hwlock,
HWSPINLOCK_TIMEOUT, &ipclite->hw_mutex_flags);
if (ret) {
pr_err("Hw mutex lock acquire failed\n");
return ret;
}
ipclite->ipcmem.toc_data.host_info->hwlock_owner = IPCMEM_APPS;
return ret;
}
EXPORT_SYMBOL(ipclite_hw_mutex_acquire);
int ipclite_hw_mutex_release(void)
{
if (unlikely(!ipclite)) {
pr_err("IPCLite not initialized\n");
return -ENOMEM;
}
if (ipclite->ipcmem.toc_data.host_info->hwlock_owner != IPCMEM_APPS)
return -EINVAL;
ipclite->ipcmem.toc_data.host_info->hwlock_owner = IPCMEM_INVALID_HOST;
hwspin_unlock_irqrestore(ipclite->hwlock, &ipclite->hw_mutex_flags);
return 0;
}
EXPORT_SYMBOL(ipclite_hw_mutex_release);
/* Atomic Functions Start */
void ipclite_atomic_init_u32(ipclite_atomic_uint32_t *addr, uint32_t data)
{
BUG_ON(addr == NULL);
atomic_set(addr, data);
}
EXPORT_SYMBOL(ipclite_atomic_init_u32);
void ipclite_atomic_init_i32(ipclite_atomic_int32_t *addr, int32_t data)
{
BUG_ON(addr == NULL);
atomic_set(addr, data);
}
EXPORT_SYMBOL(ipclite_atomic_init_i32);
void ipclite_global_atomic_store_u32(ipclite_atomic_uint32_t *addr, uint32_t data)
{
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
atomic_set(addr, data);
ATOMIC_HW_MUTEX_RELEASE;
}
EXPORT_SYMBOL(ipclite_global_atomic_store_u32);
void ipclite_global_atomic_store_i32(ipclite_atomic_int32_t *addr, int32_t data)
{
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
atomic_set(addr, data);
ATOMIC_HW_MUTEX_RELEASE;
}
EXPORT_SYMBOL(ipclite_global_atomic_store_i32);
uint32_t ipclite_global_atomic_load_u32(ipclite_atomic_uint32_t *addr)
{
uint32_t ret = 0;
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
ret = atomic_read(addr);
ATOMIC_HW_MUTEX_RELEASE;
return ret;
}
EXPORT_SYMBOL(ipclite_global_atomic_load_u32);
int32_t ipclite_global_atomic_load_i32(ipclite_atomic_int32_t *addr)
{
int32_t ret = 0;
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
ret = atomic_read(addr);
ATOMIC_HW_MUTEX_RELEASE;
return ret;
}
EXPORT_SYMBOL(ipclite_global_atomic_load_i32);
uint32_t ipclite_global_test_and_set_bit(uint32_t nr, ipclite_atomic_uint32_t *addr)
{
uint32_t ret = 0, mask = (1 << nr);
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
ret = atomic_fetch_or(mask, addr);
ATOMIC_HW_MUTEX_RELEASE;
return ret;
}
EXPORT_SYMBOL(ipclite_global_test_and_set_bit);
uint32_t ipclite_global_test_and_clear_bit(uint32_t nr, ipclite_atomic_uint32_t *addr)
{
uint32_t ret = 0, mask = (1 << nr);
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
ret = atomic_fetch_and(~mask, addr);
ATOMIC_HW_MUTEX_RELEASE;
return ret;
}
EXPORT_SYMBOL(ipclite_global_test_and_clear_bit);
int32_t ipclite_global_atomic_inc(ipclite_atomic_int32_t *addr)
{
int32_t ret = 0;
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
ret = atomic_fetch_add(1, addr);
ATOMIC_HW_MUTEX_RELEASE;
return ret;
}
EXPORT_SYMBOL(ipclite_global_atomic_inc);
int32_t ipclite_global_atomic_dec(ipclite_atomic_int32_t *addr)
{
int32_t ret = 0;
BUG_ON(addr == NULL);
ATOMIC_HW_MUTEX_ACQUIRE;
ret = atomic_fetch_sub(1, addr);
ATOMIC_HW_MUTEX_RELEASE;
return ret;
}
EXPORT_SYMBOL(ipclite_global_atomic_dec);
/* Atomic Functions End */
static size_t ipcmem_rx_avail(struct ipclite_fifo *rx_fifo)
{
size_t len = 0;
u32 head = 0, tail = 0;
head = le32_to_cpu(*rx_fifo->head);
tail = le32_to_cpu(*rx_fifo->tail);
IPCLITE_OS_LOG(IPCLITE_DBG, "head=%d, tail=%d\n", head, tail);
if (head < tail)
len = rx_fifo->length - tail + head;
else
len = head - tail;
if (WARN_ON_ONCE(len > rx_fifo->length))
len = 0;
IPCLITE_OS_LOG(IPCLITE_DBG, "len=%d\n", len);
return len;
}
static void ipcmem_rx_peak(struct ipclite_fifo *rx_fifo,
void *data, size_t count)
{
size_t len = 0;
u32 tail = 0;
tail = le32_to_cpu(*rx_fifo->tail);
if (WARN_ON_ONCE(tail > rx_fifo->length))
return;
if (tail >= rx_fifo->length)
tail -= rx_fifo->length;
len = min_t(size_t, count, rx_fifo->length - tail);
if (len)
memcpy_fromio(data, rx_fifo->fifo + tail, len);
if (len != count)
memcpy_fromio(data + len, rx_fifo->fifo, (count - len));
}
static void ipcmem_rx_advance(struct ipclite_fifo *rx_fifo,
size_t count, uint32_t core_id)
{
u32 tail = 0;
tail = le32_to_cpu(*rx_fifo->tail);
tail += count;
if (tail >= rx_fifo->length)
tail %= rx_fifo->length;
*rx_fifo->tail = cpu_to_le32(tail);
/* Storing the debug data in debug structures */
if (IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT)) {
ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_wr_index[1] =
ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_wr_index[0];
ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_wr_index[0] =
ipclite_dbg_struct->dbg_info_host[core_id].rx_wr_index;
ipclite_dbg_struct->dbg_info_host[core_id].rx_wr_index = *rx_fifo->head;
ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_rd_index[1] =
ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_rd_index[0];
ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_rd_index[0] =
ipclite_dbg_struct->dbg_info_host[core_id].rx_rd_index;
ipclite_dbg_struct->dbg_info_host[core_id].rx_rd_index = *rx_fifo->tail;
ipclite_dbg_struct->dbg_info_overall.total_numsig_recv++;
ipclite_dbg_struct->dbg_info_host[core_id].numsig_recv++;
}
}
static size_t ipcmem_tx_avail(struct ipclite_fifo *tx_fifo)
{
u32 head = 0, tail = 0, avail = 0;
head = le32_to_cpu(*tx_fifo->head);
tail = le32_to_cpu(*tx_fifo->tail);
if (tail <= head)
avail = tx_fifo->length - head + tail;
else
avail = tail - head;
if (avail < FIFO_FULL_RESERVE)
avail = 0;
else
avail -= FIFO_FULL_RESERVE;
if (WARN_ON_ONCE(avail > tx_fifo->length))
avail = 0;
return avail;
}
static unsigned int ipcmem_tx_write_one(struct ipclite_fifo *tx_fifo,
unsigned int head,
const void *data, size_t count)
{
size_t len = 0;
if (WARN_ON_ONCE(head > tx_fifo->length))
return head;
len = min_t(size_t, count, tx_fifo->length - head);
if (len)
memcpy(tx_fifo->fifo + head, data, len);
if (len != count)
memcpy(tx_fifo->fifo, data + len, count - len);
head += count;
if (head >= tx_fifo->length)
head -= tx_fifo->length;
return head;
}
static void ipcmem_tx_write(struct ipclite_fifo *tx_fifo,
const void *data, size_t dlen, uint32_t core_id, uint32_t signal_id)
{
unsigned int head = 0;
head = le32_to_cpu(*tx_fifo->head);
head = ipcmem_tx_write_one(tx_fifo, head, data, dlen);
head = ALIGN(head, 8);
if (head >= tx_fifo->length)
head -= tx_fifo->length;
/* Ensure ordering of fifo and head update */
wmb();
*tx_fifo->head = cpu_to_le32(head);
IPCLITE_OS_LOG(IPCLITE_DBG, "head : %d core_id : %d signal_id : %d\n",
*tx_fifo->head, core_id, signal_id);
/* Storing the debug data in debug structures */
if (IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT)) {
ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_wr_index[1] =
ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_wr_index[0];
ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_wr_index[0] =
ipclite_dbg_struct->dbg_info_host[core_id].tx_wr_index;
ipclite_dbg_struct->dbg_info_host[core_id].tx_wr_index = *tx_fifo->head;
ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_rd_index[1] =
ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_rd_index[0];
ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_rd_index[0] =
ipclite_dbg_struct->dbg_info_host[core_id].tx_rd_index;
ipclite_dbg_struct->dbg_info_host[core_id].tx_rd_index = *tx_fifo->tail;
ipclite_dbg_struct->dbg_info_overall.total_numsig_sent++;
ipclite_dbg_struct->dbg_info_host[core_id].numsig_sent++;
ipclite_dbg_struct->dbg_info_overall.last_sent_host_id = core_id;
ipclite_dbg_struct->dbg_info_overall.last_sigid_sent = signal_id;
}
}
static size_t ipclite_rx_avail(struct ipclite_channel *channel)
{
return channel->rx_fifo->avail(channel->rx_fifo);
}
static void ipclite_rx_peak(struct ipclite_channel *channel,
void *data, size_t count)
{
channel->rx_fifo->peak(channel->rx_fifo, data, count);
}
static void ipclite_rx_advance(struct ipclite_channel *channel,
size_t count)
{
channel->rx_fifo->advance(channel->rx_fifo, count, channel->remote_pid);
}
static size_t ipclite_tx_avail(struct ipclite_channel *channel)
{
return channel->tx_fifo->avail(channel->tx_fifo);
}
static void ipclite_tx_write(struct ipclite_channel *channel,
const void *data, size_t dlen)
{
channel->tx_fifo->write(channel->tx_fifo, data, dlen, channel->remote_pid,
channel->irq_info->signal_id);
}
static int ipclite_rx_data(struct ipclite_channel *channel, size_t avail)
{
int ret = 0;
uint64_t data = 0;
if (avail < sizeof(data)) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Not enough data in fifo, Core : %d Signal : %d\n",
channel->remote_pid, channel->irq_info->signal_id);
return -EAGAIN;
}
ipclite_rx_peak(channel, &data, sizeof(data));
if (synx_client.reg_complete == 1) {
if (synx_client.callback)
synx_client.callback(channel->remote_pid, data,
synx_client.priv_data);
}
ipclite_rx_advance(channel, ALIGN(sizeof(data), 8));
return ret;
}
static int ipclite_rx_test_data(struct ipclite_channel *channel, size_t avail)
{
int ret = 0;
uint64_t data = 0;
if (avail < sizeof(data)) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Not enough data in fifo, Core : %d Signal : %d\n",
channel->remote_pid, channel->irq_info->signal_id);
return -EAGAIN;
}
ipclite_rx_peak(channel, &data, sizeof(data));
if (test_client.reg_complete == 1) {
if (test_client.callback)
test_client.callback(channel->remote_pid, data,
test_client.priv_data);
}
ipclite_rx_advance(channel, ALIGN(sizeof(data), 8));
return ret;
}
static irqreturn_t ipclite_intr(int irq, void *data)
{
int ret = 0;
unsigned int avail = 0;
uint64_t msg = 0;
struct ipclite_channel *channel;
struct ipclite_irq_info *irq_info;
irq_info = (struct ipclite_irq_info *)data;
channel = container_of(irq_info, struct ipclite_channel, irq_info[irq_info->signal_id]);
IPCLITE_OS_LOG(IPCLITE_DBG, "Interrupt received from Core : %d Signal : %d\n",
channel->remote_pid, irq_info->signal_id);
/* Storing the debug data in debug structures */
if (IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT)) {
ipclite_dbg_struct->dbg_info_host[channel->remote_pid].num_intr++;
ipclite_dbg_struct->dbg_info_overall.last_recv_host_id = channel->remote_pid;
ipclite_dbg_struct->dbg_info_overall.last_sigid_recv = irq_info->signal_id;
}
if (irq_info->signal_id == IPCLITE_MSG_SIGNAL) {
for (;;) {
avail = ipclite_rx_avail(channel);
if (avail < sizeof(msg))
break;
ret = ipclite_rx_data(channel, avail);
}
IPCLITE_OS_LOG(IPCLITE_DBG, "checking messages in rx_fifo done\n");
} else if (irq_info->signal_id == IPCLITE_VERSION_SIGNAL) {
IPCLITE_OS_LOG(IPCLITE_DBG, "Versioning is not enabled using IPCC signals\n");
} else if (irq_info->signal_id == IPCLITE_TEST_SIGNAL) {
for (;;) {
avail = ipclite_rx_avail(channel);
if (avail < sizeof(msg))
break;
ret = ipclite_rx_test_data(channel, avail);
}
IPCLITE_OS_LOG(IPCLITE_DBG, "checking messages in rx_fifo done\n");
} else {
IPCLITE_OS_LOG(IPCLITE_ERR, "Wrong Interrupt Signal from core : %d signal : %d\n",
channel->remote_pid, irq_info->signal_id);
}
return IRQ_HANDLED;
}
static int ipclite_tx(struct ipclite_channel *channel,
uint64_t data, size_t dlen, uint32_t ipclite_signal)
{
int ret = 0;
unsigned long flags;
if (channel->status != ACTIVE) {
if (channel->status == IN_PROGRESS && *channel->gstatus_ptr == ACTIVE) {
channel->status = ACTIVE;
} else {
IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot Send, Channel not active\n");
return -EOPNOTSUPP;
}
}
spin_lock_irqsave(&channel->tx_lock, flags);
if (ipclite_tx_avail(channel) < dlen) {
spin_unlock_irqrestore(&channel->tx_lock, flags);
ret = -EAGAIN;
return ret;
}
ipclite_tx_write(channel, &data, dlen);
mbox_send_message(channel->irq_info[ipclite_signal].mbox_chan, NULL);
mbox_client_txdone(channel->irq_info[ipclite_signal].mbox_chan, 0);
spin_unlock_irqrestore(&channel->tx_lock, flags);
return ret;
}
static int ipclite_notify_core(int32_t proc_id, int32_t signal_id)
{
int ret = 0;
struct ipclite_channel *channel;
if (proc_id < 0 || proc_id >= IPCMEM_NUM_HOSTS) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid proc_id : %d\n", proc_id);
return -EINVAL;
}
channel = &ipclite->channel[proc_id];
if (channel->status != ACTIVE) {
if (channel->status == IN_PROGRESS && *channel->gstatus_ptr == ACTIVE) {
channel->status = ACTIVE;
} else {
IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot Send, Core %d is Inactive\n", proc_id);
return -EOPNOTSUPP;
}
}
ret = mbox_send_message(channel->irq_info[signal_id].mbox_chan, NULL);
if (ret < 0) {
IPCLITE_OS_LOG(IPCLITE_ERR,
"Signal sending failed to Core : %d Signal : %d ret : %d\n",
proc_id, signal_id, ret);
return ret;
}
IPCLITE_OS_LOG(IPCLITE_DBG,
"Signal send completed to core : %d signal : %d ret : %d\n",
proc_id, signal_id, ret);
return 0;
}
static int map_ipcmem(struct ipclite_info *ipclite, const char *name)
{
int ret = 0;
struct device *dev;
struct device_node *np;
struct resource r;
dev = ipclite->dev;
np = of_parse_phandle(dev->of_node, name, 0);
if (!np) {
IPCLITE_OS_LOG(IPCLITE_ERR, "No %s specified\n", name);
return -EINVAL;
}
ret = of_address_to_resource(np, 0, &r);
of_node_put(np);
if (ret)
return ret;
ipclite->ipcmem.mem.aux_base = (u64)r.start;
ipclite->ipcmem.mem.size = resource_size(&r);
ipclite->ipcmem.mem.virt_base = devm_ioremap_wc(dev, r.start,
resource_size(&r));
if (!ipclite->ipcmem.mem.virt_base)
return -ENOMEM;
IPCLITE_OS_LOG(IPCLITE_DBG, "aux_base = %lx, size=%d,virt_base=%p\n",
ipclite->ipcmem.mem.aux_base, ipclite->ipcmem.mem.size,
ipclite->ipcmem.mem.virt_base);
return ret;
}
/**
* insert_magic_number() - Inserts the magic number in toc header
*
* Function computes a simple checksum of the contents in toc header
* and stores the result in magic_number field in the toc header
*/
static void insert_magic_number(void)
{
uint32_t *block = ipclite->ipcmem.mem.virt_base;
size_t size = sizeof(struct ipcmem_toc_header) / sizeof(uint32_t);
for (int i = 1; i < size; i++)
block[0] ^= block[i];
block[0] = ~block[0];
}
static int32_t setup_toc(struct ipclite_mem *ipcmem)
{
size_t offset = 0;
void *virt_base = ipcmem->mem.virt_base;
struct ipcmem_offsets *offsets = &ipcmem->toc->offsets;
struct ipcmem_toc_data *toc_data = &ipcmem->toc_data;
/* Setup Offsets */
offsets->host_info = offset += IPCMEM_TOC_VAR_OFFSET;
offsets->global_entry = offset += sizeof(struct ipcmem_host_info);
offsets->partition_info = offset += sizeof(struct ipcmem_partition_entry);
offsets->partition_entry = offset += sizeof(struct ipcmem_partition_info);
// offsets->debug = virt_base + size - 64K;
/* Offset to be used for any new structure added in toc (after partition_entry) */
// offsets->new_struct = offset += sizeof(struct ipcmem_partition_entry)*IPCMEM_NUM_HOSTS;
IPCLITE_OS_LOG(IPCLITE_DBG, "toc_data offsets:");
IPCLITE_OS_LOG(IPCLITE_DBG, "host_info = 0x%X", offsets->host_info);
IPCLITE_OS_LOG(IPCLITE_DBG, "global_entry = 0x%X", offsets->global_entry);
IPCLITE_OS_LOG(IPCLITE_DBG, "partition_info = 0x%X", offsets->partition_info);
IPCLITE_OS_LOG(IPCLITE_DBG, "partition_entry = 0x%X", offsets->partition_entry);
/* Point structures to the appropriate offset in TOC */
toc_data->host_info = ADD_OFFSET(virt_base, offsets->host_info);
toc_data->global_entry = ADD_OFFSET(virt_base, offsets->global_entry);
toc_data->partition_info = ADD_OFFSET(virt_base, offsets->partition_info);
toc_data->partition_entry = ADD_OFFSET(virt_base, offsets->partition_entry);
return 0;
}
static void setup_global_partition(struct ipclite_mem *ipcmem, uint32_t base_offset)
{
/*Fill in global partition details*/
ipcmem->toc_data.global_entry->base_offset = base_offset;
ipcmem->toc_data.global_entry->size = GLOBAL_PARTITION_SIZE;
ipcmem->toc_data.global_entry->flags = GLOBAL_PARTITION_FLAGS;
ipcmem->toc_data.global_entry->host0 = IPCMEM_GLOBAL_HOST;
ipcmem->toc_data.global_entry->host1 = IPCMEM_GLOBAL_HOST;
ipcmem->global_partition = ADD_OFFSET(ipcmem->mem.virt_base, base_offset);
IPCLITE_OS_LOG(IPCLITE_DBG, "base_offset =%x,ipcmem->global_partition = %p\n",
base_offset,
ipcmem->global_partition);
ipcmem->global_partition->hdr = global_partition_hdr;
IPCLITE_OS_LOG(IPCLITE_DBG, "hdr.type = %x,hdr.offset = %x,hdr.size = %d\n",
ipcmem->global_partition->hdr.partition_type,
ipcmem->global_partition->hdr.region_offset,
ipcmem->global_partition->hdr.region_size);
}
static void update_partition(struct ipclite_mem *ipcmem, uint32_t p)
{
int host0 = ipcmem->toc_data.partition_entry[p].host0;
int host1 = ipcmem->toc_data.partition_entry[p].host1;
IPCLITE_OS_LOG(IPCLITE_DBG, "host0 = %d, host1=%d\n", host0, host1);
ipcmem->partition[p] = ADD_OFFSET(ipcmem->mem.virt_base,
ipcmem->toc_data.partition_entry[p].base_offset);
IPCLITE_OS_LOG(IPCLITE_DBG, "partition[%d] = %p,partition_base_offset[%d]=%lx",
p, ipcmem->partition[p],
p, ipcmem->toc_data.partition_entry[p].base_offset);
if (host0 == host1)
ipcmem->partition[p]->hdr = loopback_partition_hdr;
else
ipcmem->partition[p]->hdr = default_partition_hdr;
IPCLITE_OS_LOG(IPCLITE_DBG, "hdr.type = %x,hdr.offset = %x,hdr.size = %d",
ipcmem->partition[p]->hdr.type,
ipcmem->partition[p]->hdr.desc_offset,
ipcmem->partition[p]->hdr.desc_size);
}
static int32_t setup_partitions(struct ipclite_mem *ipcmem, uint32_t base_offset)
{
uint32_t p, host0, host1;
uint32_t num_entry = 0;
/*Fill in each valid ipcmem partition table entry*/
for (host0 = 0; host0 < IPCMEM_NUM_HOSTS; host0++) {
if (!is_host_enabled(host0))
continue;
for (host1 = host0; host1 < IPCMEM_NUM_HOSTS; host1++) {
if (!is_host_enabled(host1) || is_loopback_except_apps(host0, host1))
continue;
ipcmem->toc_data.partition_entry[num_entry].base_offset = base_offset;
ipcmem->toc_data.partition_entry[num_entry].size = DEFAULT_PARTITION_SIZE;
ipcmem->toc_data.partition_entry[num_entry].flags = DEFAULT_PARTITION_FLAGS;
ipcmem->toc_data.partition_entry[num_entry].host0 = host0;
ipcmem->toc_data.partition_entry[num_entry].host1 = host1;
base_offset += DEFAULT_PARTITION_SIZE;
num_entry++;
}
}
IPCLITE_OS_LOG(IPCLITE_DBG, "total partitions = %u", num_entry);
ipcmem->partition = kcalloc(num_entry, sizeof(*ipcmem->partition), GFP_KERNEL);
if (!ipcmem->partition) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Partition Allocation failed");
return -ENOMEM;
}
/*Update appropriate partition based on partition entries*/
for (p = 0; p < num_entry; p++)
update_partition(ipcmem, p);
/*Set up info to parse partition entries*/
ipcmem->toc_data.partition_info->num_entries = partitions = num_entry;
ipcmem->toc_data.partition_info->entry_size = sizeof(struct ipcmem_partition_entry);
return 0;
}
static int32_t ipcmem_init(struct ipclite_mem *ipcmem, struct device_node *pn)
{
int ret = 0;
uint32_t remote_pid = 0, host_count = 0, gmem_offset = 0;
struct device_node *cn;
for_each_available_child_of_node(pn, cn) {
of_property_read_u32(cn, "qcom,remote-pid", &remote_pid);
if (remote_pid < IPCMEM_NUM_HOSTS) {
enabled_hosts |= BIT_MASK(remote_pid);
host_count++;
}
}
IPCLITE_OS_LOG(IPCLITE_DBG, "enabled_hosts = 0x%X", enabled_hosts);
IPCLITE_OS_LOG(IPCLITE_DBG, "host_count = %u", host_count);
ipcmem->toc = ipcmem->mem.virt_base;
IPCLITE_OS_LOG(IPCLITE_DBG, "toc_base = %p\n", ipcmem->toc);
ret = setup_toc(ipcmem);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to set up toc");
return ret;
}
/*Set up host related info*/
ipcmem->toc_data.host_info->hwlock_owner = IPCMEM_INVALID_HOST;
ipcmem->toc_data.host_info->configured_host = enabled_hosts;
gmem_offset += IPCMEM_TOC_SIZE;
setup_global_partition(ipcmem, gmem_offset);
gmem_offset += GLOBAL_PARTITION_SIZE;
ret = setup_partitions(ipcmem, gmem_offset);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to set up partitions");
return ret;
}
/*Making sure all writes for ipcmem configurations are completed*/
wmb();
ipcmem->toc->hdr.init_done = IPCMEM_INIT_COMPLETED;
IPCLITE_OS_LOG(IPCLITE_DBG, "Ipcmem init completed\n");
return 0;
}
static int ipclite_channel_irq_init(struct device *parent, struct device_node *node,
struct ipclite_channel *channel)
{
int ret = 0;
u32 index = 0;
struct ipclite_irq_info *irq_info;
struct device *dev;
char strs[MAX_CHANNEL_SIGNALS][IPCLITE_SIGNAL_LABEL_SIZE] = {
"msg", "mem-init", "version", "test", "ssr", "debug"};
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->parent = parent;
dev->of_node = node;
dev_set_name(dev, "%s:%pOFn", dev_name(parent->parent), node);
IPCLITE_OS_LOG(IPCLITE_DBG, "Registering %s device\n", dev_name(parent->parent));
ret = device_register(dev);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to register ipclite child node\n");
put_device(dev);
return ret;
}
ret = of_property_read_u32(dev->of_node, "index", &index);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse index\n");
goto err_dev;
}
irq_info = &channel->irq_info[index];
IPCLITE_OS_LOG(IPCLITE_DBG, "irq_info[%d]=%p\n", index, irq_info);
irq_info->mbox_client.dev = dev;
irq_info->mbox_client.knows_txdone = true;
irq_info->mbox_chan = mbox_request_channel(&irq_info->mbox_client, 0);
IPCLITE_OS_LOG(IPCLITE_DBG, "irq_info[%d].mbox_chan=%p\n", index, irq_info->mbox_chan);
if (IS_ERR(irq_info->mbox_chan)) {
if (PTR_ERR(irq_info->mbox_chan) != -EPROBE_DEFER)
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to acquire IPC channel\n");
goto err_dev;
}
snprintf(irq_info->irqname, 32, "ipclite-signal-%s", strs[index]);
irq_info->irq = of_irq_get(dev->of_node, 0);
IPCLITE_OS_LOG(IPCLITE_DBG, "irq[%d] = %d\n", index, irq_info->irq);
irq_info->signal_id = index;
ret = devm_request_irq(dev, irq_info->irq,
ipclite_intr,
IRQF_NO_SUSPEND | IRQF_SHARED,
irq_info->irqname, irq_info);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to request IRQ\n");
goto err_dev;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "Interrupt init completed, ret = %d\n", ret);
return ret;
err_dev:
device_unregister(dev);
kfree(dev);
return ret;
}
static struct ipcmem_partition_header *get_ipcmem_partition_hdr(struct ipclite_mem ipcmem, int local_pid,
int remote_pid)
{
uint32_t p = 0, found = -1;
for (p = 0; p < partitions; p++) {
if (ipcmem.toc_data.partition_entry[p].host0 == local_pid
&& ipcmem.toc_data.partition_entry[p].host1 == remote_pid) {
found = p;
break;
}
}
if (found < partitions)
return (struct ipcmem_partition_header *)((char *)ipcmem.mem.virt_base +
ipcmem.toc_data.partition_entry[found].base_offset);
else
return NULL;
}
static void ipclite_channel_release(struct device *dev)
{
IPCLITE_OS_LOG(IPCLITE_INFO, "Releasing ipclite channel\n");
kfree(dev);
}
/* Sets up following fields of IPCLite channel structure:
* remote_pid,tx_fifo, rx_fifo
*/
static int ipclite_channel_init(struct device *parent,
struct device_node *node)
{
int ret = 0;
u32 local_pid = 0, remote_pid = 0;
u32 *descs = NULL;
struct ipclite_fifo *rx_fifo;
struct ipclite_fifo *tx_fifo;
struct device *dev;
struct device_node *child;
struct ipcmem_partition_header *partition_hdr;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->parent = parent;
dev->of_node = node;
dev->release = ipclite_channel_release;
dev_set_name(dev, "%s:%pOFn", dev_name(parent->parent), node);
IPCLITE_OS_LOG(IPCLITE_DBG, "Registering %s device\n", dev_name(parent->parent));
ret = device_register(dev);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to register ipclite device\n");
put_device(dev);
kfree(dev);
return ret;
}
local_pid = LOCAL_HOST;
ret = of_property_read_u32(dev->of_node, "qcom,remote-pid",
&remote_pid);
if (ret) {
dev_err(dev, "failed to parse qcom,remote-pid\n");
goto err_put_dev;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "remote_pid = %d, local_pid=%d\n", remote_pid, local_pid);
rx_fifo = devm_kzalloc(dev, sizeof(*rx_fifo), GFP_KERNEL);
tx_fifo = devm_kzalloc(dev, sizeof(*tx_fifo), GFP_KERNEL);
if (!rx_fifo || !tx_fifo) {
ret = -ENOMEM;
goto err_put_dev;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "rx_fifo = %p, tx_fifo=%p\n", rx_fifo, tx_fifo);
partition_hdr = get_ipcmem_partition_hdr(ipclite->ipcmem, local_pid, remote_pid);
IPCLITE_OS_LOG(IPCLITE_DBG, "partition_hdr = %p\n", partition_hdr);
if (!partition_hdr) {
ret = -ENOMEM;
goto err_put_dev;
}
descs = (u32 *)((char *)partition_hdr + partition_hdr->desc_offset);
IPCLITE_OS_LOG(IPCLITE_DBG, "descs = %p\n", descs);
if (local_pid < remote_pid) {
tx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo0_offset;
tx_fifo->length = partition_hdr->fifo0_size;
rx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo1_offset;
rx_fifo->length = partition_hdr->fifo1_size;
tx_fifo->tail = &descs[0];
tx_fifo->head = &descs[1];
rx_fifo->tail = &descs[2];
rx_fifo->head = &descs[3];
} else {
tx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo1_offset;
tx_fifo->length = partition_hdr->fifo1_size;
rx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo0_offset;
rx_fifo->length = partition_hdr->fifo0_size;
rx_fifo->tail = &descs[0];
rx_fifo->head = &descs[1];
tx_fifo->tail = &descs[2];
tx_fifo->head = &descs[3];
}
if (partition_hdr->type == LOOPBACK_PARTITION_TYPE) {
rx_fifo->tail = tx_fifo->tail;
rx_fifo->head = tx_fifo->head;
}
/* rx_fifo->reset = ipcmem_rx_reset;*/
rx_fifo->avail = ipcmem_rx_avail;
rx_fifo->peak = ipcmem_rx_peak;
rx_fifo->advance = ipcmem_rx_advance;
/* tx_fifo->reset = ipcmem_tx_reset;*/
tx_fifo->avail = ipcmem_tx_avail;
tx_fifo->write = ipcmem_tx_write;
*rx_fifo->tail = 0;
*tx_fifo->head = 0;
/*Store Channel Information*/
ipclite->channel[remote_pid].remote_pid = remote_pid;
ipclite->channel[remote_pid].tx_fifo = tx_fifo;
ipclite->channel[remote_pid].rx_fifo = rx_fifo;
ipclite->channel[remote_pid].gstatus_ptr = &partition_hdr->status;
spin_lock_init(&ipclite->channel[remote_pid].tx_lock);
for_each_available_child_of_node(dev->of_node, child) {
ret = ipclite_channel_irq_init(dev, child,
&ipclite->channel[remote_pid]);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "irq setup for ipclite channel failed\n");
goto err_put_dev;
}
}
/* Updating Local & Global Channel Status */
if (remote_pid == IPCMEM_APPS) {
*ipclite->channel[remote_pid].gstatus_ptr = ACTIVE;
ipclite->channel[remote_pid].status = ACTIVE;
} else {
*ipclite->channel[remote_pid].gstatus_ptr = IN_PROGRESS;
ipclite->channel[remote_pid].status = IN_PROGRESS;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "Channel init completed, ret = %d\n", ret);
return ret;
err_put_dev:
ipclite->channel[remote_pid].status = INACTIVE;
device_unregister(dev);
kfree(dev);
return ret;
}
static void probe_subsystem(struct device *dev, struct device_node *np)
{
int ret = 0;
ret = ipclite_channel_init(dev, np);
if (ret)
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Channel init failed\n");
}
/* IPCLite Debug related functions start */
static ssize_t ipclite_dbg_lvl_write(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0, host = 0;
/* Parse the string from Sysfs Interface */
ret = kstrtoint(buf, 0, &ipclite_debug_level);
if (ret < 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Error parsing the sysfs value");
return ret;
}
/* Check if debug structure is initialized */
if (!ipclite_dbg_info) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Debug structures not initialized\n");
return -ENOMEM;
}
/* Update the Global Debug variable for FW cores */
ipclite_dbg_info->debug_level = ipclite_debug_level;
/* Memory Barrier to make sure all writes are completed */
wmb();
/* Signal other cores for updating the debug information */
for (host = 1; host < IPCMEM_NUM_HOSTS; host++) {
if (!is_host_enabled(host))
continue;
ret = ipclite_notify_core(host, IPCLITE_DEBUG_SIGNAL);
if (ret < 0)
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to send the debug info %d\n", host);
else
IPCLITE_OS_LOG(IPCLITE_DBG, "Debug info sent to host %d\n", host);
}
return count;
}
static ssize_t ipclite_dbg_ctrl_write(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0, host = 0;
/* Parse the string from Sysfs Interface */
ret = kstrtoint(buf, 0, &ipclite_debug_control);
if (ret < 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Error parsing the sysfs value");
return ret;
}
/* Check if debug structures are initialized */
if (!ipclite_dbg_info || !ipclite_dbg_struct || !ipclite_dbg_inmem) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Debug structures not initialized\n");
return -ENOMEM;
}
/* Update the Global Debug variable for FW cores */
ipclite_dbg_info->debug_control = ipclite_debug_control;
/* Memory Barrier to make sure all writes are completed */
wmb();
/* Signal other cores for updating the debug information */
for (host = 1; host < IPCMEM_NUM_HOSTS; host++) {
if (!is_host_enabled(host))
continue;
ret = ipclite_notify_core(host, IPCLITE_DEBUG_SIGNAL);
if (ret < 0)
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to send the debug info %d\n", host);
else
IPCLITE_OS_LOG(IPCLITE_DBG, "Debug info sent to host %d\n", host);
}
return count;
}
static ssize_t ipclite_dbg_dump_write(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
/* Parse the string from Sysfs Interface */
ret = kstrtoint(buf, 0, &ipclite_debug_dump);
if (ret < 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Error parsing the sysfs value");
return ret;
}
/* Check if debug structures are initialized */
if (!ipclite_dbg_info || !ipclite_dbg_struct || !ipclite_dbg_inmem) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Debug structures not initialized\n");
return -ENOMEM;
}
/* Dump the debug information */
if (ipclite_debug_dump & IPCLITE_DUMP_DBG_STRUCT)
ipclite_dump_debug_struct();
if (ipclite_debug_dump & IPCLITE_DUMP_INMEM_LOG)
ipclite_dump_inmem_logs();
return count;
}
struct kobj_attribute sysfs_dbg_lvl = __ATTR(ipclite_debug_level, 0660,
NULL, ipclite_dbg_lvl_write);
struct kobj_attribute sysfs_dbg_ctrl = __ATTR(ipclite_debug_control, 0660,
NULL, ipclite_dbg_ctrl_write);
struct kobj_attribute sysfs_dbg_dump = __ATTR(ipclite_debug_dump, 0660,
NULL, ipclite_dbg_dump_write);
static int ipclite_debug_sysfs_setup(void)
{
int ret = 0;
/* Creating a directory in /sys/kernel/ */
sysfs_kobj = kobject_create_and_add("ipclite", kernel_kobj);
if (!sysfs_kobj) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create and add sysfs directory\n");
return -ENOMEM;
}
/* Creating sysfs files/interfaces for debug */
ret = sysfs_create_file(sysfs_kobj, &sysfs_dbg_lvl.attr);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create sysfs debug level file\n");
return ret;
}
ret = sysfs_create_file(sysfs_kobj, &sysfs_dbg_ctrl.attr);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create sysfs debug control file\n");
return ret;
}
ret = sysfs_create_file(sysfs_kobj, &sysfs_dbg_dump.attr);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create sysfs debug dump file\n");
return ret;
}
return ret;
}
static int ipclite_debug_mem_setup(void)
{
/* Setting up the Debug Structures */
ipclite_dbg_info = (struct ipclite_debug_info *)(((char *)ipclite->ipcmem.mem.virt_base +
ipclite->ipcmem.mem.size) - DEBUG_PARTITION_SIZE);
if (!ipclite_dbg_info)
return -EADDRNOTAVAIL;
ipclite_dbg_struct = (struct ipclite_debug_struct *)
(((char *)ipclite_dbg_info + IPCLITE_DEBUG_INFO_SIZE) +
(sizeof(*ipclite_dbg_struct) * IPCMEM_APPS));
if (!ipclite_dbg_struct)
return -EADDRNOTAVAIL;
ipclite_dbg_inmem = (struct ipclite_debug_inmem_buf *)
(((char *)ipclite_dbg_info + IPCLITE_DEBUG_INFO_SIZE) +
(sizeof(*ipclite_dbg_struct) * IPCMEM_NUM_HOSTS));
if (!ipclite_dbg_inmem)
return -EADDRNOTAVAIL;
IPCLITE_OS_LOG(IPCLITE_DBG, "virtual_base_ptr = %p total_size : %d debug_size : %d\n",
ipclite->ipcmem.mem.virt_base, ipclite->ipcmem.mem.size, DEBUG_PARTITION_SIZE);
IPCLITE_OS_LOG(IPCLITE_DBG, "dbg_info : %p dbg_struct : %p dbg_inmem : %p\n",
ipclite_dbg_info, ipclite_dbg_struct, ipclite_dbg_inmem);
return 0;
}
static int ipclite_debug_setup(void)
{
int ret = 0;
/* Set up sysfs for debug */
ret = ipclite_debug_sysfs_setup();
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to Set up IPCLite Debug Sysfs\n");
return ret;
}
/* Mapping Debug Memory */
ret = ipclite_debug_mem_setup();
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to Set up IPCLite Debug Structures\n");
return ret;
}
/* Update the Global Debug variable for FW cores */
ipclite_dbg_info->debug_level = ipclite_debug_level;
ipclite_dbg_info->debug_control = ipclite_debug_control;
return ret;
}
/* IPCLite Debug related functions end */
/* IPCLite Features setup related functions start */
static int ipclite_feature_setup(struct device_node *pn)
{
int ret = 0;
uint32_t feature_mask_l = 0, feature_mask_h = 0;
/* Parse the feature related DT entries and store the values locally */
ret = of_property_read_u32(pn, "feature_mask_low", &feature_mask_l);
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse feature_mask_low\n");
return ret;
}
ret = of_property_read_u32(pn, "feature_mask_high", &feature_mask_h);
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse feature_mask_high\n");
return ret;
}
/* Combine feature_mask_low and feature_mask_high into 64-bit feature_mask */
feature_mask = (uint64_t) feature_mask_h << 32 | feature_mask_l;
/* Update the feature mask to TOC for FW */
ipclite->ipcmem.toc->hdr.feature_mask = feature_mask;
/* Set up Global Atomics Feature*/
if (!(IS_FEATURE_CONFIG(IPCLITE_GLOBAL_ATOMIC)))
IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Global Atomic Support Disabled\n");
/* Set up Test Suite Feature*/
if (!(IS_FEATURE_CONFIG(IPCLITE_TEST_SUITE)))
IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Test Suite Disabled\n");
return ret;
}
/* IPCLite Features setup related functions end */
/* API Definition Start - Minor Version 0*/
static int ipclite_init_v0(struct platform_device *pdev)
{
int ret = 0, hwlock_id = 0;
struct ipcmem_region *mem;
struct device_node *cn;
struct device_node *pn = pdev->dev.of_node;
struct ipclite_channel broadcast;
/* Allocate memory for IPCLite */
ipclite = kzalloc(sizeof(*ipclite), GFP_KERNEL);
if (!ipclite) {
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Memory Allocation Failed\n");
ret = -ENOMEM;
goto error;
}
ipclite->dev = &pdev->dev;
/* Parse HW Lock from DT */
hwlock_id = of_hwspin_lock_get_id(pn, 0);
if (hwlock_id < 0) {
if (hwlock_id != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to retrieve hwlock\n");
ret = hwlock_id;
goto release;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "Hwlock id retrieved, hwlock_id=%d\n", hwlock_id);
/* Reserve a HWSpinLock for later use */
ipclite->hwlock = hwspin_lock_request_specific(hwlock_id);
if (!ipclite->hwlock) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to assign hwlock_id\n");
ret = -ENXIO;
goto release;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "Hwlock id assigned successfully, hwlock=%p\n",
ipclite->hwlock);
/* Initializing Local Mutex Lock for SSR functionality */
mutex_init(&ssr_mutex);
/* Map to IPCLite Memory */
ret = map_ipcmem(ipclite, "memory-region");
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to map ipcmem\n");
goto release;
}
mem = &(ipclite->ipcmem.mem);
memset(mem->virt_base, 0, mem->size);
ret = ipcmem_init(&ipclite->ipcmem, pn);
if (ret) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to set up IPCMEM");
goto release;
}
/* Setup Channel for each Remote Subsystem */
for_each_available_child_of_node(pn, cn)
probe_subsystem(&pdev->dev, cn);
/* Broadcast init_done signal to all subsystems once mbox channels are set up */
broadcast = ipclite->channel[IPCMEM_APPS];
ret = mbox_send_message(broadcast.irq_info[IPCLITE_MEM_INIT_SIGNAL].mbox_chan, NULL);
if (ret < 0)
goto mem_release;
mbox_client_txdone(broadcast.irq_info[IPCLITE_MEM_INIT_SIGNAL].mbox_chan, 0);
/* Debug Setup */
ret = ipclite_debug_setup();
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Debug Setup Failed\n");
goto release;
}
/* Features Setup */
ret = ipclite_feature_setup(pn);
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Features Setup Failed\n");
goto release;
}
/* Update TOC with version entries for FW */
ipclite->ipcmem.toc->hdr.major_version = major_ver;
ipclite->ipcmem.toc->hdr.minor_version = minor_ver;
/* Should be called after all Global TOC related init is done */
insert_magic_number();
IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Version : %d.%d Feature Mask : 0x%llx\n",
major_ver, minor_ver, feature_mask);
IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Probe Completed Successfully\n");
return ret;
mem_release:
/* If the remote subsystem has already completed the init and actively
* using IPCMEM, re-assigning IPCMEM memory back to HLOS can lead to crash
* Solution: Either we don't take back the memory or make sure APPS completes
* init before any other subsystem initializes IPCLite (we won't have to send
* braodcast)
*/
release:
kfree(ipclite);
ipclite = NULL;
error:
return ret;
}
static int ipclite_register_client_v0(IPCLite_Client cb_func_ptr, void *priv)
{
if (!cb_func_ptr) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid callback pointer\n");
return -EINVAL;
}
synx_client.callback = cb_func_ptr;
synx_client.priv_data = priv;
synx_client.reg_complete = 1;
IPCLITE_OS_LOG(IPCLITE_DBG, "Client Registration completed\n");
return 0;
}
static int ipclite_register_test_client_v0(IPCLite_Client cb_func_ptr, void *priv)
{
if (!cb_func_ptr) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid callback pointer\n");
return -EINVAL;
}
test_client.callback = cb_func_ptr;
test_client.priv_data = priv;
test_client.reg_complete = 1;
IPCLITE_OS_LOG(IPCLITE_DBG, "Test Client Registration Completed\n");
return 0;
}
static int ipclite_msg_send_v0(int32_t proc_id, uint64_t data)
{
int ret = 0;
/* Check for valid core id */
if (proc_id < 0 || proc_id >= IPCMEM_NUM_HOSTS) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid proc_id : %d\n", proc_id);
return -EINVAL;
}
/* Send the data to the core */
ret = ipclite_tx(&ipclite->channel[proc_id], data, sizeof(data), IPCLITE_MSG_SIGNAL);
if (ret < 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Message send failed to core : %d signal:%d ret:%d\n",
proc_id, IPCLITE_MSG_SIGNAL, ret);
return ret;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "Message send complete to core : %d signal : %d ret : %d\n",
proc_id, IPCLITE_MSG_SIGNAL, ret);
return ret;
}
static int ipclite_test_msg_send_v0(int32_t proc_id, uint64_t data)
{
int ret = 0;
/* Check for valid core id */
if (proc_id < 0 || proc_id >= IPCMEM_NUM_HOSTS) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid proc_id : %d\n", proc_id);
return -EINVAL;
}
/* Send the data to the core */
ret = ipclite_tx(&ipclite->channel[proc_id], data, sizeof(data), IPCLITE_TEST_SIGNAL);
if (ret < 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Message send failed to core : %d signal:%d ret:%d\n",
proc_id, IPCLITE_TEST_SIGNAL, ret);
return ret;
}
IPCLITE_OS_LOG(IPCLITE_DBG, "Test Msg send complete to core : %d signal : %d ret : %d\n",
proc_id, IPCLITE_TEST_SIGNAL, ret);
return ret;
}
static int32_t get_global_partition_info_v0(struct global_region_info *global_ipcmem)
{
struct ipcmem_global_partition *global_partition;
if (!ipclite) {
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite not initialized\n");
return -ENOMEM;
}
if (!global_ipcmem)
return -EINVAL;
global_partition = ipclite->ipcmem.global_partition;
global_ipcmem->virt_base = (void *)((char *)global_partition +
global_partition->hdr.region_offset);
global_ipcmem->size = (size_t)(global_partition->hdr.region_size);
IPCLITE_OS_LOG(IPCLITE_DBG, "base = %p, size=%lx\n", global_ipcmem->virt_base,
global_ipcmem->size);
return 0;
}
static void ipclite_recover_v0(enum ipcmem_host_type core_id)
{
int ret = 0, host = 0, host0 = 0, host1 = 0;
uint32_t p = 0;
IPCLITE_OS_LOG(IPCLITE_DBG, "IPCLite Recover - Crashed Core : %d\n", core_id);
/* verify and reset the hw mutex lock */
if (core_id == ipclite->ipcmem.toc_data.host_info->hwlock_owner) {
ipclite->ipcmem.toc_data.host_info->hwlock_owner = IPCMEM_INVALID_HOST;
hwspin_unlock_raw(ipclite->hwlock);
IPCLITE_OS_LOG(IPCLITE_DBG, "HW Lock Reset\n");
}
mutex_lock(&ssr_mutex);
/* Set the Global Channel Status to 0 to avoid Race condition */
for (p = 0; p < partitions; p++) {
host0 = ipclite->ipcmem.toc_data.partition_entry[p].host0;
host1 = ipclite->ipcmem.toc_data.partition_entry[p].host1;
if (host0 != core_id && host1 != core_id)
continue;
ipclite_global_atomic_store_i32((ipclite_atomic_int32_t *)
(&(ipclite->ipcmem.partition[p]->hdr.status)), 0);
IPCLITE_OS_LOG(IPCLITE_DBG, "Global Channel Status : [%d][%d] : %d\n",
host0, host1, ipclite->ipcmem.partition[p]->hdr.status);
}
/* Resets the TX/RX queue */
*(ipclite->channel[core_id].tx_fifo->head) = 0;
*(ipclite->channel[core_id].rx_fifo->tail) = 0;
IPCLITE_OS_LOG(IPCLITE_DBG, "TX Fifo Reset : %d\n",
*(ipclite->channel[core_id].tx_fifo->head));
IPCLITE_OS_LOG(IPCLITE_DBG, "RX Fifo Reset : %d\n",
*(ipclite->channel[core_id].rx_fifo->tail));
/* Increment the Global Channel Status for APPS and crashed core*/
ipclite_global_atomic_inc((ipclite_atomic_int32_t *)
ipclite->channel[core_id].gstatus_ptr);
ipclite->channel[core_id].status = *ipclite->channel[core_id].gstatus_ptr;
/* Update other cores about SSR */
for (host = 1; host < IPCMEM_NUM_HOSTS; host++) {
if (!is_host_enabled(host) || host == core_id)
continue;
ret = ipclite_notify_core(host, IPCLITE_SSR_SIGNAL);
if (ret < 0)
IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to send SSR update to core %d\n", host);
else
IPCLITE_OS_LOG(IPCLITE_DBG, "SSR update sent to core %d\n", host);
}
mutex_unlock(&ssr_mutex);
/* Dump the debug information */
if (ipclite_debug_dump & IPCLITE_DUMP_SSR) {
ipclite_dump_debug_struct();
ipclite_dump_inmem_logs();
}
}
/* API Definition End - Minor Version 0*/
/* Versioned Functions Start */
int ipclite_init(struct platform_device *pdev)
{
if (api_list_t.init == NULL) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__);
return -EINVAL;
}
return api_list_t.init(pdev);
}
int ipclite_register_client(IPCLite_Client cb_func_ptr, void *priv)
{
if (api_list_t.register_client == NULL) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__);
return -EINVAL;
}
return api_list_t.register_client(cb_func_ptr, priv);
}
EXPORT_SYMBOL(ipclite_register_client);
int ipclite_register_test_client(IPCLite_Client cb_func_ptr, void *priv)
{
if (api_list_t.register_test_client == NULL) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__);
return -EINVAL;
}
return api_list_t.register_test_client(cb_func_ptr, priv);
}
EXPORT_SYMBOL(ipclite_register_test_client);
int ipclite_msg_send(int32_t proc_id, uint64_t data)
{
if (api_list_t.msg_send == NULL) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__);
return -EINVAL;
}
return api_list_t.msg_send(proc_id, data);
}
EXPORT_SYMBOL(ipclite_msg_send);
int ipclite_test_msg_send(int32_t proc_id, uint64_t data)
{
if (api_list_t.test_msg_send == NULL) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__);
return -EINVAL;
}
return api_list_t.test_msg_send(proc_id, data);
}
EXPORT_SYMBOL(ipclite_test_msg_send);
void ipclite_recover(enum ipcmem_host_type core_id)
{
if (api_list_t.recover == NULL) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__);
return;
}
api_list_t.recover(core_id);
}
EXPORT_SYMBOL(ipclite_recover);
int32_t get_global_partition_info(struct global_region_info *global_ipcmem)
{
if (api_list_t.partition_info == NULL) {
IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__);
return -EINVAL;
}
return api_list_t.partition_info(global_ipcmem);
}
EXPORT_SYMBOL(get_global_partition_info);
/* Versioned Functions End */
/* List of APIs based on the version */
struct ipclite_api_list api_list_version[] = {
/* Minor Version 0 */
{
.init = ipclite_init_v0,
.register_client = ipclite_register_client_v0,
.register_test_client = ipclite_register_test_client_v0,
.msg_send = ipclite_msg_send_v0,
.test_msg_send = ipclite_test_msg_send_v0,
.partition_info = get_global_partition_info_v0,
.recover = ipclite_recover_v0,
},
};
/* IPCLite Version setup related functions start */
static int ipclite_update_version_api(struct ipclite_api_list *res_str,
struct ipclite_api_list *ver_str)
{
if (res_str == NULL || ver_str == NULL)
return -EINVAL;
/* Register APIs based on the version */
res_str->init = (ver_str->init != NULL) ?
ver_str->init : res_str->init;
res_str->register_client = (ver_str->register_client != NULL) ?
ver_str->register_client : res_str->register_client;
res_str->register_test_client = (ver_str->register_test_client != NULL) ?
ver_str->register_test_client : res_str->register_test_client;
res_str->msg_send = (ver_str->msg_send != NULL) ?
ver_str->msg_send : res_str->msg_send;
res_str->test_msg_send = (ver_str->test_msg_send != NULL) ?
ver_str->test_msg_send : res_str->test_msg_send;
res_str->partition_info = (ver_str->partition_info != NULL) ?
ver_str->partition_info : res_str->partition_info;
res_str->recover = (ver_str->recover != NULL) ?
ver_str->recover : res_str->recover;
return 0;
}
static int ipclite_register_api(void)
{
int ret = 0, ver_itr = 0;
/* Register APIs based on the version */
for (ver_itr = 0; ver_itr <= minor_ver; ver_itr++) {
ret = ipclite_update_version_api(&api_list_t, &api_list_version[ver_itr]);
if (ret != 0)
return ret;
}
return ret;
}
static int ipclite_version_setup(struct device_node *pn)
{
int ret = 0;
/* Parse the version related DT entries and store the values locally */
ret = of_property_read_u32(pn, "major_version", &major_ver);
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse major_vesion\n");
return ret;
}
ret = of_property_read_u32(pn, "minor_version", &minor_ver);
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse minor_vesion\n");
return ret;
}
/* Verify IPCLite Version - if version does not match crash the system */
BUG_ON(major_ver != MAJOR_VERSION || minor_ver > MINOR_VERSION);
return ret;
}
/* IPCLite Version setup related functions end */
/* Start of IPCLite Init*/
static int ipclite_probe(struct platform_device *pdev)
{
int ret = 0;
/* Version Setup */
ret = ipclite_version_setup(pdev->dev.of_node);
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Version Setup Failed\n");
goto error;
}
/* Register API Setup */
ret = ipclite_register_api();
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite API Registration Failed\n");
goto error;
}
/* IPCLite Init */
ret = ipclite_init(pdev);
if (ret != 0) {
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Init Failed\n");
goto error;
}
return ret;
error:
IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite probe failed\n");
return ret;
}
static const struct of_device_id ipclite_of_match[] = {
{ .compatible = "qcom,ipclite"},
{}
};
MODULE_DEVICE_TABLE(of, ipclite_of_match);
static struct platform_driver ipclite_driver = {
.probe = ipclite_probe,
.driver = {
.name = "ipclite",
.of_match_table = ipclite_of_match,
},
};
module_platform_driver(ipclite_driver);
MODULE_DESCRIPTION("IPCLite Driver");
MODULE_LICENSE("GPL v2");
MODULE_SOFTDEP("pre: qcom_hwspinlock");