dp_txrx_wds.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "htt.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_types.h"
  25. #include "dp_internal.h"
  26. #include "dp_tx.h"
  27. #include "enet.h"
  28. #ifdef WIFI_MONITOR_SUPPORT
  29. #include "dp_mon.h"
  30. #endif
  31. #include "dp_txrx_wds.h"
  32. /* Generic AST entry aging timer value */
  33. #define DP_AST_AGING_TIMER_DEFAULT_MS 5000
  34. #define DP_VLAN_UNTAGGED 0
  35. #define DP_VLAN_TAGGED_MULTICAST 1
  36. #define DP_VLAN_TAGGED_UNICAST 2
  37. #define DP_MAX_VLAN_IDS 4096
  38. #define DP_INVALID_AST_IDX 0xffff
  39. #define DP_INVALID_FLOW_PRIORITY 0xff
  40. #define DP_PEER_AST0_FLOW_MASK 0x4
  41. #define DP_PEER_AST1_FLOW_MASK 0x8
  42. #define DP_PEER_AST2_FLOW_MASK 0x1
  43. #define DP_PEER_AST3_FLOW_MASK 0x2
  44. #define DP_MAX_AST_INDEX_PER_PEER 4
  45. #ifdef WLAN_FEATURE_MULTI_AST_DEL
  46. void dp_peer_free_peer_ase_list(struct dp_soc *soc,
  47. struct peer_del_multi_wds_entries *wds_list)
  48. {
  49. struct peer_wds_entry_list *wds_entry, *tmp_entry;
  50. TAILQ_FOREACH_SAFE(wds_entry, &wds_list->ase_list,
  51. ase_list_elem, tmp_entry) {
  52. dp_peer_debug("type: %d mac_addr: " QDF_MAC_ADDR_FMT,
  53. wds_entry->type,
  54. QDF_MAC_ADDR_REF(wds_entry->dest_addr));
  55. TAILQ_REMOVE(&wds_list->ase_list, wds_entry, ase_list_elem);
  56. wds_list->num_entries--;
  57. qdf_mem_free(wds_entry);
  58. }
  59. }
  60. static void
  61. dp_pdev_build_peer_ase_list(struct dp_soc *soc, struct dp_peer *peer,
  62. void *arg)
  63. {
  64. struct dp_ast_entry *ase, *temp_ase;
  65. struct peer_del_multi_wds_entries *list = arg;
  66. struct peer_wds_entry_list *wds_entry;
  67. if (!soc || !peer || !arg) {
  68. dp_peer_err("Invalid input");
  69. return;
  70. }
  71. list->vdev_id = peer->vdev->vdev_id;
  72. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  73. if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
  74. ase->type != CDP_TXRX_AST_TYPE_DA)
  75. continue;
  76. if (ase->is_active) {
  77. ase->is_active = false;
  78. continue;
  79. }
  80. if (ase->delete_in_progress) {
  81. dp_info_rl("Del set addr:" QDF_MAC_ADDR_FMT " type:%d",
  82. QDF_MAC_ADDR_REF(ase->mac_addr.raw),
  83. ase->type);
  84. continue;
  85. }
  86. if (ase->is_mapped)
  87. soc->ast_table[ase->ast_idx] = NULL;
  88. if (!ase->next_hop) {
  89. dp_peer_unlink_ast_entry(soc, ase, peer);
  90. continue;
  91. }
  92. wds_entry = (struct peer_wds_entry_list *)
  93. qdf_mem_malloc(sizeof(*wds_entry));
  94. if (!wds_entry) {
  95. dp_peer_err("%pK: fail to allocate wds_entry", soc);
  96. dp_peer_free_peer_ase_list(soc, list);
  97. return;
  98. }
  99. DP_STATS_INC(soc, ast.aged_out, 1);
  100. ase->delete_in_progress = true;
  101. wds_entry->dest_addr = ase->mac_addr.raw;
  102. wds_entry->type = ase->type;
  103. if (dp_peer_state_cmp(peer, DP_PEER_STATE_LOGICAL_DELETE))
  104. wds_entry->delete_in_fw = false;
  105. else
  106. wds_entry->delete_in_fw = true;
  107. dp_peer_debug("ase->type: %d pdev: %u vdev: %u mac_addr: " QDF_MAC_ADDR_FMT " next_hop: %u peer: %u",
  108. ase->type, ase->pdev_id, ase->vdev_id,
  109. QDF_MAC_ADDR_REF(ase->mac_addr.raw),
  110. ase->next_hop, ase->peer_id);
  111. TAILQ_INSERT_TAIL(&list->ase_list, wds_entry, ase_list_elem);
  112. list->num_entries++;
  113. }
  114. dp_peer_info("Total num of entries :%d", list->num_entries);
  115. }
  116. static void
  117. dp_peer_age_multi_ast_entries(struct dp_soc *soc, void *arg,
  118. enum dp_mod_id mod_id)
  119. {
  120. uint8_t i;
  121. struct dp_pdev *pdev = NULL;
  122. struct peer_del_multi_wds_entries wds_list = {0};
  123. TAILQ_INIT(&wds_list.ase_list);
  124. for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
  125. pdev = soc->pdev_list[i];
  126. dp_pdev_iterate_peer(pdev, dp_pdev_build_peer_ase_list,
  127. &wds_list, mod_id);
  128. if (wds_list.num_entries > 0) {
  129. dp_peer_ast_send_multi_wds_del(soc, wds_list.vdev_id,
  130. &wds_list);
  131. dp_peer_free_peer_ase_list(soc, &wds_list);
  132. } else {
  133. dp_peer_debug("No AST entries for pdev:%u",
  134. pdev->pdev_id);
  135. }
  136. }
  137. }
  138. #endif /* WLAN_FEATURE_MULTI_AST_DEL */
  139. static void
  140. dp_peer_age_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
  141. {
  142. struct dp_ast_entry *ase, *temp_ase;
  143. struct ast_del_ctxt *del_ctxt = (struct ast_del_ctxt *)arg;
  144. if ((del_ctxt->del_count >= soc->max_ast_ageout_count) &&
  145. !del_ctxt->age) {
  146. return;
  147. }
  148. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  149. /*
  150. * Do not expire static ast entries and HM WDS entries
  151. */
  152. if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
  153. ase->type != CDP_TXRX_AST_TYPE_DA)
  154. continue;
  155. if (ase->is_active) {
  156. if (del_ctxt->age)
  157. ase->is_active = FALSE;
  158. continue;
  159. }
  160. if (del_ctxt->del_count < soc->max_ast_ageout_count) {
  161. DP_STATS_INC(soc, ast.aged_out, 1);
  162. dp_peer_del_ast(soc, ase);
  163. del_ctxt->del_count++;
  164. } else {
  165. soc->pending_ageout = true;
  166. if (!del_ctxt->age)
  167. break;
  168. }
  169. }
  170. }
  171. static void
  172. dp_peer_age_mec_entries(struct dp_soc *soc)
  173. {
  174. uint32_t index;
  175. struct dp_mec_entry *mecentry, *mecentry_next;
  176. TAILQ_HEAD(, dp_mec_entry) free_list;
  177. TAILQ_INIT(&free_list);
  178. for (index = 0; index <= soc->mec_hash.mask; index++) {
  179. qdf_spin_lock_bh(&soc->mec_lock);
  180. /*
  181. * Expire MEC entry every n sec.
  182. */
  183. if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
  184. TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
  185. hash_list_elem, mecentry_next) {
  186. if (mecentry->is_active) {
  187. mecentry->is_active = FALSE;
  188. continue;
  189. }
  190. dp_peer_mec_detach_entry(soc, mecentry,
  191. &free_list);
  192. }
  193. }
  194. qdf_spin_unlock_bh(&soc->mec_lock);
  195. }
  196. dp_peer_mec_free_list(soc, &free_list);
  197. }
  198. #ifdef WLAN_FEATURE_MULTI_AST_DEL
  199. static void dp_ast_aging_timer_fn(void *soc_hdl)
  200. {
  201. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  202. struct ast_del_ctxt del_ctxt = {0};
  203. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  204. del_ctxt.age = true;
  205. soc->wds_ast_aging_timer_cnt = 0;
  206. }
  207. if (soc->pending_ageout || del_ctxt.age) {
  208. soc->pending_ageout = false;
  209. /* AST list access lock */
  210. qdf_spin_lock_bh(&soc->ast_lock);
  211. if (soc->multi_peer_grp_cmd_supported)
  212. dp_peer_age_multi_ast_entries(soc, NULL, DP_MOD_ID_AST);
  213. else
  214. dp_soc_iterate_peer(soc, dp_peer_age_ast_entries,
  215. &del_ctxt, DP_MOD_ID_AST);
  216. qdf_spin_unlock_bh(&soc->ast_lock);
  217. }
  218. /*
  219. * If NSS offload is enabled, the MEC timeout
  220. * will be managed by NSS.
  221. */
  222. if (qdf_atomic_read(&soc->mec_cnt) &&
  223. !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  224. dp_peer_age_mec_entries(soc);
  225. if (qdf_atomic_read(&soc->cmn_init_done))
  226. qdf_timer_mod(&soc->ast_aging_timer,
  227. DP_AST_AGING_TIMER_DEFAULT_MS);
  228. }
  229. #else
  230. static void dp_ast_aging_timer_fn(void *soc_hdl)
  231. {
  232. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  233. struct ast_del_ctxt del_ctxt = {0};
  234. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  235. del_ctxt.age = true;
  236. soc->wds_ast_aging_timer_cnt = 0;
  237. }
  238. if (soc->pending_ageout || del_ctxt.age) {
  239. soc->pending_ageout = false;
  240. /* AST list access lock */
  241. qdf_spin_lock_bh(&soc->ast_lock);
  242. dp_soc_iterate_peer(soc, dp_peer_age_ast_entries,
  243. &del_ctxt, DP_MOD_ID_AST);
  244. qdf_spin_unlock_bh(&soc->ast_lock);
  245. }
  246. /*
  247. * If NSS offload is enabled, the MEC timeout
  248. * will be managed by NSS.
  249. */
  250. if (qdf_atomic_read(&soc->mec_cnt) &&
  251. !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  252. dp_peer_age_mec_entries(soc);
  253. if (qdf_atomic_read(&soc->cmn_init_done))
  254. qdf_timer_mod(&soc->ast_aging_timer,
  255. DP_AST_AGING_TIMER_DEFAULT_MS);
  256. }
  257. #endif /* WLAN_FEATURE_MULTI_AST_DEL */
  258. /*
  259. * dp_soc_wds_attach() - Setup WDS timer and AST table
  260. * @soc: Datapath SOC handle
  261. *
  262. * Return: None
  263. */
  264. void dp_soc_wds_attach(struct dp_soc *soc)
  265. {
  266. if (soc->ast_offload_support)
  267. return;
  268. soc->wds_ast_aging_timer_cnt = 0;
  269. soc->pending_ageout = false;
  270. qdf_timer_init(soc->osdev, &soc->ast_aging_timer,
  271. dp_ast_aging_timer_fn, (void *)soc,
  272. QDF_TIMER_TYPE_WAKE_APPS);
  273. qdf_timer_mod(&soc->ast_aging_timer, DP_AST_AGING_TIMER_DEFAULT_MS);
  274. }
  275. /*
  276. * dp_soc_wds_detach() - Detach WDS data structures and timers
  277. * @txrx_soc: DP SOC handle
  278. *
  279. * Return: None
  280. */
  281. void dp_soc_wds_detach(struct dp_soc *soc)
  282. {
  283. qdf_timer_stop(&soc->ast_aging_timer);
  284. qdf_timer_free(&soc->ast_aging_timer);
  285. }
  286. /**
  287. * dp_tx_mec_handler() - Tx MEC Notify Handler
  288. * @vdev: pointer to dp dev handler
  289. * @status : Tx completion status from HTT descriptor
  290. *
  291. * Handles MEC notify event sent from fw to Host
  292. *
  293. * Return: none
  294. */
  295. void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
  296. {
  297. struct dp_soc *soc;
  298. QDF_STATUS add_mec_status;
  299. uint8_t mac_addr[QDF_MAC_ADDR_SIZE], i;
  300. if (!vdev->mec_enabled)
  301. return;
  302. /* MEC required only in STA mode */
  303. if (vdev->opmode != wlan_op_mode_sta)
  304. return;
  305. soc = vdev->pdev->soc;
  306. for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
  307. mac_addr[(QDF_MAC_ADDR_SIZE - 1) - i] =
  308. status[(QDF_MAC_ADDR_SIZE - 2) + i];
  309. dp_peer_debug("%pK: MEC add for mac_addr "QDF_MAC_ADDR_FMT,
  310. soc, QDF_MAC_ADDR_REF(mac_addr));
  311. if (qdf_mem_cmp(mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE)) {
  312. add_mec_status = dp_peer_mec_add_entry(soc, vdev, mac_addr);
  313. dp_peer_debug("%pK: MEC add status %d", vdev, add_mec_status);
  314. }
  315. }
  316. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  317. /**
  318. * dp_rx_da_learn() - Add AST entry based on DA lookup
  319. * This is a WAR for HK 1.0 and will
  320. * be removed in HK 2.0
  321. *
  322. * @soc: core txrx main context
  323. * @rx_tlv_hdr : start address of rx tlvs
  324. * @ta_txrx_peer: Transmitter peer entry
  325. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  326. *
  327. */
  328. void
  329. dp_rx_da_learn(struct dp_soc *soc,
  330. uint8_t *rx_tlv_hdr,
  331. struct dp_txrx_peer *ta_txrx_peer,
  332. qdf_nbuf_t nbuf)
  333. {
  334. struct dp_peer *base_peer;
  335. /* For HKv2 DA port learing is not needed */
  336. if (qdf_likely(soc->ast_override_support))
  337. return;
  338. if (qdf_unlikely(!ta_txrx_peer))
  339. return;
  340. if (qdf_unlikely(ta_txrx_peer->vdev->opmode != wlan_op_mode_ap))
  341. return;
  342. if (!soc->da_war_enabled)
  343. return;
  344. if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
  345. !qdf_nbuf_is_da_mcbc(nbuf))) {
  346. base_peer = dp_peer_get_ref_by_id(soc, ta_txrx_peer->peer_id,
  347. DP_MOD_ID_AST);
  348. if (base_peer) {
  349. dp_peer_add_ast(soc,
  350. base_peer,
  351. qdf_nbuf_data(nbuf),
  352. CDP_TXRX_AST_TYPE_DA,
  353. DP_AST_FLAGS_HM);
  354. dp_peer_unref_delete(base_peer, DP_MOD_ID_AST);
  355. }
  356. }
  357. }
  358. /**
  359. * dp_txrx_set_wds_rx_policy() - API to store datapath
  360. * config parameters
  361. * @soc - datapath soc handle
  362. * @vdev_id - id of datapath vdev handle
  363. * @cfg: ini parameter handle
  364. *
  365. * Return: status
  366. */
  367. #ifdef WDS_VENDOR_EXTENSION
  368. QDF_STATUS
  369. dp_txrx_set_wds_rx_policy(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  370. u_int32_t val)
  371. {
  372. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  373. struct dp_peer *peer;
  374. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  375. DP_MOD_ID_MISC);
  376. if (!vdev) {
  377. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  378. FL("vdev is NULL for vdev_id %d"), vdev_id);
  379. return QDF_STATUS_E_INVAL;
  380. }
  381. peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  382. if (peer) {
  383. peer->txrx_peer->wds_ecm.wds_rx_filter = 1;
  384. peer->txrx_peer->wds_ecm.wds_rx_ucast_4addr =
  385. (val & WDS_POLICY_RX_UCAST_4ADDR) ? 1 : 0;
  386. peer->txrx_peer->wds_ecm.wds_rx_mcast_4addr =
  387. (val & WDS_POLICY_RX_MCAST_4ADDR) ? 1 : 0;
  388. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  389. }
  390. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
  391. return QDF_STATUS_SUCCESS;
  392. }
  393. /**
  394. * dp_txrx_peer_wds_tx_policy_update() - API to set tx wds policy
  395. *
  396. * @cdp_soc: DP soc handle
  397. * @vdev_id: id of vdev handle
  398. * @peer_mac: peer mac address
  399. * @wds_tx_ucast: policy for unicast transmission
  400. * @wds_tx_mcast: policy for multicast transmission
  401. *
  402. * Return: void
  403. */
  404. QDF_STATUS
  405. dp_txrx_peer_wds_tx_policy_update(struct cdp_soc_t *soc, uint8_t vdev_id,
  406. uint8_t *peer_mac, int wds_tx_ucast,
  407. int wds_tx_mcast)
  408. {
  409. struct dp_peer *peer =
  410. dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
  411. peer_mac, 0,
  412. vdev_id,
  413. DP_MOD_ID_AST);
  414. if (!peer) {
  415. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  416. FL("peer is NULL for mac %pM vdev_id %d"),
  417. peer_mac, vdev_id);
  418. return QDF_STATUS_E_INVAL;
  419. }
  420. if (!peer->txrx_peer) {
  421. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  422. return QDF_STATUS_E_INVAL;
  423. }
  424. if (wds_tx_ucast || wds_tx_mcast) {
  425. peer->txrx_peer->wds_enabled = 1;
  426. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr = wds_tx_ucast;
  427. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr = wds_tx_mcast;
  428. } else {
  429. peer->txrx_peer->wds_enabled = 0;
  430. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr = 0;
  431. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr = 0;
  432. }
  433. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  434. "Policy Update set to :\n");
  435. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  436. "peer->wds_enabled %d\n", peer->wds_enabled);
  437. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  438. "peer->wds_ecm.wds_tx_ucast_4addr %d\n",
  439. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr);
  440. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  441. "peer->wds_ecm.wds_tx_mcast_4addr %d\n",
  442. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr);
  443. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  444. return QDF_STATUS_SUCCESS;
  445. }
  446. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  447. struct dp_vdev *vdev,
  448. struct dp_txrx_peer *txrx_peer)
  449. {
  450. struct dp_peer *bss_peer;
  451. int fr_ds, to_ds, rx_3addr, rx_4addr;
  452. int rx_policy_ucast, rx_policy_mcast;
  453. hal_soc_handle_t hal_soc = vdev->pdev->soc->hal_soc;
  454. int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(hal_soc, rx_tlv_hdr);
  455. if (vdev->opmode == wlan_op_mode_ap) {
  456. bss_peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  457. /* if wds policy check is not enabled on this vdev, accept all frames */
  458. if (bss_peer && !bss_peer->txrx_peer->wds_ecm.wds_rx_filter) {
  459. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  460. return 1;
  461. }
  462. rx_policy_ucast = bss_peer->txrx_peerwds_ecm.wds_rx_ucast_4addr;
  463. rx_policy_mcast = bss_peer->txrx_peerwds_ecm.wds_rx_mcast_4addr;
  464. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  465. } else { /* sta mode */
  466. if (!txrx_peer->wds_ecm.wds_rx_filter)
  467. return 1;
  468. rx_policy_ucast = txrx_peer->wds_ecm.wds_rx_ucast_4addr;
  469. rx_policy_mcast = txrx_peer->wds_ecm.wds_rx_mcast_4addr;
  470. }
  471. /* ------------------------------------------------
  472. * self
  473. * peer- rx rx-
  474. * wds ucast mcast dir policy accept note
  475. * ------------------------------------------------
  476. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  477. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  478. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  479. * 1 1 0 00 x1 0 bad frame, won't see it
  480. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  481. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  482. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  483. * 1 0 1 00 1x 0 bad frame, won't see it
  484. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  485. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  486. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  487. * 1 1 0 00 x0 0 bad frame, won't see it
  488. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  489. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  490. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  491. * 1 0 1 00 0x 0 bad frame, won't see it
  492. *
  493. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  494. * 0 x x 01 xx 1
  495. * 0 x x 10 xx 0
  496. * 0 x x 00 xx 0 bad frame, won't see it
  497. * ------------------------------------------------
  498. */
  499. fr_ds = hal_rx_mpdu_get_fr_ds(hal_soc, rx_tlv_hdr);
  500. to_ds = hal_rx_mpdu_get_to_ds(hal_soc, rx_tlv_hdr);
  501. rx_3addr = fr_ds ^ to_ds;
  502. rx_4addr = fr_ds & to_ds;
  503. if (vdev->opmode == wlan_op_mode_ap) {
  504. if ((!txrx_peer->wds_enabled && rx_3addr && to_ds) ||
  505. (txrx_peer->wds_enabled && !rx_mcast &&
  506. (rx_4addr == rx_policy_ucast)) ||
  507. (txrx_peer->wds_enabled && rx_mcast &&
  508. (rx_4addr == rx_policy_mcast))) {
  509. return 1;
  510. }
  511. } else { /* sta mode */
  512. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  513. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  514. return 1;
  515. }
  516. }
  517. return 0;
  518. }
  519. #endif
  520. /**
  521. * dp_tx_add_groupkey_metadata - Add group key in metadata
  522. * @vdev: DP vdev handle
  523. * @msdu_info: MSDU info to be setup in MSDU descriptor
  524. * @group_key: Group key index programmed in metadata
  525. *
  526. * Return: void
  527. */
  528. #ifdef QCA_MULTIPASS_SUPPORT
  529. static
  530. void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
  531. struct dp_tx_msdu_info_s *msdu_info, uint16_t group_key)
  532. {
  533. struct htt_tx_msdu_desc_ext2_t *meta_data =
  534. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  535. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  536. /*
  537. * When attempting to send a multicast packet with multi-passphrase,
  538. * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
  539. * ref htt.h indicating the group_id field in "key_flags" also having
  540. * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
  541. */
  542. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0], 1);
  543. HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
  544. }
  545. /**
  546. * dp_tx_remove_vlan_tag - Remove 4 bytes of vlan tag
  547. * @vdev: DP vdev handle
  548. * @tx_desc: Tx Descriptor Handle
  549. *
  550. * Return: void
  551. */
  552. static
  553. void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  554. {
  555. struct vlan_ethhdr veth_hdr;
  556. struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
  557. /*
  558. * Extract VLAN header of 4 bytes:
  559. * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4], EtherType[2], Payload}
  560. * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02 08 00 45 00 00...
  561. * After Removal : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00 00...
  562. */
  563. qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
  564. qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
  565. veh = (struct vlan_ethhdr *)nbuf->data;
  566. qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
  567. return;
  568. }
  569. /**
  570. * dp_tx_need_multipass_process - If frame needs multipass phrase processing
  571. * @vdev: DP vdev handle
  572. * @tx_desc: Tx Descriptor Handle
  573. * @vlan_id: vlan id of frame
  574. *
  575. * Return: whether peer is special or classic
  576. */
  577. static
  578. uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  579. qdf_nbuf_t buf, uint16_t *vlan_id)
  580. {
  581. struct dp_txrx_peer *txrx_peer = NULL;
  582. struct dp_peer *peer = NULL;
  583. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
  584. struct vlan_ethhdr *veh = NULL;
  585. bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
  586. (htons(eh->ether_type) != ETH_P_8021Q));
  587. if (qdf_unlikely(not_vlan))
  588. return DP_VLAN_UNTAGGED;
  589. veh = (struct vlan_ethhdr *)eh;
  590. *vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
  591. if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
  592. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  593. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list,
  594. mpass_peer_list_elem) {
  595. if (*vlan_id == txrx_peer->vlan_id) {
  596. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  597. return DP_VLAN_TAGGED_MULTICAST;
  598. }
  599. }
  600. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  601. return DP_VLAN_UNTAGGED;
  602. }
  603. peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL,
  604. DP_MOD_ID_TX_MULTIPASS);
  605. if (qdf_unlikely(peer == NULL))
  606. return DP_VLAN_UNTAGGED;
  607. /*
  608. * Do not drop the frame when vlan_id doesn't match.
  609. * Send the frame as it is.
  610. */
  611. if (*vlan_id == peer->txrx_peer->vlan_id) {
  612. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  613. return DP_VLAN_TAGGED_UNICAST;
  614. }
  615. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  616. return DP_VLAN_UNTAGGED;
  617. }
  618. /**
  619. * dp_tx_multipass_process - Process vlan frames in tx path
  620. * @soc: dp soc handle
  621. * @vdev: DP vdev handle
  622. * @nbuf: skb
  623. * @msdu_info: msdu descriptor
  624. *
  625. * Return: status whether frame needs to be dropped or transmitted
  626. */
  627. bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  628. qdf_nbuf_t nbuf,
  629. struct dp_tx_msdu_info_s *msdu_info)
  630. {
  631. uint16_t vlan_id = 0;
  632. uint16_t group_key = 0;
  633. uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
  634. qdf_nbuf_t nbuf_copy = NULL;
  635. if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0])) {
  636. return true;
  637. }
  638. is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
  639. if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
  640. (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
  641. return true;
  642. if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
  643. dp_tx_remove_vlan_tag(vdev, nbuf);
  644. return true;
  645. }
  646. /* AP can have classic clients, special clients &
  647. * classic repeaters.
  648. * 1. Classic clients & special client:
  649. * Remove vlan header, find corresponding group key
  650. * index, fill in metaheader and enqueue multicast
  651. * frame to TCL.
  652. * 2. Classic repeater:
  653. * Pass through to classic repeater with vlan tag
  654. * intact without any group key index. Hardware
  655. * will know which key to use to send frame to
  656. * repeater.
  657. */
  658. nbuf_copy = qdf_nbuf_copy(nbuf);
  659. /*
  660. * Send multicast frame to special peers even
  661. * if pass through to classic repeater fails.
  662. */
  663. if (nbuf_copy) {
  664. struct dp_tx_msdu_info_s msdu_info_copy;
  665. qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
  666. msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
  667. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
  668. nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy, &msdu_info_copy, HTT_INVALID_PEER, NULL);
  669. if (nbuf_copy) {
  670. qdf_nbuf_free(nbuf_copy);
  671. qdf_err("nbuf_copy send failed");
  672. }
  673. }
  674. group_key = vdev->iv_vlan_map[vlan_id];
  675. /*
  676. * If group key is not installed, drop the frame.
  677. */
  678. if (!group_key)
  679. return false;
  680. dp_tx_remove_vlan_tag(vdev, nbuf);
  681. dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
  682. msdu_info->exception_fw = 1;
  683. return true;
  684. }
  685. /**
  686. * dp_rx_multipass_process - insert vlan tag on frames for traffic separation
  687. * @txrx_peer: DP txrx peer handle
  688. * @nbuf: skb
  689. * @tid: traffic priority
  690. *
  691. * Return: bool: true in case of success else false
  692. * Success is considered if:
  693. * i. If frame has vlan header
  694. * ii. If the frame comes from different peer and dont need multipass processing
  695. * Failure is considered if:
  696. * i. Frame comes from multipass peer but doesn't contain vlan header.
  697. * In failure case, drop such frames.
  698. */
  699. bool dp_rx_multipass_process(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf,
  700. uint8_t tid)
  701. {
  702. struct vlan_ethhdr *vethhdrp;
  703. if (qdf_unlikely(!txrx_peer->vlan_id))
  704. return true;
  705. vethhdrp = (struct vlan_ethhdr *)qdf_nbuf_data(nbuf);
  706. /*
  707. * h_vlan_proto & h_vlan_TCI should be 0x8100 & zero respectively
  708. * as it is expected to be padded by 0
  709. * return false if frame doesn't have above tag so that caller will
  710. * drop the frame.
  711. */
  712. if (qdf_unlikely(vethhdrp->h_vlan_proto != htons(QDF_ETH_TYPE_8021Q)) ||
  713. qdf_unlikely(vethhdrp->h_vlan_TCI != 0))
  714. return false;
  715. vethhdrp->h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
  716. (txrx_peer->vlan_id & VLAN_VID_MASK));
  717. if (vethhdrp->h_vlan_encapsulated_proto == htons(ETHERTYPE_PAE))
  718. dp_tx_remove_vlan_tag(txrx_peer->vdev, nbuf);
  719. return true;
  720. }
  721. #endif /* QCA_MULTIPASS_SUPPORT */
  722. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  723. #ifdef QCA_MULTIPASS_SUPPORT
  724. /**
  725. * dp_peer_multipass_list_remove: remove peer from list
  726. * @peer: pointer to peer
  727. *
  728. * return: void
  729. */
  730. void dp_peer_multipass_list_remove(struct dp_peer *peer)
  731. {
  732. struct dp_vdev *vdev = peer->vdev;
  733. struct dp_txrx_peer *tpeer = NULL;
  734. bool found = 0;
  735. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  736. TAILQ_FOREACH(tpeer, &vdev->mpass_peer_list, mpass_peer_list_elem) {
  737. if (tpeer == peer->txrx_peer) {
  738. found = 1;
  739. TAILQ_REMOVE(&vdev->mpass_peer_list, peer->txrx_peer,
  740. mpass_peer_list_elem);
  741. break;
  742. }
  743. }
  744. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  745. if (found)
  746. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  747. }
  748. /**
  749. * dp_peer_multipass_list_add: add to new multipass list
  750. * @dp_soc: soc handle
  751. * @peer_mac: mac address
  752. * @vdev_id: vdev id for peer
  753. * @vlan_id: vlan_id
  754. *
  755. * return: void
  756. */
  757. static void dp_peer_multipass_list_add(struct dp_soc *soc, uint8_t *peer_mac,
  758. uint8_t vdev_id, uint16_t vlan_id)
  759. {
  760. struct dp_peer *peer =
  761. dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
  762. vdev_id,
  763. DP_MOD_ID_TX_MULTIPASS);
  764. if (qdf_unlikely(!peer)) {
  765. qdf_err("NULL peer");
  766. return;
  767. }
  768. if (qdf_unlikely(!peer->txrx_peer))
  769. goto fail;
  770. /* If peer already exists in vdev multipass list, do not add it.
  771. * This may happen if key install comes twice or re-key
  772. * happens for a peer.
  773. */
  774. if (peer->txrx_peer->vlan_id) {
  775. dp_debug("peer already added to vdev multipass list"
  776. "MAC: "QDF_MAC_ADDR_FMT" vlan: %d ",
  777. QDF_MAC_ADDR_REF(peer->mac_addr.raw),
  778. peer->txrx_peer->vlan_id);
  779. goto fail;
  780. }
  781. /*
  782. * Ref_cnt is incremented inside dp_peer_find_hash_find().
  783. * Decrement it when element is deleted from the list.
  784. */
  785. peer->txrx_peer->vlan_id = vlan_id;
  786. qdf_spin_lock_bh(&peer->txrx_peer->vdev->mpass_peer_mutex);
  787. TAILQ_INSERT_HEAD(&peer->txrx_peer->vdev->mpass_peer_list,
  788. peer->txrx_peer,
  789. mpass_peer_list_elem);
  790. qdf_spin_unlock_bh(&peer->txrx_peer->vdev->mpass_peer_mutex);
  791. return;
  792. fail:
  793. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  794. return;
  795. }
  796. /**
  797. * dp_peer_set_vlan_id: set vlan_id for this peer
  798. * @cdp_soc: soc handle
  799. * @vdev_id: vdev id for peer
  800. * @peer_mac: mac address
  801. * @vlan_id: vlan id for peer
  802. *
  803. * return: void
  804. */
  805. void dp_peer_set_vlan_id(struct cdp_soc_t *cdp_soc,
  806. uint8_t vdev_id, uint8_t *peer_mac,
  807. uint16_t vlan_id)
  808. {
  809. struct dp_soc *soc = (struct dp_soc *)cdp_soc;
  810. struct dp_vdev *vdev =
  811. dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
  812. DP_MOD_ID_TX_MULTIPASS);
  813. if (vdev && vdev->multipass_en) {
  814. dp_peer_multipass_list_add(soc, peer_mac, vdev_id, vlan_id);
  815. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  816. }
  817. }
  818. /**
  819. * dp_set_vlan_groupkey: set vlan map for vdev
  820. * @soc: pointer to soc
  821. * @vdev_id : id of vdev
  822. * @vlan_id: vlan_id
  823. * @group_key: group key for vlan
  824. *
  825. * return: set success/failure
  826. */
  827. QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  828. uint16_t vlan_id, uint16_t group_key)
  829. {
  830. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  831. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  832. DP_MOD_ID_TX_MULTIPASS);
  833. QDF_STATUS status;
  834. if (!vdev || !vdev->multipass_en) {
  835. status = QDF_STATUS_E_INVAL;
  836. goto fail;
  837. }
  838. if (!vdev->iv_vlan_map) {
  839. uint16_t vlan_map_size = (sizeof(uint16_t))*DP_MAX_VLAN_IDS;
  840. vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
  841. if (!vdev->iv_vlan_map) {
  842. QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
  843. status = QDF_STATUS_E_NOMEM;
  844. goto fail;
  845. }
  846. /*
  847. * 0 is invalid group key.
  848. * Initilalize array with invalid group keys.
  849. */
  850. qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
  851. }
  852. if (vlan_id >= DP_MAX_VLAN_IDS) {
  853. status = QDF_STATUS_E_INVAL;
  854. goto fail;
  855. }
  856. vdev->iv_vlan_map[vlan_id] = group_key;
  857. status = QDF_STATUS_SUCCESS;
  858. fail:
  859. if (vdev)
  860. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  861. return status;
  862. }
  863. /**
  864. * dp_tx_vdev_multipass_deinit: set vlan map for vdev
  865. * @vdev_handle: pointer to vdev
  866. *
  867. * return: void
  868. */
  869. void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
  870. {
  871. struct dp_txrx_peer *txrx_peer = NULL;
  872. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  873. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
  874. qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
  875. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  876. if (vdev->iv_vlan_map) {
  877. qdf_mem_free(vdev->iv_vlan_map);
  878. vdev->iv_vlan_map = NULL;
  879. }
  880. qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
  881. }
  882. /**
  883. * dp_peer_multipass_list_init: initialize peer mulitpass list
  884. * @vdev_handle: pointer to vdev
  885. *
  886. * return: set success/failure
  887. */
  888. void dp_peer_multipass_list_init(struct dp_vdev *vdev)
  889. {
  890. /*
  891. * vdev->iv_vlan_map is allocated when the first configuration command
  892. * is issued to avoid unnecessary allocation for regular mode VAP.
  893. */
  894. TAILQ_INIT(&vdev->mpass_peer_list);
  895. qdf_spinlock_create(&vdev->mpass_peer_mutex);
  896. }
  897. #endif /* QCA_MULTIPASS_SUPPORT */
  898. #ifdef QCA_PEER_MULTIQ_SUPPORT
  899. /**
  900. * dp_peer_reset_flowq_map() - reset peer flowq map table
  901. * @peer - dp peer handle
  902. *
  903. * Return: none
  904. */
  905. void dp_peer_reset_flowq_map(struct dp_peer *peer)
  906. {
  907. int i = 0;
  908. if (!peer)
  909. return;
  910. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  911. peer->peer_ast_flowq_idx[i].is_valid = false;
  912. peer->peer_ast_flowq_idx[i].valid_tid_mask = false;
  913. peer->peer_ast_flowq_idx[i].ast_idx = DP_INVALID_AST_IDX;
  914. peer->peer_ast_flowq_idx[i].flowQ = DP_INVALID_FLOW_PRIORITY;
  915. }
  916. }
  917. /**
  918. * dp_peer_get_flowid_from_flowmask() - get flow id from flow mask
  919. * @peer - dp peer handle
  920. * @mask - flow mask
  921. *
  922. * Return: flow id
  923. */
  924. static int dp_peer_get_flowid_from_flowmask(struct dp_peer *peer,
  925. uint8_t mask)
  926. {
  927. if (!peer) {
  928. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  929. "%s: Invalid peer\n", __func__);
  930. return -1;
  931. }
  932. if (mask & DP_PEER_AST0_FLOW_MASK)
  933. return DP_PEER_AST_FLOWQ_UDP;
  934. else if (mask & DP_PEER_AST1_FLOW_MASK)
  935. return DP_PEER_AST_FLOWQ_NON_UDP;
  936. else if (mask & DP_PEER_AST2_FLOW_MASK)
  937. return DP_PEER_AST_FLOWQ_HI_PRIO;
  938. else if (mask & DP_PEER_AST3_FLOW_MASK)
  939. return DP_PEER_AST_FLOWQ_LOW_PRIO;
  940. return DP_PEER_AST_FLOWQ_MAX;
  941. }
  942. /**
  943. * dp_peer_get_ast_valid() - get ast index valid from mask
  944. * @mask - mask for ast valid bits
  945. * @index - index for an ast
  946. *
  947. * Return - 1 if ast index is valid from mask else 0
  948. */
  949. static inline bool dp_peer_get_ast_valid(uint8_t mask, uint16_t index)
  950. {
  951. if (index == 0)
  952. return 1;
  953. return ((mask) & (1 << ((index) - 1)));
  954. }
  955. /**
  956. * dp_peer_ast_index_flow_queue_map_create() - create ast index flow queue map
  957. * @soc - genereic soc handle
  958. * @is_wds - flag to indicate if peer is wds
  959. * @peer_id - peer_id from htt peer map message
  960. * @peer_mac_addr - mac address of the peer
  961. * @ast_info - ast flow override information from peer map
  962. *
  963. * Return: none
  964. */
  965. void dp_peer_ast_index_flow_queue_map_create(void *soc_hdl,
  966. bool is_wds, uint16_t peer_id, uint8_t *peer_mac_addr,
  967. struct dp_ast_flow_override_info *ast_info)
  968. {
  969. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  970. struct dp_peer *peer = NULL;
  971. uint8_t i;
  972. /*
  973. * Ast flow override feature is supported
  974. * only for connected client
  975. */
  976. if (is_wds)
  977. return;
  978. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_AST);
  979. if (!peer) {
  980. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  981. "%s: Invalid peer\n", __func__);
  982. return;
  983. }
  984. /* Valid only in AP mode */
  985. if (peer->vdev->opmode != wlan_op_mode_ap) {
  986. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  987. "%s: Peer ast flow map not in STA mode\n", __func__);
  988. goto end;
  989. }
  990. /* Making sure the peer is for this mac address */
  991. if (!qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  992. (struct qdf_mac_addr *)peer->mac_addr.raw)) {
  993. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  994. "%s: Peer mac address mismatch\n", __func__);
  995. goto end;
  996. }
  997. /* Ast entry flow mapping not valid for self peer map */
  998. if (qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  999. (struct qdf_mac_addr *)peer->vdev->mac_addr.raw)) {
  1000. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1001. "%s: Ast flow mapping not valid for self peer \n", __func__);
  1002. goto end;
  1003. }
  1004. /* Fill up ast index <---> flow id mapping table for this peer */
  1005. for (i = 0; i < DP_MAX_AST_INDEX_PER_PEER; i++) {
  1006. /* Check if this ast index is valid */
  1007. peer->peer_ast_flowq_idx[i].is_valid =
  1008. dp_peer_get_ast_valid(ast_info->ast_valid_mask, i);
  1009. if (!peer->peer_ast_flowq_idx[i].is_valid)
  1010. continue;
  1011. /* Get the flow queue id which is mapped to this ast index */
  1012. peer->peer_ast_flowq_idx[i].flowQ =
  1013. dp_peer_get_flowid_from_flowmask(peer,
  1014. ast_info->ast_flow_mask[i]);
  1015. /*
  1016. * Update tid valid mask only if flow id HIGH or
  1017. * Low priority
  1018. */
  1019. if (peer->peer_ast_flowq_idx[i].flowQ ==
  1020. DP_PEER_AST_FLOWQ_HI_PRIO) {
  1021. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  1022. ast_info->tid_valid_hi_pri_mask;
  1023. } else if (peer->peer_ast_flowq_idx[i].flowQ ==
  1024. DP_PEER_AST_FLOWQ_LOW_PRIO) {
  1025. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  1026. ast_info->tid_valid_low_pri_mask;
  1027. }
  1028. /* Save the ast index for this entry */
  1029. peer->peer_ast_flowq_idx[i].ast_idx = ast_info->ast_idx[i];
  1030. }
  1031. if (soc->cdp_soc.ol_ops->peer_ast_flowid_map) {
  1032. soc->cdp_soc.ol_ops->peer_ast_flowid_map(
  1033. soc->ctrl_psoc, peer->peer_id,
  1034. peer->vdev->vdev_id, peer_mac_addr);
  1035. }
  1036. end:
  1037. /* Release peer reference */
  1038. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1039. }
  1040. /**
  1041. * dp_peer_find_ast_index_by_flowq_id() - API to get ast idx for a given flowid
  1042. * @soc - soc handle
  1043. * @peer_mac_addr - mac address of the peer
  1044. * @flow_id - flow id to find ast index
  1045. *
  1046. * Return: ast index for a given flow id, -1 for fail cases
  1047. */
  1048. int dp_peer_find_ast_index_by_flowq_id(struct cdp_soc_t *soc,
  1049. uint16_t vdev_id, uint8_t *peer_mac_addr,
  1050. uint8_t flow_id, uint8_t tid)
  1051. {
  1052. struct dp_peer *peer = NULL;
  1053. uint8_t i;
  1054. uint16_t ast_index;
  1055. if (flow_id >= DP_PEER_AST_FLOWQ_MAX) {
  1056. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1057. "Invalid Flow ID %d\n", flow_id);
  1058. return -1;
  1059. }
  1060. peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  1061. peer_mac_addr, 0, vdev_id,
  1062. DP_MOD_ID_AST);
  1063. if (!peer) {
  1064. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1065. "%s: Invalid peer\n", __func__);
  1066. return -1;
  1067. }
  1068. /*
  1069. * Loop over the ast entry <----> flow-id mapping to find
  1070. * which ast index entry has this flow queue id enabled.
  1071. */
  1072. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  1073. if (peer->peer_ast_flowq_idx[i].flowQ == flow_id)
  1074. /*
  1075. * Found the matching index for this flow id
  1076. */
  1077. break;
  1078. }
  1079. /*
  1080. * No match found for this flow id
  1081. */
  1082. if (i == DP_PEER_AST_FLOWQ_MAX) {
  1083. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1084. "%s: ast index not found for flow %d\n", __func__, flow_id);
  1085. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1086. return -1;
  1087. }
  1088. /* Check whether this ast entry is valid */
  1089. if (!peer->peer_ast_flowq_idx[i].is_valid) {
  1090. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1091. "%s: ast index is invalid for flow %d\n", __func__, flow_id);
  1092. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1093. return -1;
  1094. }
  1095. if (flow_id == DP_PEER_AST_FLOWQ_HI_PRIO ||
  1096. flow_id == DP_PEER_AST_FLOWQ_LOW_PRIO) {
  1097. /*
  1098. * check if this tid is valid for Hi
  1099. * and Low priority flow id
  1100. */
  1101. if ((peer->peer_ast_flowq_idx[i].valid_tid_mask
  1102. & (1 << tid))) {
  1103. /* Release peer reference */
  1104. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  1105. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1106. return ast_index;
  1107. } else {
  1108. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1109. "%s: TID %d is not valid for flow %d\n",
  1110. __func__, tid, flow_id);
  1111. /*
  1112. * TID is not valid for this flow
  1113. * Return -1
  1114. */
  1115. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1116. return -1;
  1117. }
  1118. }
  1119. /*
  1120. * TID valid check not required for
  1121. * UDP/NON UDP flow id
  1122. */
  1123. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  1124. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1125. return ast_index;
  1126. }
  1127. #endif
  1128. void dp_hmwds_ast_add_notify(struct dp_peer *peer,
  1129. uint8_t *mac_addr,
  1130. enum cdp_txrx_ast_entry_type type,
  1131. QDF_STATUS err,
  1132. bool is_peer_map)
  1133. {
  1134. struct dp_vdev *dp_vdev = peer->vdev;
  1135. struct dp_pdev *dp_pdev = dp_vdev->pdev;
  1136. struct cdp_peer_hmwds_ast_add_status add_status;
  1137. /* Ignore ast types other than HM */
  1138. if ((type != CDP_TXRX_AST_TYPE_WDS_HM) &&
  1139. (type != CDP_TXRX_AST_TYPE_WDS_HM_SEC))
  1140. return;
  1141. /* existing ast delete in progress, will be attempted
  1142. * to add again after delete is complete. Send status then.
  1143. */
  1144. if (err == QDF_STATUS_E_AGAIN)
  1145. return;
  1146. /* peer map pending, notify actual status
  1147. * when peer map is received.
  1148. */
  1149. if (!is_peer_map && (err == QDF_STATUS_SUCCESS))
  1150. return;
  1151. qdf_mem_zero(&add_status, sizeof(add_status));
  1152. add_status.vdev_id = dp_vdev->vdev_id;
  1153. /* For type CDP_TXRX_AST_TYPE_WDS_HM_SEC dp_peer_add_ast()
  1154. * returns QDF_STATUS_E_FAILURE as it is host only entry.
  1155. * In such cases set err as success. Also err code set to
  1156. * QDF_STATUS_E_ALREADY indicates entry already exist in
  1157. * such cases set err as success too. Any other error code
  1158. * is actual error.
  1159. */
  1160. if (((type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) &&
  1161. (err == QDF_STATUS_E_FAILURE)) ||
  1162. (err == QDF_STATUS_E_ALREADY)) {
  1163. err = QDF_STATUS_SUCCESS;
  1164. }
  1165. add_status.status = err;
  1166. qdf_mem_copy(add_status.peer_mac, peer->mac_addr.raw,
  1167. QDF_MAC_ADDR_SIZE);
  1168. qdf_mem_copy(add_status.ast_mac, mac_addr,
  1169. QDF_MAC_ADDR_SIZE);
  1170. #ifdef WDI_EVENT_ENABLE
  1171. dp_wdi_event_handler(WDI_EVENT_HMWDS_AST_ADD_STATUS, dp_pdev->soc,
  1172. (void *)&add_status, 0,
  1173. WDI_NO_VAL, dp_pdev->pdev_id);
  1174. #endif
  1175. }
  1176. #if defined(QCA_SUPPORT_LATENCY_CAPTURE) || \
  1177. defined(QCA_TX_CAPTURE_SUPPORT) || \
  1178. defined(QCA_MCOPY_SUPPORT)
  1179. #ifdef FEATURE_PERPKT_INFO
  1180. /**
  1181. * dp_get_completion_indication_for_stack() - send completion to stack
  1182. * @soc : dp_soc handle
  1183. * @pdev: dp_pdev handle
  1184. * @peer: dp peer handle
  1185. * @ts: transmit completion status structure
  1186. * @netbuf: Buffer pointer for free
  1187. *
  1188. * This function is used for indication whether buffer needs to be
  1189. * sent to stack for freeing or not
  1190. */
  1191. QDF_STATUS
  1192. dp_get_completion_indication_for_stack(struct dp_soc *soc,
  1193. struct dp_pdev *pdev,
  1194. struct dp_txrx_peer *txrx_peer,
  1195. struct hal_tx_completion_status *ts,
  1196. qdf_nbuf_t netbuf,
  1197. uint64_t time_latency)
  1198. {
  1199. struct tx_capture_hdr *ppdu_hdr;
  1200. uint16_t peer_id = ts->peer_id;
  1201. uint32_t ppdu_id = ts->ppdu_id;
  1202. uint8_t first_msdu = ts->first_msdu;
  1203. uint8_t last_msdu = ts->last_msdu;
  1204. uint32_t txcap_hdr_size = sizeof(struct tx_capture_hdr);
  1205. struct dp_peer *peer;
  1206. if (qdf_unlikely(!dp_monitor_is_enable_tx_sniffer(pdev) &&
  1207. !dp_monitor_is_enable_mcopy_mode(pdev) &&
  1208. !pdev->latency_capture_enable))
  1209. return QDF_STATUS_E_NOSUPPORT;
  1210. if (!txrx_peer) {
  1211. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1212. FL("Peer Invalid"));
  1213. return QDF_STATUS_E_INVAL;
  1214. }
  1215. /* If mcopy is enabled and mcopy_mode is M_COPY deliver 1st MSDU
  1216. * per PPDU. If mcopy_mode is M_COPY_EXTENDED deliver 1st MSDU
  1217. * for each MPDU
  1218. */
  1219. if (dp_monitor_mcopy_check_deliver(pdev,
  1220. peer_id,
  1221. ppdu_id,
  1222. first_msdu) != QDF_STATUS_SUCCESS)
  1223. return QDF_STATUS_E_INVAL;
  1224. if (qdf_unlikely(qdf_nbuf_headroom(netbuf) < txcap_hdr_size)) {
  1225. netbuf = qdf_nbuf_realloc_headroom(netbuf, txcap_hdr_size);
  1226. if (!netbuf) {
  1227. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1228. FL("No headroom"));
  1229. return QDF_STATUS_E_NOMEM;
  1230. }
  1231. }
  1232. if (!qdf_nbuf_push_head(netbuf, txcap_hdr_size)) {
  1233. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1234. FL("No headroom"));
  1235. return QDF_STATUS_E_NOMEM;
  1236. }
  1237. ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
  1238. qdf_mem_copy(ppdu_hdr->ta, txrx_peer->vdev->mac_addr.raw,
  1239. QDF_MAC_ADDR_SIZE);
  1240. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_TX_COMP);
  1241. if (peer) {
  1242. qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
  1243. QDF_MAC_ADDR_SIZE);
  1244. dp_peer_unref_delete(peer, DP_MOD_ID_TX_COMP);
  1245. }
  1246. ppdu_hdr->ppdu_id = ppdu_id;
  1247. ppdu_hdr->peer_id = peer_id;
  1248. ppdu_hdr->first_msdu = first_msdu;
  1249. ppdu_hdr->last_msdu = last_msdu;
  1250. if (qdf_unlikely(pdev->latency_capture_enable)) {
  1251. ppdu_hdr->tsf = ts->tsf;
  1252. ppdu_hdr->time_latency = (uint32_t)time_latency;
  1253. }
  1254. return QDF_STATUS_SUCCESS;
  1255. }
  1256. /**
  1257. * dp_send_completion_to_stack() - send completion to stack
  1258. * @soc : dp_soc handle
  1259. * @pdev: dp_pdev handle
  1260. * @peer_id: peer_id of the peer for which completion came
  1261. * @ppdu_id: ppdu_id
  1262. * @netbuf: Buffer pointer for free
  1263. *
  1264. * This function is used to send completion to stack
  1265. * to free buffer
  1266. */
  1267. void dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev,
  1268. uint16_t peer_id, uint32_t ppdu_id,
  1269. qdf_nbuf_t netbuf)
  1270. {
  1271. dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
  1272. netbuf, peer_id,
  1273. WDI_NO_VAL, pdev->pdev_id);
  1274. }
  1275. #endif
  1276. #endif