hal_srng.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. #include "qdf_ssr_driver_dump.h"
  27. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  28. #ifdef QCA_WIFI_QCA8074
  29. void hal_qca6290_attach(struct hal_soc *hal);
  30. #endif
  31. #ifdef QCA_WIFI_QCA8074
  32. void hal_qca8074_attach(struct hal_soc *hal);
  33. #endif
  34. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  35. defined(QCA_WIFI_QCA9574)
  36. void hal_qca8074v2_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCA6390
  39. void hal_qca6390_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6490
  42. void hal_qca6490_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCN9000
  45. void hal_qcn9000_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCN9224
  48. void hal_qcn9224v1_attach(struct hal_soc *hal);
  49. void hal_qcn9224v2_attach(struct hal_soc *hal);
  50. #endif
  51. #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
  52. void hal_qcn6122_attach(struct hal_soc *hal);
  53. #endif
  54. #ifdef QCA_WIFI_QCA6750
  55. void hal_qca6750_attach(struct hal_soc *hal);
  56. #endif
  57. #ifdef QCA_WIFI_QCA5018
  58. void hal_qca5018_attach(struct hal_soc *hal);
  59. #endif
  60. #ifdef QCA_WIFI_QCA5332
  61. void hal_qca5332_attach(struct hal_soc *hal);
  62. #endif
  63. #ifdef QCA_WIFI_KIWI
  64. void hal_kiwi_attach(struct hal_soc *hal);
  65. #endif
  66. #ifdef ENABLE_VERBOSE_DEBUG
  67. bool is_hal_verbose_debug_enabled;
  68. #endif
  69. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  70. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  71. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  72. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  73. #ifdef ENABLE_HAL_REG_WR_HISTORY
  74. struct hal_reg_write_fail_history hal_reg_wr_hist;
  75. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  76. uint32_t offset,
  77. uint32_t wr_val, uint32_t rd_val)
  78. {
  79. struct hal_reg_write_fail_entry *record;
  80. int idx;
  81. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  82. HAL_REG_WRITE_HIST_SIZE);
  83. record = &hal_soc->reg_wr_fail_hist->record[idx];
  84. record->timestamp = qdf_get_log_timestamp();
  85. record->reg_offset = offset;
  86. record->write_val = wr_val;
  87. record->read_val = rd_val;
  88. }
  89. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  90. {
  91. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  92. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  93. }
  94. #else
  95. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  96. {
  97. }
  98. #endif
  99. /**
  100. * hal_get_srng_ring_id() - get the ring id of a described ring
  101. * @hal: hal_soc data structure
  102. * @ring_type: type enum describing the ring
  103. * @ring_num: which ring of the ring type
  104. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  105. *
  106. * Return: the ring id or -EINVAL if the ring does not exist.
  107. */
  108. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  109. int ring_num, int mac_id)
  110. {
  111. struct hal_hw_srng_config *ring_config =
  112. HAL_SRNG_CONFIG(hal, ring_type);
  113. int ring_id;
  114. if (ring_num >= ring_config->max_rings) {
  115. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  116. "%s: ring_num exceeded maximum no. of supported rings",
  117. __func__);
  118. /* TODO: This is a programming error. Assert if this happens */
  119. return -EINVAL;
  120. }
  121. /*
  122. * Some DMAC rings share a common source ring, hence don't provide them
  123. * with separate ring IDs per LMAC.
  124. */
  125. if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
  126. ring_id = (ring_config->start_ring_id + ring_num +
  127. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  128. } else {
  129. ring_id = ring_config->start_ring_id + ring_num;
  130. }
  131. return ring_id;
  132. }
  133. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  134. {
  135. /* TODO: Should we allocate srng structures dynamically? */
  136. return &(hal->srng_list[ring_id]);
  137. }
  138. #ifndef SHADOW_REG_CONFIG_DISABLED
  139. #define HP_OFFSET_IN_REG_START 1
  140. #define OFFSET_FROM_HP_TO_TP 4
  141. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  142. int shadow_config_index,
  143. int ring_type,
  144. int ring_num)
  145. {
  146. struct hal_srng *srng;
  147. int ring_id;
  148. struct hal_hw_srng_config *ring_config =
  149. HAL_SRNG_CONFIG(hal_soc, ring_type);
  150. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  151. if (ring_id < 0)
  152. return;
  153. srng = hal_get_srng(hal_soc, ring_id);
  154. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  155. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  156. + hal_soc->dev_base_addr;
  157. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  158. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  159. shadow_config_index);
  160. } else {
  161. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  162. + hal_soc->dev_base_addr;
  163. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  164. srng->u.src_ring.hp_addr,
  165. hal_soc->dev_base_addr, shadow_config_index);
  166. }
  167. }
  168. #endif
  169. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  170. void hal_set_one_target_reg_config(struct hal_soc *hal,
  171. uint32_t target_reg_offset,
  172. int list_index)
  173. {
  174. int i = list_index;
  175. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  176. hal->list_shadow_reg_config[i].target_register =
  177. target_reg_offset;
  178. hal->num_generic_shadow_regs_configured++;
  179. }
  180. qdf_export_symbol(hal_set_one_target_reg_config);
  181. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  182. #define MAX_REO_REMAP_SHADOW_REGS 4
  183. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  184. {
  185. uint32_t target_reg_offset;
  186. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  187. int i;
  188. struct hal_hw_srng_config *srng_config =
  189. &hal->hw_srng_table[WBM2SW_RELEASE];
  190. uint32_t reo_reg_base;
  191. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  192. target_reg_offset =
  193. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  194. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  195. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  196. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  197. }
  198. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  199. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  200. * HAL_IPA_TX_COMP_RING_IDX);
  201. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  202. return QDF_STATUS_SUCCESS;
  203. }
  204. qdf_export_symbol(hal_set_shadow_regs);
  205. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  206. {
  207. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  208. int shadow_config_index = hal->num_shadow_registers_configured;
  209. int i;
  210. int num_regs = hal->num_generic_shadow_regs_configured;
  211. for (i = 0; i < num_regs; i++) {
  212. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  213. hal->shadow_config[shadow_config_index].addr =
  214. hal->list_shadow_reg_config[i].target_register;
  215. hal->list_shadow_reg_config[i].shadow_config_index =
  216. shadow_config_index;
  217. hal->list_shadow_reg_config[i].va =
  218. SHADOW_REGISTER(shadow_config_index) +
  219. (uintptr_t)hal->dev_base_addr;
  220. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  221. hal->shadow_config[shadow_config_index].addr,
  222. SHADOW_REGISTER(shadow_config_index),
  223. shadow_config_index);
  224. shadow_config_index++;
  225. hal->num_shadow_registers_configured++;
  226. }
  227. return QDF_STATUS_SUCCESS;
  228. }
  229. qdf_export_symbol(hal_construct_shadow_regs);
  230. #endif
  231. #ifndef SHADOW_REG_CONFIG_DISABLED
  232. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  233. int ring_type,
  234. int ring_num)
  235. {
  236. uint32_t target_register;
  237. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  238. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  239. int shadow_config_index = hal->num_shadow_registers_configured;
  240. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  241. QDF_ASSERT(0);
  242. return QDF_STATUS_E_RESOURCES;
  243. }
  244. hal->num_shadow_registers_configured++;
  245. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  246. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  247. *ring_num);
  248. /* if the ring is a dst ring, we need to shadow the tail pointer */
  249. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  250. target_register += OFFSET_FROM_HP_TO_TP;
  251. hal->shadow_config[shadow_config_index].addr = target_register;
  252. /* update hp/tp addr in the hal_soc structure*/
  253. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  254. ring_num);
  255. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  256. target_register,
  257. SHADOW_REGISTER(shadow_config_index),
  258. shadow_config_index,
  259. ring_type, ring_num);
  260. return QDF_STATUS_SUCCESS;
  261. }
  262. qdf_export_symbol(hal_set_one_shadow_config);
  263. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  264. {
  265. int ring_type, ring_num;
  266. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  267. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  268. struct hal_hw_srng_config *srng_config =
  269. &hal->hw_srng_table[ring_type];
  270. if (ring_type == CE_SRC ||
  271. ring_type == CE_DST ||
  272. ring_type == CE_DST_STATUS)
  273. continue;
  274. if (srng_config->lmac_ring)
  275. continue;
  276. for (ring_num = 0; ring_num < srng_config->max_rings;
  277. ring_num++)
  278. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  279. }
  280. return QDF_STATUS_SUCCESS;
  281. }
  282. qdf_export_symbol(hal_construct_srng_shadow_regs);
  283. #else
  284. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  285. {
  286. return QDF_STATUS_SUCCESS;
  287. }
  288. qdf_export_symbol(hal_construct_srng_shadow_regs);
  289. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  290. int ring_num)
  291. {
  292. return QDF_STATUS_SUCCESS;
  293. }
  294. qdf_export_symbol(hal_set_one_shadow_config);
  295. #endif
  296. void hal_get_shadow_config(void *hal_soc,
  297. struct pld_shadow_reg_v2_cfg **shadow_config,
  298. int *num_shadow_registers_configured)
  299. {
  300. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  301. *shadow_config = &hal->shadow_config[0].v2;
  302. *num_shadow_registers_configured =
  303. hal->num_shadow_registers_configured;
  304. }
  305. qdf_export_symbol(hal_get_shadow_config);
  306. #ifdef CONFIG_SHADOW_V3
  307. void hal_get_shadow_v3_config(void *hal_soc,
  308. struct pld_shadow_reg_v3_cfg **shadow_config,
  309. int *num_shadow_registers_configured)
  310. {
  311. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  312. *shadow_config = &hal->shadow_config[0].v3;
  313. *num_shadow_registers_configured =
  314. hal->num_shadow_registers_configured;
  315. }
  316. qdf_export_symbol(hal_get_shadow_v3_config);
  317. #endif
  318. static bool hal_validate_shadow_register(struct hal_soc *hal,
  319. uint32_t *destination,
  320. uint32_t *shadow_address)
  321. {
  322. unsigned int index;
  323. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  324. int destination_ba_offset =
  325. ((char *)destination) - (char *)hal->dev_base_addr;
  326. index = shadow_address - shadow_0_offset;
  327. if (index >= MAX_SHADOW_REGISTERS) {
  328. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  329. "%s: index %x out of bounds", __func__, index);
  330. goto error;
  331. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  332. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  333. "%s: sanity check failure, expected %x, found %x",
  334. __func__, destination_ba_offset,
  335. hal->shadow_config[index].addr);
  336. goto error;
  337. }
  338. return true;
  339. error:
  340. qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
  341. hal->dev_base_addr, destination, shadow_address,
  342. shadow_0_offset, index);
  343. QDF_BUG(0);
  344. return false;
  345. }
  346. static void hal_target_based_configure(struct hal_soc *hal)
  347. {
  348. /*
  349. * Indicate Initialization of srngs to avoid force wake
  350. * as umac power collapse is not enabled yet
  351. */
  352. hal->init_phase = true;
  353. switch (hal->target_type) {
  354. #ifdef QCA_WIFI_QCA6290
  355. case TARGET_TYPE_QCA6290:
  356. hal->use_register_windowing = true;
  357. hal_qca6290_attach(hal);
  358. break;
  359. #endif
  360. #ifdef QCA_WIFI_QCA6390
  361. case TARGET_TYPE_QCA6390:
  362. hal->use_register_windowing = true;
  363. hal_qca6390_attach(hal);
  364. break;
  365. #endif
  366. #ifdef QCA_WIFI_QCA6490
  367. case TARGET_TYPE_QCA6490:
  368. hal->use_register_windowing = true;
  369. hal_qca6490_attach(hal);
  370. break;
  371. #endif
  372. #ifdef QCA_WIFI_QCA6750
  373. case TARGET_TYPE_QCA6750:
  374. hal->use_register_windowing = true;
  375. hal->static_window_map = true;
  376. hal_qca6750_attach(hal);
  377. break;
  378. #endif
  379. #ifdef QCA_WIFI_KIWI
  380. case TARGET_TYPE_KIWI:
  381. case TARGET_TYPE_MANGO:
  382. case TARGET_TYPE_PEACH:
  383. hal->use_register_windowing = true;
  384. hal_kiwi_attach(hal);
  385. break;
  386. #endif
  387. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  388. case TARGET_TYPE_QCA8074:
  389. hal_qca8074_attach(hal);
  390. break;
  391. #endif
  392. #if defined(QCA_WIFI_QCA8074V2)
  393. case TARGET_TYPE_QCA8074V2:
  394. hal_qca8074v2_attach(hal);
  395. break;
  396. #endif
  397. #if defined(QCA_WIFI_QCA6018)
  398. case TARGET_TYPE_QCA6018:
  399. hal_qca8074v2_attach(hal);
  400. break;
  401. #endif
  402. #if defined(QCA_WIFI_QCA9574)
  403. case TARGET_TYPE_QCA9574:
  404. hal_qca8074v2_attach(hal);
  405. break;
  406. #endif
  407. #if defined(QCA_WIFI_QCN6122)
  408. case TARGET_TYPE_QCN6122:
  409. hal->use_register_windowing = true;
  410. /*
  411. * Static window map is enabled for qcn9000 to use 2mb bar
  412. * size and use multiple windows to write into registers.
  413. */
  414. hal->static_window_map = true;
  415. hal_qcn6122_attach(hal);
  416. break;
  417. #endif
  418. #if defined(QCA_WIFI_QCN9160)
  419. case TARGET_TYPE_QCN9160:
  420. hal->use_register_windowing = true;
  421. /*
  422. * Static window map is enabled for qcn9160 to use 2mb bar
  423. * size and use multiple windows to write into registers.
  424. */
  425. hal->static_window_map = true;
  426. hal_qcn6122_attach(hal);
  427. break;
  428. #endif
  429. #ifdef QCA_WIFI_QCN9000
  430. case TARGET_TYPE_QCN9000:
  431. hal->use_register_windowing = true;
  432. /*
  433. * Static window map is enabled for qcn9000 to use 2mb bar
  434. * size and use multiple windows to write into registers.
  435. */
  436. hal->static_window_map = true;
  437. hal_qcn9000_attach(hal);
  438. break;
  439. #endif
  440. #ifdef QCA_WIFI_QCA5018
  441. case TARGET_TYPE_QCA5018:
  442. hal->use_register_windowing = true;
  443. hal->static_window_map = true;
  444. hal_qca5018_attach(hal);
  445. break;
  446. #endif
  447. #ifdef QCA_WIFI_QCN9224
  448. case TARGET_TYPE_QCN9224:
  449. hal->use_register_windowing = true;
  450. hal->static_window_map = true;
  451. if (hal->version == 1)
  452. hal_qcn9224v1_attach(hal);
  453. else
  454. hal_qcn9224v2_attach(hal);
  455. break;
  456. #endif
  457. #ifdef QCA_WIFI_QCA5332
  458. case TARGET_TYPE_QCA5332:
  459. hal->use_register_windowing = true;
  460. hal->static_window_map = true;
  461. hal_qca5332_attach(hal);
  462. break;
  463. #endif
  464. default:
  465. break;
  466. }
  467. }
  468. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  469. {
  470. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  471. struct hif_target_info *tgt_info =
  472. hif_get_target_info_handle(hal_soc->hif_handle);
  473. return tgt_info->target_type;
  474. }
  475. qdf_export_symbol(hal_get_target_type);
  476. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  477. /**
  478. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  479. * @hal: hal_soc pointer
  480. *
  481. * Return: true if throughput is high, else false.
  482. */
  483. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  484. {
  485. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  486. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  487. }
  488. static inline
  489. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  490. char *buf, qdf_size_t size)
  491. {
  492. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  493. srng->wstats.enqueues, srng->wstats.dequeues,
  494. srng->wstats.coalesces, srng->wstats.direct);
  495. return buf;
  496. }
  497. /* bytes for local buffer */
  498. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  499. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  500. {
  501. struct hal_srng *srng;
  502. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  503. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  504. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  505. hal_debug("SW2TCL1: %s",
  506. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  507. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  508. hal_debug("WBM2SW0: %s",
  509. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  510. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  511. hal_debug("REO2SW1: %s",
  512. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  513. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  514. hal_debug("REO2SW2: %s",
  515. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  516. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  517. hal_debug("REO2SW3: %s",
  518. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  519. }
  520. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  521. {
  522. uint32_t *hist;
  523. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  524. hist = hal->stats.wstats.sched_delay;
  525. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  526. qdf_atomic_read(&hal->stats.wstats.enqueues),
  527. hal->stats.wstats.dequeues,
  528. qdf_atomic_read(&hal->stats.wstats.coalesces),
  529. qdf_atomic_read(&hal->stats.wstats.direct),
  530. qdf_atomic_read(&hal->stats.wstats.q_depth),
  531. hal->stats.wstats.max_q_depth,
  532. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  533. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  534. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  535. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  536. }
  537. int hal_get_reg_write_pending_work(void *hal_soc)
  538. {
  539. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  540. return qdf_atomic_read(&hal->active_work_cnt);
  541. }
  542. #endif
  543. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  544. #ifdef MEMORY_DEBUG
  545. /*
  546. * Length of the queue(array) used to hold delayed register writes.
  547. * Must be a multiple of 2.
  548. */
  549. #define HAL_REG_WRITE_QUEUE_LEN 128
  550. #else
  551. #define HAL_REG_WRITE_QUEUE_LEN 32
  552. #endif
  553. /**
  554. * hal_process_reg_write_q_elem() - process a register write queue element
  555. * @hal: hal_soc pointer
  556. * @q_elem: pointer to hal register write queue element
  557. *
  558. * Return: The value which was written to the address
  559. */
  560. static uint32_t
  561. hal_process_reg_write_q_elem(struct hal_soc *hal,
  562. struct hal_reg_write_q_elem *q_elem)
  563. {
  564. struct hal_srng *srng = q_elem->srng;
  565. uint32_t write_val;
  566. SRNG_LOCK(&srng->lock);
  567. srng->reg_write_in_progress = false;
  568. srng->wstats.dequeues++;
  569. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  570. q_elem->dequeue_val = srng->u.src_ring.hp;
  571. hal_write_address_32_mb(hal,
  572. srng->u.src_ring.hp_addr,
  573. srng->u.src_ring.hp, false);
  574. write_val = srng->u.src_ring.hp;
  575. } else {
  576. q_elem->dequeue_val = srng->u.dst_ring.tp;
  577. hal_write_address_32_mb(hal,
  578. srng->u.dst_ring.tp_addr,
  579. srng->u.dst_ring.tp, false);
  580. write_val = srng->u.dst_ring.tp;
  581. }
  582. q_elem->valid = 0;
  583. srng->last_dequeue_time = q_elem->dequeue_time;
  584. SRNG_UNLOCK(&srng->lock);
  585. return write_val;
  586. }
  587. /**
  588. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  589. * @hal: hal_soc pointer
  590. * @delay_us: delay in us
  591. *
  592. * Return: None
  593. */
  594. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  595. uint64_t delay_us)
  596. {
  597. uint32_t *hist;
  598. hist = hal->stats.wstats.sched_delay;
  599. if (delay_us < 100)
  600. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  601. else if (delay_us < 1000)
  602. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  603. else if (delay_us < 5000)
  604. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  605. else
  606. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  607. }
  608. #ifdef SHADOW_WRITE_DELAY
  609. #define SHADOW_WRITE_MIN_DELTA_US 5
  610. #define SHADOW_WRITE_DELAY_US 50
  611. /*
  612. * Never add those srngs which are performance relate.
  613. * The delay itself will hit performance heavily.
  614. */
  615. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  616. (s)->ring_id == HAL_SRNG_CE_1_DST)
  617. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  618. {
  619. struct hal_srng *srng = elem->srng;
  620. struct hal_soc *hal;
  621. qdf_time_t now;
  622. qdf_iomem_t real_addr;
  623. if (qdf_unlikely(!srng))
  624. return false;
  625. hal = srng->hal_soc;
  626. if (qdf_unlikely(!hal))
  627. return false;
  628. /* Check if it is target srng, and valid shadow reg */
  629. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  630. return false;
  631. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  632. real_addr = SRNG_SRC_ADDR(srng, HP);
  633. else
  634. real_addr = SRNG_DST_ADDR(srng, TP);
  635. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  636. return false;
  637. /* Check the time delta from last write of same srng */
  638. now = qdf_get_log_timestamp();
  639. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  640. SHADOW_WRITE_MIN_DELTA_US)
  641. return false;
  642. /* Delay dequeue, and record */
  643. qdf_udelay(SHADOW_WRITE_DELAY_US);
  644. srng->wstats.dequeue_delay++;
  645. hal->stats.wstats.dequeue_delay++;
  646. return true;
  647. }
  648. #else
  649. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  650. {
  651. return false;
  652. }
  653. #endif
  654. /**
  655. * hal_reg_write_work() - Worker to process delayed writes
  656. * @arg: hal_soc pointer
  657. *
  658. * Return: None
  659. */
  660. static void hal_reg_write_work(void *arg)
  661. {
  662. int32_t q_depth, write_val;
  663. struct hal_soc *hal = arg;
  664. struct hal_reg_write_q_elem *q_elem;
  665. uint64_t delta_us;
  666. uint8_t ring_id;
  667. uint32_t *addr;
  668. uint32_t num_processed = 0;
  669. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  670. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  671. q_elem->cpu_id = qdf_get_cpu();
  672. /* Make sure q_elem consistent in the memory for multi-cores */
  673. qdf_rmb();
  674. if (!q_elem->valid)
  675. return;
  676. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  677. if (q_depth > hal->stats.wstats.max_q_depth)
  678. hal->stats.wstats.max_q_depth = q_depth;
  679. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  680. hal->stats.wstats.prevent_l1_fails++;
  681. return;
  682. }
  683. while (true) {
  684. qdf_rmb();
  685. if (!q_elem->valid)
  686. break;
  687. q_elem->dequeue_time = qdf_get_log_timestamp();
  688. ring_id = q_elem->srng->ring_id;
  689. addr = q_elem->addr;
  690. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  691. q_elem->enqueue_time);
  692. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  693. hal->stats.wstats.dequeues++;
  694. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  695. if (hal_reg_write_need_delay(q_elem))
  696. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  697. q_elem->srng->ring_id, q_elem->addr);
  698. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  699. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  700. hal->read_idx, ring_id, addr, write_val, delta_us);
  701. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  702. q_elem->dequeue_val,
  703. q_elem->enqueue_time,
  704. q_elem->dequeue_time);
  705. num_processed++;
  706. hal->read_idx = (hal->read_idx + 1) &
  707. (HAL_REG_WRITE_QUEUE_LEN - 1);
  708. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  709. }
  710. hif_allow_link_low_power_states(hal->hif_handle);
  711. /*
  712. * Decrement active_work_cnt by the number of elements dequeued after
  713. * hif_allow_link_low_power_states.
  714. * This makes sure that hif_try_complete_tasks will wait till we make
  715. * the bus access in hif_allow_link_low_power_states. This will avoid
  716. * race condition between delayed register worker and bus suspend
  717. * (system suspend or runtime suspend).
  718. *
  719. * The following decrement should be done at the end!
  720. */
  721. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  722. }
  723. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  724. {
  725. qdf_flush_work(&hal->reg_write_work);
  726. qdf_disable_work(&hal->reg_write_work);
  727. }
  728. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  729. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  730. }
  731. /**
  732. * hal_reg_write_enqueue() - enqueue register writes into kworker
  733. * @hal_soc: hal_soc pointer
  734. * @srng: srng pointer
  735. * @addr: iomem address of register
  736. * @value: value to be written to iomem address
  737. *
  738. * This function executes from within the SRNG LOCK
  739. *
  740. * Return: None
  741. */
  742. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  743. struct hal_srng *srng,
  744. void __iomem *addr,
  745. uint32_t value)
  746. {
  747. struct hal_reg_write_q_elem *q_elem;
  748. uint32_t write_idx;
  749. if (srng->reg_write_in_progress) {
  750. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  751. srng->ring_id, addr, value);
  752. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  753. srng->wstats.coalesces++;
  754. return;
  755. }
  756. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  757. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  758. q_elem = &hal_soc->reg_write_queue[write_idx];
  759. if (q_elem->valid) {
  760. hal_err("queue full");
  761. QDF_BUG(0);
  762. return;
  763. }
  764. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  765. srng->wstats.enqueues++;
  766. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  767. q_elem->srng = srng;
  768. q_elem->addr = addr;
  769. q_elem->enqueue_val = value;
  770. q_elem->enqueue_time = qdf_get_log_timestamp();
  771. /*
  772. * Before the valid flag is set to true, all the other
  773. * fields in the q_elem needs to be updated in memory.
  774. * Else there is a chance that the dequeuing worker thread
  775. * might read stale entries and process incorrect srng.
  776. */
  777. qdf_wmb();
  778. q_elem->valid = true;
  779. /*
  780. * After all other fields in the q_elem has been updated
  781. * in memory successfully, the valid flag needs to be updated
  782. * in memory in time too.
  783. * Else there is a chance that the dequeuing worker thread
  784. * might read stale valid flag and the work will be bypassed
  785. * for this round. And if there is no other work scheduled
  786. * later, this hal register writing won't be updated any more.
  787. */
  788. qdf_wmb();
  789. srng->reg_write_in_progress = true;
  790. qdf_atomic_inc(&hal_soc->active_work_cnt);
  791. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  792. write_idx, srng->ring_id, addr, value);
  793. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  794. &hal_soc->reg_write_work);
  795. }
  796. /**
  797. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  798. * @hal: hal_soc pointer
  799. *
  800. * Initialize main data structures to process register writes in a delayed
  801. * workqueue.
  802. *
  803. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  804. */
  805. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  806. {
  807. hal->reg_write_wq =
  808. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  809. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  810. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  811. sizeof(*hal->reg_write_queue));
  812. if (!hal->reg_write_queue) {
  813. hal_err("unable to allocate memory");
  814. QDF_BUG(0);
  815. return QDF_STATUS_E_NOMEM;
  816. }
  817. /* Initial value of indices */
  818. hal->read_idx = 0;
  819. qdf_atomic_set(&hal->write_idx, -1);
  820. return QDF_STATUS_SUCCESS;
  821. }
  822. /**
  823. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  824. * @hal: hal_soc pointer
  825. *
  826. * De-initialize main data structures to process register writes in a delayed
  827. * workqueue.
  828. *
  829. * Return: None
  830. */
  831. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  832. {
  833. __hal_flush_reg_write_work(hal);
  834. qdf_flush_workqueue(0, hal->reg_write_wq);
  835. qdf_destroy_workqueue(0, hal->reg_write_wq);
  836. qdf_mem_free(hal->reg_write_queue);
  837. }
  838. #else
  839. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  840. {
  841. return QDF_STATUS_SUCCESS;
  842. }
  843. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  844. {
  845. }
  846. #endif
  847. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  848. #ifdef HAL_RECORD_SUSPEND_WRITE
  849. static struct hal_suspend_write_history
  850. g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
  851. static
  852. void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
  853. {
  854. uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
  855. (HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
  856. struct hal_suspend_write_record *cur_event =
  857. &hal_suspend_write_event.record[index];
  858. cur_event->ts = qdf_get_log_timestamp();
  859. cur_event->ring_id = ring_id;
  860. cur_event->value = value;
  861. cur_event->direct_wcount = count;
  862. qdf_atomic_inc(g_hal_suspend_write_history.index);
  863. }
  864. static inline
  865. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  866. {
  867. if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
  868. hal_event_suspend_record(ring_id, value, count);
  869. }
  870. #else
  871. static inline
  872. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  873. {
  874. }
  875. #endif
  876. #ifdef QCA_WIFI_QCA6750
  877. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  878. struct hal_srng *srng,
  879. void __iomem *addr,
  880. uint32_t value)
  881. {
  882. uint8_t vote_access;
  883. switch (srng->ring_type) {
  884. case CE_SRC:
  885. case CE_DST:
  886. case CE_DST_STATUS:
  887. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  888. HIF_EP_VOTE_NONDP_ACCESS);
  889. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  890. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  891. PLD_MHI_STATE_L0 ==
  892. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  893. hal_write_address_32_mb(hal_soc, addr, value, false);
  894. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  895. srng->wstats.direct++;
  896. } else {
  897. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  898. }
  899. break;
  900. default:
  901. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  902. HIF_EP_VOTE_DP_ACCESS) ==
  903. HIF_EP_VOTE_ACCESS_DISABLE ||
  904. hal_is_reg_write_tput_level_high(hal_soc) ||
  905. PLD_MHI_STATE_L0 ==
  906. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  907. hal_write_address_32_mb(hal_soc, addr, value, false);
  908. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  909. srng->wstats.direct++;
  910. } else {
  911. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  912. }
  913. break;
  914. }
  915. }
  916. #else
  917. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  918. struct hal_srng *srng,
  919. void __iomem *addr,
  920. uint32_t value)
  921. {
  922. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  923. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  924. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  925. srng->wstats.direct++;
  926. hal_write_address_32_mb(hal_soc, addr, value, false);
  927. } else {
  928. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  929. }
  930. hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
  931. }
  932. #endif
  933. #endif
  934. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  935. {
  936. struct hal_soc *hal;
  937. int i;
  938. hal = qdf_mem_malloc(sizeof(*hal));
  939. if (!hal) {
  940. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  941. "%s: hal_soc allocation failed", __func__);
  942. goto fail0;
  943. }
  944. hal->hif_handle = hif_handle;
  945. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  946. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  947. hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
  948. hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */
  949. hal->qdf_dev = qdf_dev;
  950. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  951. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  952. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  953. if (!hal->shadow_rdptr_mem_paddr) {
  954. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  955. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  956. __func__);
  957. goto fail1;
  958. }
  959. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  960. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  961. hal->shadow_wrptr_mem_vaddr =
  962. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  963. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  964. &(hal->shadow_wrptr_mem_paddr));
  965. if (!hal->shadow_wrptr_mem_vaddr) {
  966. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  967. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  968. __func__);
  969. goto fail2;
  970. }
  971. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  972. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  973. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  974. hal->srng_list[i].initialized = 0;
  975. hal->srng_list[i].ring_id = i;
  976. }
  977. qdf_spinlock_create(&hal->register_access_lock);
  978. hal->register_window = 0;
  979. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  980. hal->version = hif_get_soc_version(hif_handle);
  981. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  982. if (!hal->ops) {
  983. hal_err("unable to allocable memory for HAL ops");
  984. goto fail3;
  985. }
  986. hal_target_based_configure(hal);
  987. hal_reg_write_fail_history_init(hal);
  988. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  989. qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal));
  990. qdf_atomic_init(&hal->active_work_cnt);
  991. if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) {
  992. hal_err("unable to initialize delayed reg write");
  993. goto fail4;
  994. }
  995. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  996. return (void *)hal;
  997. fail4:
  998. qdf_ssr_driver_dump_unregister_region("hal_soc");
  999. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1000. qdf_mem_free(hal->ops);
  1001. fail3:
  1002. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1003. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1004. HAL_MAX_LMAC_RINGS,
  1005. hal->shadow_wrptr_mem_vaddr,
  1006. hal->shadow_wrptr_mem_paddr, 0);
  1007. fail2:
  1008. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1009. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1010. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1011. fail1:
  1012. qdf_mem_free(hal);
  1013. fail0:
  1014. return NULL;
  1015. }
  1016. qdf_export_symbol(hal_attach);
  1017. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1018. {
  1019. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1020. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1021. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1022. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1023. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1024. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1025. hif_read_phy_mem_base((void *)hal->hif_handle,
  1026. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1027. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1028. return;
  1029. }
  1030. qdf_export_symbol(hal_get_meminfo);
  1031. void hal_detach(void *hal_soc)
  1032. {
  1033. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1034. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1035. hal_delayed_reg_write_deinit(hal);
  1036. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1037. qdf_ssr_driver_dump_unregister_region("hal_soc");
  1038. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1039. qdf_mem_free(hal->ops);
  1040. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1041. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1042. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1043. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1044. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1045. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1046. qdf_mem_free(hal);
  1047. return;
  1048. }
  1049. qdf_export_symbol(hal_detach);
  1050. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1051. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1052. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1053. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1054. /**
  1055. * hal_ce_dst_setup() - Initialize CE destination ring registers
  1056. * @hal: HAL SOC handle
  1057. * @srng: SRNG ring pointer
  1058. * @ring_num: ring number
  1059. */
  1060. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1061. int ring_num)
  1062. {
  1063. uint32_t reg_val = 0;
  1064. uint32_t reg_addr;
  1065. struct hal_hw_srng_config *ring_config =
  1066. HAL_SRNG_CONFIG(hal, CE_DST);
  1067. /* set DEST_MAX_LENGTH according to ce assignment */
  1068. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1069. ring_config->reg_start[R0_INDEX] +
  1070. (ring_num * ring_config->reg_size[R0_INDEX]));
  1071. reg_val = HAL_REG_READ(hal, reg_addr);
  1072. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1073. reg_val |= srng->u.dst_ring.max_buffer_length &
  1074. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1075. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1076. if (srng->prefetch_timer) {
  1077. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1078. ring_config->reg_start[R0_INDEX] +
  1079. (ring_num * ring_config->reg_size[R0_INDEX]));
  1080. reg_val = HAL_REG_READ(hal, reg_addr);
  1081. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1082. reg_val |= srng->prefetch_timer;
  1083. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1084. reg_val = HAL_REG_READ(hal, reg_addr);
  1085. }
  1086. }
  1087. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1088. uint32_t *ix0, uint32_t *ix1,
  1089. uint32_t *ix2, uint32_t *ix3)
  1090. {
  1091. uint32_t reg_offset;
  1092. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1093. uint32_t reo_reg_base;
  1094. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1095. if (read) {
  1096. if (ix0) {
  1097. reg_offset =
  1098. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1099. reo_reg_base);
  1100. *ix0 = HAL_REG_READ(hal, reg_offset);
  1101. }
  1102. if (ix1) {
  1103. reg_offset =
  1104. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1105. reo_reg_base);
  1106. *ix1 = HAL_REG_READ(hal, reg_offset);
  1107. }
  1108. if (ix2) {
  1109. reg_offset =
  1110. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1111. reo_reg_base);
  1112. *ix2 = HAL_REG_READ(hal, reg_offset);
  1113. }
  1114. if (ix3) {
  1115. reg_offset =
  1116. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1117. reo_reg_base);
  1118. *ix3 = HAL_REG_READ(hal, reg_offset);
  1119. }
  1120. } else {
  1121. if (ix0) {
  1122. reg_offset =
  1123. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1124. reo_reg_base);
  1125. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1126. *ix0, true);
  1127. }
  1128. if (ix1) {
  1129. reg_offset =
  1130. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1131. reo_reg_base);
  1132. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1133. *ix1, true);
  1134. }
  1135. if (ix2) {
  1136. reg_offset =
  1137. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1138. reo_reg_base);
  1139. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1140. *ix2, true);
  1141. }
  1142. if (ix3) {
  1143. reg_offset =
  1144. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1145. reo_reg_base);
  1146. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1147. *ix3, true);
  1148. }
  1149. }
  1150. }
  1151. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1152. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1153. {
  1154. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1155. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1156. }
  1157. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1158. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1159. struct hal_srng *srng,
  1160. uint32_t *vaddr)
  1161. {
  1162. uint32_t reg_offset;
  1163. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1164. if (!srng)
  1165. return;
  1166. srng->u.dst_ring.hp_addr = vaddr;
  1167. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1168. HAL_REG_WRITE_CONFIRM_RETRY(
  1169. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1170. if (vaddr) {
  1171. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1172. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1173. "hp_addr=%pK, cached_hp=%d",
  1174. (void *)srng->u.dst_ring.hp_addr,
  1175. srng->u.dst_ring.cached_hp);
  1176. }
  1177. }
  1178. qdf_export_symbol(hal_srng_dst_init_hp);
  1179. /**
  1180. * hal_srng_hw_init - Private function to initialize SRNG HW
  1181. * @hal: HAL SOC handle
  1182. * @srng: SRNG ring pointer
  1183. * @idle_check: Check if ring is idle
  1184. * @idx: ring index
  1185. */
  1186. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1187. struct hal_srng *srng, bool idle_check, uint32_t idx)
  1188. {
  1189. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1190. hal_srng_src_hw_init(hal, srng, idle_check, idx);
  1191. else
  1192. hal_srng_dst_hw_init(hal, srng, idle_check, idx);
  1193. }
  1194. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1195. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1196. int ring_type, int ring_num)
  1197. {
  1198. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1199. struct hal_hw_srng_config *ring_config =
  1200. HAL_SRNG_CONFIG(hal, ring_type);
  1201. return ring_config->nf_irq_support;
  1202. }
  1203. /**
  1204. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1205. * ring params
  1206. * @srng: SRNG handle
  1207. * @ring_params: ring params for this SRNG
  1208. *
  1209. * Return: None
  1210. */
  1211. static inline void
  1212. hal_srng_set_msi2_params(struct hal_srng *srng,
  1213. struct hal_srng_params *ring_params)
  1214. {
  1215. srng->msi2_addr = ring_params->msi2_addr;
  1216. srng->msi2_data = ring_params->msi2_data;
  1217. }
  1218. /**
  1219. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1220. * @srng: SRNG handle
  1221. * @ring_params: ring params for this SRNG
  1222. *
  1223. * Return: None
  1224. */
  1225. static inline void
  1226. hal_srng_get_nf_params(struct hal_srng *srng,
  1227. struct hal_srng_params *ring_params)
  1228. {
  1229. ring_params->msi2_addr = srng->msi2_addr;
  1230. ring_params->msi2_data = srng->msi2_data;
  1231. }
  1232. /**
  1233. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1234. * @srng: SRNG handle where the params are to be set
  1235. * @ring_params: ring params, from where threshold is to be fetched
  1236. *
  1237. * Return: None
  1238. */
  1239. static inline void
  1240. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1241. struct hal_srng_params *ring_params)
  1242. {
  1243. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1244. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1245. }
  1246. #else
  1247. static inline void
  1248. hal_srng_set_msi2_params(struct hal_srng *srng,
  1249. struct hal_srng_params *ring_params)
  1250. {
  1251. }
  1252. static inline void
  1253. hal_srng_get_nf_params(struct hal_srng *srng,
  1254. struct hal_srng_params *ring_params)
  1255. {
  1256. }
  1257. static inline void
  1258. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1259. struct hal_srng_params *ring_params)
  1260. {
  1261. }
  1262. #endif
  1263. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1264. /**
  1265. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1266. * @srng: Source ring pointer
  1267. *
  1268. * Return: None
  1269. */
  1270. static inline
  1271. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1272. {
  1273. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1274. }
  1275. #else
  1276. static inline
  1277. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1278. {
  1279. }
  1280. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1281. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1282. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1283. {
  1284. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1285. ((srng->num_entries * 90) / 100);
  1286. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1287. ((srng->num_entries * 80) / 100);
  1288. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1289. ((srng->num_entries * 70) / 100);
  1290. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1291. ((srng->num_entries * 60) / 100);
  1292. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1293. ((srng->num_entries * 50) / 100);
  1294. /* Below 50% threshold is not needed */
  1295. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1296. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1297. srng->ring_id,
  1298. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1299. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1300. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1301. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1302. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1303. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1304. }
  1305. #else
  1306. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1307. {
  1308. }
  1309. #endif
  1310. void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id,
  1311. struct hal_srng_params *ring_params, bool idle_check,
  1312. uint32_t idx)
  1313. {
  1314. int ring_id;
  1315. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1316. hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal;
  1317. struct hal_srng *srng;
  1318. struct hal_hw_srng_config *ring_config =
  1319. HAL_SRNG_CONFIG(hal, ring_type);
  1320. void *dev_base_addr;
  1321. int i;
  1322. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1323. if (ring_id < 0)
  1324. return NULL;
  1325. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1326. srng = hal_get_srng(hal_soc, ring_id);
  1327. if (srng->initialized) {
  1328. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1329. return NULL;
  1330. }
  1331. dev_base_addr = hal->dev_base_addr;
  1332. srng->ring_id = ring_id;
  1333. srng->ring_type = ring_type;
  1334. srng->ring_dir = ring_config->ring_dir;
  1335. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1336. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1337. srng->entry_size = ring_config->entry_size;
  1338. srng->num_entries = ring_params->num_entries;
  1339. srng->ring_size = srng->num_entries * srng->entry_size;
  1340. srng->ring_size_mask = srng->ring_size - 1;
  1341. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1342. srng->msi_addr = ring_params->msi_addr;
  1343. srng->msi_data = ring_params->msi_data;
  1344. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1345. srng->intr_batch_cntr_thres_entries =
  1346. ring_params->intr_batch_cntr_thres_entries;
  1347. if (!idle_check)
  1348. srng->prefetch_timer = ring_params->prefetch_timer;
  1349. srng->hal_soc = hal_soc;
  1350. hal_srng_set_msi2_params(srng, ring_params);
  1351. hal_srng_update_high_wm_thresholds(srng);
  1352. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1353. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1354. + (ring_num * ring_config->reg_size[i]);
  1355. }
  1356. /* Zero out the entire ring memory */
  1357. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1358. srng->num_entries) << 2);
  1359. srng->flags = ring_params->flags;
  1360. /* For cached descriptors flush and invalidate the memory*/
  1361. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1362. qdf_nbuf_dma_clean_range(
  1363. srng->ring_base_vaddr,
  1364. srng->ring_base_vaddr +
  1365. ((srng->entry_size * srng->num_entries)));
  1366. qdf_nbuf_dma_inv_range(
  1367. srng->ring_base_vaddr,
  1368. srng->ring_base_vaddr +
  1369. ((srng->entry_size * srng->num_entries)));
  1370. }
  1371. #ifdef BIG_ENDIAN_HOST
  1372. /* TODO: See if we should we get these flags from caller */
  1373. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1374. srng->flags |= HAL_SRNG_MSI_SWAP;
  1375. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1376. #endif
  1377. hal_srng_last_desc_cleared_init(srng);
  1378. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1379. srng->u.src_ring.hp = 0;
  1380. srng->u.src_ring.reap_hp = srng->ring_size -
  1381. srng->entry_size;
  1382. srng->u.src_ring.tp_addr =
  1383. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1384. srng->u.src_ring.low_threshold =
  1385. ring_params->low_threshold * srng->entry_size;
  1386. if (srng->u.src_ring.tp_addr)
  1387. qdf_mem_zero(srng->u.src_ring.tp_addr,
  1388. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1389. if (ring_config->lmac_ring) {
  1390. /* For LMAC rings, head pointer updates will be done
  1391. * through FW by writing to a shared memory location
  1392. */
  1393. srng->u.src_ring.hp_addr =
  1394. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1395. HAL_SRNG_LMAC1_ID_START]);
  1396. srng->flags |= HAL_SRNG_LMAC_RING;
  1397. if (srng->u.src_ring.hp_addr)
  1398. qdf_mem_zero(srng->u.src_ring.hp_addr,
  1399. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1400. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1401. srng->u.src_ring.hp_addr =
  1402. hal_get_window_address(hal,
  1403. SRNG_SRC_ADDR(srng, HP));
  1404. if (CHECK_SHADOW_REGISTERS) {
  1405. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1406. QDF_TRACE_LEVEL_ERROR,
  1407. "%s: Ring (%d, %d) missing shadow config",
  1408. __func__, ring_type, ring_num);
  1409. }
  1410. } else {
  1411. hal_validate_shadow_register(hal,
  1412. SRNG_SRC_ADDR(srng, HP),
  1413. srng->u.src_ring.hp_addr);
  1414. }
  1415. } else {
  1416. /* During initialization loop count in all the descriptors
  1417. * will be set to zero, and HW will set it to 1 on completing
  1418. * descriptor update in first loop, and increments it by 1 on
  1419. * subsequent loops (loop count wraps around after reaching
  1420. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1421. * loop count in descriptors updated by HW (to be processed
  1422. * by SW).
  1423. */
  1424. hal_srng_set_nf_thresholds(srng, ring_params);
  1425. srng->u.dst_ring.loop_cnt = 1;
  1426. srng->u.dst_ring.tp = 0;
  1427. srng->u.dst_ring.hp_addr =
  1428. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1429. if (srng->u.dst_ring.hp_addr)
  1430. qdf_mem_zero(srng->u.dst_ring.hp_addr,
  1431. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1432. if (ring_config->lmac_ring) {
  1433. /* For LMAC rings, tail pointer updates will be done
  1434. * through FW by writing to a shared memory location
  1435. */
  1436. srng->u.dst_ring.tp_addr =
  1437. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1438. HAL_SRNG_LMAC1_ID_START]);
  1439. srng->flags |= HAL_SRNG_LMAC_RING;
  1440. if (srng->u.dst_ring.tp_addr)
  1441. qdf_mem_zero(srng->u.dst_ring.tp_addr,
  1442. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1443. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1444. srng->u.dst_ring.tp_addr =
  1445. hal_get_window_address(hal,
  1446. SRNG_DST_ADDR(srng, TP));
  1447. if (CHECK_SHADOW_REGISTERS) {
  1448. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1449. QDF_TRACE_LEVEL_ERROR,
  1450. "%s: Ring (%d, %d) missing shadow config",
  1451. __func__, ring_type, ring_num);
  1452. }
  1453. } else {
  1454. hal_validate_shadow_register(hal,
  1455. SRNG_DST_ADDR(srng, TP),
  1456. srng->u.dst_ring.tp_addr);
  1457. }
  1458. }
  1459. if (!(ring_config->lmac_ring)) {
  1460. if (idx) {
  1461. hal->ops->hal_tx_ring_halt_set(hal_hdl);
  1462. do {
  1463. hal_info("Waiting for ring reset\n");
  1464. } while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl)));
  1465. }
  1466. hal_srng_hw_init(hal, srng, idle_check, idx);
  1467. if (idx) {
  1468. hal->ops->hal_tx_ring_halt_reset(hal_hdl);
  1469. }
  1470. if (ring_type == CE_DST) {
  1471. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1472. hal_ce_dst_setup(hal, srng, ring_num);
  1473. }
  1474. }
  1475. SRNG_LOCK_INIT(&srng->lock);
  1476. srng->srng_event = 0;
  1477. srng->initialized = true;
  1478. return (void *)srng;
  1479. }
  1480. qdf_export_symbol(hal_srng_setup_idx);
  1481. /**
  1482. * hal_srng_setup - Initialize HW SRNG ring.
  1483. * @hal_soc: Opaque HAL SOC handle
  1484. * @ring_type: one of the types from hal_ring_type
  1485. * @ring_num: Ring number if there are multiple rings of same type (staring
  1486. * from 0)
  1487. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1488. * @ring_params: SRNG ring params in hal_srng_params structure.
  1489. * @idle_check: Check if ring is idle
  1490. *
  1491. * Callers are expected to allocate contiguous ring memory of size
  1492. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1493. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1494. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1495. * and size of each ring entry should be queried using the API
  1496. * hal_srng_get_entrysize
  1497. *
  1498. * Return: Opaque pointer to ring on success
  1499. * NULL on failure (if given ring is not available)
  1500. */
  1501. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1502. int mac_id, struct hal_srng_params *ring_params,
  1503. bool idle_check)
  1504. {
  1505. return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id,
  1506. ring_params, idle_check, 0);
  1507. }
  1508. qdf_export_symbol(hal_srng_setup);
  1509. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1510. {
  1511. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1512. SRNG_LOCK_DESTROY(&srng->lock);
  1513. srng->initialized = 0;
  1514. hal_srng_hw_disable(hal_soc, srng);
  1515. }
  1516. qdf_export_symbol(hal_srng_cleanup);
  1517. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1518. {
  1519. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1520. struct hal_hw_srng_config *ring_config =
  1521. HAL_SRNG_CONFIG(hal, ring_type);
  1522. return ring_config->entry_size << 2;
  1523. }
  1524. qdf_export_symbol(hal_srng_get_entrysize);
  1525. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1526. {
  1527. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1528. struct hal_hw_srng_config *ring_config =
  1529. HAL_SRNG_CONFIG(hal, ring_type);
  1530. return ring_config->max_size / ring_config->entry_size;
  1531. }
  1532. qdf_export_symbol(hal_srng_max_entries);
  1533. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1534. {
  1535. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1536. struct hal_hw_srng_config *ring_config =
  1537. HAL_SRNG_CONFIG(hal, ring_type);
  1538. return ring_config->ring_dir;
  1539. }
  1540. void hal_srng_dump(struct hal_srng *srng)
  1541. {
  1542. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1543. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1544. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1545. srng->u.src_ring.hp,
  1546. srng->u.src_ring.reap_hp,
  1547. *srng->u.src_ring.tp_addr,
  1548. srng->u.src_ring.cached_tp);
  1549. } else {
  1550. hal_debug("=== DST RING %d ===", srng->ring_id);
  1551. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1552. srng->u.dst_ring.tp,
  1553. *srng->u.dst_ring.hp_addr,
  1554. srng->u.dst_ring.cached_hp,
  1555. srng->u.dst_ring.loop_cnt);
  1556. }
  1557. }
  1558. void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1559. hal_ring_handle_t hal_ring_hdl,
  1560. struct hal_srng_params *ring_params)
  1561. {
  1562. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1563. int i =0;
  1564. ring_params->ring_id = srng->ring_id;
  1565. ring_params->ring_dir = srng->ring_dir;
  1566. ring_params->entry_size = srng->entry_size;
  1567. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1568. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1569. ring_params->num_entries = srng->num_entries;
  1570. ring_params->msi_addr = srng->msi_addr;
  1571. ring_params->msi_data = srng->msi_data;
  1572. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1573. ring_params->intr_batch_cntr_thres_entries =
  1574. srng->intr_batch_cntr_thres_entries;
  1575. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1576. ring_params->flags = srng->flags;
  1577. ring_params->ring_id = srng->ring_id;
  1578. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1579. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1580. hal_srng_get_nf_params(srng, ring_params);
  1581. }
  1582. qdf_export_symbol(hal_get_srng_params);
  1583. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1584. uint32_t low_threshold)
  1585. {
  1586. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1587. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1588. }
  1589. qdf_export_symbol(hal_set_low_threshold);
  1590. #ifdef FEATURE_RUNTIME_PM
  1591. void
  1592. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1593. hal_ring_handle_t hal_ring_hdl,
  1594. uint32_t rtpm_id)
  1595. {
  1596. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  1597. if (qdf_unlikely(!hal_ring_hdl)) {
  1598. qdf_print("Error: Invalid hal_ring\n");
  1599. return;
  1600. }
  1601. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1602. if (hif_system_pm_state_check(hal_soc->hif_handle)) {
  1603. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1604. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1605. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1606. } else {
  1607. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1608. }
  1609. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1610. } else {
  1611. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1612. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1613. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1614. }
  1615. }
  1616. qdf_export_symbol(hal_srng_rtpm_access_end);
  1617. #endif /* FEATURE_RUNTIME_PM */
  1618. #ifdef FORCE_WAKE
  1619. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1620. {
  1621. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1622. hal_soc->init_phase = init_phase;
  1623. }
  1624. #endif /* FORCE_WAKE */