dp_rx_defrag.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045
  1. /*
  2. * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. #include "dp_rx_buffer_pool.h"
  31. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  32. "AES-CCM",
  33. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  34. IEEE80211_WEP_MICLEN,
  35. 0,
  36. };
  37. const struct dp_rx_defrag_cipher dp_f_tkip = {
  38. "TKIP",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_CRCLEN,
  41. IEEE80211_WEP_MICLEN,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_wep = {
  44. "WEP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. 0,
  48. };
  49. /*
  50. * dp_rx_defrag_frames_free(): Free fragment chain
  51. * @frames: Fragment chain
  52. *
  53. * Iterates through the fragment chain and frees them
  54. * Returns: None
  55. */
  56. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  57. {
  58. qdf_nbuf_t next, frag = frames;
  59. while (frag) {
  60. next = qdf_nbuf_next(frag);
  61. qdf_nbuf_free(frag);
  62. frag = next;
  63. }
  64. }
  65. /*
  66. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  67. * @peer: Pointer to the peer data structure
  68. * @tid: Transmit ID (TID)
  69. *
  70. * Saves MPDU descriptor info and MSDU link pointer from REO
  71. * ring descriptor. The cache is created per peer, per TID
  72. *
  73. * Returns: None
  74. */
  75. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  76. {
  77. if (peer->rx_tid[tid].dst_ring_desc)
  78. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  79. peer->rx_tid[tid].dst_ring_desc = NULL;
  80. peer->rx_tid[tid].head_frag_desc = NULL;
  81. }
  82. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  83. unsigned int tid)
  84. {
  85. struct dp_soc *soc;
  86. struct dp_pdev *pdev;
  87. struct dp_srng *dp_rxdma_srng;
  88. struct rx_desc_pool *rx_desc_pool;
  89. union dp_rx_desc_list_elem_t *head = NULL;
  90. union dp_rx_desc_list_elem_t *tail = NULL;
  91. uint8_t pool_id;
  92. pdev = peer->vdev->pdev;
  93. soc = pdev->soc;
  94. if (peer->rx_tid[tid].head_frag_desc) {
  95. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  96. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  97. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  98. dp_rx_add_to_free_desc_list(&head, &tail,
  99. peer->rx_tid[tid].head_frag_desc);
  100. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  101. 1, &head, &tail);
  102. }
  103. if (peer->rx_tid[tid].dst_ring_desc) {
  104. if (dp_rx_link_desc_return(soc,
  105. peer->rx_tid[tid].dst_ring_desc,
  106. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  107. QDF_STATUS_SUCCESS)
  108. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  109. "%s: Failed to return link desc", __func__);
  110. }
  111. }
  112. /*
  113. * dp_rx_reorder_flush_frag(): Flush the frag list
  114. * @peer: Pointer to the peer data structure
  115. * @tid: Transmit ID (TID)
  116. *
  117. * Flush the per-TID frag list
  118. *
  119. * Returns: None
  120. */
  121. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  122. unsigned int tid)
  123. {
  124. dp_info_rl("Flushing TID %d", tid);
  125. if (!peer) {
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: NULL peer", __func__);
  128. return;
  129. }
  130. dp_rx_return_head_frag_desc(peer, tid);
  131. dp_rx_defrag_cleanup(peer, tid);
  132. }
  133. /*
  134. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  135. * @soc: DP SOC
  136. *
  137. * Flush fragments of all waitlisted TID's
  138. *
  139. * Returns: None
  140. */
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid *rx_reorder = NULL;
  144. struct dp_rx_tid *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid) temp_list;
  147. TAILQ_INIT(&temp_list);
  148. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  149. FL("Current time %u"), now_ms);
  150. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  151. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  152. defrag_waitlist_elem, tmp) {
  153. uint32_t tid;
  154. if (rx_reorder->defrag_timeout_ms > now_ms)
  155. break;
  156. tid = rx_reorder->tid;
  157. if (tid >= DP_MAX_TIDS) {
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  162. defrag_waitlist_elem);
  163. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  164. /* Move to temp list and clean-up later */
  165. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  166. defrag_waitlist_elem);
  167. }
  168. if (rx_reorder) {
  169. soc->rx.defrag.next_flush_ms =
  170. rx_reorder->defrag_timeout_ms;
  171. } else {
  172. soc->rx.defrag.next_flush_ms =
  173. now_ms + soc->rx.defrag.timeout_ms;
  174. }
  175. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  176. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  177. defrag_waitlist_elem, tmp) {
  178. struct dp_peer *peer, *temp_peer = NULL;
  179. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  180. TAILQ_REMOVE(&temp_list, rx_reorder,
  181. defrag_waitlist_elem);
  182. /* get address of current peer */
  183. peer =
  184. container_of(rx_reorder, struct dp_peer,
  185. rx_tid[rx_reorder->tid]);
  186. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  187. temp_peer = dp_peer_find_by_id(soc, peer->peer_id);
  188. if (temp_peer == peer) {
  189. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  190. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  191. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  192. }
  193. if (temp_peer)
  194. dp_peer_unref_del_find_by_id(temp_peer);
  195. }
  196. }
  197. /*
  198. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  199. * @peer: Pointer to the peer data structure
  200. * @tid: Transmit ID (TID)
  201. *
  202. * Appends per-tid fragments to global fragment wait list
  203. *
  204. * Returns: None
  205. */
  206. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  207. {
  208. struct dp_soc *psoc = peer->vdev->pdev->soc;
  209. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  210. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
  211. tid, peer, peer->mac_addr.raw);
  212. /* TODO: use LIST macros instead of TAIL macros */
  213. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  214. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  215. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  216. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  217. defrag_waitlist_elem);
  218. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  219. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  220. }
  221. /*
  222. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  223. * @peer: Pointer to the peer data structure
  224. * @tid: Transmit ID (TID)
  225. *
  226. * Remove fragments from waitlist
  227. *
  228. * Returns: None
  229. */
  230. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  231. {
  232. struct dp_pdev *pdev = peer->vdev->pdev;
  233. struct dp_soc *soc = pdev->soc;
  234. struct dp_rx_tid *rx_reorder;
  235. struct dp_rx_tid *tmp;
  236. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
  237. tid, peer, peer->mac_addr.raw);
  238. if (tid >= DP_MAX_TIDS) {
  239. dp_err("TID out of bounds: %d", tid);
  240. qdf_assert_always(0);
  241. }
  242. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  243. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  244. defrag_waitlist_elem, tmp) {
  245. struct dp_peer *peer_on_waitlist;
  246. /* get address of current peer */
  247. peer_on_waitlist =
  248. container_of(rx_reorder, struct dp_peer,
  249. rx_tid[rx_reorder->tid]);
  250. /* Ensure it is TID for same peer */
  251. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  252. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  253. rx_reorder, defrag_waitlist_elem);
  254. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  255. }
  256. }
  257. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  258. }
  259. /*
  260. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  261. * @peer: Pointer to the peer data structure
  262. * @tid: Transmit ID (TID)
  263. * @head_addr: Pointer to head list
  264. * @tail_addr: Pointer to tail list
  265. * @frag: Incoming fragment
  266. * @all_frag_present: Flag to indicate whether all fragments are received
  267. *
  268. * Build a per-tid, per-sequence fragment list.
  269. *
  270. * Returns: Success, if inserted
  271. */
  272. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  273. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  274. uint8_t *all_frag_present)
  275. {
  276. qdf_nbuf_t next;
  277. qdf_nbuf_t prev = NULL;
  278. qdf_nbuf_t cur;
  279. uint16_t head_fragno, cur_fragno, next_fragno;
  280. uint8_t last_morefrag = 1, count = 0;
  281. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  282. uint8_t *rx_desc_info;
  283. qdf_assert(frag);
  284. qdf_assert(head_addr);
  285. qdf_assert(tail_addr);
  286. *all_frag_present = 0;
  287. rx_desc_info = qdf_nbuf_data(frag);
  288. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  289. dp_debug("cur_fragno %d\n", cur_fragno);
  290. /* If this is the first fragment */
  291. if (!(*head_addr)) {
  292. *head_addr = *tail_addr = frag;
  293. qdf_nbuf_set_next(*tail_addr, NULL);
  294. rx_tid->curr_frag_num = cur_fragno;
  295. goto insert_done;
  296. }
  297. /* In sequence fragment */
  298. if (cur_fragno > rx_tid->curr_frag_num) {
  299. qdf_nbuf_set_next(*tail_addr, frag);
  300. *tail_addr = frag;
  301. qdf_nbuf_set_next(*tail_addr, NULL);
  302. rx_tid->curr_frag_num = cur_fragno;
  303. } else {
  304. /* Out of sequence fragment */
  305. cur = *head_addr;
  306. rx_desc_info = qdf_nbuf_data(cur);
  307. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  308. if (cur_fragno == head_fragno) {
  309. qdf_nbuf_free(frag);
  310. goto insert_fail;
  311. } else if (head_fragno > cur_fragno) {
  312. qdf_nbuf_set_next(frag, cur);
  313. cur = frag;
  314. *head_addr = frag; /* head pointer to be updated */
  315. } else {
  316. while ((cur_fragno > head_fragno) && cur) {
  317. prev = cur;
  318. cur = qdf_nbuf_next(cur);
  319. rx_desc_info = qdf_nbuf_data(cur);
  320. head_fragno =
  321. dp_rx_frag_get_mpdu_frag_number(
  322. rx_desc_info);
  323. }
  324. if (cur_fragno == head_fragno) {
  325. qdf_nbuf_free(frag);
  326. goto insert_fail;
  327. }
  328. qdf_nbuf_set_next(prev, frag);
  329. qdf_nbuf_set_next(frag, cur);
  330. }
  331. }
  332. next = qdf_nbuf_next(*head_addr);
  333. rx_desc_info = qdf_nbuf_data(*tail_addr);
  334. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  335. /* TODO: optimize the loop */
  336. if (!last_morefrag) {
  337. /* Check if all fragments are present */
  338. do {
  339. rx_desc_info = qdf_nbuf_data(next);
  340. next_fragno =
  341. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  342. count++;
  343. if (next_fragno != count)
  344. break;
  345. next = qdf_nbuf_next(next);
  346. } while (next);
  347. if (!next) {
  348. *all_frag_present = 1;
  349. return QDF_STATUS_SUCCESS;
  350. } else {
  351. /* revisit */
  352. }
  353. }
  354. insert_done:
  355. return QDF_STATUS_SUCCESS;
  356. insert_fail:
  357. return QDF_STATUS_E_FAILURE;
  358. }
  359. /*
  360. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  361. * @msdu: Pointer to the fragment
  362. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  363. *
  364. * decap tkip encrypted fragment
  365. *
  366. * Returns: QDF_STATUS
  367. */
  368. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  369. {
  370. uint8_t *ivp, *orig_hdr;
  371. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  372. /* start of 802.11 header info */
  373. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  374. /* TKIP header is located post 802.11 header */
  375. ivp = orig_hdr + hdrlen;
  376. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  377. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  378. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  379. return QDF_STATUS_E_DEFRAG_ERROR;
  380. }
  381. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  382. return QDF_STATUS_SUCCESS;
  383. }
  384. /*
  385. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  386. * @nbuf: Pointer to the fragment buffer
  387. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  388. *
  389. * Remove MIC information from CCMP fragment
  390. *
  391. * Returns: QDF_STATUS
  392. */
  393. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  394. {
  395. uint8_t *ivp, *orig_hdr;
  396. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  397. /* start of the 802.11 header */
  398. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  399. /* CCMP header is located after 802.11 header */
  400. ivp = orig_hdr + hdrlen;
  401. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  402. return QDF_STATUS_E_DEFRAG_ERROR;
  403. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  404. return QDF_STATUS_SUCCESS;
  405. }
  406. /*
  407. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  408. * @nbuf: Pointer to the fragment
  409. * @hdrlen: length of the header information
  410. *
  411. * decap CCMP encrypted fragment
  412. *
  413. * Returns: QDF_STATUS
  414. */
  415. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  416. {
  417. uint8_t *ivp, *origHdr;
  418. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  419. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  420. ivp = origHdr + hdrlen;
  421. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  422. return QDF_STATUS_E_DEFRAG_ERROR;
  423. /* Let's pull the header later */
  424. return QDF_STATUS_SUCCESS;
  425. }
  426. /*
  427. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  428. * @msdu: Pointer to the fragment
  429. * @hdrlen: length of the header information
  430. *
  431. * decap WEP encrypted fragment
  432. *
  433. * Returns: QDF_STATUS
  434. */
  435. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  436. {
  437. uint8_t *origHdr;
  438. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  439. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  440. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  441. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  442. return QDF_STATUS_SUCCESS;
  443. }
  444. /*
  445. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  446. * @soc: soc handle
  447. * @nbuf: Pointer to the fragment
  448. *
  449. * Calculate the header size of the received fragment
  450. *
  451. * Returns: header size (uint16_t)
  452. */
  453. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  454. {
  455. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  456. uint16_t size = sizeof(struct ieee80211_frame);
  457. uint16_t fc = 0;
  458. uint32_t to_ds, fr_ds;
  459. uint8_t frm_ctrl_valid;
  460. uint16_t frm_ctrl_field;
  461. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  462. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  463. frm_ctrl_valid =
  464. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  465. rx_tlv_hdr);
  466. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  467. if (to_ds && fr_ds)
  468. size += QDF_MAC_ADDR_SIZE;
  469. if (frm_ctrl_valid) {
  470. fc = frm_ctrl_field;
  471. /* use 1-st byte for validation */
  472. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  473. size += sizeof(uint16_t);
  474. /* use 2-nd byte for validation */
  475. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  476. size += sizeof(struct ieee80211_htc);
  477. }
  478. }
  479. return size;
  480. }
  481. /*
  482. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  483. * @wh0: Pointer to the wireless header of the fragment
  484. * @hdr: Array to hold the pseudo header
  485. *
  486. * Calculate a pseudo MIC header
  487. *
  488. * Returns: None
  489. */
  490. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  491. uint8_t hdr[])
  492. {
  493. const struct ieee80211_frame_addr4 *wh =
  494. (const struct ieee80211_frame_addr4 *)wh0;
  495. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  496. case IEEE80211_FC1_DIR_NODS:
  497. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  498. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  499. wh->i_addr2);
  500. break;
  501. case IEEE80211_FC1_DIR_TODS:
  502. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  503. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  504. wh->i_addr2);
  505. break;
  506. case IEEE80211_FC1_DIR_FROMDS:
  507. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  508. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  509. wh->i_addr3);
  510. break;
  511. case IEEE80211_FC1_DIR_DSTODS:
  512. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  513. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  514. wh->i_addr4);
  515. break;
  516. }
  517. /*
  518. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  519. * it could also be set for deauth, disassoc, action, etc. for
  520. * a mgt type frame. It comes into picture for MFP.
  521. */
  522. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  523. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  524. IEEE80211_FC1_DIR_DSTODS) {
  525. const struct ieee80211_qosframe_addr4 *qwh =
  526. (const struct ieee80211_qosframe_addr4 *)wh;
  527. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  528. } else {
  529. const struct ieee80211_qosframe *qwh =
  530. (const struct ieee80211_qosframe *)wh;
  531. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  532. }
  533. } else {
  534. hdr[12] = 0;
  535. }
  536. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  537. }
  538. /*
  539. * dp_rx_defrag_mic(): Calculate MIC header
  540. * @key: Pointer to the key
  541. * @wbuf: fragment buffer
  542. * @off: Offset
  543. * @data_len: Data length
  544. * @mic: Array to hold MIC
  545. *
  546. * Calculate a pseudo MIC header
  547. *
  548. * Returns: QDF_STATUS
  549. */
  550. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  551. uint16_t off, uint16_t data_len, uint8_t mic[])
  552. {
  553. uint8_t hdr[16] = { 0, };
  554. uint32_t l, r;
  555. const uint8_t *data;
  556. uint32_t space;
  557. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  558. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  559. + rx_desc_len), hdr);
  560. l = dp_rx_get_le32(key);
  561. r = dp_rx_get_le32(key + 4);
  562. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  563. l ^= dp_rx_get_le32(hdr);
  564. dp_rx_michael_block(l, r);
  565. l ^= dp_rx_get_le32(&hdr[4]);
  566. dp_rx_michael_block(l, r);
  567. l ^= dp_rx_get_le32(&hdr[8]);
  568. dp_rx_michael_block(l, r);
  569. l ^= dp_rx_get_le32(&hdr[12]);
  570. dp_rx_michael_block(l, r);
  571. /* first buffer has special handling */
  572. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  573. space = qdf_nbuf_len(wbuf) - off;
  574. for (;; ) {
  575. if (space > data_len)
  576. space = data_len;
  577. /* collect 32-bit blocks from current buffer */
  578. while (space >= sizeof(uint32_t)) {
  579. l ^= dp_rx_get_le32(data);
  580. dp_rx_michael_block(l, r);
  581. data += sizeof(uint32_t);
  582. space -= sizeof(uint32_t);
  583. data_len -= sizeof(uint32_t);
  584. }
  585. if (data_len < sizeof(uint32_t))
  586. break;
  587. wbuf = qdf_nbuf_next(wbuf);
  588. if (!wbuf)
  589. return QDF_STATUS_E_DEFRAG_ERROR;
  590. if (space != 0) {
  591. const uint8_t *data_next;
  592. /*
  593. * Block straddles buffers, split references.
  594. */
  595. data_next =
  596. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  597. if ((qdf_nbuf_len(wbuf)) <
  598. sizeof(uint32_t) - space) {
  599. return QDF_STATUS_E_DEFRAG_ERROR;
  600. }
  601. switch (space) {
  602. case 1:
  603. l ^= dp_rx_get_le32_split(data[0],
  604. data_next[0], data_next[1],
  605. data_next[2]);
  606. data = data_next + 3;
  607. space = (qdf_nbuf_len(wbuf) - off) - 3;
  608. break;
  609. case 2:
  610. l ^= dp_rx_get_le32_split(data[0], data[1],
  611. data_next[0], data_next[1]);
  612. data = data_next + 2;
  613. space = (qdf_nbuf_len(wbuf) - off) - 2;
  614. break;
  615. case 3:
  616. l ^= dp_rx_get_le32_split(data[0], data[1],
  617. data[2], data_next[0]);
  618. data = data_next + 1;
  619. space = (qdf_nbuf_len(wbuf) - off) - 1;
  620. break;
  621. }
  622. dp_rx_michael_block(l, r);
  623. data_len -= sizeof(uint32_t);
  624. } else {
  625. /*
  626. * Setup for next buffer.
  627. */
  628. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  629. space = qdf_nbuf_len(wbuf) - off;
  630. }
  631. }
  632. /* Last block and padding (0x5a, 4..7 x 0) */
  633. switch (data_len) {
  634. case 0:
  635. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  636. break;
  637. case 1:
  638. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  639. break;
  640. case 2:
  641. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  642. break;
  643. case 3:
  644. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  645. break;
  646. }
  647. dp_rx_michael_block(l, r);
  648. dp_rx_michael_block(l, r);
  649. dp_rx_put_le32(mic, l);
  650. dp_rx_put_le32(mic + 4, r);
  651. return QDF_STATUS_SUCCESS;
  652. }
  653. /*
  654. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  655. * @key: Pointer to the key
  656. * @msdu: fragment buffer
  657. * @hdrlen: Length of the header information
  658. *
  659. * Remove MIC information from the TKIP frame
  660. *
  661. * Returns: QDF_STATUS
  662. */
  663. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  664. qdf_nbuf_t msdu, uint16_t hdrlen)
  665. {
  666. QDF_STATUS status;
  667. uint32_t pktlen = 0;
  668. uint8_t mic[IEEE80211_WEP_MICLEN];
  669. uint8_t mic0[IEEE80211_WEP_MICLEN];
  670. qdf_nbuf_t prev = NULL, next;
  671. next = msdu;
  672. while (next) {
  673. pktlen += (qdf_nbuf_len(next) - hdrlen);
  674. prev = next;
  675. dp_debug("%s pktlen %u", __func__,
  676. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  677. next = qdf_nbuf_next(next);
  678. }
  679. if (!prev) {
  680. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  681. "%s Defrag chaining failed !\n", __func__);
  682. return QDF_STATUS_E_DEFRAG_ERROR;
  683. }
  684. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  685. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  686. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  687. pktlen -= dp_f_tkip.ic_miclen;
  688. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  689. pktlen, mic);
  690. if (QDF_IS_STATUS_ERROR(status))
  691. return status;
  692. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  693. return QDF_STATUS_E_DEFRAG_ERROR;
  694. return QDF_STATUS_SUCCESS;
  695. }
  696. /*
  697. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  698. * @nbuf: buffer pointer
  699. * @hdrsize: size of the header to be pulled
  700. *
  701. * Pull the RXTLV & the 802.11 headers
  702. *
  703. * Returns: None
  704. */
  705. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  706. {
  707. struct rx_pkt_tlvs *rx_pkt_tlv =
  708. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  709. struct rx_mpdu_info *rx_mpdu_info_details =
  710. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  711. dp_debug("pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  712. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  713. rx_mpdu_info_details->pn_95_64,
  714. rx_mpdu_info_details->pn_127_96);
  715. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + hdrsize);
  716. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  717. "%s: final pktlen %d .11len %d",
  718. __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  719. }
  720. /*
  721. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  722. * @peer: Pointer to the peer
  723. * @head: Pointer to list of fragments
  724. * @hdrsize: Size of the header to be pulled
  725. *
  726. * Construct a nbuf fraglist
  727. *
  728. * Returns: None
  729. */
  730. static int
  731. dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
  732. uint16_t hdrsize)
  733. {
  734. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  735. qdf_nbuf_t rx_nbuf = msdu;
  736. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  737. uint32_t len = 0;
  738. uint64_t cur_pn128[2], prev_pn128[2];
  739. int out_of_order = 0;
  740. prev_pn128[0] = rx_tid->pn128[0];
  741. prev_pn128[1] = rx_tid->pn128[1];
  742. while (msdu) {
  743. struct rx_pkt_tlvs *rx_pkt_tlv =
  744. (struct rx_pkt_tlvs *)qdf_nbuf_data(msdu);
  745. struct rx_mpdu_info *rx_mpdu_info_details =
  746. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  747. cur_pn128[0] = rx_mpdu_info_details->pn_31_0;
  748. cur_pn128[0] |=
  749. ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  750. cur_pn128[1] = rx_mpdu_info_details->pn_95_64;
  751. cur_pn128[1] |=
  752. ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  753. dp_debug("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  754. cur_pn128[0], cur_pn128[1],
  755. prev_pn128[0], prev_pn128[1]);
  756. if (cur_pn128[1] == prev_pn128[1])
  757. out_of_order = (cur_pn128[0] <= prev_pn128[0]);
  758. else
  759. out_of_order = (cur_pn128[1] < prev_pn128[1]);
  760. if (out_of_order)
  761. return QDF_STATUS_E_FAILURE;
  762. prev_pn128[0] = cur_pn128[0];
  763. prev_pn128[1] = cur_pn128[1];
  764. dp_rx_frag_pull_hdr(msdu, hdrsize);
  765. len += qdf_nbuf_len(msdu);
  766. msdu = qdf_nbuf_next(msdu);
  767. }
  768. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  769. qdf_nbuf_set_next(head, NULL);
  770. qdf_nbuf_set_is_frag(head, 1);
  771. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  772. "%s: head len %d ext len %d data len %d ",
  773. __func__,
  774. (uint32_t)qdf_nbuf_len(head),
  775. (uint32_t)qdf_nbuf_len(rx_nbuf),
  776. (uint32_t)(head->data_len));
  777. return QDF_STATUS_SUCCESS;
  778. }
  779. /**
  780. * dp_rx_defrag_err() - rx err handler
  781. * @pdev: handle to pdev object
  782. * @vdev_id: vdev id
  783. * @peer_mac_addr: peer mac address
  784. * @tid: TID
  785. * @tsf32: TSF
  786. * @err_type: error type
  787. * @rx_frame: rx frame
  788. * @pn: PN Number
  789. * @key_id: key id
  790. *
  791. * This function handles rx error and send MIC error notification
  792. *
  793. * Return: None
  794. */
  795. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  796. {
  797. struct ol_if_ops *tops = NULL;
  798. struct dp_pdev *pdev = vdev->pdev;
  799. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  800. uint8_t *orig_hdr;
  801. struct ieee80211_frame *wh;
  802. struct cdp_rx_mic_err_info mic_failure_info;
  803. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  804. wh = (struct ieee80211_frame *)orig_hdr;
  805. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  806. (struct qdf_mac_addr *)&wh->i_addr1);
  807. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  808. (struct qdf_mac_addr *)&wh->i_addr2);
  809. mic_failure_info.key_id = 0;
  810. mic_failure_info.multicast =
  811. IEEE80211_IS_MULTICAST(wh->i_addr1);
  812. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  813. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  814. mic_failure_info.data = (uint8_t *)wh;
  815. mic_failure_info.vdev_id = vdev->vdev_id;
  816. tops = pdev->soc->cdp_soc.ol_ops;
  817. if (tops->rx_mic_error)
  818. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  819. &mic_failure_info);
  820. }
  821. /*
  822. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  823. * @soc: dp soc handle
  824. * @nbuf: Pointer to the fragment buffer
  825. * @hdrsize: Size of headers
  826. *
  827. * Transcap the fragment from 802.11 to 802.3
  828. *
  829. * Returns: None
  830. */
  831. static void
  832. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
  833. qdf_nbuf_t nbuf, uint16_t hdrsize)
  834. {
  835. struct llc_snap_hdr_t *llchdr;
  836. struct ethernet_hdr_t *eth_hdr;
  837. uint8_t ether_type[2];
  838. uint16_t fc = 0;
  839. union dp_align_mac_addr mac_addr;
  840. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  841. struct rx_pkt_tlvs *rx_pkt_tlv =
  842. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  843. struct rx_mpdu_info *rx_mpdu_info_details =
  844. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  845. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  846. dp_debug("head_nbuf pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  847. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  848. rx_mpdu_info_details->pn_95_64,
  849. rx_mpdu_info_details->pn_127_96);
  850. rx_tid->pn128[0] = rx_mpdu_info_details->pn_31_0;
  851. rx_tid->pn128[0] |= ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  852. rx_tid->pn128[1] = rx_mpdu_info_details->pn_95_64;
  853. rx_tid->pn128[1] |= ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  854. if (!rx_desc_info) {
  855. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  856. "%s: Memory alloc failed ! ", __func__);
  857. QDF_ASSERT(0);
  858. return;
  859. }
  860. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  861. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  862. RX_PKT_TLVS_LEN + hdrsize);
  863. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  864. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  865. sizeof(struct llc_snap_hdr_t) -
  866. sizeof(struct ethernet_hdr_t)));
  867. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  868. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  869. rx_desc_info))
  870. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  871. dp_debug("%s: frame control type: 0x%x", __func__, fc);
  872. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  873. case IEEE80211_FC1_DIR_NODS:
  874. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  875. &mac_addr.raw[0]);
  876. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  877. QDF_MAC_ADDR_SIZE);
  878. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  879. &mac_addr.raw[0]);
  880. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  881. QDF_MAC_ADDR_SIZE);
  882. break;
  883. case IEEE80211_FC1_DIR_TODS:
  884. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  885. &mac_addr.raw[0]);
  886. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  887. QDF_MAC_ADDR_SIZE);
  888. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  889. &mac_addr.raw[0]);
  890. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  891. QDF_MAC_ADDR_SIZE);
  892. break;
  893. case IEEE80211_FC1_DIR_FROMDS:
  894. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  895. &mac_addr.raw[0]);
  896. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  897. QDF_MAC_ADDR_SIZE);
  898. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  899. &mac_addr.raw[0]);
  900. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  901. QDF_MAC_ADDR_SIZE);
  902. break;
  903. case IEEE80211_FC1_DIR_DSTODS:
  904. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  905. &mac_addr.raw[0]);
  906. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  907. QDF_MAC_ADDR_SIZE);
  908. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  909. &mac_addr.raw[0]);
  910. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  911. QDF_MAC_ADDR_SIZE);
  912. break;
  913. default:
  914. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  915. "%s: Unknown frame control type: 0x%x", __func__, fc);
  916. }
  917. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  918. sizeof(ether_type));
  919. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  920. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  921. qdf_mem_free(rx_desc_info);
  922. }
  923. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  924. /*
  925. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  926. * @peer: Pointer to the peer
  927. * @tid: Transmit Identifier
  928. * @head: Nbuf to be delivered
  929. *
  930. * Returns: None
  931. */
  932. static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
  933. unsigned int tid,
  934. qdf_nbuf_t head)
  935. {
  936. struct dp_vdev *vdev = peer->vdev;
  937. struct dp_soc *soc = vdev->pdev->soc;
  938. qdf_nbuf_t deliver_list_head = NULL;
  939. qdf_nbuf_t deliver_list_tail = NULL;
  940. uint8_t *rx_tlv_hdr;
  941. rx_tlv_hdr = qdf_nbuf_data(head);
  942. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  943. qdf_nbuf_set_tid_val(head, tid);
  944. qdf_nbuf_pull_head(head, RX_PKT_TLVS_LEN);
  945. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  946. head);
  947. dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
  948. deliver_list_tail);
  949. }
  950. /*
  951. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  952. * @peer: Pointer to the peer
  953. * @tid: Transmit Identifier
  954. * @head: Buffer to be reinjected back
  955. *
  956. * Reinject the fragment chain back into REO
  957. *
  958. * Returns: QDF_STATUS
  959. */
  960. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  961. unsigned int tid, qdf_nbuf_t head)
  962. {
  963. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  964. rx_reorder_array_elem = peer->rx_tid[tid].array;
  965. dp_rx_defrag_deliver(peer, tid, head);
  966. rx_reorder_array_elem->head = NULL;
  967. rx_reorder_array_elem->tail = NULL;
  968. dp_rx_return_head_frag_desc(peer, tid);
  969. return QDF_STATUS_SUCCESS;
  970. }
  971. #else
  972. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  973. /**
  974. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  975. * @soc: Datapath soc structure
  976. * @paddr: paddr of the buffer reinjected to SW2REO ring
  977. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  978. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  979. *
  980. * Returns: None
  981. */
  982. static inline void
  983. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  984. uint32_t sw_cookie, uint8_t rbm)
  985. {
  986. struct dp_buf_info_record *record;
  987. uint32_t idx;
  988. if (qdf_unlikely(soc->rx_reinject_ring_history))
  989. return;
  990. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  991. DP_RX_REINJECT_HIST_MAX);
  992. /* No NULL check needed for record since its an array */
  993. record = &soc->rx_reinject_ring_history->entry[idx];
  994. record->timestamp = qdf_get_log_timestamp();
  995. record->hbi.paddr = paddr;
  996. record->hbi.sw_cookie = sw_cookie;
  997. record->hbi.rbm = rbm;
  998. }
  999. #else
  1000. static inline void
  1001. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1002. uint32_t sw_cookie, uint8_t rbm)
  1003. {
  1004. }
  1005. #endif
  1006. /*
  1007. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1008. * @peer: Pointer to the peer
  1009. * @tid: Transmit Identifier
  1010. * @head: Buffer to be reinjected back
  1011. *
  1012. * Reinject the fragment chain back into REO
  1013. *
  1014. * Returns: QDF_STATUS
  1015. */
  1016. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1017. unsigned int tid, qdf_nbuf_t head)
  1018. {
  1019. struct dp_pdev *pdev = peer->vdev->pdev;
  1020. struct dp_soc *soc = pdev->soc;
  1021. struct hal_buf_info buf_info;
  1022. void *link_desc_va;
  1023. void *msdu0, *msdu_desc_info;
  1024. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1025. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  1026. qdf_dma_addr_t paddr;
  1027. uint32_t nbuf_len, seq_no, dst_ind;
  1028. uint32_t *mpdu_wrd;
  1029. uint32_t ret, cookie;
  1030. hal_ring_desc_t dst_ring_desc =
  1031. peer->rx_tid[tid].dst_ring_desc;
  1032. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1033. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  1034. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1035. peer->rx_tid[tid].array;
  1036. qdf_nbuf_t nbuf_head;
  1037. struct rx_desc_pool *rx_desc_pool = NULL;
  1038. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1039. /* do duplicate link desc address check */
  1040. dp_rx_link_desc_refill_duplicate_check(
  1041. soc,
  1042. &soc->last_op_info.reo_reinject_link_desc,
  1043. buf_addr_info);
  1044. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1045. if (qdf_unlikely(!nbuf_head)) {
  1046. dp_err_rl("IPA RX REO reinject failed");
  1047. return QDF_STATUS_E_FAILURE;
  1048. }
  1049. /* update new allocated skb in case IPA is enabled */
  1050. if (nbuf_head != head) {
  1051. head = nbuf_head;
  1052. rx_desc->nbuf = head;
  1053. rx_reorder_array_elem->head = head;
  1054. }
  1055. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1056. if (!ent_ring_desc) {
  1057. dp_err_rl("HAL src ring next entry NULL");
  1058. return QDF_STATUS_E_FAILURE;
  1059. }
  1060. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  1061. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1062. qdf_assert_always(link_desc_va);
  1063. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1064. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  1065. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1066. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1067. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1068. /* msdu reconfig */
  1069. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1070. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1071. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1072. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1073. FIRST_MSDU_IN_MPDU_FLAG, 1);
  1074. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1075. LAST_MSDU_IN_MPDU_FLAG, 1);
  1076. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1077. MSDU_CONTINUATION, 0x0);
  1078. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1079. REO_DESTINATION_INDICATION, dst_ind);
  1080. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1081. MSDU_LENGTH, nbuf_len);
  1082. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1083. SA_IS_VALID, 1);
  1084. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1085. DA_IS_VALID, 1);
  1086. /* change RX TLV's */
  1087. hal_rx_msdu_start_msdu_len_set(
  1088. qdf_nbuf_data(head), nbuf_len);
  1089. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  1090. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1091. /* map the nbuf before reinject it into HW */
  1092. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1093. QDF_DMA_FROM_DEVICE,
  1094. rx_desc_pool->buf_size);
  1095. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1096. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1097. "%s: nbuf map failed !", __func__);
  1098. return QDF_STATUS_E_FAILURE;
  1099. }
  1100. /*
  1101. * As part of rx frag handler bufffer was unmapped and rx desc
  1102. * unmapped is set to 1. So again for defrag reinject frame reset
  1103. * it back to 0.
  1104. */
  1105. rx_desc->unmapped = 0;
  1106. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1107. rx_desc_pool->buf_size,
  1108. true);
  1109. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1110. ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
  1111. if (ret == QDF_STATUS_E_FAILURE) {
  1112. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1113. "%s: x86 check failed !", __func__);
  1114. return QDF_STATUS_E_FAILURE;
  1115. }
  1116. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
  1117. /* Lets fill entrance ring now !!! */
  1118. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1119. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1120. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1121. hal_srng);
  1122. return QDF_STATUS_E_FAILURE;
  1123. }
  1124. dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
  1125. paddr = (uint64_t)buf_info.paddr;
  1126. /* buf addr */
  1127. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  1128. buf_info.sw_cookie,
  1129. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  1130. /* mpdu desc info */
  1131. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1132. ent_ring_desc);
  1133. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1134. dst_ring_desc);
  1135. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1136. sizeof(struct rx_mpdu_desc_info));
  1137. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1138. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1139. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  1140. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1141. MSDU_COUNT, 0x1);
  1142. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1143. MPDU_SEQUENCE_NUMBER, seq_no);
  1144. /* unset frag bit */
  1145. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1146. FRAGMENT_FLAG, 0x0);
  1147. /* set sa/da valid bits */
  1148. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1149. SA_IS_VALID, 0x1);
  1150. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1151. DA_IS_VALID, 0x1);
  1152. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1153. RAW_MPDU, 0x0);
  1154. /* qdesc addr */
  1155. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1156. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1157. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1158. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1159. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1160. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1161. REO_DESTINATION_INDICATION, dst_ind);
  1162. hal_srng_access_end(soc->hal_soc, hal_srng);
  1163. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1164. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1165. "%s: reinjection done !", __func__);
  1166. return QDF_STATUS_SUCCESS;
  1167. }
  1168. #endif
  1169. /*
  1170. * dp_rx_defrag(): Defragment the fragment chain
  1171. * @peer: Pointer to the peer
  1172. * @tid: Transmit Identifier
  1173. * @frag_list_head: Pointer to head list
  1174. * @frag_list_tail: Pointer to tail list
  1175. *
  1176. * Defragment the fragment chain
  1177. *
  1178. * Returns: QDF_STATUS
  1179. */
  1180. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1181. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1182. {
  1183. qdf_nbuf_t tmp_next, prev;
  1184. qdf_nbuf_t cur = frag_list_head, msdu;
  1185. uint32_t index, tkip_demic = 0;
  1186. uint16_t hdr_space;
  1187. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1188. struct dp_vdev *vdev = peer->vdev;
  1189. struct dp_soc *soc = vdev->pdev->soc;
  1190. uint8_t status = 0;
  1191. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1192. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1193. dp_sec_mcast : dp_sec_ucast;
  1194. /* Remove FCS from all fragments */
  1195. while (cur) {
  1196. tmp_next = qdf_nbuf_next(cur);
  1197. qdf_nbuf_set_next(cur, NULL);
  1198. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1199. prev = cur;
  1200. qdf_nbuf_set_next(cur, tmp_next);
  1201. cur = tmp_next;
  1202. }
  1203. cur = frag_list_head;
  1204. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1205. "%s: index %d Security type: %d", __func__,
  1206. index, peer->security[index].sec_type);
  1207. switch (peer->security[index].sec_type) {
  1208. case cdp_sec_type_tkip:
  1209. tkip_demic = 1;
  1210. case cdp_sec_type_tkip_nomic:
  1211. while (cur) {
  1212. tmp_next = qdf_nbuf_next(cur);
  1213. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1214. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1215. QDF_TRACE_LEVEL_ERROR,
  1216. "dp_rx_defrag: TKIP decap failed");
  1217. return QDF_STATUS_E_DEFRAG_ERROR;
  1218. }
  1219. cur = tmp_next;
  1220. }
  1221. /* If success, increment header to be stripped later */
  1222. hdr_space += dp_f_tkip.ic_header;
  1223. break;
  1224. case cdp_sec_type_aes_ccmp:
  1225. while (cur) {
  1226. tmp_next = qdf_nbuf_next(cur);
  1227. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1228. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1229. QDF_TRACE_LEVEL_ERROR,
  1230. "dp_rx_defrag: CCMP demic failed");
  1231. return QDF_STATUS_E_DEFRAG_ERROR;
  1232. }
  1233. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1234. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1235. QDF_TRACE_LEVEL_ERROR,
  1236. "dp_rx_defrag: CCMP decap failed");
  1237. return QDF_STATUS_E_DEFRAG_ERROR;
  1238. }
  1239. cur = tmp_next;
  1240. }
  1241. /* If success, increment header to be stripped later */
  1242. hdr_space += dp_f_ccmp.ic_header;
  1243. break;
  1244. case cdp_sec_type_wep40:
  1245. case cdp_sec_type_wep104:
  1246. case cdp_sec_type_wep128:
  1247. while (cur) {
  1248. tmp_next = qdf_nbuf_next(cur);
  1249. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1250. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1251. QDF_TRACE_LEVEL_ERROR,
  1252. "dp_rx_defrag: WEP decap failed");
  1253. return QDF_STATUS_E_DEFRAG_ERROR;
  1254. }
  1255. cur = tmp_next;
  1256. }
  1257. /* If success, increment header to be stripped later */
  1258. hdr_space += dp_f_wep.ic_header;
  1259. break;
  1260. default:
  1261. break;
  1262. }
  1263. if (tkip_demic) {
  1264. msdu = frag_list_head;
  1265. qdf_mem_copy(key,
  1266. &peer->security[index].michael_key[0],
  1267. IEEE80211_WEP_MICLEN);
  1268. status = dp_rx_defrag_tkip_demic(key, msdu,
  1269. RX_PKT_TLVS_LEN +
  1270. hdr_space);
  1271. if (status) {
  1272. dp_rx_defrag_err(vdev, frag_list_head);
  1273. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1274. QDF_TRACE_LEVEL_ERROR,
  1275. "%s: TKIP demic failed status %d",
  1276. __func__, status);
  1277. return QDF_STATUS_E_DEFRAG_ERROR;
  1278. }
  1279. }
  1280. /* Convert the header to 802.3 header */
  1281. dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
  1282. if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
  1283. return QDF_STATUS_E_DEFRAG_ERROR;
  1284. return QDF_STATUS_SUCCESS;
  1285. }
  1286. /*
  1287. * dp_rx_defrag_cleanup(): Clean up activities
  1288. * @peer: Pointer to the peer
  1289. * @tid: Transmit Identifier
  1290. *
  1291. * Returns: None
  1292. */
  1293. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1294. {
  1295. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1296. peer->rx_tid[tid].array;
  1297. if (rx_reorder_array_elem) {
  1298. /* Free up nbufs */
  1299. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1300. rx_reorder_array_elem->head = NULL;
  1301. rx_reorder_array_elem->tail = NULL;
  1302. } else {
  1303. dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
  1304. peer, tid, peer->mac_addr.raw);
  1305. }
  1306. /* Free up saved ring descriptors */
  1307. dp_rx_clear_saved_desc_info(peer, tid);
  1308. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1309. peer->rx_tid[tid].curr_frag_num = 0;
  1310. peer->rx_tid[tid].curr_seq_num = 0;
  1311. }
  1312. /*
  1313. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1314. * @ring_desc: Pointer to the dst ring descriptor
  1315. * @peer: Pointer to the peer
  1316. * @tid: Transmit Identifier
  1317. *
  1318. * Returns: None
  1319. */
  1320. static QDF_STATUS
  1321. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1322. struct dp_rx_desc *rx_desc,
  1323. struct dp_peer *peer,
  1324. unsigned int tid)
  1325. {
  1326. void *dst_ring_desc = qdf_mem_malloc(
  1327. sizeof(struct reo_destination_ring));
  1328. if (!dst_ring_desc) {
  1329. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1330. "%s: Memory alloc failed !", __func__);
  1331. QDF_ASSERT(0);
  1332. return QDF_STATUS_E_NOMEM;
  1333. }
  1334. qdf_mem_copy(dst_ring_desc, ring_desc,
  1335. sizeof(struct reo_destination_ring));
  1336. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1337. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1338. return QDF_STATUS_SUCCESS;
  1339. }
  1340. /*
  1341. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1342. * @soc: Pointer to the SOC data structure
  1343. * @ring_desc: Pointer to the ring descriptor
  1344. * @mpdu_desc_info: MPDU descriptor info
  1345. * @tid: Traffic Identifier
  1346. * @rx_desc: Pointer to rx descriptor
  1347. * @rx_bfs: Number of bfs consumed
  1348. *
  1349. * Returns: QDF_STATUS
  1350. */
  1351. static QDF_STATUS
  1352. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1353. hal_ring_desc_t ring_desc,
  1354. union dp_rx_desc_list_elem_t **head,
  1355. union dp_rx_desc_list_elem_t **tail,
  1356. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1357. unsigned int tid, struct dp_rx_desc *rx_desc,
  1358. uint32_t *rx_bfs)
  1359. {
  1360. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1361. struct dp_pdev *pdev;
  1362. struct dp_peer *peer = NULL;
  1363. uint16_t peer_id;
  1364. uint8_t fragno, more_frag, all_frag_present = 0;
  1365. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1366. QDF_STATUS status;
  1367. struct dp_rx_tid *rx_tid;
  1368. uint8_t mpdu_sequence_control_valid;
  1369. uint8_t mpdu_frame_control_valid;
  1370. qdf_nbuf_t frag = rx_desc->nbuf;
  1371. uint32_t msdu_len;
  1372. if (qdf_nbuf_len(frag) > 0) {
  1373. dp_info("Dropping unexpected packet with skb_len: %d,"
  1374. "data len: %d, cookie: %d",
  1375. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1376. rx_desc->cookie);
  1377. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1378. goto discard_frag;
  1379. }
  1380. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1381. /* fragment queued back to the pool, free the link desc */
  1382. goto err_free_desc;
  1383. }
  1384. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1385. qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
  1386. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1387. /* Check if the packet is from a valid peer */
  1388. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1389. mpdu_desc_info->peer_meta_data);
  1390. peer = dp_peer_find_by_id(soc, peer_id);
  1391. if (!peer) {
  1392. /* We should not receive anything from unknown peer
  1393. * however, that might happen while we are in the monitor mode.
  1394. * We don't need to handle that here
  1395. */
  1396. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1397. peer_id);
  1398. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1399. goto discard_frag;
  1400. }
  1401. if (tid >= DP_MAX_TIDS) {
  1402. dp_info("TID out of bounds: %d", tid);
  1403. qdf_assert_always(0);
  1404. }
  1405. pdev = peer->vdev->pdev;
  1406. rx_tid = &peer->rx_tid[tid];
  1407. mpdu_sequence_control_valid =
  1408. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1409. rx_desc->rx_buf_start);
  1410. /* Invalid MPDU sequence control field, MPDU is of no use */
  1411. if (!mpdu_sequence_control_valid) {
  1412. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1413. "Invalid MPDU seq control field, dropping MPDU");
  1414. qdf_assert(0);
  1415. goto discard_frag;
  1416. }
  1417. mpdu_frame_control_valid =
  1418. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1419. rx_desc->rx_buf_start);
  1420. /* Invalid frame control field */
  1421. if (!mpdu_frame_control_valid) {
  1422. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1423. "Invalid frame control field, dropping MPDU");
  1424. qdf_assert(0);
  1425. goto discard_frag;
  1426. }
  1427. /* Current mpdu sequence */
  1428. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1429. /* HW does not populate the fragment number as of now
  1430. * need to get from the 802.11 header
  1431. */
  1432. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1433. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1434. if (!rx_reorder_array_elem) {
  1435. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1436. "Rcvd Fragmented pkt before peer_tid is setup");
  1437. goto discard_frag;
  1438. }
  1439. /*
  1440. * !more_frag: no more fragments to be delivered
  1441. * !frag_no: packet is not fragmented
  1442. * !rx_reorder_array_elem->head: no saved fragments so far
  1443. */
  1444. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1445. /* We should not get into this situation here.
  1446. * It means an unfragmented packet with fragment flag
  1447. * is delivered over the REO exception ring.
  1448. * Typically it follows normal rx path.
  1449. */
  1450. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1451. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1452. qdf_assert(0);
  1453. goto discard_frag;
  1454. }
  1455. /* Check if the fragment is for the same sequence or a different one */
  1456. dp_debug("rx_tid %d", tid);
  1457. if (rx_reorder_array_elem->head) {
  1458. dp_debug("rxseq %d\n", rxseq);
  1459. if (rxseq != rx_tid->curr_seq_num) {
  1460. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1461. rx_tid->curr_seq_num, rxseq);
  1462. /* Drop stored fragments if out of sequence
  1463. * fragment is received
  1464. */
  1465. dp_rx_reorder_flush_frag(peer, tid);
  1466. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1467. dp_debug("cur rxseq %d\n", rxseq);
  1468. /*
  1469. * The sequence number for this fragment becomes the
  1470. * new sequence number to be processed
  1471. */
  1472. rx_tid->curr_seq_num = rxseq;
  1473. }
  1474. } else {
  1475. dp_debug("cur rxseq %d\n", rxseq);
  1476. /* Start of a new sequence */
  1477. dp_rx_defrag_cleanup(peer, tid);
  1478. rx_tid->curr_seq_num = rxseq;
  1479. /* store PN number also */
  1480. }
  1481. /*
  1482. * If the earlier sequence was dropped, this will be the fresh start.
  1483. * Else, continue with next fragment in a given sequence
  1484. */
  1485. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1486. &rx_reorder_array_elem->tail, frag,
  1487. &all_frag_present);
  1488. /*
  1489. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1490. * packet sequence has more than 6 MSDUs for some reason, we will
  1491. * have to use the next MSDU link descriptor and chain them together
  1492. * before reinjection
  1493. */
  1494. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1495. (rx_reorder_array_elem->head == frag)) {
  1496. qdf_assert_always(ring_desc);
  1497. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1498. rx_desc, peer, tid);
  1499. if (status != QDF_STATUS_SUCCESS) {
  1500. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1501. "%s: Unable to store ring desc !", __func__);
  1502. goto discard_frag;
  1503. }
  1504. } else {
  1505. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1506. (*rx_bfs)++;
  1507. /* Return the non-head link desc */
  1508. if (ring_desc &&
  1509. dp_rx_link_desc_return(soc, ring_desc,
  1510. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1511. QDF_STATUS_SUCCESS)
  1512. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1513. "%s: Failed to return link desc", __func__);
  1514. }
  1515. if (pdev->soc->rx.flags.defrag_timeout_check)
  1516. dp_rx_defrag_waitlist_remove(peer, tid);
  1517. /* Yet to receive more fragments for this sequence number */
  1518. if (!all_frag_present) {
  1519. uint32_t now_ms =
  1520. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1521. peer->rx_tid[tid].defrag_timeout_ms =
  1522. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1523. dp_rx_defrag_waitlist_add(peer, tid);
  1524. dp_peer_unref_del_find_by_id(peer);
  1525. return QDF_STATUS_SUCCESS;
  1526. }
  1527. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1528. "All fragments received for sequence: %d", rxseq);
  1529. /* Process the fragments */
  1530. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1531. rx_reorder_array_elem->tail);
  1532. if (QDF_IS_STATUS_ERROR(status)) {
  1533. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1534. "Fragment processing failed");
  1535. dp_rx_add_to_free_desc_list(head, tail,
  1536. peer->rx_tid[tid].head_frag_desc);
  1537. (*rx_bfs)++;
  1538. if (dp_rx_link_desc_return(soc,
  1539. peer->rx_tid[tid].dst_ring_desc,
  1540. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1541. QDF_STATUS_SUCCESS)
  1542. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1543. "%s: Failed to return link desc",
  1544. __func__);
  1545. dp_rx_defrag_cleanup(peer, tid);
  1546. goto end;
  1547. }
  1548. /* Re-inject the fragments back to REO for further processing */
  1549. status = dp_rx_defrag_reo_reinject(peer, tid,
  1550. rx_reorder_array_elem->head);
  1551. if (QDF_IS_STATUS_SUCCESS(status)) {
  1552. rx_reorder_array_elem->head = NULL;
  1553. rx_reorder_array_elem->tail = NULL;
  1554. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1555. "Fragmented sequence successfully reinjected");
  1556. } else {
  1557. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1558. "Fragmented sequence reinjection failed");
  1559. dp_rx_return_head_frag_desc(peer, tid);
  1560. }
  1561. dp_rx_defrag_cleanup(peer, tid);
  1562. dp_peer_unref_del_find_by_id(peer);
  1563. return QDF_STATUS_SUCCESS;
  1564. discard_frag:
  1565. qdf_nbuf_free(frag);
  1566. err_free_desc:
  1567. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1568. if (dp_rx_link_desc_return(soc, ring_desc,
  1569. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1570. QDF_STATUS_SUCCESS)
  1571. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1572. "%s: Failed to return link desc", __func__);
  1573. (*rx_bfs)++;
  1574. end:
  1575. if (peer)
  1576. dp_peer_unref_del_find_by_id(peer);
  1577. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1578. return QDF_STATUS_E_DEFRAG_ERROR;
  1579. }
  1580. /**
  1581. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1582. *
  1583. * @soc: core txrx main context
  1584. * @ring_desc: opaque pointer to the REO error ring descriptor
  1585. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1586. * @head: head of the local descriptor free-list
  1587. * @tail: tail of the local descriptor free-list
  1588. * @quota: No. of units (packets) that can be serviced in one shot.
  1589. *
  1590. * This function implements RX 802.11 fragmentation handling
  1591. * The handling is mostly same as legacy fragmentation handling.
  1592. * If required, this function can re-inject the frames back to
  1593. * REO ring (with proper setting to by-pass fragmentation check
  1594. * but use duplicate detection / re-ordering and routing these frames
  1595. * to a different core.
  1596. *
  1597. * Return: uint32_t: No. of elements processed
  1598. */
  1599. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1600. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1601. struct dp_rx_desc *rx_desc,
  1602. uint8_t *mac_id,
  1603. uint32_t quota)
  1604. {
  1605. uint32_t rx_bufs_used = 0;
  1606. qdf_nbuf_t msdu = NULL;
  1607. uint32_t tid;
  1608. uint32_t rx_bfs = 0;
  1609. struct dp_pdev *pdev;
  1610. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1611. struct rx_desc_pool *rx_desc_pool;
  1612. qdf_assert(soc);
  1613. qdf_assert(mpdu_desc_info);
  1614. qdf_assert(rx_desc);
  1615. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1616. mpdu_desc_info->msdu_count);
  1617. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1618. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1619. "Not sufficient MSDUs to process");
  1620. return rx_bufs_used;
  1621. }
  1622. /* all buffers in MSDU link belong to same pdev */
  1623. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1624. if (!pdev) {
  1625. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1626. "pdev is null for pool_id = %d", rx_desc->pool_id);
  1627. return rx_bufs_used;
  1628. }
  1629. *mac_id = rx_desc->pool_id;
  1630. msdu = rx_desc->nbuf;
  1631. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1632. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1633. rx_desc_pool->buf_size,
  1634. false);
  1635. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1636. QDF_DMA_FROM_DEVICE,
  1637. rx_desc_pool->buf_size);
  1638. rx_desc->unmapped = 1;
  1639. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1640. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1641. /* Process fragment-by-fragment */
  1642. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1643. &pdev->free_list_head,
  1644. &pdev->free_list_tail,
  1645. mpdu_desc_info,
  1646. tid, rx_desc, &rx_bfs);
  1647. if (rx_bfs)
  1648. rx_bufs_used += rx_bfs;
  1649. if (!QDF_IS_STATUS_SUCCESS(status))
  1650. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1651. mpdu_desc_info->mpdu_seq,
  1652. mpdu_desc_info->msdu_count,
  1653. mpdu_desc_info->mpdu_flags);
  1654. return rx_bufs_used;
  1655. }
  1656. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1657. struct dp_peer *peer, uint16_t tid,
  1658. uint16_t rxseq, qdf_nbuf_t nbuf)
  1659. {
  1660. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1661. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1662. uint8_t all_frag_present;
  1663. uint32_t msdu_len;
  1664. QDF_STATUS status;
  1665. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1666. /*
  1667. * HW may fill in unexpected peer_id in RX PKT TLV,
  1668. * if this peer_id related peer is valid by coincidence,
  1669. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1670. * self peer), then invalid access to rx_reorder_array_elem happened.
  1671. */
  1672. if (!rx_reorder_array_elem) {
  1673. dp_verbose_debug(
  1674. "peer id:%d mac: %pM drop rx frame!",
  1675. peer->peer_id,
  1676. peer->mac_addr.raw);
  1677. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1678. qdf_nbuf_free(nbuf);
  1679. goto fail;
  1680. }
  1681. if (rx_reorder_array_elem->head &&
  1682. rxseq != rx_tid->curr_seq_num) {
  1683. /* Drop stored fragments if out of sequence
  1684. * fragment is received
  1685. */
  1686. dp_rx_reorder_flush_frag(peer, tid);
  1687. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1688. "%s: No list found for TID %d Seq# %d",
  1689. __func__, tid, rxseq);
  1690. qdf_nbuf_free(nbuf);
  1691. goto fail;
  1692. }
  1693. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1694. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1695. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1696. &rx_reorder_array_elem->head,
  1697. &rx_reorder_array_elem->tail, nbuf,
  1698. &all_frag_present);
  1699. if (QDF_IS_STATUS_ERROR(status)) {
  1700. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1701. "%s Fragment insert failed", __func__);
  1702. goto fail;
  1703. }
  1704. if (soc->rx.flags.defrag_timeout_check)
  1705. dp_rx_defrag_waitlist_remove(peer, tid);
  1706. if (!all_frag_present) {
  1707. uint32_t now_ms =
  1708. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1709. peer->rx_tid[tid].defrag_timeout_ms =
  1710. now_ms + soc->rx.defrag.timeout_ms;
  1711. dp_rx_defrag_waitlist_add(peer, tid);
  1712. return QDF_STATUS_SUCCESS;
  1713. }
  1714. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1715. rx_reorder_array_elem->tail);
  1716. if (QDF_IS_STATUS_ERROR(status)) {
  1717. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1718. "%s Fragment processing failed", __func__);
  1719. dp_rx_return_head_frag_desc(peer, tid);
  1720. dp_rx_defrag_cleanup(peer, tid);
  1721. goto fail;
  1722. }
  1723. /* Re-inject the fragments back to REO for further processing */
  1724. status = dp_rx_defrag_reo_reinject(peer, tid,
  1725. rx_reorder_array_elem->head);
  1726. if (QDF_IS_STATUS_SUCCESS(status)) {
  1727. rx_reorder_array_elem->head = NULL;
  1728. rx_reorder_array_elem->tail = NULL;
  1729. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1730. "%s: Frag seq successfully reinjected",
  1731. __func__);
  1732. } else {
  1733. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1734. "%s: Frag seq reinjection failed", __func__);
  1735. dp_rx_return_head_frag_desc(peer, tid);
  1736. }
  1737. dp_rx_defrag_cleanup(peer, tid);
  1738. return QDF_STATUS_SUCCESS;
  1739. fail:
  1740. return QDF_STATUS_E_DEFRAG_ERROR;
  1741. }