msm_cvp_buf.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #define CLEAR_USE_BITMAP(idx, inst) \
  18. do { \
  19. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  20. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  21. hash32_ptr(inst->session), smem->bitmap_index, \
  22. inst->dma_cache.usage_bitmap); \
  23. } while (0)
  24. #define SET_USE_BITMAP(idx, inst) \
  25. do { \
  26. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), idx, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  32. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  33. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
  34. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  35. struct msm_cvp_smem *smem)
  36. {
  37. int i;
  38. char name[PKT_NAME_LEN] = "Unknown";
  39. if (!(tag & msm_cvp_debug))
  40. return 0;
  41. if (!inst || !smem) {
  42. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  43. inst, smem);
  44. return -EINVAL;
  45. }
  46. if (smem->dma_buf) {
  47. if (!atomic_read(&smem->refcount))
  48. return 0;
  49. for (i = 0; i < get_pkt_array_size(); i++)
  50. if (cvp_hfi_defs[i].type == smem->pkt_type) {
  51. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  52. break;
  53. }
  54. dprintk(tag,
  55. "%s: %x : %s size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x",
  56. str, hash32_ptr(inst->session), smem->dma_buf->name,
  57. smem->size, smem->flags, smem->device_addr,
  58. smem->bitmap_index, atomic_read(&smem->refcount),
  59. name, smem->buf_idx);
  60. }
  61. return 0;
  62. }
  63. static void print_internal_buffer(u32 tag, const char *str,
  64. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  65. {
  66. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  67. return;
  68. if (cbuf->smem->dma_buf) {
  69. dprintk(tag,
  70. "%s: %x : fd %d off %d %s size %d iova %#x",
  71. str, hash32_ptr(inst->session), cbuf->fd,
  72. cbuf->offset, cbuf->smem->dma_buf->name, cbuf->size,
  73. cbuf->smem->device_addr);
  74. } else {
  75. dprintk(tag,
  76. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  77. str, hash32_ptr(inst->session), cbuf->fd,
  78. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  79. }
  80. }
  81. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  82. struct cvp_internal_buf *cbuf)
  83. {
  84. if (!inst || !cbuf)
  85. dprintk(CVP_ERR,
  86. "%s Invalid params inst %pK, cbuf %pK\n", inst, cbuf);
  87. print_smem(tag, str, inst, cbuf->smem);
  88. }
  89. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  90. struct msm_cvp_smem *smem, bool logging)
  91. {
  92. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  93. return;
  94. if (!logging || !snapshot)
  95. return;
  96. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  97. struct smem_data *s;
  98. s = &snapshot->smem_log[snapshot->smem_index];
  99. snapshot->smem_index++;
  100. s->size = smem->size;
  101. s->flags = smem->flags;
  102. s->device_addr = smem->device_addr;
  103. s->bitmap_index = smem->bitmap_index;
  104. s->refcount = atomic_read(&smem->refcount);
  105. s->pkt_type = smem->pkt_type;
  106. s->buf_idx = smem->buf_idx;
  107. }
  108. }
  109. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  110. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  111. bool logging)
  112. {
  113. struct cvp_buf_data *buf = NULL;
  114. u32 index;
  115. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  116. if (!logging)
  117. return;
  118. if (snapshot) {
  119. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  120. index = snapshot->dsp_index;
  121. buf = &snapshot->dsp_buf_log[index];
  122. snapshot->dsp_index++;
  123. } else if (prop == SMEM_PERSIST &&
  124. snapshot->persist_index < MAX_ENTRIES) {
  125. index = snapshot->persist_index;
  126. buf = &snapshot->persist_buf_log[index];
  127. snapshot->persist_index++;
  128. }
  129. if (buf) {
  130. buf->device_addr = cbuf->smem->device_addr;
  131. buf->size = cbuf->size;
  132. }
  133. }
  134. }
  135. void print_client_buffer(u32 tag, const char *str,
  136. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  137. {
  138. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  139. return;
  140. dprintk(tag,
  141. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  142. " reserved[0] %u\n",
  143. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  144. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  145. cbuf->reserved[0]);
  146. }
  147. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  148. struct eva_kmd_buffer *buf)
  149. {
  150. struct cvp_hal_session *session;
  151. struct cvp_internal_buf *cbuf = NULL;
  152. bool found = false;
  153. if (!inst || !inst->core || !buf) {
  154. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  155. return false;
  156. }
  157. if (buf->fd < 0) {
  158. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  159. return false;
  160. }
  161. if (buf->offset) {
  162. dprintk(CVP_ERR,
  163. "%s: offset is deprecated, set to 0.\n",
  164. __func__);
  165. return false;
  166. }
  167. session = (struct cvp_hal_session *)inst->session;
  168. mutex_lock(&inst->cvpdspbufs.lock);
  169. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  170. if (cbuf->fd == buf->fd) {
  171. if (cbuf->size != buf->size) {
  172. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  173. __func__);
  174. mutex_unlock(&inst->cvpdspbufs.lock);
  175. return false;
  176. }
  177. found = true;
  178. break;
  179. }
  180. }
  181. mutex_unlock(&inst->cvpdspbufs.lock);
  182. if (found) {
  183. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  184. return false;
  185. }
  186. return true;
  187. }
  188. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  189. fmode_t mask, unsigned int refs)
  190. {
  191. struct files_struct *files = task->files;
  192. struct file *file;
  193. if (!files)
  194. return NULL;
  195. rcu_read_lock();
  196. loop:
  197. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  198. file = fcheck_files(files, fd);
  199. #else
  200. file = files_lookup_fd_rcu(files, fd);
  201. #endif
  202. if (file) {
  203. /* File object ref couldn't be taken.
  204. * dup2() atomicity guarantee is the reason
  205. * we loop to catch the new file (or NULL pointer)
  206. */
  207. if (file->f_mode & mask)
  208. file = NULL;
  209. else if (!get_file_rcu_many(file, refs))
  210. goto loop;
  211. }
  212. rcu_read_unlock();
  213. return file;
  214. }
  215. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  216. struct task_struct *task)
  217. {
  218. if (file->f_op != gfa_cv.dmabuf_f_op) {
  219. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  220. return ERR_PTR(-EINVAL);
  221. }
  222. return file->private_data;
  223. }
  224. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  225. {
  226. int rc = 0;
  227. struct cvp_internal_buf *cbuf = NULL;
  228. struct msm_cvp_smem *smem = NULL;
  229. struct dma_buf *dma_buf = NULL;
  230. struct file *file;
  231. if (!__is_buf_valid(inst, buf))
  232. return -EINVAL;
  233. if (!inst->task)
  234. return -EINVAL;
  235. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  236. if (file == NULL) {
  237. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  238. return -EINVAL;
  239. }
  240. dma_buf = cvp_dma_buf_get(
  241. file,
  242. buf->fd,
  243. inst->task);
  244. if (dma_buf == ERR_PTR(-EINVAL)) {
  245. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  246. rc = -EINVAL;
  247. goto exit;
  248. }
  249. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  250. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  251. if (!cbuf) {
  252. rc = -ENOMEM;
  253. goto exit;
  254. }
  255. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  256. if (!smem) {
  257. rc = -ENOMEM;
  258. goto exit;
  259. }
  260. smem->dma_buf = dma_buf;
  261. smem->bitmap_index = MAX_DMABUF_NUMS;
  262. smem->pkt_type = 0;
  263. smem->buf_idx = 0;
  264. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  265. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  266. if (rc) {
  267. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  268. goto exit;
  269. }
  270. cbuf->smem = smem;
  271. cbuf->fd = buf->fd;
  272. cbuf->size = buf->size;
  273. cbuf->offset = buf->offset;
  274. cbuf->ownership = CLIENT;
  275. cbuf->index = buf->index;
  276. buf->reserved[0] = (uint32_t)smem->device_addr;
  277. mutex_lock(&inst->cvpdspbufs.lock);
  278. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  279. mutex_unlock(&inst->cvpdspbufs.lock);
  280. return rc;
  281. exit:
  282. fput(file);
  283. if (smem) {
  284. if (smem->device_addr)
  285. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  286. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  287. kmem_cache_free(cvp_driver->smem_cache, smem);
  288. }
  289. if (cbuf)
  290. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  291. return rc;
  292. }
  293. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  294. {
  295. int rc = 0;
  296. bool found;
  297. struct cvp_internal_buf *cbuf;
  298. struct cvp_hal_session *session;
  299. if (!inst || !inst->core || !buf) {
  300. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  301. return -EINVAL;
  302. }
  303. session = (struct cvp_hal_session *)inst->session;
  304. if (!session) {
  305. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  306. return -EINVAL;
  307. }
  308. mutex_lock(&inst->cvpdspbufs.lock);
  309. found = false;
  310. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  311. if (cbuf->fd == buf->fd) {
  312. found = true;
  313. break;
  314. }
  315. }
  316. mutex_unlock(&inst->cvpdspbufs.lock);
  317. if (!found) {
  318. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  319. return -EINVAL;
  320. }
  321. if (cbuf->smem->device_addr) {
  322. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  323. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  324. }
  325. mutex_lock(&inst->cvpdspbufs.lock);
  326. list_del(&cbuf->list);
  327. mutex_unlock(&inst->cvpdspbufs.lock);
  328. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  329. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  330. return rc;
  331. }
  332. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  333. struct eva_kmd_buffer *buf)
  334. {
  335. int rc = 0, i;
  336. bool found = false;
  337. struct cvp_internal_buf* cbuf;
  338. struct msm_cvp_smem* smem = NULL;
  339. struct dma_buf* dma_buf = NULL;
  340. if (!inst || !inst->core || !buf) {
  341. dprintk(CVP_ERR, "%s: invalid params", __func__);
  342. return -EINVAL;
  343. }
  344. if (!inst->session) {
  345. dprintk(CVP_ERR, "%s: invalid session", __func__);
  346. return -EINVAL;
  347. }
  348. if (buf->index) {
  349. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  350. __func__, buf->fd);
  351. return -EINVAL;
  352. }
  353. if (buf->fd < 0) {
  354. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  355. return -EINVAL;
  356. }
  357. if (buf->offset) {
  358. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  359. __func__);
  360. return -EINVAL;
  361. }
  362. mutex_lock(&inst->cvpwnccbufs.lock);
  363. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  364. if (cbuf->fd == buf->fd) {
  365. if (cbuf->size != buf->size) {
  366. dprintk(CVP_ERR, "%s: buf size mismatch",
  367. __func__);
  368. mutex_unlock(&inst->cvpwnccbufs.lock);
  369. return -EINVAL;
  370. }
  371. found = true;
  372. break;
  373. }
  374. }
  375. mutex_unlock(&inst->cvpwnccbufs.lock);
  376. if (found) {
  377. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  378. return -EINVAL;
  379. }
  380. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  381. if (!dma_buf) {
  382. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  383. return -EINVAL;
  384. }
  385. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  386. if (!cbuf) {
  387. msm_cvp_smem_put_dma_buf(dma_buf);
  388. return -ENOMEM;
  389. }
  390. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  391. if (!smem) {
  392. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  393. msm_cvp_smem_put_dma_buf(dma_buf);
  394. return -ENOMEM;
  395. }
  396. smem->dma_buf = dma_buf;
  397. smem->bitmap_index = MAX_DMABUF_NUMS;
  398. smem->pkt_type = 0;
  399. smem->buf_idx = 0;
  400. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  401. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  402. if (rc) {
  403. dprintk(CVP_ERR, "%s: map failed", __func__);
  404. print_client_buffer(CVP_ERR, __func__, inst, buf);
  405. goto exit;
  406. }
  407. cbuf->smem = smem;
  408. cbuf->fd = buf->fd;
  409. cbuf->size = buf->size;
  410. cbuf->offset = buf->offset;
  411. cbuf->ownership = CLIENT;
  412. cbuf->index = buf->index;
  413. /* Added for PreSil/RUMI testing */
  414. #ifdef USE_PRESIL
  415. dprintk(CVP_DBG,
  416. "wncc buffer is %x for cam_presil_send_buffer"
  417. " with MAP_ADDR_OFFSET %x",
  418. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  419. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  420. (u32)cbuf->offset, (u32)cbuf->size,
  421. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  422. #endif
  423. mutex_lock(&inst->cvpwnccbufs.lock);
  424. if (inst->cvpwnccbufs_table == NULL) {
  425. inst->cvpwnccbufs_table =
  426. (struct msm_cvp_wncc_buffer*) kzalloc(
  427. sizeof(struct msm_cvp_wncc_buffer) *
  428. EVA_KMD_WNCC_MAX_SRC_BUFS,
  429. GFP_KERNEL);
  430. if (!inst->cvpwnccbufs_table) {
  431. mutex_unlock(&inst->cvpwnccbufs.lock);
  432. goto exit;
  433. }
  434. }
  435. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  436. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  437. {
  438. if (inst->cvpwnccbufs_table[i].iova == 0)
  439. {
  440. inst->cvpwnccbufs_num++;
  441. inst->cvpwnccbufs_table[i].fd = buf->fd;
  442. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  443. inst->cvpwnccbufs_table[i].size = smem->size;
  444. /* buf reserved[0] used to store wncc src buf id */
  445. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  446. /* cbuf ktid used to store wncc src buf id */
  447. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  448. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  449. __func__, inst->cvpwnccbufs_table[i].iova);
  450. break;
  451. }
  452. }
  453. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  454. dprintk(CVP_ERR,
  455. "%s: wncc buf table full - max (%u) already registered",
  456. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  457. /* _wncc_print_cvpwnccbufs_table(inst); */
  458. mutex_unlock(&inst->cvpwnccbufs.lock);
  459. rc = -EDQUOT;
  460. goto exit;
  461. }
  462. mutex_unlock(&inst->cvpwnccbufs.lock);
  463. return rc;
  464. exit:
  465. if (smem->device_addr)
  466. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  467. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  468. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  469. cbuf = NULL;
  470. kmem_cache_free(cvp_driver->smem_cache, smem);
  471. smem = NULL;
  472. return rc;
  473. }
  474. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  475. struct eva_kmd_buffer *buf)
  476. {
  477. int rc = 0;
  478. bool found;
  479. struct cvp_internal_buf *cbuf;
  480. uint32_t buf_id, buf_idx;
  481. if (!inst || !inst->core || !buf) {
  482. dprintk(CVP_ERR, "%s: invalid params", __func__);
  483. return -EINVAL;
  484. }
  485. if (!inst->session) {
  486. dprintk(CVP_ERR, "%s: invalid session", __func__);
  487. return -EINVAL;
  488. }
  489. if (buf->index) {
  490. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  491. __func__, buf->fd);
  492. return -EINVAL;
  493. }
  494. buf_id = buf->reserved[0];
  495. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  496. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  497. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  498. __func__, buf->reserved[0]);
  499. return -EINVAL;
  500. }
  501. mutex_lock(&inst->cvpwnccbufs.lock);
  502. if (inst->cvpwnccbufs_num == 0) {
  503. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  504. mutex_unlock(&inst->cvpwnccbufs.lock);
  505. return -EINVAL;
  506. }
  507. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  508. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  509. dprintk(CVP_ERR, "%s: buffer id %d not found",
  510. __func__, buf_id);
  511. mutex_unlock(&inst->cvpwnccbufs.lock);
  512. return -EINVAL;
  513. }
  514. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  515. found = false;
  516. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  517. if (cbuf->fd == buf->fd) {
  518. found = true;
  519. break;
  520. }
  521. }
  522. if (!found) {
  523. dprintk(CVP_ERR, "%s: buffer id %d not found",
  524. __func__, buf_id);
  525. print_client_buffer(CVP_ERR, __func__, inst, buf);
  526. _wncc_print_cvpwnccbufs_table(inst);
  527. mutex_unlock(&inst->cvpwnccbufs.lock);
  528. return -EINVAL;
  529. }
  530. mutex_unlock(&inst->cvpwnccbufs.lock);
  531. if (cbuf->smem->device_addr) {
  532. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  533. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  534. }
  535. mutex_lock(&inst->cvpwnccbufs.lock);
  536. list_del(&cbuf->list);
  537. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  538. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  539. inst->cvpwnccbufs_table[buf_idx].size = 0;
  540. inst->cvpwnccbufs_num--;
  541. if (inst->cvpwnccbufs_num == 0) {
  542. kfree(inst->cvpwnccbufs_table);
  543. inst->cvpwnccbufs_table = NULL;
  544. }
  545. mutex_unlock(&inst->cvpwnccbufs.lock);
  546. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  547. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  548. return rc;
  549. }
  550. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  551. {
  552. u32 i, j;
  553. if (!wncc_oob) {
  554. dprintk(CVP_ERR, "%s: invalid params", __func__);
  555. return;
  556. }
  557. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  558. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  559. for (i = 0; i < wncc_oob->num_layers; i++) {
  560. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  561. __func__, i, wncc_oob->layers[i].num_addrs);
  562. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  563. dprintk(CVP_DBG,
  564. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  565. __func__, i, j,
  566. wncc_oob->layers[i].addrs[j].buffer_id,
  567. wncc_oob->layers[i].addrs[j].offset);
  568. }
  569. }
  570. }
  571. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  572. {
  573. u32 i, entries = 0;
  574. if (!inst) {
  575. dprintk(CVP_ERR, "%s: invalid params", __func__);
  576. return;
  577. }
  578. if (inst->cvpwnccbufs_num == 0) {
  579. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  580. __func__);
  581. return;
  582. }
  583. if (!inst->cvpwnccbufs_table) {
  584. dprintk(CVP_ERR, "%s: invalid params", __func__);
  585. return;
  586. }
  587. dprintk(CVP_DBG, "%s: wncc buffer table:");
  588. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  589. entries < inst->cvpwnccbufs_num; i++) {
  590. if (inst->cvpwnccbufs_table[i].iova != 0) {
  591. dprintk(CVP_DBG,
  592. "%s: buf_idx=%04d --> "
  593. "fd=%03d, iova=0x%08x, size=%d",
  594. __func__, i,
  595. inst->cvpwnccbufs_table[i].fd,
  596. inst->cvpwnccbufs_table[i].iova,
  597. inst->cvpwnccbufs_table[i].size);
  598. entries++;
  599. }
  600. }
  601. }
  602. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  603. struct eva_kmd_wncc_metadata** wncc_metadata)
  604. {
  605. u32 i, j, iova;
  606. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  607. !wncc_metadata) {
  608. dprintk(CVP_ERR, "%s: invalid params", __func__);
  609. return;
  610. }
  611. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  612. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  613. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  614. for (i = 0; i < num_layers; i++) {
  615. for (j = 0; j < num_addrs; j++) {
  616. iova = (wncc_metadata[i][j].iova_msb << 22) |
  617. wncc_metadata[i][j].iova_lsb;
  618. dprintk(CVP_DBG,
  619. "%s: wncc_metadata[%u][%u]: "
  620. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  621. __func__, i, j,
  622. wncc_metadata[i][j].loc_x_dec,
  623. wncc_metadata[i][j].loc_x_frac,
  624. wncc_metadata[i][j].loc_y_dec,
  625. wncc_metadata[i][j].loc_y_frac,
  626. iova,
  627. wncc_metadata[i][j].scale_idx,
  628. wncc_metadata[i][j].aff_coeff_3,
  629. wncc_metadata[i][j].aff_coeff_2,
  630. wncc_metadata[i][j].aff_coeff_1,
  631. wncc_metadata[i][j].aff_coeff_0);
  632. }
  633. }
  634. }
  635. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  636. struct eva_kmd_oob_wncc* wncc_oob)
  637. {
  638. int rc = 0;
  639. u32 oob_type;
  640. struct eva_kmd_oob_wncc* wncc_oob_u;
  641. struct eva_kmd_oob_wncc* wncc_oob_k;
  642. unsigned int i;
  643. u32 num_addrs;
  644. if (!in_pkt || !wncc_oob) {
  645. dprintk(CVP_ERR, "%s: invalid params", __func__);
  646. return -EINVAL;
  647. }
  648. if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
  649. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  650. return -EINVAL;
  651. }
  652. rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
  653. if (rc)
  654. return rc;
  655. if (oob_type != EVA_KMD_OOB_WNCC) {
  656. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  657. __func__, oob_type);
  658. return -EINVAL;
  659. }
  660. wncc_oob_u = &in_pkt->oob_buf->wncc;
  661. wncc_oob_k = wncc_oob;
  662. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  663. if (rc)
  664. return rc;
  665. if (wncc_oob_k->num_layers < 1 ||
  666. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  667. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  668. return -EINVAL;
  669. }
  670. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  671. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  672. &wncc_oob_u->layers[i].num_addrs);
  673. if (rc)
  674. break;
  675. num_addrs = wncc_oob_k->layers[i].num_addrs;
  676. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  677. dprintk(CVP_ERR,
  678. "%s: invalid wncc num addrs for layer %u",
  679. __func__, i);
  680. rc = -EINVAL;
  681. break;
  682. }
  683. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  684. wncc_oob_u->layers[i].addrs,
  685. wncc_oob_k->layers[i].num_addrs *
  686. sizeof(struct eva_kmd_wncc_addr));
  687. if (rc)
  688. break;
  689. }
  690. if (false)
  691. _wncc_print_oob(wncc_oob);
  692. return rc;
  693. }
  694. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  695. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  696. {
  697. int rc = 0, i;
  698. struct cvp_buf_type* wncc_metadata_bufs;
  699. struct dma_buf* dmabuf;
  700. struct dma_buf_map map;
  701. if (!in_pkt || !wncc_metadata ||
  702. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  703. dprintk(CVP_ERR, "%s: invalid params", __func__);
  704. return -EINVAL;
  705. }
  706. wncc_metadata_bufs = (struct cvp_buf_type*)
  707. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  708. for (i = 0; i < num_layers; i++) {
  709. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  710. if (IS_ERR(dmabuf)) {
  711. rc = PTR_ERR(dmabuf);
  712. dprintk(CVP_ERR,
  713. "%s: dma_buf_get() failed for "
  714. "wncc_metadata_bufs[%d], rc %d",
  715. __func__, i, rc);
  716. break;
  717. }
  718. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  719. if (rc) {
  720. dprintk(CVP_ERR,
  721. "%s: dma_buf_begin_cpu_access() failed "
  722. "for wncc_metadata_bufs[%d], rc %d",
  723. __func__, i, rc);
  724. dma_buf_put(dmabuf);
  725. break;
  726. }
  727. rc = dma_buf_vmap(dmabuf, &map);
  728. if (rc) {
  729. dprintk(CVP_ERR,
  730. "%s: dma_buf_vmap() failed for "
  731. "wncc_metadata_bufs[%d]",
  732. __func__, i);
  733. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  734. dma_buf_put(dmabuf);
  735. break;
  736. }
  737. dprintk(CVP_DBG,
  738. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  739. __func__, i, map.is_iomem);
  740. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  741. dma_buf_put(dmabuf);
  742. }
  743. if (rc)
  744. _wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
  745. return rc;
  746. }
  747. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  748. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  749. {
  750. int rc = 0, i;
  751. struct cvp_buf_type* wncc_metadata_bufs;
  752. struct dma_buf* dmabuf;
  753. struct dma_buf_map map;
  754. if (!in_pkt || !wncc_metadata ||
  755. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  756. dprintk(CVP_ERR, "%s: invalid params", __func__);
  757. return -EINVAL;
  758. }
  759. wncc_metadata_bufs = (struct cvp_buf_type*)
  760. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  761. for (i = 0; i < num_layers; i++) {
  762. if (!wncc_metadata[i]) {
  763. rc = -EINVAL;
  764. break;
  765. }
  766. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  767. if (IS_ERR(dmabuf)) {
  768. rc = -PTR_ERR(dmabuf);
  769. dprintk(CVP_ERR,
  770. "%s: dma_buf_get() failed for "
  771. "wncc_metadata_bufs[%d], rc %d",
  772. __func__, i, rc);
  773. break;
  774. }
  775. dma_buf_map_set_vaddr(&map, wncc_metadata[i]);
  776. dma_buf_vunmap(dmabuf, &map);
  777. wncc_metadata[i] = NULL;
  778. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  779. dma_buf_put(dmabuf);
  780. if (rc) {
  781. dprintk(CVP_ERR,
  782. "%s: dma_buf_end_cpu_access() failed "
  783. "for wncc_metadata_bufs[%d], rc %d",
  784. __func__, i, rc);
  785. break;
  786. }
  787. }
  788. return rc;
  789. }
  790. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  791. struct eva_kmd_hfi_packet* in_pkt)
  792. {
  793. int rc = 0;
  794. struct eva_kmd_oob_wncc* wncc_oob;
  795. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  796. unsigned int i, j;
  797. bool empty = false;
  798. u32 buf_id, buf_idx, buf_offset, iova;
  799. if (!inst || !inst->core || !in_pkt) {
  800. dprintk(CVP_ERR, "%s: invalid params", __func__);
  801. return -EINVAL;
  802. }
  803. wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
  804. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  805. if (!wncc_oob)
  806. return -ENOMEM;
  807. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  808. if (rc) {
  809. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  810. goto exit;
  811. }
  812. rc = _wncc_map_metadata_bufs(in_pkt,
  813. wncc_oob->num_layers, wncc_metadata);
  814. if (rc) {
  815. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  816. __func__);
  817. goto exit;
  818. }
  819. mutex_lock(&inst->cvpwnccbufs.lock);
  820. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  821. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  822. empty = true;
  823. rc = -EINVAL;
  824. }
  825. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  826. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  827. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  828. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  829. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  830. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  831. dprintk(CVP_ERR,
  832. "%s: invalid wncc buf id %u "
  833. "in layer #%u address #%u",
  834. __func__, buf_id, i, j);
  835. rc = -EINVAL;
  836. break;
  837. }
  838. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  839. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  840. dprintk(CVP_ERR,
  841. "%s: unmapped wncc buf id %u "
  842. "in layer #%u address #%u",
  843. __func__, buf_id, i, j);
  844. /* _wncc_print_cvpwnccbufs_table(inst); */
  845. rc = -EINVAL;
  846. break;
  847. }
  848. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  849. if (buf_offset >=
  850. inst->cvpwnccbufs_table[buf_idx].size) {
  851. /* NOTE: This buffer offset validation is
  852. * not comprehensive since wncc src image
  853. * resolution information is not known to
  854. * KMD. UMD is responsible for comprehensive
  855. * validation.
  856. */
  857. dprintk(CVP_ERR,
  858. "%s: invalid wncc buf offset %u "
  859. "in layer #%u address #%u",
  860. __func__, buf_offset, i, j);
  861. rc = -EINVAL;
  862. break;
  863. }
  864. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  865. buf_offset;
  866. wncc_metadata[i][j].iova_lsb = iova;
  867. wncc_metadata[i][j].iova_msb = iova >> 22;
  868. }
  869. }
  870. mutex_unlock(&inst->cvpwnccbufs.lock);
  871. if (false)
  872. _wncc_print_metadata_buf(wncc_oob->num_layers,
  873. wncc_oob->layers[0].num_addrs, wncc_metadata);
  874. if (_wncc_unmap_metadata_bufs(in_pkt,
  875. wncc_oob->num_layers, wncc_metadata)) {
  876. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  877. __func__);
  878. }
  879. exit:
  880. kfree(wncc_oob);
  881. return rc;
  882. }
  883. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  884. struct eva_kmd_hfi_packet* in_pkt)
  885. {
  886. int rc = 0;
  887. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  888. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  889. if (!inst || !inst->core || !in_pkt) {
  890. dprintk(CVP_ERR, "%s: invalid params", __func__);
  891. return -EINVAL;
  892. }
  893. switch (cmd_hdr->packet_type) {
  894. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  895. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  896. break;
  897. default:
  898. break;
  899. }
  900. return rc;
  901. }
  902. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  903. u32 offset, u32 size)
  904. {
  905. enum smem_cache_ops cache_op;
  906. if (msm_cvp_cacheop_disabled)
  907. return;
  908. if (!smem) {
  909. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  910. return;
  911. }
  912. switch (type) {
  913. case EVA_KMD_BUFTYPE_INPUT:
  914. cache_op = SMEM_CACHE_CLEAN;
  915. break;
  916. case EVA_KMD_BUFTYPE_OUTPUT:
  917. cache_op = SMEM_CACHE_INVALIDATE;
  918. break;
  919. default:
  920. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  921. }
  922. dprintk(CVP_MEM,
  923. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  924. __func__, smem->dma_buf, cache_op, offset, size);
  925. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  926. }
  927. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  928. struct dma_buf *dma_buf)
  929. {
  930. struct msm_cvp_smem *smem;
  931. int i;
  932. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  933. return NULL;
  934. mutex_lock(&inst->dma_cache.lock);
  935. for (i = 0; i < inst->dma_cache.nr; i++)
  936. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  937. SET_USE_BITMAP(i, inst);
  938. smem = inst->dma_cache.entries[i];
  939. smem->bitmap_index = i;
  940. atomic_inc(&smem->refcount);
  941. /*
  942. * If we find it, it means we already increased
  943. * refcount before, so we put it to avoid double
  944. * incremental.
  945. */
  946. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  947. mutex_unlock(&inst->dma_cache.lock);
  948. print_smem(CVP_MEM, "found", inst, smem);
  949. return smem;
  950. }
  951. mutex_unlock(&inst->dma_cache.lock);
  952. return NULL;
  953. }
  954. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  955. struct msm_cvp_smem *smem)
  956. {
  957. unsigned int i;
  958. struct msm_cvp_smem *smem2;
  959. mutex_lock(&inst->dma_cache.lock);
  960. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  961. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  962. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  963. smem->bitmap_index = inst->dma_cache.nr;
  964. inst->dma_cache.nr++;
  965. i = smem->bitmap_index;
  966. } else {
  967. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  968. MAX_DMABUF_NUMS);
  969. if (i < MAX_DMABUF_NUMS) {
  970. smem2 = inst->dma_cache.entries[i];
  971. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  972. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  973. kmem_cache_free(cvp_driver->smem_cache, smem2);
  974. inst->dma_cache.entries[i] = smem;
  975. smem->bitmap_index = i;
  976. SET_USE_BITMAP(i, inst);
  977. } else {
  978. dprintk(CVP_WARN,
  979. "%s: reached limit, fallback to frame mapping list\n"
  980. , __func__);
  981. mutex_unlock(&inst->dma_cache.lock);
  982. return -ENOMEM;
  983. }
  984. }
  985. atomic_inc(&smem->refcount);
  986. mutex_unlock(&inst->dma_cache.lock);
  987. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  988. return 0;
  989. }
  990. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  991. struct cvp_buf_type *buf,
  992. bool is_persist)
  993. {
  994. int rc = 0, found = 1;
  995. struct msm_cvp_smem *smem = NULL;
  996. struct dma_buf *dma_buf = NULL;
  997. if (buf->fd < 0) {
  998. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  999. return NULL;
  1000. }
  1001. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1002. if (!dma_buf) {
  1003. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1004. return NULL;
  1005. }
  1006. if (is_persist) {
  1007. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1008. if (!smem)
  1009. return NULL;
  1010. smem->dma_buf = dma_buf;
  1011. smem->bitmap_index = MAX_DMABUF_NUMS;
  1012. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1013. if (rc)
  1014. goto exit;
  1015. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1016. dprintk(CVP_ERR,
  1017. "%s: invalid offset %d or size %d persist\n",
  1018. __func__, buf->offset, buf->size);
  1019. goto exit2;
  1020. }
  1021. return smem;
  1022. }
  1023. smem = msm_cvp_session_find_smem(inst, dma_buf);
  1024. if (!smem) {
  1025. found = 0;
  1026. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1027. if (!smem)
  1028. return NULL;
  1029. smem->dma_buf = dma_buf;
  1030. smem->bitmap_index = MAX_DMABUF_NUMS;
  1031. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1032. if (rc)
  1033. goto exit;
  1034. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1035. dprintk(CVP_ERR,
  1036. "%s: invalid offset %d or size %d new entry\n",
  1037. __func__, buf->offset, buf->size);
  1038. goto exit2;
  1039. }
  1040. rc = msm_cvp_session_add_smem(inst, smem);
  1041. if (rc && rc != -ENOMEM)
  1042. goto exit2;
  1043. return smem;
  1044. }
  1045. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1046. dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
  1047. __func__, buf->offset, buf->size);
  1048. if (found) {
  1049. mutex_lock(&inst->dma_cache.lock);
  1050. atomic_dec(&smem->refcount);
  1051. mutex_unlock(&inst->dma_cache.lock);
  1052. return NULL;
  1053. }
  1054. goto exit2;
  1055. }
  1056. return smem;
  1057. exit2:
  1058. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1059. exit:
  1060. msm_cvp_smem_put_dma_buf(dma_buf);
  1061. kmem_cache_free(cvp_driver->smem_cache, smem);
  1062. smem = NULL;
  1063. return smem;
  1064. }
  1065. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1066. struct cvp_buf_type *buf,
  1067. u32 pkt_type, u32 buf_idx)
  1068. {
  1069. u32 iova = 0;
  1070. struct msm_cvp_smem *smem = NULL;
  1071. struct cvp_internal_buf *pbuf;
  1072. if (!inst) {
  1073. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1074. return -EINVAL;
  1075. }
  1076. pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1077. if (!pbuf)
  1078. return 0;
  1079. smem = msm_cvp_session_get_smem(inst, buf, true);
  1080. if (!smem)
  1081. goto exit;
  1082. smem->flags |= SMEM_PERSIST;
  1083. smem->pkt_type = pkt_type;
  1084. smem->buf_idx = buf_idx;
  1085. pbuf->smem = smem;
  1086. pbuf->fd = buf->fd;
  1087. pbuf->size = buf->size;
  1088. pbuf->offset = buf->offset;
  1089. pbuf->ownership = CLIENT;
  1090. mutex_lock(&inst->persistbufs.lock);
  1091. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1092. mutex_unlock(&inst->persistbufs.lock);
  1093. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1094. iova = smem->device_addr + buf->offset;
  1095. return iova;
  1096. exit:
  1097. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  1098. return 0;
  1099. }
  1100. u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1101. struct cvp_buf_type *buf,
  1102. struct msm_cvp_frame *frame,
  1103. u32 pkt_type, u32 buf_idx)
  1104. {
  1105. u32 iova = 0;
  1106. struct msm_cvp_smem *smem = NULL;
  1107. u32 nr;
  1108. u32 type;
  1109. if (!inst || !frame) {
  1110. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1111. return 0;
  1112. }
  1113. nr = frame->nr;
  1114. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1115. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1116. return 0;
  1117. }
  1118. smem = msm_cvp_session_get_smem(inst, buf, false);
  1119. if (!smem)
  1120. return 0;
  1121. smem->pkt_type = pkt_type;
  1122. smem->buf_idx = buf_idx;
  1123. frame->bufs[nr].fd = buf->fd;
  1124. frame->bufs[nr].smem = smem;
  1125. frame->bufs[nr].size = buf->size;
  1126. frame->bufs[nr].offset = buf->offset;
  1127. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1128. frame->nr++;
  1129. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1130. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1131. iova = smem->device_addr + buf->offset;
  1132. return iova;
  1133. }
  1134. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1135. struct msm_cvp_frame *frame)
  1136. {
  1137. u32 i;
  1138. u32 type;
  1139. struct msm_cvp_smem *smem = NULL;
  1140. struct cvp_internal_buf *buf;
  1141. type = EVA_KMD_BUFTYPE_OUTPUT;
  1142. for (i = 0; i < frame->nr; ++i) {
  1143. buf = &frame->bufs[i];
  1144. smem = buf->smem;
  1145. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1146. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1147. /* smem not in dmamap cache */
  1148. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1149. dma_heap_buffer_free(smem->dma_buf);
  1150. smem->pkt_type = smem->buf_idx = 0;
  1151. kmem_cache_free(cvp_driver->smem_cache, smem);
  1152. buf->smem = NULL;
  1153. } else {
  1154. mutex_lock(&inst->dma_cache.lock);
  1155. if (atomic_dec_and_test(&smem->refcount)) {
  1156. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1157. print_smem(CVP_MEM, "Map dereference",
  1158. inst, smem);
  1159. smem->pkt_type = smem->buf_idx = 0;
  1160. }
  1161. mutex_unlock(&inst->dma_cache.lock);
  1162. }
  1163. }
  1164. kmem_cache_free(cvp_driver->frame_cache, frame);
  1165. }
  1166. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1167. {
  1168. struct msm_cvp_frame *frame, *dummy1;
  1169. bool found;
  1170. if (!inst) {
  1171. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1172. return;
  1173. }
  1174. ktid &= (FENCE_BIT - 1);
  1175. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1176. __func__, hash32_ptr(inst->session), ktid);
  1177. found = false;
  1178. mutex_lock(&inst->frames.lock);
  1179. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1180. if (frame->ktid == ktid) {
  1181. found = true;
  1182. list_del(&frame->list);
  1183. break;
  1184. }
  1185. }
  1186. mutex_unlock(&inst->frames.lock);
  1187. if (found)
  1188. msm_cvp_unmap_frame_buf(inst, frame);
  1189. else
  1190. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1191. }
  1192. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1193. struct eva_kmd_hfi_packet *in_pkt,
  1194. unsigned int offset, unsigned int buf_num)
  1195. {
  1196. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1197. return 0;
  1198. }
  1199. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1200. struct eva_kmd_hfi_packet *in_pkt,
  1201. unsigned int offset, unsigned int buf_num)
  1202. {
  1203. struct cvp_buf_type *buf;
  1204. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1205. int i;
  1206. u32 iova;
  1207. if (!offset || !buf_num)
  1208. return 0;
  1209. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1210. for (i = 0; i < buf_num; i++) {
  1211. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1212. offset += sizeof(*buf) >> 2;
  1213. if (buf->fd < 0 || !buf->size)
  1214. continue;
  1215. iova = msm_cvp_map_user_persist_buf(inst, buf, cmd_hdr->packet_type, i);
  1216. if (!iova) {
  1217. dprintk(CVP_ERR,
  1218. "%s: buf %d register failed.\n",
  1219. __func__, i);
  1220. return -EINVAL;
  1221. }
  1222. buf->fd = iova;
  1223. }
  1224. return 0;
  1225. }
  1226. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1227. struct eva_kmd_hfi_packet *in_pkt,
  1228. unsigned int offset, unsigned int buf_num)
  1229. {
  1230. struct cvp_buf_type *buf;
  1231. int i;
  1232. u32 iova;
  1233. u64 ktid;
  1234. struct msm_cvp_frame *frame;
  1235. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1236. if (!offset || !buf_num)
  1237. return 0;
  1238. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1239. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1240. ktid &= (FENCE_BIT - 1);
  1241. cmd_hdr->client_data.kdata = ktid;
  1242. frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
  1243. if (!frame)
  1244. return -ENOMEM;
  1245. frame->ktid = ktid;
  1246. frame->nr = 0;
  1247. frame->pkt_type = cmd_hdr->packet_type;
  1248. for (i = 0; i < buf_num; i++) {
  1249. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1250. offset += sizeof(*buf) >> 2;
  1251. if (buf->fd < 0 || !buf->size)
  1252. continue;
  1253. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1254. if (!iova) {
  1255. dprintk(CVP_ERR,
  1256. "%s: buf %d register failed.\n",
  1257. __func__, i);
  1258. msm_cvp_unmap_frame_buf(inst, frame);
  1259. return -EINVAL;
  1260. }
  1261. buf->fd = iova;
  1262. }
  1263. mutex_lock(&inst->frames.lock);
  1264. list_add_tail(&frame->list, &inst->frames.list);
  1265. mutex_unlock(&inst->frames.lock);
  1266. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1267. return 0;
  1268. }
  1269. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1270. {
  1271. int rc = 0, i;
  1272. struct cvp_internal_buf *cbuf, *dummy;
  1273. struct msm_cvp_frame *frame, *dummy1;
  1274. struct msm_cvp_smem *smem;
  1275. struct cvp_hal_session *session;
  1276. struct eva_kmd_buffer buf;
  1277. session = (struct cvp_hal_session *)inst->session;
  1278. mutex_lock(&inst->frames.lock);
  1279. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1280. list_del(&frame->list);
  1281. msm_cvp_unmap_frame_buf(inst, frame);
  1282. }
  1283. mutex_unlock(&inst->frames.lock);
  1284. mutex_lock(&inst->dma_cache.lock);
  1285. for (i = 0; i < inst->dma_cache.nr; i++) {
  1286. smem = inst->dma_cache.entries[i];
  1287. if (atomic_read(&smem->refcount) == 0) {
  1288. print_smem(CVP_MEM, "free", inst, smem);
  1289. } else if (!(smem->flags & SMEM_PERSIST)) {
  1290. print_smem(CVP_WARN, "in use", inst, smem);
  1291. }
  1292. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1293. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1294. kmem_cache_free(cvp_driver->smem_cache, smem);
  1295. inst->dma_cache.entries[i] = NULL;
  1296. }
  1297. mutex_unlock(&inst->dma_cache.lock);
  1298. mutex_lock(&inst->cvpdspbufs.lock);
  1299. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1300. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1301. if (cbuf->ownership == CLIENT) {
  1302. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1303. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1304. cbuf->offset, cbuf->index,
  1305. (uint32_t)cbuf->smem->device_addr);
  1306. if (rc)
  1307. dprintk(CVP_ERR,
  1308. "%s: failed dsp deregistration fd=%d rc=%d",
  1309. __func__, cbuf->fd, rc);
  1310. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1311. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1312. } else if (cbuf->ownership == DSP) {
  1313. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1314. if (rc)
  1315. dprintk(CVP_ERR,
  1316. "%s: failed to unmap buf from DSP\n",
  1317. __func__);
  1318. rc = cvp_release_dsp_buffers(inst, cbuf);
  1319. if (rc)
  1320. dprintk(CVP_ERR,
  1321. "%s Fail to free buffer 0x%x\n",
  1322. __func__, rc);
  1323. }
  1324. list_del(&cbuf->list);
  1325. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  1326. }
  1327. mutex_unlock(&inst->cvpdspbufs.lock);
  1328. mutex_lock(&inst->cvpwnccbufs.lock);
  1329. if (inst->cvpwnccbufs_num != 0)
  1330. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1331. __func__, inst->cvpwnccbufs_num);
  1332. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1333. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1334. buf.fd = cbuf->fd;
  1335. buf.reserved[0] = cbuf->ktid;
  1336. mutex_unlock(&inst->cvpwnccbufs.lock);
  1337. msm_cvp_unmap_buf_wncc(inst, &buf);
  1338. mutex_lock(&inst->cvpwnccbufs.lock);
  1339. }
  1340. mutex_unlock(&inst->cvpwnccbufs.lock);
  1341. return rc;
  1342. }
  1343. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1344. {
  1345. struct cvp_internal_buf *buf;
  1346. struct msm_cvp_core *core;
  1347. struct inst_snapshot *snap = NULL;
  1348. int i;
  1349. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1350. if (log && core->log.snapshot_index < 16) {
  1351. snap = &core->log.snapshot[core->log.snapshot_index];
  1352. snap->session = inst->session;
  1353. core->log.snapshot_index++;
  1354. }
  1355. if (!inst) {
  1356. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1357. __func__, inst);
  1358. return;
  1359. }
  1360. dprintk(CVP_ERR,
  1361. "---Buffer details for inst: %pK of type: %d---\n",
  1362. inst, inst->session_type);
  1363. mutex_lock(&inst->dma_cache.lock);
  1364. dprintk(CVP_ERR, "dma cache: %d\n", inst->dma_cache.nr);
  1365. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1366. for (i = 0; i < inst->dma_cache.nr; i++)
  1367. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1368. mutex_unlock(&inst->dma_cache.lock);
  1369. mutex_lock(&inst->cvpdspbufs.lock);
  1370. dprintk(CVP_ERR, "dsp buffer list:\n");
  1371. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1372. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1373. mutex_unlock(&inst->cvpdspbufs.lock);
  1374. mutex_lock(&inst->cvpwnccbufs.lock);
  1375. dprintk(CVP_ERR, "wncc buffer list:\n");
  1376. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1377. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1378. mutex_unlock(&inst->cvpwnccbufs.lock);
  1379. mutex_lock(&inst->persistbufs.lock);
  1380. dprintk(CVP_ERR, "persist buffer list:\n");
  1381. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1382. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1383. mutex_unlock(&inst->persistbufs.lock);
  1384. }
  1385. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1386. u32 buffer_size)
  1387. {
  1388. struct cvp_internal_buf *buf;
  1389. struct msm_cvp_list *buf_list;
  1390. u32 smem_flags = SMEM_UNCACHED;
  1391. int rc = 0;
  1392. if (!inst) {
  1393. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1394. return NULL;
  1395. }
  1396. buf_list = &inst->persistbufs;
  1397. if (!buffer_size)
  1398. return NULL;
  1399. /* PERSIST buffer requires secure mapping
  1400. * Disable and wait for hyp_assign available
  1401. */
  1402. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1403. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1404. if (!buf) {
  1405. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1406. goto fail_kzalloc;
  1407. }
  1408. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1409. if (!buf->smem) {
  1410. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1411. goto fail_kzalloc;
  1412. }
  1413. buf->smem->flags = smem_flags;
  1414. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1415. &(inst->core->resources), buf->smem);
  1416. if (rc) {
  1417. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1418. goto err_no_mem;
  1419. }
  1420. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1421. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1422. buf->size = buf->smem->size;
  1423. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1424. buf->ownership = DRIVER;
  1425. mutex_lock(&buf_list->lock);
  1426. list_add_tail(&buf->list, &buf_list->list);
  1427. mutex_unlock(&buf_list->lock);
  1428. return buf;
  1429. err_no_mem:
  1430. kmem_cache_free(cvp_driver->buf_cache, buf);
  1431. fail_kzalloc:
  1432. return NULL;
  1433. }
  1434. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1435. {
  1436. struct msm_cvp_smem *smem;
  1437. struct list_head *ptr, *next;
  1438. struct cvp_internal_buf *buf;
  1439. int rc = 0;
  1440. struct msm_cvp_core *core;
  1441. struct cvp_hfi_device *hdev;
  1442. if (!inst) {
  1443. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1444. return -EINVAL;
  1445. }
  1446. core = inst->core;
  1447. if (!core) {
  1448. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1449. return -EINVAL;
  1450. }
  1451. hdev = core->device;
  1452. if (!hdev) {
  1453. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1454. return -EINVAL;
  1455. }
  1456. dprintk(CVP_MEM, "release persist buffer!\n");
  1457. mutex_lock(&inst->persistbufs.lock);
  1458. /* Workaround for FW: release buffer means release all */
  1459. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1460. rc = call_hfi_op(hdev, session_release_buffers,
  1461. (void *)inst->session);
  1462. if (!rc) {
  1463. mutex_unlock(&inst->persistbufs.lock);
  1464. rc = wait_for_sess_signal_receipt(inst,
  1465. HAL_SESSION_RELEASE_BUFFER_DONE);
  1466. if (rc)
  1467. dprintk(CVP_WARN,
  1468. "%s: wait for signal failed, rc %d\n",
  1469. __func__, rc);
  1470. mutex_lock(&inst->persistbufs.lock);
  1471. } else {
  1472. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  1473. }
  1474. }
  1475. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1476. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1477. smem = buf->smem;
  1478. if (!smem) {
  1479. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1480. mutex_unlock(&inst->persistbufs.lock);
  1481. return -EINVAL;
  1482. }
  1483. list_del(&buf->list);
  1484. if (buf->ownership == DRIVER) {
  1485. dprintk(CVP_MEM,
  1486. "%s: %x : fd %d %s size %d",
  1487. "free arp", hash32_ptr(inst->session), buf->fd,
  1488. smem->dma_buf->name, buf->size);
  1489. msm_cvp_smem_free(smem);
  1490. kmem_cache_free(cvp_driver->smem_cache, smem);
  1491. }
  1492. buf->smem = NULL;
  1493. kmem_cache_free(cvp_driver->buf_cache, buf);
  1494. }
  1495. mutex_unlock(&inst->persistbufs.lock);
  1496. return rc;
  1497. }
  1498. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1499. struct cvp_internal_buf *buf,
  1500. u32 buffer_size,
  1501. u32 secure_type)
  1502. {
  1503. u32 smem_flags = SMEM_UNCACHED;
  1504. int rc = 0;
  1505. if (!inst) {
  1506. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1507. return -EINVAL;
  1508. }
  1509. if (!buf)
  1510. return -EINVAL;
  1511. if (!buffer_size)
  1512. return -EINVAL;
  1513. switch (secure_type) {
  1514. case 0:
  1515. break;
  1516. case 1:
  1517. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1518. break;
  1519. case 2:
  1520. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1521. break;
  1522. default:
  1523. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1524. __func__, secure_type);
  1525. return -EINVAL;
  1526. }
  1527. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1528. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1529. if (!buf->smem) {
  1530. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1531. goto fail_kzalloc_smem_cache;
  1532. }
  1533. buf->smem->flags = smem_flags;
  1534. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1535. &(inst->core->resources), buf->smem);
  1536. if (rc) {
  1537. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1538. goto err_no_mem;
  1539. }
  1540. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1541. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1542. buf->size = buf->smem->size;
  1543. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1544. buf->ownership = DSP;
  1545. return rc;
  1546. err_no_mem:
  1547. kmem_cache_free(cvp_driver->smem_cache, buf->smem);
  1548. fail_kzalloc_smem_cache:
  1549. return rc;
  1550. }
  1551. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1552. struct cvp_internal_buf *buf)
  1553. {
  1554. struct msm_cvp_smem *smem;
  1555. int rc = 0;
  1556. if (!inst) {
  1557. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1558. return -EINVAL;
  1559. }
  1560. if (!buf) {
  1561. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1562. return -EINVAL;
  1563. }
  1564. smem = buf->smem;
  1565. if (!smem) {
  1566. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1567. return -EINVAL;
  1568. }
  1569. if (buf->ownership == DSP) {
  1570. dprintk(CVP_MEM,
  1571. "%s: %x : fd %x %s size %d",
  1572. __func__, hash32_ptr(inst->session), buf->fd,
  1573. smem->dma_buf->name, buf->size);
  1574. msm_cvp_smem_free(smem);
  1575. kmem_cache_free(cvp_driver->smem_cache, smem);
  1576. } else {
  1577. dprintk(CVP_ERR,
  1578. "%s: wrong owner %d %x : fd %x %s size %d",
  1579. __func__, buf->ownership, hash32_ptr(inst->session),
  1580. buf->fd, smem->dma_buf->name, buf->size);
  1581. }
  1582. return rc;
  1583. }
  1584. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1585. struct eva_kmd_buffer *buf)
  1586. {
  1587. struct cvp_hfi_device *hdev;
  1588. struct cvp_hal_session *session;
  1589. struct msm_cvp_inst *s;
  1590. int rc = 0;
  1591. if (!inst || !inst->core || !buf) {
  1592. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1593. return -EINVAL;
  1594. }
  1595. s = cvp_get_inst_validate(inst->core, inst);
  1596. if (!s)
  1597. return -ECONNRESET;
  1598. session = (struct cvp_hal_session *)inst->session;
  1599. if (!session) {
  1600. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1601. rc = -EINVAL;
  1602. goto exit;
  1603. }
  1604. hdev = inst->core->device;
  1605. print_client_buffer(CVP_HFI, "register", inst, buf);
  1606. if (buf->index)
  1607. rc = msm_cvp_map_buf_dsp(inst, buf);
  1608. else
  1609. rc = msm_cvp_map_buf_wncc(inst, buf);
  1610. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1611. buf->fd, buf->reserved[0]);
  1612. exit:
  1613. cvp_put_inst(s);
  1614. return rc;
  1615. }
  1616. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1617. struct eva_kmd_buffer *buf)
  1618. {
  1619. struct msm_cvp_inst *s;
  1620. int rc = 0;
  1621. if (!inst || !inst->core || !buf) {
  1622. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1623. return -EINVAL;
  1624. }
  1625. s = cvp_get_inst_validate(inst->core, inst);
  1626. if (!s)
  1627. return -ECONNRESET;
  1628. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1629. if (buf->index)
  1630. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1631. else
  1632. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1633. cvp_put_inst(s);
  1634. return rc;
  1635. }