msm_cvp_buf.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #include "eva_shared_def.h"
  18. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  19. #define eva_buf_map dma_buf_map
  20. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  21. #else
  22. #define eva_buf_map iosys_map
  23. #define _buf_map_set_vaddr iosys_map_set_vaddr
  24. #endif
  25. #define CLEAR_USE_BITMAP(idx, inst) \
  26. do { \
  27. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  28. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  29. hash32_ptr(inst->session), smem->bitmap_index, \
  30. inst->dma_cache.usage_bitmap); \
  31. } while (0)
  32. #define SET_USE_BITMAP(idx, inst) \
  33. do { \
  34. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  35. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  36. hash32_ptr(inst->session), idx, \
  37. inst->dma_cache.usage_bitmap); \
  38. } while (0)
  39. struct cvp_oob_pool wncc_buf_pool;
  40. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  41. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  42. unsigned int num_layers, unsigned int metadata_bufs_offset,
  43. struct eva_kmd_wncc_metadata** wncc_metadata);
  44. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  45. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  46. struct msm_cvp_smem *smem)
  47. {
  48. int i;
  49. char name[PKT_NAME_LEN] = "Unknown";
  50. if (!(tag & msm_cvp_debug))
  51. return 0;
  52. if (!inst || !smem) {
  53. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  54. inst, smem);
  55. return -EINVAL;
  56. }
  57. if (smem->dma_buf) {
  58. i = get_pkt_index_from_type(smem->pkt_type);
  59. if (i > 0)
  60. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  61. if (!atomic_read(&smem->refcount))
  62. dprintk(tag,
  63. " UNUSED mapping %s: 0x%llx %s size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  64. str, smem->dma_buf, smem->dma_buf->name,
  65. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  66. else
  67. dprintk(tag,
  68. "%s: %x : 0x%llx %s size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  69. str, hash32_ptr(inst->session), smem->dma_buf, smem->dma_buf->name,
  70. smem->size, smem->flags, smem->device_addr,
  71. smem->bitmap_index, atomic_read(&smem->refcount),
  72. name, smem->buf_idx, smem->fd);
  73. }
  74. return 0;
  75. }
  76. static void print_internal_buffer(u32 tag, const char *str,
  77. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  78. {
  79. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  80. return;
  81. if (cbuf->smem->dma_buf) {
  82. dprintk(tag,
  83. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  84. str, hash32_ptr(inst->session), cbuf->fd,
  85. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  86. cbuf->size, cbuf->smem->device_addr);
  87. } else {
  88. dprintk(tag,
  89. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  90. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  91. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  92. }
  93. }
  94. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  95. struct cvp_internal_buf *cbuf)
  96. {
  97. if (!inst || !cbuf) {
  98. dprintk(CVP_ERR,
  99. "%s Invalid params inst %pK, cbuf %pK\n",
  100. str, inst, cbuf);
  101. return;
  102. }
  103. print_smem(tag, str, inst, cbuf->smem);
  104. }
  105. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  106. struct msm_cvp_smem *smem, bool logging)
  107. {
  108. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  109. return;
  110. if (!logging || !snapshot)
  111. return;
  112. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  113. struct smem_data *s;
  114. s = &snapshot->smem_log[snapshot->smem_index];
  115. snapshot->smem_index++;
  116. s->size = smem->size;
  117. s->flags = smem->flags;
  118. s->device_addr = smem->device_addr;
  119. s->bitmap_index = smem->bitmap_index;
  120. s->refcount = atomic_read(&smem->refcount);
  121. s->pkt_type = smem->pkt_type;
  122. s->buf_idx = smem->buf_idx;
  123. }
  124. }
  125. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  126. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  127. bool logging)
  128. {
  129. struct cvp_buf_data *buf = NULL;
  130. u32 index;
  131. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  132. if (!logging)
  133. return;
  134. if (snapshot) {
  135. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  136. index = snapshot->dsp_index;
  137. buf = &snapshot->dsp_buf_log[index];
  138. snapshot->dsp_index++;
  139. } else if (prop == SMEM_PERSIST &&
  140. snapshot->persist_index < MAX_ENTRIES) {
  141. index = snapshot->persist_index;
  142. buf = &snapshot->persist_buf_log[index];
  143. snapshot->persist_index++;
  144. }
  145. if (buf) {
  146. buf->device_addr = cbuf->smem->device_addr;
  147. buf->size = cbuf->size;
  148. }
  149. }
  150. }
  151. void print_client_buffer(u32 tag, const char *str,
  152. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  153. {
  154. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  155. return;
  156. dprintk(tag,
  157. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  158. " reserved[0] %u\n",
  159. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  160. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  161. cbuf->reserved[0]);
  162. }
  163. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  164. struct eva_kmd_buffer *buf)
  165. {
  166. struct cvp_hal_session *session;
  167. struct cvp_internal_buf *cbuf = NULL;
  168. bool found = false;
  169. if (!inst || !inst->core || !buf) {
  170. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  171. return false;
  172. }
  173. if (buf->fd < 0) {
  174. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  175. return false;
  176. }
  177. if (buf->offset) {
  178. dprintk(CVP_ERR,
  179. "%s: offset is deprecated, set to 0.\n",
  180. __func__);
  181. return false;
  182. }
  183. session = (struct cvp_hal_session *)inst->session;
  184. mutex_lock(&inst->cvpdspbufs.lock);
  185. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  186. if (cbuf->fd == buf->fd) {
  187. if (cbuf->size != buf->size) {
  188. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  189. __func__);
  190. mutex_unlock(&inst->cvpdspbufs.lock);
  191. return false;
  192. }
  193. found = true;
  194. break;
  195. }
  196. }
  197. mutex_unlock(&inst->cvpdspbufs.lock);
  198. if (found) {
  199. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  200. return false;
  201. }
  202. return true;
  203. }
  204. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  205. fmode_t mask, unsigned int refs)
  206. {
  207. struct files_struct *files = task->files;
  208. struct file *file;
  209. if (!files)
  210. return NULL;
  211. rcu_read_lock();
  212. loop:
  213. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  214. file = fcheck_files(files, fd);
  215. #else
  216. file = files_lookup_fd_rcu(files, fd);
  217. #endif
  218. if (file) {
  219. /* File object ref couldn't be taken.
  220. * dup2() atomicity guarantee is the reason
  221. * we loop to catch the new file (or NULL pointer)
  222. */
  223. if (file->f_mode & mask)
  224. file = NULL;
  225. else if (!get_file_rcu(file))
  226. goto loop;
  227. }
  228. rcu_read_unlock();
  229. return file;
  230. }
  231. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  232. struct task_struct *task)
  233. {
  234. if (file->f_op != gfa_cv.dmabuf_f_op) {
  235. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  236. return ERR_PTR(-EINVAL);
  237. }
  238. return file->private_data;
  239. }
  240. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  241. {
  242. int rc = 0;
  243. struct cvp_internal_buf *cbuf = NULL;
  244. struct msm_cvp_smem *smem = NULL;
  245. struct dma_buf *dma_buf = NULL;
  246. struct file *file;
  247. if (!__is_buf_valid(inst, buf))
  248. return -EINVAL;
  249. if (!inst->task)
  250. return -EINVAL;
  251. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  252. if (file == NULL) {
  253. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  254. return -EINVAL;
  255. }
  256. dma_buf = cvp_dma_buf_get(
  257. file,
  258. buf->fd,
  259. inst->task);
  260. if (dma_buf == ERR_PTR(-EINVAL)) {
  261. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  262. rc = -EINVAL;
  263. goto exit;
  264. }
  265. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  266. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  267. if (!cbuf) {
  268. rc = -ENOMEM;
  269. goto exit;
  270. }
  271. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  272. if (!smem) {
  273. rc = -ENOMEM;
  274. goto exit;
  275. }
  276. smem->dma_buf = dma_buf;
  277. smem->bitmap_index = MAX_DMABUF_NUMS;
  278. smem->pkt_type = 0;
  279. smem->buf_idx = 0;
  280. smem->fd = buf->fd;
  281. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  282. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  283. if (rc) {
  284. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  285. goto exit;
  286. }
  287. cbuf->smem = smem;
  288. cbuf->fd = buf->fd;
  289. cbuf->size = buf->size;
  290. cbuf->offset = buf->offset;
  291. cbuf->ownership = CLIENT;
  292. cbuf->index = buf->index;
  293. buf->reserved[0] = (uint32_t)smem->device_addr;
  294. mutex_lock(&inst->cvpdspbufs.lock);
  295. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  296. mutex_unlock(&inst->cvpdspbufs.lock);
  297. return rc;
  298. exit:
  299. fput(file);
  300. if (smem) {
  301. if (smem->device_addr)
  302. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  303. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  304. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  305. }
  306. if (cbuf)
  307. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  308. return rc;
  309. }
  310. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  311. {
  312. int rc = 0;
  313. bool found;
  314. struct cvp_internal_buf *cbuf;
  315. struct cvp_hal_session *session;
  316. if (!inst || !inst->core || !buf) {
  317. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  318. return -EINVAL;
  319. }
  320. session = (struct cvp_hal_session *)inst->session;
  321. if (!session) {
  322. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  323. return -EINVAL;
  324. }
  325. mutex_lock(&inst->cvpdspbufs.lock);
  326. found = false;
  327. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  328. if (cbuf->fd == buf->fd) {
  329. found = true;
  330. break;
  331. }
  332. }
  333. mutex_unlock(&inst->cvpdspbufs.lock);
  334. if (!found) {
  335. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  336. return -EINVAL;
  337. }
  338. if (cbuf->smem->device_addr) {
  339. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  340. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  341. }
  342. mutex_lock(&inst->cvpdspbufs.lock);
  343. list_del(&cbuf->list);
  344. mutex_unlock(&inst->cvpdspbufs.lock);
  345. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  346. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  347. return rc;
  348. }
  349. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  350. struct eva_kmd_buffer *buf)
  351. {
  352. int rc = 0, i;
  353. bool found = false;
  354. struct cvp_internal_buf* cbuf;
  355. struct msm_cvp_smem* smem = NULL;
  356. struct dma_buf* dma_buf = NULL;
  357. if (!inst || !inst->core || !buf) {
  358. dprintk(CVP_ERR, "%s: invalid params", __func__);
  359. return -EINVAL;
  360. }
  361. if (!inst->session) {
  362. dprintk(CVP_ERR, "%s: invalid session", __func__);
  363. return -EINVAL;
  364. }
  365. if (buf->index) {
  366. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  367. __func__, buf->fd);
  368. return -EINVAL;
  369. }
  370. if (buf->fd < 0) {
  371. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  372. return -EINVAL;
  373. }
  374. if (buf->offset) {
  375. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  376. __func__);
  377. return -EINVAL;
  378. }
  379. mutex_lock(&inst->cvpwnccbufs.lock);
  380. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  381. if (cbuf->fd == buf->fd) {
  382. if (cbuf->size != buf->size) {
  383. dprintk(CVP_ERR, "%s: buf size mismatch",
  384. __func__);
  385. mutex_unlock(&inst->cvpwnccbufs.lock);
  386. return -EINVAL;
  387. }
  388. found = true;
  389. break;
  390. }
  391. }
  392. mutex_unlock(&inst->cvpwnccbufs.lock);
  393. if (found) {
  394. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  395. return -EINVAL;
  396. }
  397. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  398. if (!dma_buf) {
  399. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  400. return -EINVAL;
  401. }
  402. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  403. if (!cbuf) {
  404. msm_cvp_smem_put_dma_buf(dma_buf);
  405. return -ENOMEM;
  406. }
  407. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  408. if (!smem) {
  409. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  410. msm_cvp_smem_put_dma_buf(dma_buf);
  411. return -ENOMEM;
  412. }
  413. smem->dma_buf = dma_buf;
  414. smem->bitmap_index = MAX_DMABUF_NUMS;
  415. smem->pkt_type = 0;
  416. smem->buf_idx = 0;
  417. smem->fd = buf->fd;
  418. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  419. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  420. if (rc) {
  421. dprintk(CVP_ERR, "%s: map failed", __func__);
  422. print_client_buffer(CVP_ERR, __func__, inst, buf);
  423. goto exit;
  424. }
  425. cbuf->smem = smem;
  426. cbuf->fd = buf->fd;
  427. cbuf->size = buf->size;
  428. cbuf->offset = buf->offset;
  429. cbuf->ownership = CLIENT;
  430. cbuf->index = buf->index;
  431. /* Added for PreSil/RUMI testing */
  432. #ifdef USE_PRESIL
  433. dprintk(CVP_DBG,
  434. "wncc buffer is %x for cam_presil_send_buffer"
  435. " with MAP_ADDR_OFFSET %x",
  436. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  437. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  438. (u32)cbuf->offset, (u32)cbuf->size,
  439. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  440. #endif
  441. mutex_lock(&inst->cvpwnccbufs.lock);
  442. if (inst->cvpwnccbufs_table == NULL) {
  443. inst->cvpwnccbufs_table =
  444. (struct msm_cvp_wncc_buffer*) kzalloc(
  445. sizeof(struct msm_cvp_wncc_buffer) *
  446. EVA_KMD_WNCC_MAX_SRC_BUFS,
  447. GFP_KERNEL);
  448. if (!inst->cvpwnccbufs_table) {
  449. mutex_unlock(&inst->cvpwnccbufs.lock);
  450. goto exit;
  451. }
  452. }
  453. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  454. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  455. {
  456. if (inst->cvpwnccbufs_table[i].iova == 0)
  457. {
  458. inst->cvpwnccbufs_num++;
  459. inst->cvpwnccbufs_table[i].fd = buf->fd;
  460. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  461. inst->cvpwnccbufs_table[i].size = smem->size;
  462. /* buf reserved[0] used to store wncc src buf id */
  463. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  464. /* cbuf ktid used to store wncc src buf id */
  465. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  466. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  467. __func__, inst->cvpwnccbufs_table[i].iova);
  468. break;
  469. }
  470. }
  471. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  472. dprintk(CVP_ERR,
  473. "%s: wncc buf table full - max (%u) already registered",
  474. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  475. /* _wncc_print_cvpwnccbufs_table(inst); */
  476. mutex_unlock(&inst->cvpwnccbufs.lock);
  477. rc = -EDQUOT;
  478. goto exit;
  479. }
  480. mutex_unlock(&inst->cvpwnccbufs.lock);
  481. return rc;
  482. exit:
  483. if (smem->device_addr)
  484. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  485. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  486. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  487. cbuf = NULL;
  488. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  489. smem = NULL;
  490. return rc;
  491. }
  492. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  493. struct eva_kmd_buffer *buf)
  494. {
  495. int rc = 0;
  496. bool found;
  497. struct cvp_internal_buf *cbuf;
  498. uint32_t buf_id, buf_idx;
  499. if (!inst || !inst->core || !buf) {
  500. dprintk(CVP_ERR, "%s: invalid params", __func__);
  501. return -EINVAL;
  502. }
  503. if (!inst->session) {
  504. dprintk(CVP_ERR, "%s: invalid session", __func__);
  505. return -EINVAL;
  506. }
  507. if (buf->index) {
  508. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  509. __func__, buf->fd);
  510. return -EINVAL;
  511. }
  512. buf_id = buf->reserved[0];
  513. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  514. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  515. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  516. __func__, buf->reserved[0]);
  517. return -EINVAL;
  518. }
  519. mutex_lock(&inst->cvpwnccbufs.lock);
  520. if (inst->cvpwnccbufs_num == 0) {
  521. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  522. mutex_unlock(&inst->cvpwnccbufs.lock);
  523. return -EINVAL;
  524. }
  525. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  526. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  527. dprintk(CVP_ERR, "%s: buffer id %d not found",
  528. __func__, buf_id);
  529. mutex_unlock(&inst->cvpwnccbufs.lock);
  530. return -EINVAL;
  531. }
  532. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  533. found = false;
  534. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  535. if (cbuf->fd == buf->fd) {
  536. found = true;
  537. break;
  538. }
  539. }
  540. if (!found) {
  541. dprintk(CVP_ERR, "%s: buffer id %d not found",
  542. __func__, buf_id);
  543. print_client_buffer(CVP_ERR, __func__, inst, buf);
  544. _wncc_print_cvpwnccbufs_table(inst);
  545. mutex_unlock(&inst->cvpwnccbufs.lock);
  546. return -EINVAL;
  547. }
  548. if (cbuf->smem->device_addr) {
  549. u64 idx = inst->unused_wncc_bufs.ktid;
  550. inst->unused_wncc_bufs.smem[idx] = *(cbuf->smem);
  551. inst->unused_wncc_bufs.nr++;
  552. inst->unused_wncc_bufs.nr =
  553. (inst->unused_wncc_bufs.nr > MAX_FRAME_BUFFER_NUMS)?
  554. MAX_FRAME_BUFFER_NUMS : inst->unused_wncc_bufs.nr;
  555. inst->unused_wncc_bufs.ktid = ++idx % MAX_FRAME_BUFFER_NUMS;
  556. }
  557. mutex_unlock(&inst->cvpwnccbufs.lock);
  558. if (cbuf->smem->device_addr) {
  559. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  560. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  561. }
  562. mutex_lock(&inst->cvpwnccbufs.lock);
  563. list_del(&cbuf->list);
  564. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  565. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  566. inst->cvpwnccbufs_table[buf_idx].size = 0;
  567. inst->cvpwnccbufs_num--;
  568. if (inst->cvpwnccbufs_num == 0) {
  569. kfree(inst->cvpwnccbufs_table);
  570. inst->cvpwnccbufs_table = NULL;
  571. }
  572. mutex_unlock(&inst->cvpwnccbufs.lock);
  573. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  574. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  575. return rc;
  576. }
  577. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  578. {
  579. u32 i, j;
  580. if (!wncc_oob) {
  581. dprintk(CVP_ERR, "%s: invalid params", __func__);
  582. return;
  583. }
  584. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  585. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  586. for (i = 0; i < wncc_oob->num_layers; i++) {
  587. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  588. __func__, i, wncc_oob->layers[i].num_addrs);
  589. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  590. dprintk(CVP_DBG,
  591. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  592. __func__, i, j,
  593. wncc_oob->layers[i].addrs[j].buffer_id,
  594. wncc_oob->layers[i].addrs[j].offset);
  595. }
  596. }
  597. }
  598. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  599. {
  600. u32 i, entries = 0;
  601. if (!inst) {
  602. dprintk(CVP_ERR, "%s: invalid params", __func__);
  603. return;
  604. }
  605. if (inst->cvpwnccbufs_num == 0) {
  606. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  607. __func__);
  608. return;
  609. }
  610. if (!inst->cvpwnccbufs_table) {
  611. dprintk(CVP_ERR, "%s: invalid params", __func__);
  612. return;
  613. }
  614. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  615. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  616. entries < inst->cvpwnccbufs_num; i++) {
  617. if (inst->cvpwnccbufs_table[i].iova != 0) {
  618. dprintk(CVP_DBG,
  619. "%s: buf_idx=%04d --> "
  620. "fd=%03d, iova=0x%08x, size=%d",
  621. __func__, i,
  622. inst->cvpwnccbufs_table[i].fd,
  623. inst->cvpwnccbufs_table[i].iova,
  624. inst->cvpwnccbufs_table[i].size);
  625. entries++;
  626. }
  627. }
  628. }
  629. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  630. struct eva_kmd_wncc_metadata** wncc_metadata)
  631. {
  632. u32 i, j, iova;
  633. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  634. !wncc_metadata) {
  635. dprintk(CVP_ERR, "%s: invalid params", __func__);
  636. return;
  637. }
  638. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  639. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  640. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  641. for (i = 0; i < num_layers; i++) {
  642. for (j = 0; j < num_addrs; j++) {
  643. iova = (wncc_metadata[i][j].iova_msb << 22) |
  644. wncc_metadata[i][j].iova_lsb;
  645. dprintk(CVP_DBG,
  646. "%s: wncc_metadata[%u][%u]: "
  647. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  648. __func__, i, j,
  649. wncc_metadata[i][j].loc_x_dec,
  650. wncc_metadata[i][j].loc_x_frac,
  651. wncc_metadata[i][j].loc_y_dec,
  652. wncc_metadata[i][j].loc_y_frac,
  653. iova,
  654. wncc_metadata[i][j].scale_idx,
  655. wncc_metadata[i][j].aff_coeff_3,
  656. wncc_metadata[i][j].aff_coeff_2,
  657. wncc_metadata[i][j].aff_coeff_1,
  658. wncc_metadata[i][j].aff_coeff_0);
  659. }
  660. }
  661. }
  662. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  663. struct eva_kmd_oob_wncc* wncc_oob)
  664. {
  665. int rc = 0;
  666. u32 oob_type;
  667. struct eva_kmd_oob_buf* oob_buf_u;
  668. struct eva_kmd_oob_wncc* wncc_oob_u;
  669. struct eva_kmd_oob_wncc* wncc_oob_k;
  670. unsigned int i;
  671. u32 num_addrs;
  672. if (!in_pkt || !wncc_oob) {
  673. dprintk(CVP_ERR, "%s: invalid params", __func__);
  674. return -EINVAL;
  675. }
  676. oob_buf_u = in_pkt->oob_buf;
  677. if (!access_ok(oob_buf_u, sizeof(*oob_buf_u))) {
  678. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  679. return -EINVAL;
  680. }
  681. rc = get_user(oob_type, &oob_buf_u->oob_type);
  682. if (rc)
  683. return rc;
  684. if (oob_type != EVA_KMD_OOB_WNCC) {
  685. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  686. __func__, oob_type);
  687. return -EINVAL;
  688. }
  689. wncc_oob_u = &oob_buf_u->wncc;
  690. wncc_oob_k = wncc_oob;
  691. rc = get_user(wncc_oob_k->metadata_bufs_offset,
  692. &wncc_oob_u->metadata_bufs_offset);
  693. if (rc)
  694. return rc;
  695. if (wncc_oob_k->metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  696. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  697. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  698. __func__);
  699. return -EINVAL;
  700. }
  701. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  702. if (rc)
  703. return rc;
  704. if (wncc_oob_k->num_layers < 1 ||
  705. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  706. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  707. return -EINVAL;
  708. }
  709. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  710. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  711. &wncc_oob_u->layers[i].num_addrs);
  712. if (rc)
  713. break;
  714. num_addrs = wncc_oob_k->layers[i].num_addrs;
  715. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  716. dprintk(CVP_ERR,
  717. "%s: invalid wncc num addrs for layer %u",
  718. __func__, i);
  719. rc = -EINVAL;
  720. break;
  721. }
  722. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  723. wncc_oob_u->layers[i].addrs,
  724. wncc_oob_k->layers[i].num_addrs *
  725. sizeof(struct eva_kmd_wncc_addr));
  726. if (rc)
  727. break;
  728. }
  729. if (false)
  730. _wncc_print_oob(wncc_oob);
  731. return rc;
  732. }
  733. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  734. unsigned int num_layers, unsigned int metadata_bufs_offset,
  735. struct eva_kmd_wncc_metadata** wncc_metadata)
  736. {
  737. int rc = 0, i;
  738. struct cvp_buf_type* wncc_metadata_bufs;
  739. struct dma_buf* dmabuf;
  740. struct eva_buf_map map;
  741. if (!in_pkt || !wncc_metadata ||
  742. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  743. dprintk(CVP_ERR, "%s: invalid params", __func__);
  744. return -EINVAL;
  745. }
  746. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  747. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  748. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  749. __func__);
  750. return -EINVAL;
  751. }
  752. wncc_metadata_bufs = (struct cvp_buf_type*)
  753. &in_pkt->pkt_data[metadata_bufs_offset];
  754. for (i = 0; i < num_layers; i++) {
  755. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  756. if (IS_ERR(dmabuf)) {
  757. rc = PTR_ERR(dmabuf);
  758. dprintk(CVP_ERR,
  759. "%s: dma_buf_get() failed for "
  760. "wncc_metadata_bufs[%d], rc %d",
  761. __func__, i, rc);
  762. break;
  763. }
  764. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  765. if (rc) {
  766. dprintk(CVP_ERR,
  767. "%s: dma_buf_begin_cpu_access() failed "
  768. "for wncc_metadata_bufs[%d], rc %d",
  769. __func__, i, rc);
  770. dma_buf_put(dmabuf);
  771. break;
  772. }
  773. rc = dma_buf_vmap(dmabuf, &map);
  774. if (rc) {
  775. dprintk(CVP_ERR,
  776. "%s: dma_buf_vmap() failed for "
  777. "wncc_metadata_bufs[%d]",
  778. __func__, i);
  779. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  780. dma_buf_put(dmabuf);
  781. break;
  782. }
  783. dprintk(CVP_DBG,
  784. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  785. __func__, i, map.is_iomem);
  786. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  787. dma_buf_put(dmabuf);
  788. }
  789. if (rc)
  790. _wncc_unmap_metadata_bufs(in_pkt, i, metadata_bufs_offset,
  791. wncc_metadata);
  792. return rc;
  793. }
  794. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  795. unsigned int num_layers, unsigned int metadata_bufs_offset,
  796. struct eva_kmd_wncc_metadata** wncc_metadata)
  797. {
  798. int rc = 0, i;
  799. struct cvp_buf_type* wncc_metadata_bufs;
  800. struct dma_buf* dmabuf;
  801. struct eva_buf_map map;
  802. if (!in_pkt || !wncc_metadata ||
  803. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  804. dprintk(CVP_ERR, "%s: invalid params", __func__);
  805. return -EINVAL;
  806. }
  807. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  808. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  809. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  810. __func__);
  811. return -EINVAL;
  812. }
  813. wncc_metadata_bufs = (struct cvp_buf_type*)
  814. &in_pkt->pkt_data[metadata_bufs_offset];
  815. for (i = 0; i < num_layers; i++) {
  816. if (!wncc_metadata[i]) {
  817. rc = -EINVAL;
  818. break;
  819. }
  820. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  821. if (IS_ERR(dmabuf)) {
  822. rc = -PTR_ERR(dmabuf);
  823. dprintk(CVP_ERR,
  824. "%s: dma_buf_get() failed for "
  825. "wncc_metadata_bufs[%d], rc %d",
  826. __func__, i, rc);
  827. break;
  828. }
  829. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  830. dma_buf_vunmap(dmabuf, &map);
  831. wncc_metadata[i] = NULL;
  832. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  833. dma_buf_put(dmabuf);
  834. if (rc) {
  835. dprintk(CVP_ERR,
  836. "%s: dma_buf_end_cpu_access() failed "
  837. "for wncc_metadata_bufs[%d], rc %d",
  838. __func__, i, rc);
  839. break;
  840. }
  841. }
  842. return rc;
  843. }
  844. static int init_wncc_bufs(void)
  845. {
  846. int i;
  847. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  848. wncc_buf_pool.bufs[i] = (struct eva_kmd_oob_wncc*)kzalloc(
  849. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  850. if (!wncc_buf_pool.bufs[i]) {
  851. i--;
  852. goto exit_fail;
  853. }
  854. }
  855. wncc_buf_pool.used_bitmap = 0;
  856. wncc_buf_pool.allocated = true;
  857. return 0;
  858. exit_fail:
  859. while (i >= 0) {
  860. kfree(wncc_buf_pool.bufs[i]);
  861. i--;
  862. }
  863. return -ENOMEM;
  864. }
  865. static int alloc_wncc_buf(struct wncc_oob_buf *wob)
  866. {
  867. int rc, i;
  868. mutex_lock(&wncc_buf_pool.lock);
  869. if (!wncc_buf_pool.allocated) {
  870. rc = init_wncc_bufs();
  871. if (rc) {
  872. mutex_unlock(&wncc_buf_pool.lock);
  873. return rc;
  874. }
  875. }
  876. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  877. if (!(wncc_buf_pool.used_bitmap & BIT(i))) {
  878. wncc_buf_pool.used_bitmap |= BIT(i);
  879. wob->bitmap_idx = i;
  880. wob->buf = wncc_buf_pool.bufs[i];
  881. mutex_unlock(&wncc_buf_pool.lock);
  882. return 0;
  883. }
  884. }
  885. mutex_unlock(&wncc_buf_pool.lock);
  886. wob->bitmap_idx = 0xff;
  887. wob->buf = (struct eva_kmd_oob_wncc*)kzalloc(
  888. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  889. if (!wob->buf)
  890. rc = -ENOMEM;
  891. else
  892. rc = 0;
  893. return rc;
  894. }
  895. static void free_wncc_buf(struct wncc_oob_buf *wob)
  896. {
  897. if (!wob)
  898. return;
  899. if (wob->bitmap_idx == 0xff) {
  900. kfree(wob->buf);
  901. return;
  902. }
  903. if (wob->bitmap_idx < NUM_WNCC_BUFS) {
  904. mutex_lock(&wncc_buf_pool.lock);
  905. wncc_buf_pool.used_bitmap &= ~BIT(wob->bitmap_idx);
  906. memset(wob->buf, 0, sizeof(struct eva_kmd_oob_wncc));
  907. wob->buf = NULL;
  908. mutex_unlock(&wncc_buf_pool.lock);
  909. }
  910. }
  911. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  912. struct eva_kmd_hfi_packet* in_pkt)
  913. {
  914. int rc = 0;
  915. struct eva_kmd_oob_wncc* wncc_oob;
  916. struct wncc_oob_buf wob;
  917. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  918. unsigned int i, j;
  919. bool empty = false;
  920. u32 buf_id, buf_idx, buf_offset, iova;
  921. if (!inst || !inst->core || !in_pkt) {
  922. dprintk(CVP_ERR, "%s: invalid params", __func__);
  923. return -EINVAL;
  924. }
  925. rc = alloc_wncc_buf(&wob);
  926. if (rc)
  927. return -ENOMEM;
  928. wncc_oob = wob.buf;
  929. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  930. if (rc) {
  931. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  932. goto exit;
  933. }
  934. rc = _wncc_map_metadata_bufs(in_pkt,
  935. wncc_oob->num_layers, wncc_oob->metadata_bufs_offset,
  936. wncc_metadata);
  937. if (rc) {
  938. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  939. __func__);
  940. goto exit;
  941. }
  942. mutex_lock(&inst->cvpwnccbufs.lock);
  943. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  944. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  945. empty = true;
  946. rc = -EINVAL;
  947. }
  948. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  949. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  950. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  951. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  952. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  953. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  954. dprintk(CVP_ERR,
  955. "%s: invalid wncc buf id %u "
  956. "in layer #%u address #%u",
  957. __func__, buf_id, i, j);
  958. rc = -EINVAL;
  959. break;
  960. }
  961. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  962. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  963. dprintk(CVP_ERR,
  964. "%s: unmapped wncc buf id %u "
  965. "in layer #%u address #%u",
  966. __func__, buf_id, i, j);
  967. /* _wncc_print_cvpwnccbufs_table(inst); */
  968. rc = -EINVAL;
  969. break;
  970. }
  971. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  972. if (buf_offset >=
  973. inst->cvpwnccbufs_table[buf_idx].size) {
  974. /* NOTE: This buffer offset validation is
  975. * not comprehensive since wncc src image
  976. * resolution information is not known to
  977. * KMD. UMD is responsible for comprehensive
  978. * validation.
  979. */
  980. dprintk(CVP_ERR,
  981. "%s: invalid wncc buf offset %u "
  982. "in layer #%u address #%u",
  983. __func__, buf_offset, i, j);
  984. rc = -EINVAL;
  985. break;
  986. }
  987. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  988. buf_offset;
  989. wncc_metadata[i][j].iova_lsb = iova;
  990. wncc_metadata[i][j].iova_msb = iova >> 22;
  991. }
  992. }
  993. mutex_unlock(&inst->cvpwnccbufs.lock);
  994. if (false)
  995. _wncc_print_metadata_buf(wncc_oob->num_layers,
  996. wncc_oob->layers[0].num_addrs, wncc_metadata);
  997. if (_wncc_unmap_metadata_bufs(in_pkt,
  998. wncc_oob->num_layers, wncc_oob->metadata_bufs_offset,
  999. wncc_metadata)) {
  1000. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  1001. __func__);
  1002. }
  1003. exit:
  1004. free_wncc_buf(&wob);
  1005. return rc;
  1006. }
  1007. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  1008. struct eva_kmd_hfi_packet* in_pkt)
  1009. {
  1010. int rc = 0;
  1011. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  1012. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  1013. if (!inst || !inst->core || !in_pkt) {
  1014. dprintk(CVP_ERR, "%s: invalid params", __func__);
  1015. return -EINVAL;
  1016. }
  1017. switch (cmd_hdr->packet_type) {
  1018. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  1019. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  1020. break;
  1021. default:
  1022. break;
  1023. }
  1024. return rc;
  1025. }
  1026. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  1027. u32 offset, u32 size)
  1028. {
  1029. enum smem_cache_ops cache_op;
  1030. if (msm_cvp_cacheop_disabled)
  1031. return;
  1032. if (!smem) {
  1033. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1034. return;
  1035. }
  1036. switch (type) {
  1037. case EVA_KMD_BUFTYPE_INPUT:
  1038. cache_op = SMEM_CACHE_CLEAN;
  1039. break;
  1040. case EVA_KMD_BUFTYPE_OUTPUT:
  1041. cache_op = SMEM_CACHE_INVALIDATE;
  1042. break;
  1043. default:
  1044. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  1045. }
  1046. dprintk(CVP_MEM,
  1047. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  1048. __func__, smem->dma_buf, cache_op, offset, size);
  1049. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  1050. }
  1051. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  1052. struct dma_buf *dma_buf,
  1053. u32 pkt_type)
  1054. {
  1055. struct msm_cvp_smem *smem;
  1056. struct msm_cvp_frame *frame;
  1057. struct cvp_internal_buf *buf;
  1058. int i;
  1059. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  1060. return NULL;
  1061. mutex_lock(&inst->dma_cache.lock);
  1062. for (i = 0; i < inst->dma_cache.nr; i++)
  1063. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  1064. SET_USE_BITMAP(i, inst);
  1065. smem = inst->dma_cache.entries[i];
  1066. smem->bitmap_index = i;
  1067. smem->pkt_type = pkt_type;
  1068. atomic_inc(&smem->refcount);
  1069. /*
  1070. * If we find it, it means we already increased
  1071. * refcount before, so we put it to avoid double
  1072. * incremental.
  1073. */
  1074. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1075. mutex_unlock(&inst->dma_cache.lock);
  1076. print_smem(CVP_MEM, "found in cache", inst, smem);
  1077. return smem;
  1078. }
  1079. mutex_unlock(&inst->dma_cache.lock);
  1080. /* earch persist list */
  1081. mutex_lock(&inst->persistbufs.lock);
  1082. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  1083. smem = buf->smem;
  1084. if (smem && smem->dma_buf == dma_buf) {
  1085. atomic_inc(&smem->refcount);
  1086. mutex_unlock(&inst->persistbufs.lock);
  1087. print_smem(CVP_MEM, "found in persist", inst, smem);
  1088. return smem;
  1089. }
  1090. }
  1091. mutex_unlock(&inst->persistbufs.lock);
  1092. /* Search frame list */
  1093. mutex_lock(&inst->frames.lock);
  1094. list_for_each_entry(frame, &inst->frames.list, list) {
  1095. for (i = 0; i < frame->nr; i++) {
  1096. smem = frame->bufs[i].smem;
  1097. if (smem && smem->dma_buf == dma_buf) {
  1098. atomic_inc(&smem->refcount);
  1099. mutex_unlock(&inst->frames.lock);
  1100. print_smem(CVP_MEM, "found in frame",
  1101. inst, smem);
  1102. return smem;
  1103. }
  1104. }
  1105. }
  1106. mutex_unlock(&inst->frames.lock);
  1107. return NULL;
  1108. }
  1109. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1110. struct msm_cvp_smem *smem)
  1111. {
  1112. unsigned int i;
  1113. struct msm_cvp_smem *smem2;
  1114. mutex_lock(&inst->dma_cache.lock);
  1115. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1116. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1117. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1118. smem->bitmap_index = inst->dma_cache.nr;
  1119. inst->dma_cache.nr++;
  1120. i = smem->bitmap_index;
  1121. } else {
  1122. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1123. MAX_DMABUF_NUMS);
  1124. if (i < MAX_DMABUF_NUMS) {
  1125. smem2 = inst->dma_cache.entries[i];
  1126. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1127. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1128. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1129. inst->dma_cache.entries[i] = smem;
  1130. smem->bitmap_index = i;
  1131. SET_USE_BITMAP(i, inst);
  1132. } else {
  1133. dprintk(CVP_WARN,
  1134. "%s: reached limit, fallback to buf mapping list\n"
  1135. , __func__);
  1136. atomic_inc(&smem->refcount);
  1137. mutex_unlock(&inst->dma_cache.lock);
  1138. return -ENOMEM;
  1139. }
  1140. }
  1141. atomic_inc(&smem->refcount);
  1142. mutex_unlock(&inst->dma_cache.lock);
  1143. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1144. return 0;
  1145. }
  1146. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1147. struct cvp_buf_type *buf,
  1148. bool is_persist,
  1149. u32 pkt_type)
  1150. {
  1151. int rc = 0, found = 1;
  1152. struct msm_cvp_smem *smem = NULL;
  1153. struct dma_buf *dma_buf = NULL;
  1154. if (buf->fd < 0) {
  1155. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1156. return NULL;
  1157. }
  1158. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1159. if (!dma_buf) {
  1160. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1161. return NULL;
  1162. }
  1163. if (is_persist) {
  1164. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1165. if (!smem)
  1166. return NULL;
  1167. smem->dma_buf = dma_buf;
  1168. smem->bitmap_index = MAX_DMABUF_NUMS;
  1169. smem->pkt_type = pkt_type;
  1170. smem->flags |= SMEM_PERSIST;
  1171. smem->fd = buf->fd;
  1172. atomic_inc(&smem->refcount);
  1173. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1174. if (rc)
  1175. goto exit;
  1176. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1177. dprintk(CVP_ERR,
  1178. "%s: invalid offset %d or size %d persist\n",
  1179. __func__, buf->offset, buf->size);
  1180. goto exit2;
  1181. }
  1182. return smem;
  1183. }
  1184. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1185. if (!smem) {
  1186. found = 0;
  1187. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1188. if (!smem)
  1189. return NULL;
  1190. smem->dma_buf = dma_buf;
  1191. smem->bitmap_index = MAX_DMABUF_NUMS;
  1192. smem->pkt_type = pkt_type;
  1193. smem->fd = buf->fd;
  1194. if (is_params_pkt(pkt_type))
  1195. smem->flags |= SMEM_PERSIST;
  1196. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1197. if (rc)
  1198. goto exit;
  1199. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1200. dprintk(CVP_ERR,
  1201. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1202. __func__, buf->offset, buf->size, buf->fd,
  1203. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1204. goto exit2;
  1205. }
  1206. rc = msm_cvp_session_add_smem(inst, smem);
  1207. if (rc && rc != -ENOMEM)
  1208. goto exit2;
  1209. return smem;
  1210. }
  1211. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1212. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1213. __func__, buf->offset, buf->size);
  1214. if (found) {
  1215. mutex_lock(&inst->dma_cache.lock);
  1216. atomic_dec(&smem->refcount);
  1217. mutex_unlock(&inst->dma_cache.lock);
  1218. return NULL;
  1219. }
  1220. goto exit2;
  1221. }
  1222. return smem;
  1223. exit2:
  1224. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1225. exit:
  1226. msm_cvp_smem_put_dma_buf(dma_buf);
  1227. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1228. smem = NULL;
  1229. return smem;
  1230. }
  1231. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1232. struct cvp_buf_type *buf,
  1233. u32 pkt_type, u32 buf_idx)
  1234. {
  1235. u32 iova = 0;
  1236. struct msm_cvp_smem *smem = NULL;
  1237. struct list_head *ptr, *next;
  1238. struct cvp_internal_buf *pbuf;
  1239. struct dma_buf *dma_buf;
  1240. if (!inst) {
  1241. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1242. return -EINVAL;
  1243. }
  1244. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1245. if (!dma_buf)
  1246. return -EINVAL;
  1247. mutex_lock(&inst->persistbufs.lock);
  1248. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1249. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1250. if (dma_buf == pbuf->smem->dma_buf) {
  1251. pbuf->size =
  1252. (pbuf->size >= buf->size) ?
  1253. pbuf->size : buf->size;
  1254. iova = pbuf->smem->device_addr + buf->offset;
  1255. mutex_unlock(&inst->persistbufs.lock);
  1256. atomic_inc(&pbuf->smem->refcount);
  1257. dma_buf_put(dma_buf);
  1258. dprintk(CVP_MEM,
  1259. "map persist Reuse fd %d, dma_buf %#llx\n",
  1260. pbuf->fd, pbuf->smem->dma_buf);
  1261. return iova;
  1262. }
  1263. }
  1264. mutex_unlock(&inst->persistbufs.lock);
  1265. dma_buf_put(dma_buf);
  1266. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1267. if (!pbuf) {
  1268. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1269. __func__);
  1270. return 0;
  1271. }
  1272. if (is_params_pkt(pkt_type))
  1273. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1274. else
  1275. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1276. if (!smem)
  1277. goto exit;
  1278. smem->pkt_type = pkt_type;
  1279. smem->buf_idx = buf_idx;
  1280. smem->fd = buf->fd;
  1281. pbuf->smem = smem;
  1282. pbuf->fd = buf->fd;
  1283. pbuf->size = buf->size;
  1284. pbuf->offset = buf->offset;
  1285. pbuf->ownership = CLIENT;
  1286. mutex_lock(&inst->persistbufs.lock);
  1287. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1288. mutex_unlock(&inst->persistbufs.lock);
  1289. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1290. iova = smem->device_addr + buf->offset;
  1291. return iova;
  1292. exit:
  1293. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1294. return 0;
  1295. }
  1296. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1297. struct cvp_buf_type *buf,
  1298. struct msm_cvp_frame *frame,
  1299. u32 pkt_type, u32 buf_idx)
  1300. {
  1301. u32 iova = 0;
  1302. struct msm_cvp_smem *smem = NULL;
  1303. u32 nr;
  1304. u32 type;
  1305. if (!inst || !frame) {
  1306. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1307. return 0;
  1308. }
  1309. nr = frame->nr;
  1310. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1311. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1312. return 0;
  1313. }
  1314. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1315. if (!smem)
  1316. return 0;
  1317. smem->buf_idx = buf_idx;
  1318. frame->bufs[nr].fd = buf->fd;
  1319. frame->bufs[nr].smem = smem;
  1320. frame->bufs[nr].size = buf->size;
  1321. frame->bufs[nr].offset = buf->offset;
  1322. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1323. frame->nr++;
  1324. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1325. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1326. iova = smem->device_addr + buf->offset;
  1327. return iova;
  1328. }
  1329. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1330. struct msm_cvp_frame *frame)
  1331. {
  1332. u32 i;
  1333. u32 type;
  1334. struct msm_cvp_smem *smem = NULL;
  1335. struct cvp_internal_buf *buf;
  1336. type = EVA_KMD_BUFTYPE_OUTPUT;
  1337. for (i = 0; i < frame->nr; ++i) {
  1338. buf = &frame->bufs[i];
  1339. smem = buf->smem;
  1340. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1341. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1342. /* smem not in dmamap cache */
  1343. if (atomic_dec_and_test(&smem->refcount)) {
  1344. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1345. dma_heap_buffer_free(smem->dma_buf);
  1346. smem->buf_idx |= 0xdead0000;
  1347. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1348. buf->smem = NULL;
  1349. }
  1350. } else {
  1351. mutex_lock(&inst->dma_cache.lock);
  1352. if (atomic_dec_and_test(&smem->refcount)) {
  1353. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1354. print_smem(CVP_MEM, "Map dereference",
  1355. inst, smem);
  1356. smem->buf_idx |= 0x10000000;
  1357. }
  1358. mutex_unlock(&inst->dma_cache.lock);
  1359. }
  1360. }
  1361. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1362. }
  1363. static void backup_frame_buffers(struct msm_cvp_inst *inst,
  1364. struct msm_cvp_frame *frame)
  1365. {
  1366. /* Save frame buffers before unmap them */
  1367. int i = frame->nr;
  1368. if (i == 0 || i > MAX_FRAME_BUFFER_NUMS)
  1369. return;
  1370. inst->last_frame.ktid = frame->ktid;
  1371. inst->last_frame.nr = frame->nr;
  1372. do {
  1373. i--;
  1374. if (frame->bufs[i].smem->bitmap_index < MAX_DMABUF_NUMS) {
  1375. /*
  1376. * Frame buffer info can be found in dma_cache table,
  1377. * Skip saving
  1378. */
  1379. inst->last_frame.nr = 0;
  1380. return;
  1381. }
  1382. inst->last_frame.smem[i] = *(frame->bufs[i].smem);
  1383. } while (i);
  1384. }
  1385. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1386. {
  1387. struct msm_cvp_frame *frame, *dummy1;
  1388. bool found;
  1389. if (!inst) {
  1390. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1391. return;
  1392. }
  1393. ktid &= (FENCE_BIT - 1);
  1394. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1395. __func__, hash32_ptr(inst->session), ktid);
  1396. found = false;
  1397. mutex_lock(&inst->frames.lock);
  1398. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1399. if (frame->ktid == ktid) {
  1400. found = true;
  1401. list_del(&frame->list);
  1402. break;
  1403. }
  1404. }
  1405. mutex_unlock(&inst->frames.lock);
  1406. if (found) {
  1407. dprintk(CVP_CMD, "%s: "
  1408. "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n",
  1409. __func__, frame->pkt_type,
  1410. hash32_ptr(inst->session),
  1411. frame->ktid);
  1412. /* Save the previous frame mappings for debug */
  1413. backup_frame_buffers(inst, frame);
  1414. msm_cvp_unmap_frame_buf(inst, frame);
  1415. }
  1416. else
  1417. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1418. }
  1419. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1420. struct eva_kmd_hfi_packet *in_pkt,
  1421. unsigned int offset, unsigned int buf_num)
  1422. {
  1423. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1424. return 0;
  1425. }
  1426. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1427. struct eva_kmd_hfi_packet *in_pkt,
  1428. unsigned int offset, unsigned int buf_num)
  1429. {
  1430. struct cvp_buf_type *buf;
  1431. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1432. int i;
  1433. u32 iova;
  1434. if (!offset || !buf_num)
  1435. return 0;
  1436. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1437. for (i = 0; i < buf_num; i++) {
  1438. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1439. offset += sizeof(*buf) >> 2;
  1440. if (buf->fd < 0 || !buf->size)
  1441. continue;
  1442. iova = msm_cvp_map_user_persist_buf(inst, buf,
  1443. cmd_hdr->packet_type, i);
  1444. if (!iova) {
  1445. dprintk(CVP_ERR,
  1446. "%s: buf %d register failed.\n",
  1447. __func__, i);
  1448. return -EINVAL;
  1449. }
  1450. buf->fd = iova;
  1451. }
  1452. return 0;
  1453. }
  1454. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1455. struct eva_kmd_hfi_packet *in_pkt,
  1456. unsigned int offset, unsigned int buf_num)
  1457. {
  1458. struct cvp_buf_type *buf;
  1459. int i;
  1460. u32 iova;
  1461. u64 ktid;
  1462. struct msm_cvp_frame *frame;
  1463. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1464. struct msm_cvp_inst *instance;
  1465. struct msm_cvp_core *core = NULL;
  1466. core = get_cvp_core(MSM_CORE_CVP);
  1467. if (!core)
  1468. return -EINVAL;
  1469. if (!offset || !buf_num)
  1470. return 0;
  1471. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1472. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1473. ktid &= (FENCE_BIT - 1);
  1474. cmd_hdr->client_data.kdata = ktid;
  1475. dprintk(CVP_CMD, "%s: "
  1476. "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n",
  1477. __func__, cmd_hdr->packet_type,
  1478. cmd_hdr->session_id,
  1479. cmd_hdr->client_data.transaction_id,
  1480. cmd_hdr->client_data.kdata & (FENCE_BIT - 1));
  1481. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1482. if (!frame)
  1483. return -ENOMEM;
  1484. frame->ktid = ktid;
  1485. frame->nr = 0;
  1486. frame->pkt_type = cmd_hdr->packet_type;
  1487. for (i = 0; i < buf_num; i++) {
  1488. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1489. offset += sizeof(*buf) >> 2;
  1490. if (buf->fd < 0 || !buf->size) {
  1491. buf->fd = 0;
  1492. buf->size = 0;
  1493. continue;
  1494. }
  1495. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1496. if (!iova) {
  1497. dprintk(CVP_ERR,
  1498. "%s: buf %d register failed.\n",
  1499. __func__, i);
  1500. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1501. mutex_lock(&core->lock);
  1502. list_for_each_entry(instance, &core->instances, list) {
  1503. msm_cvp_print_inst_bufs(instance, false);
  1504. }
  1505. mutex_unlock(&core->lock);
  1506. msm_cvp_unmap_frame_buf(inst, frame);
  1507. return -EINVAL;
  1508. }
  1509. buf->fd = iova;
  1510. }
  1511. mutex_lock(&inst->frames.lock);
  1512. list_add_tail(&frame->list, &inst->frames.list);
  1513. mutex_unlock(&inst->frames.lock);
  1514. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1515. return 0;
  1516. }
  1517. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1518. {
  1519. int rc = 0, i;
  1520. struct cvp_internal_buf *cbuf, *dummy;
  1521. struct msm_cvp_frame *frame, *dummy1;
  1522. struct msm_cvp_smem *smem;
  1523. struct cvp_hal_session *session;
  1524. struct eva_kmd_buffer buf;
  1525. struct list_head *ptr, *next;
  1526. session = (struct cvp_hal_session *)inst->session;
  1527. mutex_lock(&inst->frames.lock);
  1528. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1529. list_del(&frame->list);
  1530. msm_cvp_unmap_frame_buf(inst, frame);
  1531. }
  1532. mutex_unlock(&inst->frames.lock);
  1533. mutex_lock(&inst->persistbufs.lock);
  1534. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1535. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1536. smem = cbuf->smem;
  1537. if (!smem) {
  1538. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1539. mutex_unlock(&inst->persistbufs.lock);
  1540. return -EINVAL;
  1541. }
  1542. if (cbuf->ownership != DRIVER) {
  1543. dprintk(CVP_MEM,
  1544. "%s: %x : fd %d %pK size %d",
  1545. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1546. smem->dma_buf, cbuf->size);
  1547. list_del(&cbuf->list);
  1548. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1549. /*
  1550. * don't care refcount, has to remove mapping
  1551. * this is user persistent buffer
  1552. */
  1553. if (smem->device_addr) {
  1554. msm_cvp_unmap_smem(inst, smem,
  1555. "unmap persist");
  1556. msm_cvp_smem_put_dma_buf(
  1557. cbuf->smem->dma_buf);
  1558. smem->device_addr = 0;
  1559. }
  1560. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1561. cbuf->smem = NULL;
  1562. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1563. } else {
  1564. /*
  1565. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1566. * Leave dma_cache cleanup to unmap
  1567. */
  1568. cbuf->smem = NULL;
  1569. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1570. }
  1571. }
  1572. }
  1573. mutex_unlock(&inst->persistbufs.lock);
  1574. mutex_lock(&inst->dma_cache.lock);
  1575. for (i = 0; i < inst->dma_cache.nr; i++) {
  1576. smem = inst->dma_cache.entries[i];
  1577. if (atomic_read(&smem->refcount) == 0) {
  1578. print_smem(CVP_MEM, "free", inst, smem);
  1579. } else if (!(smem->flags & SMEM_PERSIST)) {
  1580. print_smem(CVP_WARN, "in use", inst, smem);
  1581. }
  1582. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1583. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1584. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1585. inst->dma_cache.entries[i] = NULL;
  1586. }
  1587. mutex_unlock(&inst->dma_cache.lock);
  1588. mutex_lock(&inst->cvpdspbufs.lock);
  1589. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1590. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1591. if (cbuf->ownership == CLIENT) {
  1592. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1593. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1594. cbuf->offset, cbuf->index,
  1595. (uint32_t)cbuf->smem->device_addr);
  1596. if (rc)
  1597. dprintk(CVP_ERR,
  1598. "%s: failed dsp deregistration fd=%d rc=%d",
  1599. __func__, cbuf->fd, rc);
  1600. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1601. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1602. } else if (cbuf->ownership == DSP) {
  1603. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1604. if (rc)
  1605. dprintk(CVP_ERR,
  1606. "%s: failed to unmap buf from DSP\n",
  1607. __func__);
  1608. rc = cvp_release_dsp_buffers(inst, cbuf);
  1609. if (rc)
  1610. dprintk(CVP_ERR,
  1611. "%s Fail to free buffer 0x%x\n",
  1612. __func__, rc);
  1613. }
  1614. list_del(&cbuf->list);
  1615. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1616. }
  1617. mutex_unlock(&inst->cvpdspbufs.lock);
  1618. mutex_lock(&inst->cvpwnccbufs.lock);
  1619. if (inst->cvpwnccbufs_num != 0)
  1620. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1621. __func__, inst->cvpwnccbufs_num);
  1622. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1623. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1624. buf.fd = cbuf->fd;
  1625. buf.reserved[0] = cbuf->ktid;
  1626. mutex_unlock(&inst->cvpwnccbufs.lock);
  1627. msm_cvp_unmap_buf_wncc(inst, &buf);
  1628. mutex_lock(&inst->cvpwnccbufs.lock);
  1629. }
  1630. mutex_unlock(&inst->cvpwnccbufs.lock);
  1631. return rc;
  1632. }
  1633. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1634. {
  1635. struct cvp_internal_buf *buf;
  1636. struct msm_cvp_frame *frame;
  1637. struct msm_cvp_core *core;
  1638. struct inst_snapshot *snap = NULL;
  1639. int i = 0, c = 0;
  1640. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1641. if (log && core->log.snapshot_index < 16) {
  1642. snap = &core->log.snapshot[core->log.snapshot_index];
  1643. snap->session = inst->session;
  1644. core->log.snapshot_index++;
  1645. }
  1646. if (!inst) {
  1647. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1648. __func__, inst);
  1649. return;
  1650. }
  1651. dprintk(CVP_ERR,
  1652. "---Buffer details for inst: %pK %s of type: %d---\n",
  1653. inst, inst->proc_name, inst->session_type);
  1654. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1655. mutex_lock(&inst->dma_cache.lock);
  1656. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1657. for (i = 0; i < inst->dma_cache.nr; i++)
  1658. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1659. mutex_unlock(&inst->dma_cache.lock);
  1660. i = 0;
  1661. dprintk(CVP_ERR, "frame buffer list\n");
  1662. mutex_lock(&inst->frames.lock);
  1663. list_for_each_entry(frame, &inst->frames.list, list) {
  1664. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n", i++, frame->ktid);
  1665. for (c = 0; c < frame->nr; c++)
  1666. _log_smem(snap, inst, frame->bufs[c].smem, log);
  1667. }
  1668. mutex_unlock(&inst->frames.lock);
  1669. mutex_lock(&inst->cvpdspbufs.lock);
  1670. dprintk(CVP_ERR, "dsp buffer list:\n");
  1671. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1672. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1673. mutex_unlock(&inst->cvpdspbufs.lock);
  1674. mutex_lock(&inst->cvpwnccbufs.lock);
  1675. dprintk(CVP_ERR, "wncc buffer list:\n");
  1676. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1677. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1678. mutex_unlock(&inst->cvpwnccbufs.lock);
  1679. mutex_lock(&inst->persistbufs.lock);
  1680. dprintk(CVP_ERR, "persist buffer list:\n");
  1681. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1682. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1683. mutex_unlock(&inst->persistbufs.lock);
  1684. dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid);
  1685. for (i = 0; i < inst->last_frame.nr; i++)
  1686. _log_smem(snap, inst, &inst->last_frame.smem[i], log);
  1687. dprintk(CVP_ERR, "unmapped wncc bufs\n");
  1688. for (i = 0; i < inst->unused_wncc_bufs.nr; i++)
  1689. _log_smem(snap, inst, &inst->unused_wncc_bufs.smem[i], log);
  1690. }
  1691. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1692. u32 buffer_size)
  1693. {
  1694. struct cvp_internal_buf *buf;
  1695. struct msm_cvp_list *buf_list;
  1696. u32 smem_flags = SMEM_UNCACHED;
  1697. int rc = 0;
  1698. if (!inst) {
  1699. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1700. return NULL;
  1701. }
  1702. buf_list = &inst->persistbufs;
  1703. if (!buffer_size)
  1704. return NULL;
  1705. /* If PERSIST buffer requires secure mapping, uncomment
  1706. * below flags setting
  1707. * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1708. */
  1709. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1710. if (!buf) {
  1711. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1712. goto fail_kzalloc;
  1713. }
  1714. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1715. if (!buf->smem) {
  1716. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1717. goto fail_kzalloc;
  1718. }
  1719. buf->smem->flags = smem_flags;
  1720. rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */
  1721. &(inst->core->resources), buf->smem);
  1722. if (rc) {
  1723. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1724. goto err_no_mem;
  1725. }
  1726. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1727. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1728. atomic_inc(&buf->smem->refcount);
  1729. buf->size = buf->smem->size;
  1730. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1731. buf->ownership = DRIVER;
  1732. mutex_lock(&buf_list->lock);
  1733. list_add_tail(&buf->list, &buf_list->list);
  1734. mutex_unlock(&buf_list->lock);
  1735. return buf;
  1736. err_no_mem:
  1737. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1738. fail_kzalloc:
  1739. return NULL;
  1740. }
  1741. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1742. {
  1743. struct msm_cvp_smem *smem;
  1744. struct list_head *ptr, *next;
  1745. struct cvp_internal_buf *buf;
  1746. int rc = 0;
  1747. struct msm_cvp_core *core;
  1748. struct cvp_hfi_device *hdev;
  1749. if (!inst) {
  1750. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1751. return -EINVAL;
  1752. }
  1753. core = inst->core;
  1754. if (!core) {
  1755. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1756. return -EINVAL;
  1757. }
  1758. hdev = core->device;
  1759. if (!hdev) {
  1760. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1761. return -EINVAL;
  1762. }
  1763. dprintk(CVP_MEM, "release persist buffer!\n");
  1764. mutex_lock(&inst->persistbufs.lock);
  1765. /* Workaround for FW: release buffer means release all */
  1766. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1767. rc = call_hfi_op(hdev, session_release_buffers,
  1768. (void *)inst->session);
  1769. if (!rc) {
  1770. mutex_unlock(&inst->persistbufs.lock);
  1771. rc = wait_for_sess_signal_receipt(inst,
  1772. HAL_SESSION_RELEASE_BUFFER_DONE);
  1773. if (rc)
  1774. dprintk(CVP_WARN,
  1775. "%s: wait for signal failed, rc %d\n",
  1776. __func__, rc);
  1777. mutex_lock(&inst->persistbufs.lock);
  1778. } else {
  1779. dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n");
  1780. }
  1781. }
  1782. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1783. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1784. smem = buf->smem;
  1785. if (!smem) {
  1786. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1787. mutex_unlock(&inst->persistbufs.lock);
  1788. return -EINVAL;
  1789. }
  1790. if (buf->ownership == DRIVER) {
  1791. dprintk(CVP_MEM,
  1792. "%s: %x : fd %d %pK size %d",
  1793. "free arp", hash32_ptr(inst->session), buf->fd,
  1794. smem->dma_buf, buf->size);
  1795. list_del(&buf->list);
  1796. atomic_dec(&smem->refcount);
  1797. msm_cvp_smem_free(smem);
  1798. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1799. buf->smem = NULL;
  1800. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1801. }
  1802. }
  1803. mutex_unlock(&inst->persistbufs.lock);
  1804. return rc;
  1805. }
  1806. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1807. struct cvp_internal_buf *buf,
  1808. u32 buffer_size,
  1809. u32 secure_type)
  1810. {
  1811. u32 smem_flags = SMEM_UNCACHED;
  1812. int rc = 0;
  1813. if (!inst) {
  1814. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1815. return -EINVAL;
  1816. }
  1817. if (!buf)
  1818. return -EINVAL;
  1819. if (!buffer_size)
  1820. return -EINVAL;
  1821. switch (secure_type) {
  1822. case 0:
  1823. break;
  1824. case 1:
  1825. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1826. break;
  1827. case 2:
  1828. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1829. break;
  1830. default:
  1831. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1832. __func__, secure_type);
  1833. return -EINVAL;
  1834. }
  1835. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1836. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1837. if (!buf->smem) {
  1838. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1839. goto fail_kzalloc_smem_cache;
  1840. }
  1841. buf->smem->flags = smem_flags;
  1842. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1843. &(inst->core->resources), buf->smem);
  1844. if (rc) {
  1845. dprintk(CVP_ERR, "Failed to allocate DSP buf\n");
  1846. goto err_no_mem;
  1847. }
  1848. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1849. atomic_inc(&buf->smem->refcount);
  1850. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1851. buf->size = buf->smem->size;
  1852. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1853. buf->ownership = DSP;
  1854. return rc;
  1855. err_no_mem:
  1856. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1857. fail_kzalloc_smem_cache:
  1858. return rc;
  1859. }
  1860. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1861. struct cvp_internal_buf *buf)
  1862. {
  1863. struct msm_cvp_smem *smem;
  1864. int rc = 0;
  1865. if (!inst) {
  1866. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1867. return -EINVAL;
  1868. }
  1869. if (!buf) {
  1870. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1871. return -EINVAL;
  1872. }
  1873. smem = buf->smem;
  1874. if (!smem) {
  1875. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1876. return -EINVAL;
  1877. }
  1878. if (buf->ownership == DSP) {
  1879. dprintk(CVP_MEM,
  1880. "%s: %x : fd %x %s size %d",
  1881. __func__, hash32_ptr(inst->session), buf->fd,
  1882. smem->dma_buf->name, buf->size);
  1883. atomic_dec(&smem->refcount);
  1884. msm_cvp_smem_free(smem);
  1885. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1886. } else {
  1887. dprintk(CVP_ERR,
  1888. "%s: wrong owner %d %x : fd %x %s size %d",
  1889. __func__, buf->ownership, hash32_ptr(inst->session),
  1890. buf->fd, smem->dma_buf->name, buf->size);
  1891. }
  1892. return rc;
  1893. }
  1894. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1895. struct eva_kmd_buffer *buf)
  1896. {
  1897. struct cvp_hfi_device *hdev;
  1898. struct cvp_hal_session *session;
  1899. struct msm_cvp_inst *s;
  1900. int rc = 0;
  1901. if (!inst || !inst->core || !buf) {
  1902. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1903. return -EINVAL;
  1904. }
  1905. s = cvp_get_inst_validate(inst->core, inst);
  1906. if (!s)
  1907. return -ECONNRESET;
  1908. session = (struct cvp_hal_session *)inst->session;
  1909. if (!session) {
  1910. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1911. rc = -EINVAL;
  1912. goto exit;
  1913. }
  1914. hdev = inst->core->device;
  1915. print_client_buffer(CVP_HFI, "register", inst, buf);
  1916. if (buf->index)
  1917. rc = msm_cvp_map_buf_dsp(inst, buf);
  1918. else
  1919. rc = msm_cvp_map_buf_wncc(inst, buf);
  1920. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1921. buf->fd, buf->reserved[0]);
  1922. exit:
  1923. cvp_put_inst(s);
  1924. return rc;
  1925. }
  1926. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1927. struct eva_kmd_buffer *buf)
  1928. {
  1929. struct msm_cvp_inst *s;
  1930. int rc = 0;
  1931. if (!inst || !inst->core || !buf) {
  1932. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1933. return -EINVAL;
  1934. }
  1935. s = cvp_get_inst_validate(inst->core, inst);
  1936. if (!s)
  1937. return -ECONNRESET;
  1938. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1939. if (buf->index)
  1940. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1941. else
  1942. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1943. cvp_put_inst(s);
  1944. return rc;
  1945. }