dp_rx.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. #ifdef RX_DESC_SANITY_WAR
  86. static inline
  87. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  88. hal_ring_handle_t hal_ring_hdl,
  89. hal_ring_desc_t ring_desc,
  90. struct dp_rx_desc *rx_desc)
  91. {
  92. uint8_t return_buffer_manager;
  93. if (qdf_unlikely(!rx_desc)) {
  94. /*
  95. * This is an unlikely case where the cookie obtained
  96. * from the ring_desc is invalid and hence we are not
  97. * able to find the corresponding rx_desc
  98. */
  99. goto fail;
  100. }
  101. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  102. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  103. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  104. goto fail;
  105. }
  106. return QDF_STATUS_SUCCESS;
  107. fail:
  108. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  109. dp_err("Ring Desc:");
  110. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  111. ring_desc);
  112. return QDF_STATUS_E_NULL_VALUE;
  113. }
  114. #else
  115. static inline
  116. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  117. hal_ring_handle_t hal_ring_hdl,
  118. hal_ring_desc_t ring_desc,
  119. struct dp_rx_desc *rx_desc)
  120. {
  121. return QDF_STATUS_SUCCESS;
  122. }
  123. #endif
  124. /*
  125. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  126. * called during dp rx initialization
  127. * and at the end of dp_rx_process.
  128. *
  129. * @soc: core txrx main context
  130. * @mac_id: mac_id which is one of 3 mac_ids
  131. * @dp_rxdma_srng: dp rxdma circular ring
  132. * @rx_desc_pool: Pointer to free Rx descriptor pool
  133. * @num_req_buffers: number of buffer to be replenished
  134. * @desc_list: list of descs if called from dp_rx_process
  135. * or NULL during dp rx initialization or out of buffer
  136. * interrupt.
  137. * @tail: tail of descs list
  138. * Return: return success or failure
  139. */
  140. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  141. struct dp_srng *dp_rxdma_srng,
  142. struct rx_desc_pool *rx_desc_pool,
  143. uint32_t num_req_buffers,
  144. union dp_rx_desc_list_elem_t **desc_list,
  145. union dp_rx_desc_list_elem_t **tail)
  146. {
  147. uint32_t num_alloc_desc;
  148. uint16_t num_desc_to_free = 0;
  149. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  150. uint32_t num_entries_avail;
  151. uint32_t count;
  152. int sync_hw_ptr = 1;
  153. qdf_dma_addr_t paddr;
  154. qdf_nbuf_t rx_netbuf;
  155. void *rxdma_ring_entry;
  156. union dp_rx_desc_list_elem_t *next;
  157. QDF_STATUS ret;
  158. uint16_t buf_size = rx_desc_pool->buf_size;
  159. uint8_t buf_alignment = rx_desc_pool->buf_alignment;
  160. void *rxdma_srng;
  161. rxdma_srng = dp_rxdma_srng->hal_srng;
  162. if (!rxdma_srng) {
  163. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  164. "rxdma srng not initialized");
  165. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  166. return QDF_STATUS_E_FAILURE;
  167. }
  168. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  169. "requested %d buffers for replenish", num_req_buffers);
  170. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  171. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  172. rxdma_srng,
  173. sync_hw_ptr);
  174. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  175. "no of available entries in rxdma ring: %d",
  176. num_entries_avail);
  177. if (!(*desc_list) && (num_entries_avail >
  178. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  179. num_req_buffers = num_entries_avail;
  180. } else if (num_entries_avail < num_req_buffers) {
  181. num_desc_to_free = num_req_buffers - num_entries_avail;
  182. num_req_buffers = num_entries_avail;
  183. }
  184. if (qdf_unlikely(!num_req_buffers)) {
  185. num_desc_to_free = num_req_buffers;
  186. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  187. goto free_descs;
  188. }
  189. /*
  190. * if desc_list is NULL, allocate the descs from freelist
  191. */
  192. if (!(*desc_list)) {
  193. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  194. rx_desc_pool,
  195. num_req_buffers,
  196. desc_list,
  197. tail);
  198. if (!num_alloc_desc) {
  199. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  200. "no free rx_descs in freelist");
  201. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  202. num_req_buffers);
  203. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  204. return QDF_STATUS_E_NOMEM;
  205. }
  206. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  207. "%d rx desc allocated", num_alloc_desc);
  208. num_req_buffers = num_alloc_desc;
  209. }
  210. count = 0;
  211. while (count < num_req_buffers) {
  212. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  213. buf_size,
  214. RX_BUFFER_RESERVATION,
  215. buf_alignment,
  216. FALSE);
  217. if (qdf_unlikely(!rx_netbuf)) {
  218. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  219. break;
  220. }
  221. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, rx_netbuf,
  222. QDF_DMA_FROM_DEVICE, buf_size);
  223. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  224. qdf_nbuf_free(rx_netbuf);
  225. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  226. continue;
  227. }
  228. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  229. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  230. /*
  231. * check if the physical address of nbuf->data is
  232. * less then 0x50000000 then free the nbuf and try
  233. * allocating new nbuf. We can try for 100 times.
  234. * this is a temp WAR till we fix it properly.
  235. */
  236. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, rx_desc_pool);
  237. if (ret == QDF_STATUS_E_FAILURE) {
  238. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  239. break;
  240. }
  241. count++;
  242. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  243. rxdma_srng);
  244. qdf_assert_always(rxdma_ring_entry);
  245. next = (*desc_list)->next;
  246. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  247. /* rx_desc.in_use should be zero at this time*/
  248. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  249. (*desc_list)->rx_desc.in_use = 1;
  250. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  251. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  252. (unsigned long long)paddr,
  253. (*desc_list)->rx_desc.cookie);
  254. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  255. (*desc_list)->rx_desc.cookie,
  256. rx_desc_pool->owner);
  257. *desc_list = next;
  258. }
  259. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  260. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  261. count, num_desc_to_free);
  262. /* No need to count the number of bytes received during replenish.
  263. * Therefore set replenish.pkts.bytes as 0.
  264. */
  265. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  266. free_descs:
  267. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  268. /*
  269. * add any available free desc back to the free list
  270. */
  271. if (*desc_list)
  272. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  273. mac_id, rx_desc_pool);
  274. return QDF_STATUS_SUCCESS;
  275. }
  276. /*
  277. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  278. * pkts to RAW mode simulation to
  279. * decapsulate the pkt.
  280. *
  281. * @vdev: vdev on which RAW mode is enabled
  282. * @nbuf_list: list of RAW pkts to process
  283. * @peer: peer object from which the pkt is rx
  284. *
  285. * Return: void
  286. */
  287. void
  288. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  289. struct dp_peer *peer)
  290. {
  291. qdf_nbuf_t deliver_list_head = NULL;
  292. qdf_nbuf_t deliver_list_tail = NULL;
  293. qdf_nbuf_t nbuf;
  294. nbuf = nbuf_list;
  295. while (nbuf) {
  296. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  297. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  298. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  299. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  300. /*
  301. * reset the chfrag_start and chfrag_end bits in nbuf cb
  302. * as this is a non-amsdu pkt and RAW mode simulation expects
  303. * these bit s to be 0 for non-amsdu pkt.
  304. */
  305. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  306. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  307. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  308. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  309. }
  310. nbuf = next;
  311. }
  312. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  313. &deliver_list_tail, peer->mac_addr.raw);
  314. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  315. }
  316. #ifdef DP_LFR
  317. /*
  318. * In case of LFR, data of a new peer might be sent up
  319. * even before peer is added.
  320. */
  321. static inline struct dp_vdev *
  322. dp_get_vdev_from_peer(struct dp_soc *soc,
  323. uint16_t peer_id,
  324. struct dp_peer *peer,
  325. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  326. {
  327. struct dp_vdev *vdev;
  328. uint8_t vdev_id;
  329. if (unlikely(!peer)) {
  330. if (peer_id != HTT_INVALID_PEER) {
  331. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  332. mpdu_desc_info.peer_meta_data);
  333. QDF_TRACE(QDF_MODULE_ID_DP,
  334. QDF_TRACE_LEVEL_DEBUG,
  335. FL("PeerID %d not found use vdevID %d"),
  336. peer_id, vdev_id);
  337. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  338. vdev_id);
  339. } else {
  340. QDF_TRACE(QDF_MODULE_ID_DP,
  341. QDF_TRACE_LEVEL_DEBUG,
  342. FL("Invalid PeerID %d"),
  343. peer_id);
  344. return NULL;
  345. }
  346. } else {
  347. vdev = peer->vdev;
  348. }
  349. return vdev;
  350. }
  351. #else
  352. static inline struct dp_vdev *
  353. dp_get_vdev_from_peer(struct dp_soc *soc,
  354. uint16_t peer_id,
  355. struct dp_peer *peer,
  356. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  357. {
  358. if (unlikely(!peer)) {
  359. QDF_TRACE(QDF_MODULE_ID_DP,
  360. QDF_TRACE_LEVEL_DEBUG,
  361. FL("Peer not found for peerID %d"),
  362. peer_id);
  363. return NULL;
  364. } else {
  365. return peer->vdev;
  366. }
  367. }
  368. #endif
  369. #ifndef FEATURE_WDS
  370. static void
  371. dp_rx_da_learn(struct dp_soc *soc,
  372. uint8_t *rx_tlv_hdr,
  373. struct dp_peer *ta_peer,
  374. qdf_nbuf_t nbuf)
  375. {
  376. }
  377. #endif
  378. /*
  379. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  380. *
  381. * @soc: core txrx main context
  382. * @ta_peer : source peer entry
  383. * @rx_tlv_hdr : start address of rx tlvs
  384. * @nbuf : nbuf that has to be intrabss forwarded
  385. *
  386. * Return: bool: true if it is forwarded else false
  387. */
  388. static bool
  389. dp_rx_intrabss_fwd(struct dp_soc *soc,
  390. struct dp_peer *ta_peer,
  391. uint8_t *rx_tlv_hdr,
  392. qdf_nbuf_t nbuf,
  393. struct hal_rx_msdu_metadata msdu_metadata)
  394. {
  395. uint16_t len;
  396. uint8_t is_frag;
  397. struct dp_peer *da_peer;
  398. struct dp_ast_entry *ast_entry;
  399. qdf_nbuf_t nbuf_copy;
  400. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  401. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  402. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  403. tid_stats.tid_rx_stats[ring_id][tid];
  404. /* check if the destination peer is available in peer table
  405. * and also check if the source peer and destination peer
  406. * belong to the same vap and destination peer is not bss peer.
  407. */
  408. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  409. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  410. if (!ast_entry)
  411. return false;
  412. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  413. ast_entry->is_active = TRUE;
  414. return false;
  415. }
  416. da_peer = ast_entry->peer;
  417. if (!da_peer)
  418. return false;
  419. /* TA peer cannot be same as peer(DA) on which AST is present
  420. * this indicates a change in topology and that AST entries
  421. * are yet to be updated.
  422. */
  423. if (da_peer == ta_peer)
  424. return false;
  425. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  426. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  427. is_frag = qdf_nbuf_is_frag(nbuf);
  428. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  429. /* linearize the nbuf just before we send to
  430. * dp_tx_send()
  431. */
  432. if (qdf_unlikely(is_frag)) {
  433. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  434. return false;
  435. nbuf = qdf_nbuf_unshare(nbuf);
  436. if (!nbuf) {
  437. DP_STATS_INC_PKT(ta_peer,
  438. rx.intra_bss.fail,
  439. 1,
  440. len);
  441. /* return true even though the pkt is
  442. * not forwarded. Basically skb_unshare
  443. * failed and we want to continue with
  444. * next nbuf.
  445. */
  446. tid_stats->fail_cnt[INTRABSS_DROP]++;
  447. return true;
  448. }
  449. }
  450. if (!dp_tx_send((struct cdp_soc_t *)soc,
  451. ta_peer->vdev->vdev_id, nbuf)) {
  452. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  453. len);
  454. return true;
  455. } else {
  456. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  457. len);
  458. tid_stats->fail_cnt[INTRABSS_DROP]++;
  459. return false;
  460. }
  461. }
  462. }
  463. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  464. * source, then clone the pkt and send the cloned pkt for
  465. * intra BSS forwarding and original pkt up the network stack
  466. * Note: how do we handle multicast pkts. do we forward
  467. * all multicast pkts as is or let a higher layer module
  468. * like igmpsnoop decide whether to forward or not with
  469. * Mcast enhancement.
  470. */
  471. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  472. !ta_peer->bss_peer))) {
  473. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  474. goto end;
  475. nbuf_copy = qdf_nbuf_copy(nbuf);
  476. if (!nbuf_copy)
  477. goto end;
  478. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  479. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  480. /* Set cb->ftype to intrabss FWD */
  481. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  482. if (dp_tx_send((struct cdp_soc_t *)soc,
  483. ta_peer->vdev->vdev_id, nbuf_copy)) {
  484. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  485. tid_stats->fail_cnt[INTRABSS_DROP]++;
  486. qdf_nbuf_free(nbuf_copy);
  487. } else {
  488. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  489. tid_stats->intrabss_cnt++;
  490. }
  491. }
  492. end:
  493. /* return false as we have to still send the original pkt
  494. * up the stack
  495. */
  496. return false;
  497. }
  498. #ifdef MESH_MODE_SUPPORT
  499. /**
  500. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  501. *
  502. * @vdev: DP Virtual device handle
  503. * @nbuf: Buffer pointer
  504. * @rx_tlv_hdr: start of rx tlv header
  505. * @peer: pointer to peer
  506. *
  507. * This function allocated memory for mesh receive stats and fill the
  508. * required stats. Stores the memory address in skb cb.
  509. *
  510. * Return: void
  511. */
  512. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  513. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  514. {
  515. struct mesh_recv_hdr_s *rx_info = NULL;
  516. uint32_t pkt_type;
  517. uint32_t nss;
  518. uint32_t rate_mcs;
  519. uint32_t bw;
  520. uint8_t primary_chan_num;
  521. uint32_t center_chan_freq;
  522. struct dp_soc *soc;
  523. /* fill recv mesh stats */
  524. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  525. /* upper layers are resposible to free this memory */
  526. if (!rx_info) {
  527. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  528. "Memory allocation failed for mesh rx stats");
  529. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  530. return;
  531. }
  532. rx_info->rs_flags = MESH_RXHDR_VER1;
  533. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  534. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  535. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  536. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  537. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  538. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  539. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  540. if (vdev->osif_get_key)
  541. vdev->osif_get_key(vdev->osif_vdev,
  542. &rx_info->rs_decryptkey[0],
  543. &peer->mac_addr.raw[0],
  544. rx_info->rs_keyix);
  545. }
  546. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  547. soc = vdev->pdev->soc;
  548. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  549. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  550. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  551. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  552. soc->ctrl_psoc,
  553. vdev->pdev->pdev_id,
  554. center_chan_freq);
  555. }
  556. rx_info->rs_channel = primary_chan_num;
  557. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  558. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  559. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  560. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  561. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  562. (bw << 24);
  563. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  564. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  565. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  566. rx_info->rs_flags,
  567. rx_info->rs_rssi,
  568. rx_info->rs_channel,
  569. rx_info->rs_ratephy1,
  570. rx_info->rs_keyix);
  571. }
  572. /**
  573. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  574. *
  575. * @vdev: DP Virtual device handle
  576. * @nbuf: Buffer pointer
  577. * @rx_tlv_hdr: start of rx tlv header
  578. *
  579. * This checks if the received packet is matching any filter out
  580. * catogery and and drop the packet if it matches.
  581. *
  582. * Return: status(0 indicates drop, 1 indicate to no drop)
  583. */
  584. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  585. uint8_t *rx_tlv_hdr)
  586. {
  587. union dp_align_mac_addr mac_addr;
  588. struct dp_soc *soc = vdev->pdev->soc;
  589. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  590. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  591. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  592. rx_tlv_hdr))
  593. return QDF_STATUS_SUCCESS;
  594. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  595. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  596. rx_tlv_hdr))
  597. return QDF_STATUS_SUCCESS;
  598. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  599. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  600. rx_tlv_hdr) &&
  601. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  602. rx_tlv_hdr))
  603. return QDF_STATUS_SUCCESS;
  604. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  605. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  606. rx_tlv_hdr,
  607. &mac_addr.raw[0]))
  608. return QDF_STATUS_E_FAILURE;
  609. if (!qdf_mem_cmp(&mac_addr.raw[0],
  610. &vdev->mac_addr.raw[0],
  611. QDF_MAC_ADDR_SIZE))
  612. return QDF_STATUS_SUCCESS;
  613. }
  614. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  615. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  616. rx_tlv_hdr,
  617. &mac_addr.raw[0]))
  618. return QDF_STATUS_E_FAILURE;
  619. if (!qdf_mem_cmp(&mac_addr.raw[0],
  620. &vdev->mac_addr.raw[0],
  621. QDF_MAC_ADDR_SIZE))
  622. return QDF_STATUS_SUCCESS;
  623. }
  624. }
  625. return QDF_STATUS_E_FAILURE;
  626. }
  627. #else
  628. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  629. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  630. {
  631. }
  632. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  633. uint8_t *rx_tlv_hdr)
  634. {
  635. return QDF_STATUS_E_FAILURE;
  636. }
  637. #endif
  638. #ifdef FEATURE_NAC_RSSI
  639. /**
  640. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  641. * clients
  642. * @pdev: DP pdev handle
  643. * @rx_pkt_hdr: Rx packet Header
  644. *
  645. * return: dp_vdev*
  646. */
  647. static
  648. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  649. uint8_t *rx_pkt_hdr)
  650. {
  651. struct ieee80211_frame *wh;
  652. struct dp_neighbour_peer *peer = NULL;
  653. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  654. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  655. return NULL;
  656. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  657. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  658. neighbour_peer_list_elem) {
  659. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  660. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  661. QDF_TRACE(
  662. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  663. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  664. peer->neighbour_peers_macaddr.raw[0],
  665. peer->neighbour_peers_macaddr.raw[1],
  666. peer->neighbour_peers_macaddr.raw[2],
  667. peer->neighbour_peers_macaddr.raw[3],
  668. peer->neighbour_peers_macaddr.raw[4],
  669. peer->neighbour_peers_macaddr.raw[5]);
  670. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  671. return pdev->monitor_vdev;
  672. }
  673. }
  674. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  675. return NULL;
  676. }
  677. /**
  678. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  679. * @soc: DP SOC handle
  680. * @mpdu: mpdu for which peer is invalid
  681. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  682. * pool_id has same mapping)
  683. *
  684. * return: integer type
  685. */
  686. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  687. uint8_t mac_id)
  688. {
  689. struct dp_invalid_peer_msg msg;
  690. struct dp_vdev *vdev = NULL;
  691. struct dp_pdev *pdev = NULL;
  692. struct ieee80211_frame *wh;
  693. qdf_nbuf_t curr_nbuf, next_nbuf;
  694. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  695. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  696. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  697. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  698. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  699. "Drop decapped frames");
  700. goto free;
  701. }
  702. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  703. if (!DP_FRAME_IS_DATA(wh)) {
  704. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  705. "NAWDS valid only for data frames");
  706. goto free;
  707. }
  708. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  709. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  710. "Invalid nbuf length");
  711. goto free;
  712. }
  713. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  714. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  715. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  716. "PDEV %s", !pdev ? "not found" : "down");
  717. goto free;
  718. }
  719. if (pdev->filter_neighbour_peers) {
  720. /* Next Hop scenario not yet handle */
  721. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  722. if (vdev) {
  723. dp_rx_mon_deliver(soc, pdev->pdev_id,
  724. pdev->invalid_peer_head_msdu,
  725. pdev->invalid_peer_tail_msdu);
  726. pdev->invalid_peer_head_msdu = NULL;
  727. pdev->invalid_peer_tail_msdu = NULL;
  728. return 0;
  729. }
  730. }
  731. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  732. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  733. QDF_MAC_ADDR_SIZE) == 0) {
  734. goto out;
  735. }
  736. }
  737. if (!vdev) {
  738. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  739. "VDEV not found");
  740. goto free;
  741. }
  742. out:
  743. msg.wh = wh;
  744. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  745. msg.nbuf = mpdu;
  746. msg.vdev_id = vdev->vdev_id;
  747. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  748. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  749. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  750. pdev->pdev_id, &msg);
  751. free:
  752. /* Drop and free packet */
  753. curr_nbuf = mpdu;
  754. while (curr_nbuf) {
  755. next_nbuf = qdf_nbuf_next(curr_nbuf);
  756. qdf_nbuf_free(curr_nbuf);
  757. curr_nbuf = next_nbuf;
  758. }
  759. return 0;
  760. }
  761. /**
  762. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  763. * @soc: DP SOC handle
  764. * @mpdu: mpdu for which peer is invalid
  765. * @mpdu_done: if an mpdu is completed
  766. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  767. * pool_id has same mapping)
  768. *
  769. * return: integer type
  770. */
  771. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  772. qdf_nbuf_t mpdu, bool mpdu_done,
  773. uint8_t mac_id)
  774. {
  775. /* Only trigger the process when mpdu is completed */
  776. if (mpdu_done)
  777. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  778. }
  779. #else
  780. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  781. uint8_t mac_id)
  782. {
  783. qdf_nbuf_t curr_nbuf, next_nbuf;
  784. struct dp_pdev *pdev;
  785. struct dp_vdev *vdev = NULL;
  786. struct ieee80211_frame *wh;
  787. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  788. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  789. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  790. if (!DP_FRAME_IS_DATA(wh)) {
  791. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  792. "only for data frames");
  793. goto free;
  794. }
  795. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  796. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  797. "Invalid nbuf length");
  798. goto free;
  799. }
  800. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  801. if (!pdev) {
  802. QDF_TRACE(QDF_MODULE_ID_DP,
  803. QDF_TRACE_LEVEL_ERROR,
  804. "PDEV not found");
  805. goto free;
  806. }
  807. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  808. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  809. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  810. QDF_MAC_ADDR_SIZE) == 0) {
  811. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  812. goto out;
  813. }
  814. }
  815. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  816. if (!vdev) {
  817. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  818. "VDEV not found");
  819. goto free;
  820. }
  821. out:
  822. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  823. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  824. free:
  825. /* reset the head and tail pointers */
  826. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  827. if (pdev) {
  828. pdev->invalid_peer_head_msdu = NULL;
  829. pdev->invalid_peer_tail_msdu = NULL;
  830. }
  831. /* Drop and free packet */
  832. curr_nbuf = mpdu;
  833. while (curr_nbuf) {
  834. next_nbuf = qdf_nbuf_next(curr_nbuf);
  835. qdf_nbuf_free(curr_nbuf);
  836. curr_nbuf = next_nbuf;
  837. }
  838. /* Reset the head and tail pointers */
  839. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  840. if (pdev) {
  841. pdev->invalid_peer_head_msdu = NULL;
  842. pdev->invalid_peer_tail_msdu = NULL;
  843. }
  844. return 0;
  845. }
  846. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  847. qdf_nbuf_t mpdu, bool mpdu_done,
  848. uint8_t mac_id)
  849. {
  850. /* Process the nbuf */
  851. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  852. }
  853. #endif
  854. #ifdef RECEIVE_OFFLOAD
  855. /**
  856. * dp_rx_print_offload_info() - Print offload info from RX TLV
  857. * @soc: dp soc handle
  858. * @rx_tlv: RX TLV for which offload information is to be printed
  859. *
  860. * Return: None
  861. */
  862. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  863. {
  864. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  865. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  866. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  867. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  868. rx_tlv));
  869. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  870. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  871. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  872. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  873. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  874. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  875. dp_verbose_debug("---------------------------------------------------------");
  876. }
  877. /**
  878. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  879. * @soc: DP SOC handle
  880. * @rx_tlv: RX TLV received for the msdu
  881. * @msdu: msdu for which GRO info needs to be filled
  882. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  883. *
  884. * Return: None
  885. */
  886. static
  887. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  888. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  889. {
  890. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  891. return;
  892. /* Filling up RX offload info only for TCP packets */
  893. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  894. return;
  895. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  896. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  897. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  898. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  899. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  900. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  901. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  902. rx_tlv);
  903. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  904. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  905. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  906. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  907. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  908. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  909. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  910. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  911. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  912. HAL_RX_TLV_GET_IPV6(rx_tlv);
  913. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  914. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  915. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  916. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  917. dp_rx_print_offload_info(soc, rx_tlv);
  918. }
  919. #else
  920. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  921. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  922. {
  923. }
  924. #endif /* RECEIVE_OFFLOAD */
  925. /**
  926. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  927. *
  928. * @nbuf: pointer to msdu.
  929. * @mpdu_len: mpdu length
  930. *
  931. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  932. */
  933. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  934. {
  935. bool last_nbuf;
  936. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  937. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  938. last_nbuf = false;
  939. } else {
  940. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  941. last_nbuf = true;
  942. }
  943. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  944. return last_nbuf;
  945. }
  946. /**
  947. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  948. * multiple nbufs.
  949. * @nbuf: pointer to the first msdu of an amsdu.
  950. *
  951. * This function implements the creation of RX frag_list for cases
  952. * where an MSDU is spread across multiple nbufs.
  953. *
  954. * Return: returns the head nbuf which contains complete frag_list.
  955. */
  956. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  957. {
  958. qdf_nbuf_t parent, frag_list, next = NULL;
  959. uint16_t frag_list_len = 0;
  960. uint16_t mpdu_len;
  961. bool last_nbuf;
  962. /*
  963. * Use msdu len got from REO entry descriptor instead since
  964. * there is case the RX PKT TLV is corrupted while msdu_len
  965. * from REO descriptor is right for non-raw RX scatter msdu.
  966. */
  967. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  968. /*
  969. * this is a case where the complete msdu fits in one single nbuf.
  970. * in this case HW sets both start and end bit and we only need to
  971. * reset these bits for RAW mode simulator to decap the pkt
  972. */
  973. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  974. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  975. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  976. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  977. return nbuf;
  978. }
  979. /*
  980. * This is a case where we have multiple msdus (A-MSDU) spread across
  981. * multiple nbufs. here we create a fraglist out of these nbufs.
  982. *
  983. * the moment we encounter a nbuf with continuation bit set we
  984. * know for sure we have an MSDU which is spread across multiple
  985. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  986. */
  987. parent = nbuf;
  988. frag_list = nbuf->next;
  989. nbuf = nbuf->next;
  990. /*
  991. * set the start bit in the first nbuf we encounter with continuation
  992. * bit set. This has the proper mpdu length set as it is the first
  993. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  994. * nbufs will form the frag_list of the parent nbuf.
  995. */
  996. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  997. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  998. /*
  999. * this is where we set the length of the fragments which are
  1000. * associated to the parent nbuf. We iterate through the frag_list
  1001. * till we hit the last_nbuf of the list.
  1002. */
  1003. do {
  1004. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1005. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1006. frag_list_len += qdf_nbuf_len(nbuf);
  1007. if (last_nbuf) {
  1008. next = nbuf->next;
  1009. nbuf->next = NULL;
  1010. break;
  1011. }
  1012. nbuf = nbuf->next;
  1013. } while (!last_nbuf);
  1014. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1015. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1016. parent->next = next;
  1017. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1018. return parent;
  1019. }
  1020. /**
  1021. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1022. * to pass in correct fields
  1023. *
  1024. * @vdev: pdev handle
  1025. * @tx_desc: tx descriptor
  1026. * @tid: tid value
  1027. * Return: none
  1028. */
  1029. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1030. {
  1031. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1032. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1033. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1034. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1035. uint32_t interframe_delay =
  1036. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1037. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1038. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1039. /*
  1040. * Update interframe delay stats calculated at deliver_data_ol point.
  1041. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1042. * interframe delay will not be calculate correctly for 1st frame.
  1043. * On the other side, this will help in avoiding extra per packet check
  1044. * of vdev->prev_rx_deliver_tstamp.
  1045. */
  1046. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1047. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1048. vdev->prev_rx_deliver_tstamp = current_ts;
  1049. }
  1050. /**
  1051. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1052. * @pdev: dp pdev reference
  1053. * @buf_list: buffer list to be dropepd
  1054. *
  1055. * Return: int (number of bufs dropped)
  1056. */
  1057. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1058. qdf_nbuf_t buf_list)
  1059. {
  1060. struct cdp_tid_rx_stats *stats = NULL;
  1061. uint8_t tid = 0, ring_id = 0;
  1062. int num_dropped = 0;
  1063. qdf_nbuf_t buf, next_buf;
  1064. buf = buf_list;
  1065. while (buf) {
  1066. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1067. next_buf = qdf_nbuf_queue_next(buf);
  1068. tid = qdf_nbuf_get_tid_val(buf);
  1069. if (qdf_likely(pdev)) {
  1070. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1071. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1072. stats->delivered_to_stack--;
  1073. }
  1074. qdf_nbuf_free(buf);
  1075. buf = next_buf;
  1076. num_dropped++;
  1077. }
  1078. return num_dropped;
  1079. }
  1080. #ifdef PEER_CACHE_RX_PKTS
  1081. /**
  1082. * dp_rx_flush_rx_cached() - flush cached rx frames
  1083. * @peer: peer
  1084. * @drop: flag to drop frames or forward to net stack
  1085. *
  1086. * Return: None
  1087. */
  1088. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1089. {
  1090. struct dp_peer_cached_bufq *bufqi;
  1091. struct dp_rx_cached_buf *cache_buf = NULL;
  1092. ol_txrx_rx_fp data_rx = NULL;
  1093. int num_buff_elem;
  1094. QDF_STATUS status;
  1095. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1096. qdf_atomic_dec(&peer->flush_in_progress);
  1097. return;
  1098. }
  1099. qdf_spin_lock_bh(&peer->peer_info_lock);
  1100. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1101. data_rx = peer->vdev->osif_rx;
  1102. else
  1103. drop = true;
  1104. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1105. bufqi = &peer->bufq_info;
  1106. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1107. qdf_list_remove_front(&bufqi->cached_bufq,
  1108. (qdf_list_node_t **)&cache_buf);
  1109. while (cache_buf) {
  1110. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1111. cache_buf->buf);
  1112. bufqi->entries -= num_buff_elem;
  1113. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1114. if (drop) {
  1115. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1116. cache_buf->buf);
  1117. } else {
  1118. /* Flush the cached frames to OSIF DEV */
  1119. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1120. if (status != QDF_STATUS_SUCCESS)
  1121. bufqi->dropped = dp_rx_drop_nbuf_list(
  1122. peer->vdev->pdev,
  1123. cache_buf->buf);
  1124. }
  1125. qdf_mem_free(cache_buf);
  1126. cache_buf = NULL;
  1127. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1128. qdf_list_remove_front(&bufqi->cached_bufq,
  1129. (qdf_list_node_t **)&cache_buf);
  1130. }
  1131. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1132. qdf_atomic_dec(&peer->flush_in_progress);
  1133. }
  1134. /**
  1135. * dp_rx_enqueue_rx() - cache rx frames
  1136. * @peer: peer
  1137. * @rx_buf_list: cache buffer list
  1138. *
  1139. * Return: None
  1140. */
  1141. static QDF_STATUS
  1142. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1143. {
  1144. struct dp_rx_cached_buf *cache_buf;
  1145. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1146. int num_buff_elem;
  1147. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1148. bufqi->dropped);
  1149. if (!peer->valid) {
  1150. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1151. rx_buf_list);
  1152. return QDF_STATUS_E_INVAL;
  1153. }
  1154. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1155. if (bufqi->entries >= bufqi->thresh) {
  1156. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1157. rx_buf_list);
  1158. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1159. return QDF_STATUS_E_RESOURCES;
  1160. }
  1161. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1162. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1163. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1164. if (!cache_buf) {
  1165. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1166. "Failed to allocate buf to cache rx frames");
  1167. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1168. rx_buf_list);
  1169. return QDF_STATUS_E_NOMEM;
  1170. }
  1171. cache_buf->buf = rx_buf_list;
  1172. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1173. qdf_list_insert_back(&bufqi->cached_bufq,
  1174. &cache_buf->node);
  1175. bufqi->entries += num_buff_elem;
  1176. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1177. return QDF_STATUS_SUCCESS;
  1178. }
  1179. static inline
  1180. bool dp_rx_is_peer_cache_bufq_supported(void)
  1181. {
  1182. return true;
  1183. }
  1184. #else
  1185. static inline
  1186. bool dp_rx_is_peer_cache_bufq_supported(void)
  1187. {
  1188. return false;
  1189. }
  1190. static inline QDF_STATUS
  1191. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1192. {
  1193. return QDF_STATUS_SUCCESS;
  1194. }
  1195. #endif
  1196. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1197. struct dp_vdev *vdev,
  1198. struct dp_peer *peer,
  1199. qdf_nbuf_t nbuf_head,
  1200. qdf_nbuf_t nbuf_tail)
  1201. {
  1202. int num_nbuf = 0;
  1203. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1204. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1205. /*
  1206. * This is a special case where vdev is invalid,
  1207. * so we cannot know the pdev to which this packet
  1208. * belonged. Hence we update the soc rx error stats.
  1209. */
  1210. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1211. return;
  1212. }
  1213. /*
  1214. * highly unlikely to have a vdev without a registered rx
  1215. * callback function. if so let us free the nbuf_list.
  1216. */
  1217. if (qdf_unlikely(!vdev->osif_rx)) {
  1218. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1219. dp_rx_enqueue_rx(peer, nbuf_head);
  1220. } else {
  1221. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1222. nbuf_head);
  1223. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1224. }
  1225. return;
  1226. }
  1227. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1228. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1229. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1230. &nbuf_tail, peer->mac_addr.raw);
  1231. }
  1232. /* Function pointer initialized only when FISA is enabled */
  1233. if (vdev->osif_fisa_rx)
  1234. /* on failure send it via regular path */
  1235. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1236. else
  1237. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1238. }
  1239. /**
  1240. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1241. * @nbuf: pointer to the first msdu of an amsdu.
  1242. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1243. *
  1244. * The ipsumed field of the skb is set based on whether HW validated the
  1245. * IP/TCP/UDP checksum.
  1246. *
  1247. * Return: void
  1248. */
  1249. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1250. qdf_nbuf_t nbuf,
  1251. uint8_t *rx_tlv_hdr)
  1252. {
  1253. qdf_nbuf_rx_cksum_t cksum = {0};
  1254. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1255. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1256. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1257. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1258. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1259. } else {
  1260. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1261. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1262. }
  1263. }
  1264. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1265. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1266. { \
  1267. qdf_nbuf_t nbuf_local; \
  1268. struct dp_peer *peer_local; \
  1269. struct dp_vdev *vdev_local = vdev_hdl; \
  1270. do { \
  1271. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1272. break; \
  1273. nbuf_local = nbuf; \
  1274. peer_local = peer; \
  1275. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1276. break; \
  1277. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1278. break; \
  1279. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1280. (nbuf_local), \
  1281. (peer_local), 0, 1); \
  1282. } while (0); \
  1283. }
  1284. #else
  1285. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1286. #endif
  1287. /**
  1288. * dp_rx_msdu_stats_update() - update per msdu stats.
  1289. * @soc: core txrx main context
  1290. * @nbuf: pointer to the first msdu of an amsdu.
  1291. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1292. * @peer: pointer to the peer object.
  1293. * @ring_id: reo dest ring number on which pkt is reaped.
  1294. * @tid_stats: per tid rx stats.
  1295. *
  1296. * update all the per msdu stats for that nbuf.
  1297. * Return: void
  1298. */
  1299. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1300. qdf_nbuf_t nbuf,
  1301. uint8_t *rx_tlv_hdr,
  1302. struct dp_peer *peer,
  1303. uint8_t ring_id,
  1304. struct cdp_tid_rx_stats *tid_stats)
  1305. {
  1306. bool is_ampdu, is_not_amsdu;
  1307. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1308. struct dp_vdev *vdev = peer->vdev;
  1309. qdf_ether_header_t *eh;
  1310. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1311. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1312. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1313. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1314. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1315. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1316. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1317. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1318. tid_stats->msdu_cnt++;
  1319. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1320. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1321. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1322. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1323. tid_stats->mcast_msdu_cnt++;
  1324. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1325. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1326. tid_stats->bcast_msdu_cnt++;
  1327. }
  1328. }
  1329. /*
  1330. * currently we can return from here as we have similar stats
  1331. * updated at per ppdu level instead of msdu level
  1332. */
  1333. if (!soc->process_rx_status)
  1334. return;
  1335. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1336. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1337. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1338. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1339. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1340. tid = qdf_nbuf_get_tid_val(nbuf);
  1341. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1342. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1343. rx_tlv_hdr);
  1344. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1345. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1346. DP_STATS_INC(peer, rx.bw[bw], 1);
  1347. /*
  1348. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1349. * then increase index [nss - 1] in array counter.
  1350. */
  1351. if (nss > 0 && (pkt_type == DOT11_N ||
  1352. pkt_type == DOT11_AC ||
  1353. pkt_type == DOT11_AX))
  1354. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1355. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1356. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1357. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1358. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1359. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1360. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1361. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1362. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1363. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1364. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1365. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1366. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1367. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1368. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1369. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1370. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1371. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1372. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1373. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1374. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1375. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1376. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1377. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1378. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1379. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1380. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1381. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1382. if ((soc->process_rx_status) &&
  1383. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1384. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1385. if (!vdev->pdev)
  1386. return;
  1387. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1388. &peer->stats, peer->peer_ids[0],
  1389. UPDATE_PEER_STATS,
  1390. vdev->pdev->pdev_id);
  1391. #endif
  1392. }
  1393. }
  1394. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1395. uint8_t *rx_tlv_hdr,
  1396. qdf_nbuf_t nbuf,
  1397. struct hal_rx_msdu_metadata msdu_info)
  1398. {
  1399. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1400. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1401. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1402. qdf_nbuf_is_da_valid(nbuf) &&
  1403. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1404. return false;
  1405. return true;
  1406. }
  1407. #ifndef WDS_VENDOR_EXTENSION
  1408. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1409. struct dp_vdev *vdev,
  1410. struct dp_peer *peer)
  1411. {
  1412. return 1;
  1413. }
  1414. #endif
  1415. #ifdef RX_DESC_DEBUG_CHECK
  1416. /**
  1417. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1418. * corruption
  1419. *
  1420. * @ring_desc: REO ring descriptor
  1421. * @rx_desc: Rx descriptor
  1422. *
  1423. * Return: NONE
  1424. */
  1425. static inline
  1426. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1427. struct dp_rx_desc *rx_desc)
  1428. {
  1429. struct hal_buf_info hbi;
  1430. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1431. /* Sanity check for possible buffer paddr corruption */
  1432. qdf_assert_always((&hbi)->paddr ==
  1433. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1434. }
  1435. #else
  1436. static inline
  1437. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1438. struct dp_rx_desc *rx_desc)
  1439. {
  1440. }
  1441. #endif
  1442. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1443. static inline
  1444. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1445. {
  1446. bool limit_hit = false;
  1447. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1448. limit_hit =
  1449. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1450. if (limit_hit)
  1451. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1452. return limit_hit;
  1453. }
  1454. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1455. {
  1456. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1457. }
  1458. #else
  1459. static inline
  1460. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1461. {
  1462. return false;
  1463. }
  1464. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1465. {
  1466. return false;
  1467. }
  1468. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1469. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1470. /**
  1471. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1472. * no corresbonding peer found
  1473. * @soc: core txrx main context
  1474. * @nbuf: pkt skb pointer
  1475. *
  1476. * This function will try to deliver some RX special frames to stack
  1477. * even there is no peer matched found. for instance, LFR case, some
  1478. * eapol data will be sent to host before peer_map done.
  1479. *
  1480. * Return: None
  1481. */
  1482. static
  1483. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1484. {
  1485. uint16_t peer_id;
  1486. uint8_t vdev_id;
  1487. struct dp_vdev *vdev;
  1488. uint32_t l2_hdr_offset = 0;
  1489. uint16_t msdu_len = 0;
  1490. uint32_t pkt_len = 0;
  1491. uint8_t *rx_tlv_hdr;
  1492. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1493. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1494. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1495. if (peer_id > soc->max_peers)
  1496. goto deliver_fail;
  1497. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1498. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1499. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1500. goto deliver_fail;
  1501. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1502. goto deliver_fail;
  1503. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1504. l2_hdr_offset =
  1505. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1506. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1507. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1508. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1509. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1510. qdf_nbuf_pull_head(nbuf,
  1511. RX_PKT_TLVS_LEN +
  1512. l2_hdr_offset);
  1513. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1514. vdev->osif_rx(vdev->osif_vdev, nbuf);
  1515. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1516. return;
  1517. }
  1518. deliver_fail:
  1519. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1520. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1521. qdf_nbuf_free(nbuf);
  1522. }
  1523. #else
  1524. static inline
  1525. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1526. {
  1527. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1528. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1529. qdf_nbuf_free(nbuf);
  1530. }
  1531. #endif
  1532. /**
  1533. * dp_rx_srng_get_num_pending() - get number of pending entries
  1534. * @hal_soc: hal soc opaque pointer
  1535. * @hal_ring: opaque pointer to the HAL Rx Ring
  1536. * @num_entries: number of entries in the hal_ring.
  1537. * @near_full: pointer to a boolean. This is set if ring is near full.
  1538. *
  1539. * The function returns the number of entries in a destination ring which are
  1540. * yet to be reaped. The function also checks if the ring is near full.
  1541. * If more than half of the ring needs to be reaped, the ring is considered
  1542. * approaching full.
  1543. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1544. * entries. It should not be called within a SRNG lock. HW pointer value is
  1545. * synced into cached_hp.
  1546. *
  1547. * Return: Number of pending entries if any
  1548. */
  1549. static
  1550. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1551. hal_ring_handle_t hal_ring_hdl,
  1552. uint32_t num_entries,
  1553. bool *near_full)
  1554. {
  1555. uint32_t num_pending = 0;
  1556. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1557. hal_ring_hdl,
  1558. true);
  1559. if (num_entries && (num_pending >= num_entries >> 1))
  1560. *near_full = true;
  1561. else
  1562. *near_full = false;
  1563. return num_pending;
  1564. }
  1565. #ifdef WLAN_SUPPORT_RX_FISA
  1566. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1567. {
  1568. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1569. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1570. }
  1571. /**
  1572. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1573. * @nbuf: pkt skb pointer
  1574. * @l3_padding: l3 padding
  1575. *
  1576. * Return: None
  1577. */
  1578. static inline
  1579. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1580. {
  1581. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1582. }
  1583. #else
  1584. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1585. {
  1586. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1587. }
  1588. static inline
  1589. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1590. {
  1591. }
  1592. #endif
  1593. /**
  1594. * dp_rx_process() - Brain of the Rx processing functionality
  1595. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1596. * @int_ctx: per interrupt context
  1597. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1598. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1599. * @quota: No. of units (packets) that can be serviced in one shot.
  1600. *
  1601. * This function implements the core of Rx functionality. This is
  1602. * expected to handle only non-error frames.
  1603. *
  1604. * Return: uint32_t: No. of elements processed
  1605. */
  1606. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1607. uint8_t reo_ring_num, uint32_t quota)
  1608. {
  1609. hal_ring_desc_t ring_desc;
  1610. hal_soc_handle_t hal_soc;
  1611. struct dp_rx_desc *rx_desc = NULL;
  1612. qdf_nbuf_t nbuf, next;
  1613. bool near_full;
  1614. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1615. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1616. uint32_t num_pending;
  1617. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1618. uint16_t msdu_len = 0;
  1619. uint16_t peer_id;
  1620. uint8_t vdev_id;
  1621. struct dp_peer *peer;
  1622. struct dp_vdev *vdev;
  1623. uint32_t pkt_len = 0;
  1624. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1625. struct hal_rx_msdu_desc_info msdu_desc_info;
  1626. enum hal_reo_error_status error;
  1627. uint32_t peer_mdata;
  1628. uint8_t *rx_tlv_hdr;
  1629. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1630. uint8_t mac_id = 0;
  1631. struct dp_pdev *rx_pdev;
  1632. struct dp_srng *dp_rxdma_srng;
  1633. struct rx_desc_pool *rx_desc_pool;
  1634. struct dp_soc *soc = int_ctx->soc;
  1635. uint8_t ring_id = 0;
  1636. uint8_t core_id = 0;
  1637. struct cdp_tid_rx_stats *tid_stats;
  1638. qdf_nbuf_t nbuf_head;
  1639. qdf_nbuf_t nbuf_tail;
  1640. qdf_nbuf_t deliver_list_head;
  1641. qdf_nbuf_t deliver_list_tail;
  1642. uint32_t num_rx_bufs_reaped = 0;
  1643. uint32_t intr_id;
  1644. struct hif_opaque_softc *scn;
  1645. int32_t tid = 0;
  1646. bool is_prev_msdu_last = true;
  1647. uint32_t num_entries_avail = 0;
  1648. uint32_t rx_ol_pkt_cnt = 0;
  1649. uint32_t num_entries = 0;
  1650. struct hal_rx_msdu_metadata msdu_metadata;
  1651. QDF_STATUS status;
  1652. DP_HIST_INIT();
  1653. qdf_assert_always(soc && hal_ring_hdl);
  1654. hal_soc = soc->hal_soc;
  1655. qdf_assert_always(hal_soc);
  1656. scn = soc->hif_handle;
  1657. hif_pm_runtime_mark_dp_rx_busy(scn);
  1658. intr_id = int_ctx->dp_intr_id;
  1659. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1660. more_data:
  1661. /* reset local variables here to be re-used in the function */
  1662. nbuf_head = NULL;
  1663. nbuf_tail = NULL;
  1664. deliver_list_head = NULL;
  1665. deliver_list_tail = NULL;
  1666. peer = NULL;
  1667. vdev = NULL;
  1668. num_rx_bufs_reaped = 0;
  1669. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1670. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1671. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1672. qdf_mem_zero(head, sizeof(head));
  1673. qdf_mem_zero(tail, sizeof(tail));
  1674. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1675. /*
  1676. * Need API to convert from hal_ring pointer to
  1677. * Ring Type / Ring Id combo
  1678. */
  1679. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1680. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1681. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1682. goto done;
  1683. }
  1684. /*
  1685. * start reaping the buffers from reo ring and queue
  1686. * them in per vdev queue.
  1687. * Process the received pkts in a different per vdev loop.
  1688. */
  1689. while (qdf_likely(quota &&
  1690. (ring_desc = hal_srng_dst_peek(hal_soc,
  1691. hal_ring_hdl)))) {
  1692. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1693. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1694. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1695. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1696. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1697. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1698. /* Don't know how to deal with this -- assert */
  1699. qdf_assert(0);
  1700. }
  1701. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1702. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1703. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  1704. ring_desc, rx_desc);
  1705. if (QDF_IS_STATUS_ERROR(status)) {
  1706. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  1707. qdf_assert_always(rx_desc->unmapped);
  1708. qdf_nbuf_unmap_nbytes_single(
  1709. soc->osdev,
  1710. rx_desc->nbuf,
  1711. QDF_DMA_FROM_DEVICE,
  1712. RX_DATA_BUFFER_SIZE);
  1713. rx_desc->unmapped = 1;
  1714. qdf_nbuf_free(rx_desc->nbuf);
  1715. dp_rx_add_to_free_desc_list(
  1716. &head[rx_desc->pool_id],
  1717. &tail[rx_desc->pool_id],
  1718. rx_desc);
  1719. }
  1720. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1721. continue;
  1722. }
  1723. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1724. /*
  1725. * this is a unlikely scenario where the host is reaping
  1726. * a descriptor which it already reaped just a while ago
  1727. * but is yet to replenish it back to HW.
  1728. * In this case host will dump the last 128 descriptors
  1729. * including the software descriptor rx_desc and assert.
  1730. */
  1731. if (qdf_unlikely(!rx_desc->in_use)) {
  1732. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1733. dp_info_rl("Reaping rx_desc not in use!");
  1734. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1735. ring_desc, rx_desc);
  1736. /* ignore duplicate RX desc and continue to process */
  1737. /* Pop out the descriptor */
  1738. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1739. continue;
  1740. }
  1741. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1742. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1743. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1744. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1745. ring_desc, rx_desc);
  1746. }
  1747. /* Get MPDU DESC info */
  1748. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1749. /* Get MSDU DESC info */
  1750. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1751. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  1752. HAL_MSDU_F_MSDU_CONTINUATION)) {
  1753. /* previous msdu has end bit set, so current one is
  1754. * the new MPDU
  1755. */
  1756. if (is_prev_msdu_last) {
  1757. /* Get number of entries available in HW ring */
  1758. num_entries_avail =
  1759. hal_srng_dst_num_valid(hal_soc,
  1760. hal_ring_hdl, 1);
  1761. /* For new MPDU check if we can read complete
  1762. * MPDU by comparing the number of buffers
  1763. * available and number of buffers needed to
  1764. * reap this MPDU
  1765. */
  1766. if (((msdu_desc_info.msdu_len /
  1767. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  1768. 1)) > num_entries_avail) {
  1769. DP_STATS_INC(
  1770. soc,
  1771. rx.msdu_scatter_wait_break,
  1772. 1);
  1773. break;
  1774. }
  1775. is_prev_msdu_last = false;
  1776. }
  1777. }
  1778. core_id = smp_processor_id();
  1779. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1780. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1781. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1782. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1783. HAL_MPDU_F_RAW_AMPDU))
  1784. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1785. if (!is_prev_msdu_last &&
  1786. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1787. is_prev_msdu_last = true;
  1788. /* Pop out the descriptor*/
  1789. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1790. rx_bufs_reaped[rx_desc->pool_id]++;
  1791. peer_mdata = mpdu_desc_info.peer_meta_data;
  1792. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1793. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1794. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1795. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1796. /*
  1797. * save msdu flags first, last and continuation msdu in
  1798. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1799. * length to nbuf->cb. This ensures the info required for
  1800. * per pkt processing is always in the same cache line.
  1801. * This helps in improving throughput for smaller pkt
  1802. * sizes.
  1803. */
  1804. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1805. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1806. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1807. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1808. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1809. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1810. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1811. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1812. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1813. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1814. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1815. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1816. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1817. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1818. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1819. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1820. /*
  1821. * move unmap after scattered msdu waiting break logic
  1822. * in case double skb unmap happened.
  1823. */
  1824. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1825. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1826. QDF_DMA_FROM_DEVICE,
  1827. rx_desc_pool->buf_size);
  1828. rx_desc->unmapped = 1;
  1829. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1830. /*
  1831. * if continuation bit is set then we have MSDU spread
  1832. * across multiple buffers, let us not decrement quota
  1833. * till we reap all buffers of that MSDU.
  1834. */
  1835. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1836. quota -= 1;
  1837. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1838. &tail[rx_desc->pool_id],
  1839. rx_desc);
  1840. num_rx_bufs_reaped++;
  1841. /*
  1842. * only if complete msdu is received for scatter case,
  1843. * then allow break.
  1844. */
  1845. if (is_prev_msdu_last &&
  1846. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1847. break;
  1848. }
  1849. done:
  1850. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1851. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1852. /*
  1853. * continue with next mac_id if no pkts were reaped
  1854. * from that pool
  1855. */
  1856. if (!rx_bufs_reaped[mac_id])
  1857. continue;
  1858. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  1859. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1860. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1861. rx_desc_pool, rx_bufs_reaped[mac_id],
  1862. &head[mac_id], &tail[mac_id]);
  1863. }
  1864. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1865. /* Peer can be NULL is case of LFR */
  1866. if (qdf_likely(peer))
  1867. vdev = NULL;
  1868. /*
  1869. * BIG loop where each nbuf is dequeued from global queue,
  1870. * processed and queued back on a per vdev basis. These nbufs
  1871. * are sent to stack as and when we run out of nbufs
  1872. * or a new nbuf dequeued from global queue has a different
  1873. * vdev when compared to previous nbuf.
  1874. */
  1875. nbuf = nbuf_head;
  1876. while (nbuf) {
  1877. next = nbuf->next;
  1878. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1879. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1880. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1881. dp_rx_deliver_to_stack(soc, vdev, peer,
  1882. deliver_list_head,
  1883. deliver_list_tail);
  1884. deliver_list_head = NULL;
  1885. deliver_list_tail = NULL;
  1886. }
  1887. /* Get TID from struct cb->tid_val, save to tid */
  1888. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1889. tid = qdf_nbuf_get_tid_val(nbuf);
  1890. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1891. peer = dp_peer_find_by_id(soc, peer_id);
  1892. if (peer) {
  1893. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1894. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1895. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1896. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1897. QDF_NBUF_RX_PKT_DATA_TRACK;
  1898. }
  1899. rx_bufs_used++;
  1900. if (qdf_likely(peer)) {
  1901. vdev = peer->vdev;
  1902. } else {
  1903. nbuf->next = NULL;
  1904. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1905. nbuf = next;
  1906. continue;
  1907. }
  1908. if (qdf_unlikely(!vdev)) {
  1909. qdf_nbuf_free(nbuf);
  1910. nbuf = next;
  1911. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1912. dp_peer_unref_del_find_by_id(peer);
  1913. continue;
  1914. }
  1915. rx_pdev = vdev->pdev;
  1916. DP_RX_TID_SAVE(nbuf, tid);
  1917. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1918. qdf_nbuf_set_timestamp(nbuf);
  1919. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1920. tid_stats =
  1921. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1922. /*
  1923. * Check if DMA completed -- msdu_done is the last bit
  1924. * to be written
  1925. */
  1926. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  1927. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1928. dp_err("MSDU DONE failure");
  1929. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1930. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1931. QDF_TRACE_LEVEL_INFO);
  1932. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1933. qdf_nbuf_free(nbuf);
  1934. qdf_assert(0);
  1935. nbuf = next;
  1936. continue;
  1937. }
  1938. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1939. /*
  1940. * First IF condition:
  1941. * 802.11 Fragmented pkts are reinjected to REO
  1942. * HW block as SG pkts and for these pkts we only
  1943. * need to pull the RX TLVS header length.
  1944. * Second IF condition:
  1945. * The below condition happens when an MSDU is spread
  1946. * across multiple buffers. This can happen in two cases
  1947. * 1. The nbuf size is smaller then the received msdu.
  1948. * ex: we have set the nbuf size to 2048 during
  1949. * nbuf_alloc. but we received an msdu which is
  1950. * 2304 bytes in size then this msdu is spread
  1951. * across 2 nbufs.
  1952. *
  1953. * 2. AMSDUs when RAW mode is enabled.
  1954. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1955. * across 1st nbuf and 2nd nbuf and last MSDU is
  1956. * spread across 2nd nbuf and 3rd nbuf.
  1957. *
  1958. * for these scenarios let us create a skb frag_list and
  1959. * append these buffers till the last MSDU of the AMSDU
  1960. * Third condition:
  1961. * This is the most likely case, we receive 802.3 pkts
  1962. * decapsulated by HW, here we need to set the pkt length.
  1963. */
  1964. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  1965. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1966. bool is_mcbc, is_sa_vld, is_da_vld;
  1967. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  1968. rx_tlv_hdr);
  1969. is_sa_vld =
  1970. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  1971. rx_tlv_hdr);
  1972. is_da_vld =
  1973. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  1974. rx_tlv_hdr);
  1975. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  1976. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  1977. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  1978. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1979. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1980. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1981. nbuf = dp_rx_sg_create(nbuf);
  1982. next = nbuf->next;
  1983. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1984. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1985. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  1986. } else {
  1987. qdf_nbuf_free(nbuf);
  1988. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  1989. dp_info_rl("scatter msdu len %d, dropped",
  1990. msdu_len);
  1991. nbuf = next;
  1992. dp_peer_unref_del_find_by_id(peer);
  1993. continue;
  1994. }
  1995. } else {
  1996. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1997. pkt_len = msdu_len +
  1998. msdu_metadata.l3_hdr_pad +
  1999. RX_PKT_TLVS_LEN;
  2000. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2001. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2002. }
  2003. /*
  2004. * process frame for mulitpass phrase processing
  2005. */
  2006. if (qdf_unlikely(vdev->multipass_en)) {
  2007. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2008. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2009. qdf_nbuf_free(nbuf);
  2010. nbuf = next;
  2011. dp_peer_unref_del_find_by_id(peer);
  2012. continue;
  2013. }
  2014. }
  2015. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2016. QDF_TRACE(QDF_MODULE_ID_DP,
  2017. QDF_TRACE_LEVEL_ERROR,
  2018. FL("Policy Check Drop pkt"));
  2019. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2020. /* Drop & free packet */
  2021. qdf_nbuf_free(nbuf);
  2022. /* Statistics */
  2023. nbuf = next;
  2024. dp_peer_unref_del_find_by_id(peer);
  2025. continue;
  2026. }
  2027. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2028. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2029. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2030. rx_tlv_hdr) ==
  2031. false))) {
  2032. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2033. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2034. qdf_nbuf_free(nbuf);
  2035. nbuf = next;
  2036. dp_peer_unref_del_find_by_id(peer);
  2037. continue;
  2038. }
  2039. if (soc->process_rx_status)
  2040. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2041. /* Update the protocol tag in SKB based on CCE metadata */
  2042. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2043. reo_ring_num, false, true);
  2044. /* Update the flow tag in SKB based on FSE metadata */
  2045. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2046. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2047. ring_id, tid_stats);
  2048. if (qdf_unlikely(vdev->mesh_vdev)) {
  2049. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2050. == QDF_STATUS_SUCCESS) {
  2051. QDF_TRACE(QDF_MODULE_ID_DP,
  2052. QDF_TRACE_LEVEL_INFO_MED,
  2053. FL("mesh pkt filtered"));
  2054. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2055. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2056. 1);
  2057. qdf_nbuf_free(nbuf);
  2058. nbuf = next;
  2059. dp_peer_unref_del_find_by_id(peer);
  2060. continue;
  2061. }
  2062. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2063. }
  2064. if (qdf_likely(vdev->rx_decap_type ==
  2065. htt_cmn_pkt_type_ethernet) &&
  2066. qdf_likely(!vdev->mesh_vdev)) {
  2067. /* WDS Destination Address Learning */
  2068. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2069. /* Due to HW issue, sometimes we see that the sa_idx
  2070. * and da_idx are invalid with sa_valid and da_valid
  2071. * bits set
  2072. *
  2073. * in this case we also see that value of
  2074. * sa_sw_peer_id is set as 0
  2075. *
  2076. * Drop the packet if sa_idx and da_idx OOB or
  2077. * sa_sw_peerid is 0
  2078. */
  2079. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2080. msdu_metadata)) {
  2081. qdf_nbuf_free(nbuf);
  2082. nbuf = next;
  2083. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2084. dp_peer_unref_del_find_by_id(peer);
  2085. continue;
  2086. }
  2087. /* WDS Source Port Learning */
  2088. if (qdf_likely(vdev->wds_enabled))
  2089. dp_rx_wds_srcport_learn(soc,
  2090. rx_tlv_hdr,
  2091. peer,
  2092. nbuf,
  2093. msdu_metadata);
  2094. /* Intrabss-fwd */
  2095. if (dp_rx_check_ap_bridge(vdev))
  2096. if (dp_rx_intrabss_fwd(soc,
  2097. peer,
  2098. rx_tlv_hdr,
  2099. nbuf,
  2100. msdu_metadata)) {
  2101. nbuf = next;
  2102. dp_peer_unref_del_find_by_id(peer);
  2103. tid_stats->intrabss_cnt++;
  2104. continue; /* Get next desc */
  2105. }
  2106. }
  2107. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2108. DP_RX_LIST_APPEND(deliver_list_head,
  2109. deliver_list_tail,
  2110. nbuf);
  2111. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2112. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2113. tid_stats->delivered_to_stack++;
  2114. nbuf = next;
  2115. dp_peer_unref_del_find_by_id(peer);
  2116. }
  2117. if (qdf_likely(deliver_list_head)) {
  2118. if (qdf_likely(peer))
  2119. dp_rx_deliver_to_stack(soc, vdev, peer,
  2120. deliver_list_head,
  2121. deliver_list_tail);
  2122. else {
  2123. nbuf = deliver_list_head;
  2124. while (nbuf) {
  2125. next = nbuf->next;
  2126. nbuf->next = NULL;
  2127. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2128. nbuf = next;
  2129. }
  2130. }
  2131. }
  2132. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2133. if (quota) {
  2134. num_pending =
  2135. dp_rx_srng_get_num_pending(hal_soc,
  2136. hal_ring_hdl,
  2137. num_entries,
  2138. &near_full);
  2139. if (num_pending) {
  2140. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2141. if (!hif_exec_should_yield(scn, intr_id))
  2142. goto more_data;
  2143. if (qdf_unlikely(near_full)) {
  2144. DP_STATS_INC(soc, rx.near_full, 1);
  2145. goto more_data;
  2146. }
  2147. }
  2148. }
  2149. if (vdev && vdev->osif_fisa_flush)
  2150. vdev->osif_fisa_flush(soc, reo_ring_num);
  2151. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2152. vdev->osif_gro_flush(vdev->osif_vdev,
  2153. reo_ring_num);
  2154. }
  2155. }
  2156. /* Update histogram statistics by looping through pdev's */
  2157. DP_RX_HIST_STATS_PER_PDEV();
  2158. return rx_bufs_used; /* Assume no scale factor for now */
  2159. }
  2160. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2161. {
  2162. QDF_STATUS ret;
  2163. if (vdev->osif_rx_flush) {
  2164. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2165. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2166. dp_err("Failed to flush rx pkts for vdev %d\n",
  2167. vdev->vdev_id);
  2168. return ret;
  2169. }
  2170. }
  2171. return QDF_STATUS_SUCCESS;
  2172. }
  2173. static QDF_STATUS
  2174. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2175. struct dp_pdev *dp_pdev,
  2176. struct rx_desc_pool *rx_desc_pool)
  2177. {
  2178. qdf_dma_addr_t paddr;
  2179. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2180. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2181. RX_BUFFER_RESERVATION,
  2182. rx_desc_pool->buf_alignment, FALSE);
  2183. if (!(*nbuf)) {
  2184. dp_err("nbuf alloc failed");
  2185. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2186. return ret;
  2187. }
  2188. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, *nbuf,
  2189. QDF_DMA_FROM_DEVICE,
  2190. rx_desc_pool->buf_size);
  2191. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2192. qdf_nbuf_free(*nbuf);
  2193. dp_err("nbuf map failed");
  2194. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2195. return ret;
  2196. }
  2197. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2198. ret = check_x86_paddr(dp_soc, nbuf, &paddr, rx_desc_pool);
  2199. if (ret == QDF_STATUS_E_FAILURE) {
  2200. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev, *nbuf,
  2201. QDF_DMA_FROM_DEVICE,
  2202. rx_desc_pool->buf_size);
  2203. qdf_nbuf_free(*nbuf);
  2204. dp_err("nbuf check x86 failed");
  2205. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2206. return ret;
  2207. }
  2208. return QDF_STATUS_SUCCESS;
  2209. }
  2210. QDF_STATUS
  2211. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2212. struct dp_srng *dp_rxdma_srng,
  2213. struct rx_desc_pool *rx_desc_pool,
  2214. uint32_t num_req_buffers)
  2215. {
  2216. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2217. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2218. union dp_rx_desc_list_elem_t *next;
  2219. void *rxdma_ring_entry;
  2220. qdf_dma_addr_t paddr;
  2221. qdf_nbuf_t *rx_nbuf_arr;
  2222. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2223. uint32_t buffer_index, nbuf_ptrs_per_page;
  2224. qdf_nbuf_t nbuf;
  2225. QDF_STATUS ret;
  2226. int page_idx, total_pages;
  2227. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2228. union dp_rx_desc_list_elem_t *tail = NULL;
  2229. int sync_hw_ptr = 1;
  2230. uint32_t num_entries_avail;
  2231. if (qdf_unlikely(!rxdma_srng)) {
  2232. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2233. return QDF_STATUS_E_FAILURE;
  2234. }
  2235. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2236. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2237. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2238. rxdma_srng,
  2239. sync_hw_ptr);
  2240. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2241. if (!num_entries_avail) {
  2242. dp_err("Num of available entries is zero, nothing to do");
  2243. return QDF_STATUS_E_NOMEM;
  2244. }
  2245. if (num_entries_avail < num_req_buffers)
  2246. num_req_buffers = num_entries_avail;
  2247. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2248. num_req_buffers, &desc_list, &tail);
  2249. if (!nr_descs) {
  2250. dp_err("no free rx_descs in freelist");
  2251. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2252. return QDF_STATUS_E_NOMEM;
  2253. }
  2254. dp_debug("got %u RX descs for driver attach", nr_descs);
  2255. /*
  2256. * Try to allocate pointers to the nbuf one page at a time.
  2257. * Take pointers that can fit in one page of memory and
  2258. * iterate through the total descriptors that need to be
  2259. * allocated in order of pages. Reuse the pointers that
  2260. * have been allocated to fit in one page across each
  2261. * iteration to index into the nbuf.
  2262. */
  2263. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2264. /*
  2265. * Add an extra page to store the remainder if any
  2266. */
  2267. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2268. total_pages++;
  2269. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2270. if (!rx_nbuf_arr) {
  2271. dp_err("failed to allocate nbuf array");
  2272. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2273. QDF_BUG(0);
  2274. return QDF_STATUS_E_NOMEM;
  2275. }
  2276. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2277. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2278. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2279. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2280. /*
  2281. * The last page of buffer pointers may not be required
  2282. * completely based on the number of descriptors. Below
  2283. * check will ensure we are allocating only the
  2284. * required number of descriptors.
  2285. */
  2286. if (nr_nbuf_total >= nr_descs)
  2287. break;
  2288. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2289. &rx_nbuf_arr[nr_nbuf],
  2290. dp_pdev, rx_desc_pool);
  2291. if (QDF_IS_STATUS_ERROR(ret))
  2292. break;
  2293. nr_nbuf_total++;
  2294. }
  2295. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2296. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2297. rxdma_ring_entry =
  2298. hal_srng_src_get_next(dp_soc->hal_soc,
  2299. rxdma_srng);
  2300. qdf_assert_always(rxdma_ring_entry);
  2301. next = desc_list->next;
  2302. nbuf = rx_nbuf_arr[buffer_index];
  2303. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2304. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2305. desc_list->rx_desc.in_use = 1;
  2306. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2307. desc_list->rx_desc.cookie,
  2308. rx_desc_pool->owner);
  2309. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2310. desc_list = next;
  2311. }
  2312. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2313. }
  2314. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2315. qdf_mem_free(rx_nbuf_arr);
  2316. if (!nr_nbuf_total) {
  2317. dp_err("No nbuf's allocated");
  2318. QDF_BUG(0);
  2319. return QDF_STATUS_E_RESOURCES;
  2320. }
  2321. /* No need to count the number of bytes received during replenish.
  2322. * Therefore set replenish.pkts.bytes as 0.
  2323. */
  2324. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2325. return QDF_STATUS_SUCCESS;
  2326. }
  2327. /*
  2328. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2329. * pool
  2330. *
  2331. * @pdev: core txrx pdev context
  2332. *
  2333. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2334. * QDF_STATUS_E_NOMEM
  2335. */
  2336. QDF_STATUS
  2337. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2338. {
  2339. struct dp_soc *soc = pdev->soc;
  2340. uint32_t rxdma_entries;
  2341. uint32_t rx_sw_desc_weight;
  2342. struct dp_srng *dp_rxdma_srng;
  2343. struct rx_desc_pool *rx_desc_pool;
  2344. uint32_t status = QDF_STATUS_SUCCESS;
  2345. int mac_for_pdev;
  2346. mac_for_pdev = pdev->lmac_id;
  2347. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2348. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2349. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2350. return status;
  2351. }
  2352. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2353. rxdma_entries = dp_rxdma_srng->num_entries;
  2354. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2355. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2356. status = dp_rx_desc_pool_alloc(soc,
  2357. rx_sw_desc_weight * rxdma_entries,
  2358. rx_desc_pool);
  2359. if (status != QDF_STATUS_SUCCESS)
  2360. return status;
  2361. return status;
  2362. }
  2363. /*
  2364. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2365. *
  2366. * @pdev: core txrx pdev context
  2367. */
  2368. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2369. {
  2370. int mac_for_pdev = pdev->lmac_id;
  2371. struct dp_soc *soc = pdev->soc;
  2372. struct rx_desc_pool *rx_desc_pool;
  2373. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2374. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2375. }
  2376. /*
  2377. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2378. *
  2379. * @pdev: core txrx pdev context
  2380. *
  2381. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2382. * QDF_STATUS_E_NOMEM
  2383. */
  2384. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2385. {
  2386. int mac_for_pdev = pdev->lmac_id;
  2387. struct dp_soc *soc = pdev->soc;
  2388. uint32_t rxdma_entries;
  2389. uint32_t rx_sw_desc_weight;
  2390. struct dp_srng *dp_rxdma_srng;
  2391. struct rx_desc_pool *rx_desc_pool;
  2392. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2393. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2394. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2395. return QDF_STATUS_SUCCESS;
  2396. }
  2397. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2398. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2399. return QDF_STATUS_E_NOMEM;
  2400. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2401. rxdma_entries = dp_rxdma_srng->num_entries;
  2402. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2403. rx_sw_desc_weight =
  2404. wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2405. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2406. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2407. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2408. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2409. rx_sw_desc_weight * rxdma_entries,
  2410. rx_desc_pool);
  2411. return QDF_STATUS_SUCCESS;
  2412. }
  2413. /*
  2414. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2415. * @pdev: core txrx pdev context
  2416. *
  2417. * This function resets the freelist of rx descriptors and destroys locks
  2418. * associated with this list of descriptors.
  2419. */
  2420. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2421. {
  2422. int mac_for_pdev = pdev->lmac_id;
  2423. struct dp_soc *soc = pdev->soc;
  2424. struct rx_desc_pool *rx_desc_pool;
  2425. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2426. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2427. }
  2428. /*
  2429. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2430. *
  2431. * @pdev: core txrx pdev context
  2432. *
  2433. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2434. * QDF_STATUS_E_NOMEM
  2435. */
  2436. QDF_STATUS
  2437. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2438. {
  2439. int mac_for_pdev = pdev->lmac_id;
  2440. struct dp_soc *soc = pdev->soc;
  2441. struct dp_srng *dp_rxdma_srng;
  2442. struct rx_desc_pool *rx_desc_pool;
  2443. uint32_t rxdma_entries;
  2444. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2445. rxdma_entries = dp_rxdma_srng->num_entries;
  2446. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2447. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2448. rx_desc_pool, rxdma_entries - 1);
  2449. }
  2450. /*
  2451. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2452. *
  2453. * @pdev: core txrx pdev context
  2454. */
  2455. void
  2456. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2457. {
  2458. int mac_for_pdev = pdev->lmac_id;
  2459. struct dp_soc *soc = pdev->soc;
  2460. struct rx_desc_pool *rx_desc_pool;
  2461. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2462. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2463. }
  2464. /*
  2465. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2466. * @soc: core txrx main context
  2467. * @pdev: core txrx pdev context
  2468. *
  2469. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2470. * until retry times reaches max threshold or succeeded.
  2471. *
  2472. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2473. */
  2474. qdf_nbuf_t
  2475. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2476. {
  2477. uint8_t *buf;
  2478. int32_t nbuf_retry_count;
  2479. QDF_STATUS ret;
  2480. qdf_nbuf_t nbuf = NULL;
  2481. for (nbuf_retry_count = 0; nbuf_retry_count <
  2482. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2483. nbuf_retry_count++) {
  2484. /* Allocate a new skb */
  2485. nbuf = qdf_nbuf_alloc(soc->osdev,
  2486. RX_DATA_BUFFER_SIZE,
  2487. RX_BUFFER_RESERVATION,
  2488. RX_DATA_BUFFER_ALIGNMENT,
  2489. FALSE);
  2490. if (!nbuf) {
  2491. DP_STATS_INC(pdev,
  2492. replenish.nbuf_alloc_fail, 1);
  2493. continue;
  2494. }
  2495. buf = qdf_nbuf_data(nbuf);
  2496. memset(buf, 0, RX_DATA_BUFFER_SIZE);
  2497. ret = qdf_nbuf_map_nbytes_single(soc->osdev, nbuf,
  2498. QDF_DMA_FROM_DEVICE,
  2499. RX_DATA_BUFFER_SIZE);
  2500. /* nbuf map failed */
  2501. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2502. qdf_nbuf_free(nbuf);
  2503. DP_STATS_INC(pdev, replenish.map_err, 1);
  2504. continue;
  2505. }
  2506. /* qdf_nbuf alloc and map succeeded */
  2507. break;
  2508. }
  2509. /* qdf_nbuf still alloc or map failed */
  2510. if (qdf_unlikely(nbuf_retry_count >=
  2511. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2512. return NULL;
  2513. return nbuf;
  2514. }
  2515. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2516. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2517. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2518. uint8_t *rx_tlv_hdr)
  2519. {
  2520. uint32_t l2_hdr_offset = 0;
  2521. uint16_t msdu_len = 0;
  2522. uint32_t skip_len;
  2523. l2_hdr_offset =
  2524. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2525. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2526. skip_len = l2_hdr_offset;
  2527. } else {
  2528. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2529. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  2530. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2531. }
  2532. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2533. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2534. qdf_nbuf_pull_head(nbuf, skip_len);
  2535. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2536. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2537. nbuf, NULL);
  2538. return true;
  2539. }
  2540. return false;
  2541. }
  2542. #endif