msm_cvp_buf.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/pid.h>
  7. #include <linux/fdtable.h>
  8. #include <linux/rcupdate.h>
  9. #include <linux/fs.h>
  10. #include <linux/dma-buf.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/version.h>
  13. #include "msm_cvp_common.h"
  14. #include "cvp_hfi_api.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_core.h"
  17. #include "msm_cvp_dsp.h"
  18. #include "eva_shared_def.h"
  19. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  20. #define eva_buf_map dma_buf_map
  21. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  22. #else
  23. #define eva_buf_map iosys_map
  24. #define _buf_map_set_vaddr iosys_map_set_vaddr
  25. #endif
  26. #define CLEAR_USE_BITMAP(idx, inst) \
  27. do { \
  28. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  29. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  30. hash32_ptr(inst->session), smem->bitmap_index, \
  31. inst->dma_cache.usage_bitmap); \
  32. } while (0)
  33. #define SET_USE_BITMAP(idx, inst) \
  34. do { \
  35. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  36. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  37. hash32_ptr(inst->session), idx, \
  38. inst->dma_cache.usage_bitmap); \
  39. } while (0)
  40. struct cvp_oob_pool wncc_buf_pool;
  41. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  42. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  43. unsigned int num_layers, unsigned int metadata_bufs_offset,
  44. struct eva_kmd_wncc_metadata** wncc_metadata);
  45. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  46. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  47. struct msm_cvp_smem *smem)
  48. {
  49. int i;
  50. char name[PKT_NAME_LEN] = "Unknown";
  51. if (!(tag & msm_cvp_debug))
  52. return 0;
  53. if (!inst || !smem) {
  54. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  55. inst, smem);
  56. return -EINVAL;
  57. }
  58. if (smem->dma_buf) {
  59. i = get_pkt_index_from_type(smem->pkt_type);
  60. if (i > 0)
  61. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  62. if (!atomic_read(&smem->refcount))
  63. dprintk(tag,
  64. " UNUSED mapping %s: 0x%llx size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  65. str, smem->dma_buf,
  66. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  67. else
  68. dprintk(tag,
  69. "%s: %x : 0x%llx size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  70. str, hash32_ptr(inst->session), smem->dma_buf,
  71. smem->size, smem->flags, smem->device_addr,
  72. smem->bitmap_index, atomic_read(&smem->refcount),
  73. name, smem->buf_idx, smem->fd);
  74. }
  75. return 0;
  76. }
  77. static void print_internal_buffer(u32 tag, const char *str,
  78. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  79. {
  80. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  81. return;
  82. if (cbuf->smem->dma_buf) {
  83. dprintk(tag,
  84. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  85. str, hash32_ptr(inst->session), cbuf->fd,
  86. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  87. cbuf->size, cbuf->smem->device_addr);
  88. } else {
  89. dprintk(tag,
  90. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  91. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  92. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  93. }
  94. }
  95. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  96. struct cvp_internal_buf *cbuf)
  97. {
  98. if (!inst || !cbuf) {
  99. dprintk(CVP_ERR,
  100. "%s Invalid params inst %pK, cbuf %pK\n",
  101. str, inst, cbuf);
  102. return;
  103. }
  104. print_smem(tag, str, inst, cbuf->smem);
  105. }
  106. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  107. struct msm_cvp_smem *smem, bool logging)
  108. {
  109. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  110. return;
  111. if (!logging || !snapshot)
  112. return;
  113. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  114. struct smem_data *s;
  115. s = &snapshot->smem_log[snapshot->smem_index];
  116. snapshot->smem_index++;
  117. s->size = smem->size;
  118. s->flags = smem->flags;
  119. s->device_addr = smem->device_addr;
  120. s->bitmap_index = smem->bitmap_index;
  121. s->refcount = atomic_read(&smem->refcount);
  122. s->pkt_type = smem->pkt_type;
  123. s->buf_idx = smem->buf_idx;
  124. }
  125. }
  126. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  127. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  128. bool logging)
  129. {
  130. struct cvp_buf_data *buf = NULL;
  131. u32 index;
  132. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  133. if (!logging)
  134. return;
  135. if (snapshot) {
  136. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  137. index = snapshot->dsp_index;
  138. buf = &snapshot->dsp_buf_log[index];
  139. snapshot->dsp_index++;
  140. } else if (prop == SMEM_PERSIST &&
  141. snapshot->persist_index < MAX_ENTRIES) {
  142. index = snapshot->persist_index;
  143. buf = &snapshot->persist_buf_log[index];
  144. snapshot->persist_index++;
  145. }
  146. if (buf) {
  147. buf->device_addr = cbuf->smem->device_addr;
  148. buf->size = cbuf->size;
  149. }
  150. }
  151. }
  152. void print_client_buffer(u32 tag, const char *str,
  153. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  154. {
  155. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  156. return;
  157. dprintk(tag,
  158. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  159. " reserved[0] %u\n",
  160. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  161. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  162. cbuf->reserved[0]);
  163. }
  164. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  165. struct eva_kmd_buffer *buf)
  166. {
  167. struct cvp_hal_session *session;
  168. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  169. bool found = false;
  170. if (!inst || !inst->core || !buf) {
  171. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  172. return false;
  173. }
  174. if (buf->fd < 0) {
  175. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  176. return false;
  177. }
  178. if (buf->offset) {
  179. dprintk(CVP_ERR,
  180. "%s: offset is deprecated, set to 0.\n",
  181. __func__);
  182. return false;
  183. }
  184. session = (struct cvp_hal_session *)inst->session;
  185. mutex_lock(&inst->cvpdspbufs.lock);
  186. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  187. if (cbuf->fd == buf->fd) {
  188. if (cbuf->size != buf->size) {
  189. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  190. __func__);
  191. mutex_unlock(&inst->cvpdspbufs.lock);
  192. return false;
  193. }
  194. found = true;
  195. break;
  196. }
  197. }
  198. mutex_unlock(&inst->cvpdspbufs.lock);
  199. if (found) {
  200. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  201. return false;
  202. }
  203. return true;
  204. }
  205. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  206. fmode_t mask, unsigned int refs)
  207. {
  208. struct files_struct *files = task->files;
  209. struct file *file;
  210. if (!files)
  211. return NULL;
  212. rcu_read_lock();
  213. loop:
  214. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  215. file = fcheck_files(files, fd);
  216. #else
  217. file = files_lookup_fd_rcu(files, fd);
  218. #endif
  219. if (file) {
  220. /* File object ref couldn't be taken.
  221. * dup2() atomicity guarantee is the reason
  222. * we loop to catch the new file (or NULL pointer)
  223. */
  224. if (file->f_mode & mask)
  225. file = NULL;
  226. else if (!get_file_rcu(file))
  227. goto loop;
  228. }
  229. rcu_read_unlock();
  230. return file;
  231. }
  232. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  233. struct task_struct *task)
  234. {
  235. if (file->f_op != gfa_cv.dmabuf_f_op) {
  236. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  237. return ERR_PTR(-EINVAL);
  238. }
  239. return file->private_data;
  240. }
  241. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  242. {
  243. int rc = 0;
  244. struct cvp_internal_buf *cbuf = NULL;
  245. struct msm_cvp_smem *smem = NULL;
  246. struct dma_buf *dma_buf = NULL;
  247. struct file *file;
  248. if (!__is_buf_valid(inst, buf))
  249. return -EINVAL;
  250. if (!inst->task)
  251. return -EINVAL;
  252. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  253. if (file == NULL) {
  254. dprintk(CVP_WARN, "%s fail to get file from fd %d %s\n", __func__, buf->fd, inst->proc_name);
  255. return -EINVAL;
  256. }
  257. dma_buf = cvp_dma_buf_get(
  258. file,
  259. buf->fd,
  260. inst->task);
  261. if (dma_buf == ERR_PTR(-EINVAL)) {
  262. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  263. rc = -EINVAL;
  264. goto exit;
  265. }
  266. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  267. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  268. if (!cbuf) {
  269. rc = -ENOMEM;
  270. goto exit;
  271. }
  272. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  273. if (!smem) {
  274. rc = -ENOMEM;
  275. goto exit;
  276. }
  277. smem->dma_buf = dma_buf;
  278. smem->bitmap_index = MAX_DMABUF_NUMS;
  279. smem->pkt_type = 0;
  280. smem->buf_idx = 0;
  281. smem->fd = buf->fd;
  282. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  283. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  284. if (rc) {
  285. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  286. goto exit;
  287. }
  288. atomic_inc(&smem->refcount);
  289. cbuf->smem = smem;
  290. cbuf->fd = buf->fd;
  291. cbuf->size = buf->size;
  292. cbuf->offset = buf->offset;
  293. cbuf->ownership = CLIENT;
  294. cbuf->index = buf->index;
  295. buf->reserved[0] = (uint32_t)smem->device_addr;
  296. mutex_lock(&inst->cvpdspbufs.lock);
  297. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  298. mutex_unlock(&inst->cvpdspbufs.lock);
  299. return rc;
  300. exit:
  301. fput(file);
  302. if (smem) {
  303. if (smem->device_addr)
  304. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  305. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  306. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  307. }
  308. if (cbuf)
  309. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  310. return rc;
  311. }
  312. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  313. {
  314. int rc = 0;
  315. bool found;
  316. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  317. struct cvp_hal_session *session;
  318. if (!inst || !inst->core || !buf) {
  319. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  320. return -EINVAL;
  321. }
  322. session = (struct cvp_hal_session *)inst->session;
  323. if (!session) {
  324. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  325. return -EINVAL;
  326. }
  327. mutex_lock(&inst->cvpdspbufs.lock);
  328. found = false;
  329. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  330. if (cbuf->fd == buf->fd) {
  331. found = true;
  332. break;
  333. }
  334. }
  335. if (!found) {
  336. mutex_unlock(&inst->cvpdspbufs.lock);
  337. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  338. return -EINVAL;
  339. }
  340. if (cbuf->smem->device_addr) {
  341. u64 idx = inst->unused_dsp_bufs.ktid;
  342. inst->unused_dsp_bufs.smem[idx] = *(cbuf->smem);
  343. inst->unused_dsp_bufs.nr++;
  344. inst->unused_dsp_bufs.nr =
  345. (inst->unused_dsp_bufs.nr > MAX_FRAME_BUFFER_NUMS)?
  346. MAX_FRAME_BUFFER_NUMS : inst->unused_dsp_bufs.nr;
  347. inst->unused_dsp_bufs.ktid = ++idx % MAX_FRAME_BUFFER_NUMS;
  348. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  349. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  350. atomic_dec(&cbuf->smem->refcount);
  351. }
  352. list_del(&cbuf->list);
  353. mutex_unlock(&inst->cvpdspbufs.lock);
  354. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  355. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  356. return rc;
  357. }
  358. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  359. struct eva_kmd_buffer *buf)
  360. {
  361. int rc = 0, i;
  362. bool found = false;
  363. struct cvp_internal_buf* cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  364. struct msm_cvp_smem* smem = NULL;
  365. struct dma_buf* dma_buf = NULL;
  366. if (!inst || !inst->core || !buf) {
  367. dprintk(CVP_ERR, "%s: invalid params", __func__);
  368. return -EINVAL;
  369. }
  370. if (!inst->session) {
  371. dprintk(CVP_ERR, "%s: invalid session", __func__);
  372. return -EINVAL;
  373. }
  374. if (buf->index) {
  375. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  376. __func__, buf->fd);
  377. return -EINVAL;
  378. }
  379. if (buf->fd < 0) {
  380. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  381. return -EINVAL;
  382. }
  383. if (buf->offset) {
  384. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  385. __func__);
  386. return -EINVAL;
  387. }
  388. mutex_lock(&inst->cvpwnccbufs.lock);
  389. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  390. if (cbuf->fd == buf->fd) {
  391. if (cbuf->size != buf->size) {
  392. dprintk(CVP_ERR, "%s: buf size mismatch",
  393. __func__);
  394. mutex_unlock(&inst->cvpwnccbufs.lock);
  395. return -EINVAL;
  396. }
  397. found = true;
  398. break;
  399. }
  400. }
  401. mutex_unlock(&inst->cvpwnccbufs.lock);
  402. if (found) {
  403. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  404. return -EINVAL;
  405. }
  406. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  407. if (!dma_buf) {
  408. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  409. return -EINVAL;
  410. }
  411. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  412. if (!cbuf) {
  413. msm_cvp_smem_put_dma_buf(dma_buf);
  414. return -ENOMEM;
  415. }
  416. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  417. if (!smem) {
  418. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  419. msm_cvp_smem_put_dma_buf(dma_buf);
  420. return -ENOMEM;
  421. }
  422. smem->dma_buf = dma_buf;
  423. smem->bitmap_index = MAX_DMABUF_NUMS;
  424. smem->pkt_type = 0;
  425. smem->buf_idx = 0;
  426. smem->fd = buf->fd;
  427. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  428. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  429. if (rc) {
  430. dprintk(CVP_ERR, "%s: map failed", __func__);
  431. print_client_buffer(CVP_ERR, __func__, inst, buf);
  432. goto exit;
  433. }
  434. cbuf->smem = smem;
  435. cbuf->fd = buf->fd;
  436. cbuf->size = buf->size;
  437. cbuf->offset = buf->offset;
  438. cbuf->ownership = CLIENT;
  439. cbuf->index = buf->index;
  440. /* Added for PreSil/RUMI testing */
  441. #ifdef USE_PRESIL
  442. dprintk(CVP_DBG,
  443. "wncc buffer is %x for cam_presil_send_buffer"
  444. " with MAP_ADDR_OFFSET %x",
  445. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  446. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  447. (u32)cbuf->offset, (u32)cbuf->size,
  448. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  449. #endif
  450. mutex_lock(&inst->cvpwnccbufs.lock);
  451. if (inst->cvpwnccbufs_table == NULL) {
  452. inst->cvpwnccbufs_table =
  453. (struct msm_cvp_wncc_buffer*) kzalloc(
  454. sizeof(struct msm_cvp_wncc_buffer) *
  455. EVA_KMD_WNCC_MAX_SRC_BUFS,
  456. GFP_KERNEL);
  457. if (!inst->cvpwnccbufs_table) {
  458. mutex_unlock(&inst->cvpwnccbufs.lock);
  459. goto exit;
  460. }
  461. }
  462. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  463. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  464. {
  465. if (inst->cvpwnccbufs_table[i].iova == 0)
  466. {
  467. inst->cvpwnccbufs_num++;
  468. inst->cvpwnccbufs_table[i].fd = buf->fd;
  469. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  470. inst->cvpwnccbufs_table[i].size = smem->size;
  471. /* buf reserved[0] used to store wncc src buf id */
  472. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  473. /* cbuf ktid used to store wncc src buf id */
  474. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  475. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  476. __func__, inst->cvpwnccbufs_table[i].iova);
  477. break;
  478. }
  479. }
  480. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  481. dprintk(CVP_ERR,
  482. "%s: wncc buf table full - max (%u) already registered",
  483. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  484. /* _wncc_print_cvpwnccbufs_table(inst); */
  485. mutex_unlock(&inst->cvpwnccbufs.lock);
  486. rc = -EDQUOT;
  487. goto exit;
  488. }
  489. mutex_unlock(&inst->cvpwnccbufs.lock);
  490. return rc;
  491. exit:
  492. if (smem->device_addr)
  493. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  494. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  495. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  496. cbuf = NULL;
  497. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  498. smem = NULL;
  499. return rc;
  500. }
  501. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  502. struct eva_kmd_buffer *buf)
  503. {
  504. int rc = 0;
  505. bool found;
  506. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  507. uint32_t buf_id, buf_idx;
  508. if (!inst || !inst->core || !buf) {
  509. dprintk(CVP_ERR, "%s: invalid params", __func__);
  510. return -EINVAL;
  511. }
  512. if (!inst->session) {
  513. dprintk(CVP_ERR, "%s: invalid session", __func__);
  514. return -EINVAL;
  515. }
  516. if (buf->index) {
  517. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  518. __func__, buf->fd);
  519. return -EINVAL;
  520. }
  521. buf_id = buf->reserved[0];
  522. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  523. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  524. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  525. __func__, buf->reserved[0]);
  526. return -EINVAL;
  527. }
  528. mutex_lock(&inst->cvpwnccbufs.lock);
  529. if (inst->cvpwnccbufs_num == 0) {
  530. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  531. mutex_unlock(&inst->cvpwnccbufs.lock);
  532. return -EINVAL;
  533. }
  534. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  535. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  536. dprintk(CVP_ERR, "%s: buffer id %d not found",
  537. __func__, buf_id);
  538. mutex_unlock(&inst->cvpwnccbufs.lock);
  539. return -EINVAL;
  540. }
  541. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  542. found = false;
  543. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  544. if (cbuf->fd == buf->fd) {
  545. found = true;
  546. break;
  547. }
  548. }
  549. if (!found) {
  550. dprintk(CVP_ERR, "%s: buffer id %d not found",
  551. __func__, buf_id);
  552. print_client_buffer(CVP_ERR, __func__, inst, buf);
  553. _wncc_print_cvpwnccbufs_table(inst);
  554. mutex_unlock(&inst->cvpwnccbufs.lock);
  555. return -EINVAL;
  556. }
  557. if (cbuf->smem->device_addr) {
  558. u64 idx = inst->unused_wncc_bufs.ktid;
  559. inst->unused_wncc_bufs.smem[idx] = *(cbuf->smem);
  560. inst->unused_wncc_bufs.nr++;
  561. inst->unused_wncc_bufs.nr =
  562. (inst->unused_wncc_bufs.nr > NUM_WNCC_BUFS)?
  563. NUM_WNCC_BUFS : inst->unused_wncc_bufs.nr;
  564. inst->unused_wncc_bufs.ktid = ++idx % NUM_WNCC_BUFS;
  565. }
  566. mutex_unlock(&inst->cvpwnccbufs.lock);
  567. if (cbuf->smem->device_addr) {
  568. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  569. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  570. }
  571. mutex_lock(&inst->cvpwnccbufs.lock);
  572. list_del(&cbuf->list);
  573. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  574. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  575. inst->cvpwnccbufs_table[buf_idx].size = 0;
  576. inst->cvpwnccbufs_num--;
  577. if (inst->cvpwnccbufs_num == 0) {
  578. kfree(inst->cvpwnccbufs_table);
  579. inst->cvpwnccbufs_table = NULL;
  580. }
  581. mutex_unlock(&inst->cvpwnccbufs.lock);
  582. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  583. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  584. return rc;
  585. }
  586. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  587. {
  588. u32 i, j;
  589. if (!wncc_oob) {
  590. dprintk(CVP_ERR, "%s: invalid params", __func__);
  591. return;
  592. }
  593. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  594. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  595. for (i = 0; i < wncc_oob->num_layers; i++) {
  596. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  597. __func__, i, wncc_oob->layers[i].num_addrs);
  598. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  599. dprintk(CVP_DBG,
  600. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  601. __func__, i, j,
  602. wncc_oob->layers[i].addrs[j].buffer_id,
  603. wncc_oob->layers[i].addrs[j].offset);
  604. }
  605. }
  606. }
  607. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  608. {
  609. u32 i, entries = 0;
  610. if (!inst) {
  611. dprintk(CVP_ERR, "%s: invalid params", __func__);
  612. return;
  613. }
  614. if (inst->cvpwnccbufs_num == 0) {
  615. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  616. __func__);
  617. return;
  618. }
  619. if (!inst->cvpwnccbufs_table) {
  620. dprintk(CVP_ERR, "%s: invalid params", __func__);
  621. return;
  622. }
  623. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  624. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  625. entries < inst->cvpwnccbufs_num; i++) {
  626. if (inst->cvpwnccbufs_table[i].iova != 0) {
  627. dprintk(CVP_DBG,
  628. "%s: buf_idx=%04d --> "
  629. "fd=%03d, iova=0x%08x, size=%d",
  630. __func__, i,
  631. inst->cvpwnccbufs_table[i].fd,
  632. inst->cvpwnccbufs_table[i].iova,
  633. inst->cvpwnccbufs_table[i].size);
  634. entries++;
  635. }
  636. }
  637. }
  638. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  639. struct eva_kmd_wncc_metadata** wncc_metadata)
  640. {
  641. u32 i, j, iova;
  642. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  643. !wncc_metadata) {
  644. dprintk(CVP_ERR, "%s: invalid params", __func__);
  645. return;
  646. }
  647. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  648. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  649. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  650. for (i = 0; i < num_layers; i++) {
  651. for (j = 0; j < num_addrs; j++) {
  652. iova = (wncc_metadata[i][j].iova_msb << 22) |
  653. wncc_metadata[i][j].iova_lsb;
  654. dprintk(CVP_DBG,
  655. "%s: wncc_metadata[%u][%u]: "
  656. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  657. __func__, i, j,
  658. wncc_metadata[i][j].loc_x_dec,
  659. wncc_metadata[i][j].loc_x_frac,
  660. wncc_metadata[i][j].loc_y_dec,
  661. wncc_metadata[i][j].loc_y_frac,
  662. iova,
  663. wncc_metadata[i][j].scale_idx,
  664. wncc_metadata[i][j].aff_coeff_3,
  665. wncc_metadata[i][j].aff_coeff_2,
  666. wncc_metadata[i][j].aff_coeff_1,
  667. wncc_metadata[i][j].aff_coeff_0);
  668. }
  669. }
  670. }
  671. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  672. struct eva_kmd_oob_wncc* wncc_oob)
  673. {
  674. int rc = 0;
  675. u32 oob_type = 0;
  676. struct eva_kmd_oob_buf* oob_buf_u;
  677. struct eva_kmd_oob_wncc* wncc_oob_u;
  678. struct eva_kmd_oob_wncc* wncc_oob_k;
  679. unsigned int i;
  680. u32 num_addrs;
  681. if (!in_pkt || !wncc_oob) {
  682. dprintk(CVP_ERR, "%s: invalid params", __func__);
  683. return -EINVAL;
  684. }
  685. oob_buf_u = in_pkt->oob_buf;
  686. if (!access_ok(oob_buf_u, sizeof(*oob_buf_u))) {
  687. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  688. return -EINVAL;
  689. }
  690. if (!access_ok(&oob_buf_u->oob_type, sizeof(oob_buf_u->oob_type))) {
  691. dprintk(CVP_ERR,
  692. "%s: bad OOB buf pointer, oob_type inaccessible",
  693. __func__);
  694. return -EINVAL;
  695. }
  696. rc = get_user(oob_type, &oob_buf_u->oob_type);
  697. if (rc)
  698. return rc;
  699. if (oob_type != EVA_KMD_OOB_WNCC) {
  700. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  701. __func__, oob_type);
  702. return -EINVAL;
  703. }
  704. wncc_oob_u = &oob_buf_u->wncc;
  705. wncc_oob_k = wncc_oob;
  706. if (!access_ok(&wncc_oob_u->metadata_bufs_offset,
  707. sizeof(wncc_oob_u->metadata_bufs_offset))) {
  708. dprintk(CVP_ERR,
  709. "%s: bad OOB buf pointer, wncc.metadata_bufs_offset inaccessible",
  710. __func__);
  711. return -EINVAL;
  712. }
  713. rc = get_user(wncc_oob_k->metadata_bufs_offset,
  714. &wncc_oob_u->metadata_bufs_offset);
  715. if (rc)
  716. return rc;
  717. if (wncc_oob_k->metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  718. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  719. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  720. __func__);
  721. return -EINVAL;
  722. }
  723. if (!access_ok(&wncc_oob_u->num_layers,
  724. sizeof(wncc_oob_u->num_layers))) {
  725. dprintk(CVP_ERR,
  726. "%s: bad OOB buf pointer, wncc.num_layers inaccessible",
  727. __func__);
  728. return -EINVAL;
  729. }
  730. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  731. if (rc)
  732. return rc;
  733. if (wncc_oob_k->num_layers < 1 ||
  734. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  735. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  736. return -EINVAL;
  737. }
  738. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  739. if (!access_ok(&wncc_oob_u->layers[i].num_addrs,
  740. sizeof(wncc_oob_u->layers[i].num_addrs))) {
  741. dprintk(CVP_ERR,
  742. "%s: bad OOB buf pointer, wncc.layers[%u].num_addrs inaccessible",
  743. __func__, i);
  744. return -EINVAL;
  745. }
  746. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  747. &wncc_oob_u->layers[i].num_addrs);
  748. if (rc)
  749. break;
  750. num_addrs = wncc_oob_k->layers[i].num_addrs;
  751. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  752. dprintk(CVP_ERR,
  753. "%s: invalid wncc num addrs for layer %u",
  754. __func__, i);
  755. rc = -EINVAL;
  756. break;
  757. }
  758. if (!access_ok(wncc_oob_u->layers[i].addrs,
  759. num_addrs * sizeof(struct eva_kmd_wncc_addr)) ||
  760. !access_ok(&wncc_oob_u->layers[i].addrs[num_addrs - 1],
  761. sizeof(struct eva_kmd_wncc_addr))) {
  762. dprintk(CVP_ERR,
  763. "%s: bad OOB buf pointer, wncc.layers[%u].addrs inaccessible",
  764. __func__, i);
  765. return -EINVAL;
  766. }
  767. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  768. wncc_oob_u->layers[i].addrs,
  769. num_addrs * sizeof(struct eva_kmd_wncc_addr));
  770. if (rc)
  771. break;
  772. }
  773. if (false)
  774. _wncc_print_oob(wncc_oob);
  775. return rc;
  776. }
  777. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  778. unsigned int num_layers, unsigned int metadata_bufs_offset,
  779. struct eva_kmd_wncc_metadata** wncc_metadata)
  780. {
  781. int rc = 0, i;
  782. struct cvp_buf_type* wncc_metadata_bufs;
  783. struct dma_buf* dmabuf;
  784. struct eva_buf_map map;
  785. if (!in_pkt || !wncc_metadata ||
  786. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  787. dprintk(CVP_ERR, "%s: invalid params", __func__);
  788. return -EINVAL;
  789. }
  790. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  791. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  792. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  793. __func__);
  794. return -EINVAL;
  795. }
  796. wncc_metadata_bufs = (struct cvp_buf_type*)
  797. &in_pkt->pkt_data[metadata_bufs_offset];
  798. for (i = 0; i < num_layers; i++) {
  799. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  800. if (IS_ERR(dmabuf)) {
  801. rc = PTR_ERR(dmabuf);
  802. dprintk(CVP_ERR,
  803. "%s: dma_buf_get() failed for "
  804. "wncc_metadata_bufs[%d], rc %d",
  805. __func__, i, rc);
  806. break;
  807. }
  808. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  809. if (rc) {
  810. dprintk(CVP_ERR,
  811. "%s: dma_buf_begin_cpu_access() failed "
  812. "for wncc_metadata_bufs[%d], rc %d",
  813. __func__, i, rc);
  814. dma_buf_put(dmabuf);
  815. break;
  816. }
  817. rc = dma_buf_vmap(dmabuf, &map);
  818. if (rc) {
  819. dprintk(CVP_ERR,
  820. "%s: dma_buf_vmap() failed for "
  821. "wncc_metadata_bufs[%d]",
  822. __func__, i);
  823. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  824. dma_buf_put(dmabuf);
  825. break;
  826. }
  827. dprintk(CVP_DBG,
  828. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  829. __func__, i, map.is_iomem);
  830. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  831. dma_buf_put(dmabuf);
  832. }
  833. if (rc)
  834. _wncc_unmap_metadata_bufs(in_pkt, i, metadata_bufs_offset,
  835. wncc_metadata);
  836. return rc;
  837. }
  838. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  839. unsigned int num_layers, unsigned int metadata_bufs_offset,
  840. struct eva_kmd_wncc_metadata** wncc_metadata)
  841. {
  842. int rc = 0, i;
  843. struct cvp_buf_type* wncc_metadata_bufs;
  844. struct dma_buf* dmabuf;
  845. struct eva_buf_map map;
  846. if (!in_pkt || !wncc_metadata ||
  847. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  848. dprintk(CVP_ERR, "%s: invalid params", __func__);
  849. return -EINVAL;
  850. }
  851. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  852. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  853. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  854. __func__);
  855. return -EINVAL;
  856. }
  857. wncc_metadata_bufs = (struct cvp_buf_type*)
  858. &in_pkt->pkt_data[metadata_bufs_offset];
  859. for (i = 0; i < num_layers; i++) {
  860. if (!wncc_metadata[i]) {
  861. rc = -EINVAL;
  862. break;
  863. }
  864. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  865. if (IS_ERR(dmabuf)) {
  866. rc = -PTR_ERR(dmabuf);
  867. dprintk(CVP_ERR,
  868. "%s: dma_buf_get() failed for "
  869. "wncc_metadata_bufs[%d], rc %d",
  870. __func__, i, rc);
  871. break;
  872. }
  873. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  874. dma_buf_vunmap(dmabuf, &map);
  875. wncc_metadata[i] = NULL;
  876. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  877. dma_buf_put(dmabuf);
  878. if (rc) {
  879. dprintk(CVP_ERR,
  880. "%s: dma_buf_end_cpu_access() failed "
  881. "for wncc_metadata_bufs[%d], rc %d",
  882. __func__, i, rc);
  883. break;
  884. }
  885. }
  886. return rc;
  887. }
  888. static int init_wncc_bufs(void)
  889. {
  890. int i;
  891. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  892. wncc_buf_pool.bufs[i] = (struct eva_kmd_oob_wncc*)kzalloc(
  893. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  894. if (!wncc_buf_pool.bufs[i]) {
  895. i--;
  896. goto exit_fail;
  897. }
  898. }
  899. wncc_buf_pool.used_bitmap = 0;
  900. wncc_buf_pool.allocated = true;
  901. return 0;
  902. exit_fail:
  903. while (i >= 0) {
  904. kfree(wncc_buf_pool.bufs[i]);
  905. i--;
  906. }
  907. return -ENOMEM;
  908. }
  909. static int alloc_wncc_buf(struct wncc_oob_buf *wob)
  910. {
  911. int rc, i;
  912. mutex_lock(&wncc_buf_pool.lock);
  913. if (!wncc_buf_pool.allocated) {
  914. rc = init_wncc_bufs();
  915. if (rc) {
  916. mutex_unlock(&wncc_buf_pool.lock);
  917. return rc;
  918. }
  919. }
  920. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  921. if (!(wncc_buf_pool.used_bitmap & BIT(i))) {
  922. wncc_buf_pool.used_bitmap |= BIT(i);
  923. wob->bitmap_idx = i;
  924. wob->buf = wncc_buf_pool.bufs[i];
  925. mutex_unlock(&wncc_buf_pool.lock);
  926. return 0;
  927. }
  928. }
  929. mutex_unlock(&wncc_buf_pool.lock);
  930. wob->bitmap_idx = 0xff;
  931. wob->buf = (struct eva_kmd_oob_wncc*)kzalloc(
  932. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  933. if (!wob->buf)
  934. rc = -ENOMEM;
  935. else
  936. rc = 0;
  937. return rc;
  938. }
  939. static void free_wncc_buf(struct wncc_oob_buf *wob)
  940. {
  941. if (!wob)
  942. return;
  943. if (wob->bitmap_idx == 0xff) {
  944. kfree(wob->buf);
  945. return;
  946. }
  947. if (wob->bitmap_idx < NUM_WNCC_BUFS) {
  948. mutex_lock(&wncc_buf_pool.lock);
  949. wncc_buf_pool.used_bitmap &= ~BIT(wob->bitmap_idx);
  950. memset(wob->buf, 0, sizeof(struct eva_kmd_oob_wncc));
  951. wob->buf = NULL;
  952. mutex_unlock(&wncc_buf_pool.lock);
  953. }
  954. }
  955. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  956. struct eva_kmd_hfi_packet* in_pkt)
  957. {
  958. int rc = 0;
  959. struct eva_kmd_oob_wncc* wncc_oob;
  960. struct wncc_oob_buf wob;
  961. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  962. unsigned int i, j;
  963. bool empty = false;
  964. u32 buf_id, buf_idx, buf_offset, iova;
  965. if (!inst || !inst->core || !in_pkt) {
  966. dprintk(CVP_ERR, "%s: invalid params", __func__);
  967. return -EINVAL;
  968. }
  969. rc = alloc_wncc_buf(&wob);
  970. if (rc)
  971. return -ENOMEM;
  972. wncc_oob = wob.buf;
  973. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  974. if (rc) {
  975. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  976. goto exit;
  977. }
  978. rc = _wncc_map_metadata_bufs(in_pkt,
  979. wncc_oob->num_layers, wncc_oob->metadata_bufs_offset,
  980. wncc_metadata);
  981. if (rc) {
  982. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  983. __func__);
  984. goto exit;
  985. }
  986. mutex_lock(&inst->cvpwnccbufs.lock);
  987. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  988. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  989. empty = true;
  990. rc = -EINVAL;
  991. }
  992. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  993. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  994. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  995. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  996. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  997. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  998. dprintk(CVP_ERR,
  999. "%s: invalid wncc buf id %u "
  1000. "in layer #%u address #%u",
  1001. __func__, buf_id, i, j);
  1002. rc = -EINVAL;
  1003. break;
  1004. }
  1005. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  1006. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  1007. dprintk(CVP_ERR,
  1008. "%s: unmapped wncc buf id %u "
  1009. "in layer #%u address #%u",
  1010. __func__, buf_id, i, j);
  1011. /* _wncc_print_cvpwnccbufs_table(inst); */
  1012. rc = -EINVAL;
  1013. break;
  1014. }
  1015. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  1016. if (buf_offset >=
  1017. inst->cvpwnccbufs_table[buf_idx].size) {
  1018. /* NOTE: This buffer offset validation is
  1019. * not comprehensive since wncc src image
  1020. * resolution information is not known to
  1021. * KMD. UMD is responsible for comprehensive
  1022. * validation.
  1023. */
  1024. dprintk(CVP_ERR,
  1025. "%s: invalid wncc buf offset %u "
  1026. "in layer #%u address #%u",
  1027. __func__, buf_offset, i, j);
  1028. rc = -EINVAL;
  1029. break;
  1030. }
  1031. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  1032. buf_offset;
  1033. wncc_metadata[i][j].iova_lsb = iova;
  1034. wncc_metadata[i][j].iova_msb = iova >> 22;
  1035. }
  1036. }
  1037. mutex_unlock(&inst->cvpwnccbufs.lock);
  1038. if (false)
  1039. _wncc_print_metadata_buf(wncc_oob->num_layers,
  1040. wncc_oob->layers[0].num_addrs, wncc_metadata);
  1041. if (_wncc_unmap_metadata_bufs(in_pkt,
  1042. wncc_oob->num_layers, wncc_oob->metadata_bufs_offset,
  1043. wncc_metadata)) {
  1044. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  1045. __func__);
  1046. }
  1047. exit:
  1048. free_wncc_buf(&wob);
  1049. return rc;
  1050. }
  1051. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  1052. struct eva_kmd_hfi_packet* in_pkt)
  1053. {
  1054. int rc = 0;
  1055. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  1056. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  1057. if (!inst || !inst->core || !in_pkt) {
  1058. dprintk(CVP_ERR, "%s: invalid params", __func__);
  1059. return -EINVAL;
  1060. }
  1061. switch (cmd_hdr->packet_type) {
  1062. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  1063. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  1064. break;
  1065. default:
  1066. break;
  1067. }
  1068. return rc;
  1069. }
  1070. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  1071. u32 offset, u32 size)
  1072. {
  1073. enum smem_cache_ops cache_op;
  1074. if (msm_cvp_cacheop_disabled)
  1075. return;
  1076. if (!smem) {
  1077. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1078. return;
  1079. }
  1080. switch (type) {
  1081. case EVA_KMD_BUFTYPE_INPUT:
  1082. cache_op = SMEM_CACHE_CLEAN;
  1083. break;
  1084. case EVA_KMD_BUFTYPE_OUTPUT:
  1085. cache_op = SMEM_CACHE_INVALIDATE;
  1086. break;
  1087. default:
  1088. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  1089. }
  1090. dprintk(CVP_MEM,
  1091. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  1092. __func__, smem->dma_buf, cache_op, offset, size);
  1093. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  1094. }
  1095. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  1096. struct dma_buf *dma_buf,
  1097. u32 pkt_type)
  1098. {
  1099. struct msm_cvp_smem *smem;
  1100. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1101. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1102. int i;
  1103. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  1104. return NULL;
  1105. mutex_lock(&inst->dma_cache.lock);
  1106. for (i = 0; i < inst->dma_cache.nr; i++)
  1107. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  1108. SET_USE_BITMAP(i, inst);
  1109. smem = inst->dma_cache.entries[i];
  1110. smem->bitmap_index = i;
  1111. smem->pkt_type = pkt_type;
  1112. atomic_inc(&smem->refcount);
  1113. /*
  1114. * If we find it, it means we already increased
  1115. * refcount before, so we put it to avoid double
  1116. * incremental.
  1117. */
  1118. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1119. mutex_unlock(&inst->dma_cache.lock);
  1120. print_smem(CVP_MEM, "found in cache", inst, smem);
  1121. return smem;
  1122. }
  1123. mutex_unlock(&inst->dma_cache.lock);
  1124. /* earch persist list */
  1125. mutex_lock(&inst->persistbufs.lock);
  1126. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  1127. smem = buf->smem;
  1128. if (smem && smem->dma_buf == dma_buf) {
  1129. atomic_inc(&smem->refcount);
  1130. mutex_unlock(&inst->persistbufs.lock);
  1131. print_smem(CVP_MEM, "found in persist", inst, smem);
  1132. return smem;
  1133. }
  1134. }
  1135. mutex_unlock(&inst->persistbufs.lock);
  1136. /* Search frame list */
  1137. mutex_lock(&inst->frames.lock);
  1138. list_for_each_entry(frame, &inst->frames.list, list) {
  1139. for (i = 0; i < frame->nr; i++) {
  1140. smem = frame->bufs[i].smem;
  1141. if (smem && smem->dma_buf == dma_buf) {
  1142. atomic_inc(&smem->refcount);
  1143. mutex_unlock(&inst->frames.lock);
  1144. print_smem(CVP_MEM, "found in frame",
  1145. inst, smem);
  1146. return smem;
  1147. }
  1148. }
  1149. }
  1150. mutex_unlock(&inst->frames.lock);
  1151. return NULL;
  1152. }
  1153. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1154. struct msm_cvp_smem *smem)
  1155. {
  1156. unsigned int i;
  1157. struct msm_cvp_smem *smem2;
  1158. mutex_lock(&inst->dma_cache.lock);
  1159. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1160. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1161. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1162. smem->bitmap_index = inst->dma_cache.nr;
  1163. inst->dma_cache.nr++;
  1164. i = smem->bitmap_index;
  1165. } else {
  1166. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1167. MAX_DMABUF_NUMS);
  1168. if (i < MAX_DMABUF_NUMS) {
  1169. smem2 = inst->dma_cache.entries[i];
  1170. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1171. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1172. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1173. inst->dma_cache.entries[i] = smem;
  1174. smem->bitmap_index = i;
  1175. SET_USE_BITMAP(i, inst);
  1176. } else {
  1177. dprintk(CVP_WARN,
  1178. "%s: reached limit, fallback to buf mapping list\n"
  1179. , __func__);
  1180. atomic_inc(&smem->refcount);
  1181. mutex_unlock(&inst->dma_cache.lock);
  1182. return -ENOMEM;
  1183. }
  1184. }
  1185. atomic_inc(&smem->refcount);
  1186. mutex_unlock(&inst->dma_cache.lock);
  1187. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1188. return 0;
  1189. }
  1190. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1191. struct cvp_buf_type *buf,
  1192. bool is_persist,
  1193. u32 pkt_type)
  1194. {
  1195. int rc = 0, found = 1;
  1196. struct msm_cvp_smem *smem = NULL;
  1197. struct dma_buf *dma_buf = NULL;
  1198. if (buf->fd < 0) {
  1199. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1200. return NULL;
  1201. }
  1202. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1203. if (!dma_buf) {
  1204. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1205. return NULL;
  1206. }
  1207. if (is_persist) {
  1208. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1209. if (!smem)
  1210. return NULL;
  1211. smem->dma_buf = dma_buf;
  1212. smem->bitmap_index = MAX_DMABUF_NUMS;
  1213. smem->pkt_type = pkt_type;
  1214. smem->flags |= SMEM_PERSIST;
  1215. smem->fd = buf->fd;
  1216. atomic_inc(&smem->refcount);
  1217. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1218. if (rc)
  1219. goto exit;
  1220. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1221. dprintk(CVP_ERR,
  1222. "%s: invalid offset %d or size %d persist\n",
  1223. __func__, buf->offset, buf->size);
  1224. goto exit2;
  1225. }
  1226. return smem;
  1227. }
  1228. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1229. if (!smem) {
  1230. found = 0;
  1231. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1232. if (!smem)
  1233. return NULL;
  1234. smem->dma_buf = dma_buf;
  1235. smem->bitmap_index = MAX_DMABUF_NUMS;
  1236. smem->pkt_type = pkt_type;
  1237. smem->fd = buf->fd;
  1238. if (is_params_pkt(pkt_type))
  1239. smem->flags |= SMEM_PERSIST;
  1240. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1241. if (rc)
  1242. goto exit;
  1243. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1244. dprintk(CVP_ERR,
  1245. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1246. __func__, buf->offset, buf->size, buf->fd,
  1247. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1248. goto exit2;
  1249. }
  1250. rc = msm_cvp_session_add_smem(inst, smem);
  1251. if (rc && rc != -ENOMEM)
  1252. goto exit2;
  1253. return smem;
  1254. }
  1255. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1256. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1257. __func__, buf->offset, buf->size);
  1258. if (found) {
  1259. mutex_lock(&inst->dma_cache.lock);
  1260. atomic_dec(&smem->refcount);
  1261. mutex_unlock(&inst->dma_cache.lock);
  1262. return NULL;
  1263. }
  1264. goto exit2;
  1265. }
  1266. return smem;
  1267. exit2:
  1268. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1269. exit:
  1270. msm_cvp_smem_put_dma_buf(dma_buf);
  1271. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1272. smem = NULL;
  1273. return smem;
  1274. }
  1275. static int msm_cvp_unmap_user_persist_buf(struct msm_cvp_inst *inst,
  1276. struct cvp_buf_type *buf,
  1277. u32 pkt_type, u32 buf_idx, u32 *iova)
  1278. {
  1279. struct msm_cvp_smem *smem = NULL;
  1280. struct list_head *ptr;
  1281. struct list_head *next;
  1282. struct cvp_internal_buf *pbuf;
  1283. struct dma_buf *dma_buf;
  1284. if (!inst) {
  1285. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1286. return -EINVAL;
  1287. }
  1288. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1289. if (!dma_buf)
  1290. return -EINVAL;
  1291. mutex_lock(&inst->persistbufs.lock);
  1292. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1293. if (!ptr) {
  1294. mutex_unlock(&inst->persistbufs.lock);
  1295. return -EINVAL;
  1296. }
  1297. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1298. if (dma_buf == pbuf->smem->dma_buf && (pbuf->smem->flags & SMEM_PERSIST)) {
  1299. *iova = pbuf->smem->device_addr;
  1300. dprintk(CVP_MEM,
  1301. "Unmap persist fd %d, dma_buf %#llx iova %#x\n",
  1302. pbuf->fd, pbuf->smem->dma_buf, *iova);
  1303. list_del(&pbuf->list);
  1304. if (*iova) {
  1305. msm_cvp_unmap_smem(inst, pbuf->smem, "unmap user persist");
  1306. msm_cvp_smem_put_dma_buf(pbuf->smem->dma_buf);
  1307. pbuf->smem->device_addr = 0;
  1308. }
  1309. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1310. pbuf->smem = NULL;
  1311. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1312. mutex_unlock(&inst->persistbufs.lock);
  1313. dma_buf_put(dma_buf);
  1314. return 0;
  1315. }
  1316. }
  1317. mutex_unlock(&inst->persistbufs.lock);
  1318. dma_buf_put(dma_buf);
  1319. return -EINVAL;
  1320. }
  1321. static int msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1322. struct cvp_buf_type *buf,
  1323. u32 pkt_type, u32 buf_idx, u32 *iova)
  1324. {
  1325. struct msm_cvp_smem *smem = NULL;
  1326. struct list_head *ptr;
  1327. struct list_head *next;
  1328. struct cvp_internal_buf *pbuf;
  1329. struct dma_buf *dma_buf;
  1330. int ret;
  1331. if (!inst) {
  1332. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1333. return -EINVAL;
  1334. }
  1335. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1336. if (!dma_buf)
  1337. return -EINVAL;
  1338. mutex_lock(&inst->persistbufs.lock);
  1339. if (!inst->persistbufs.list.next) {
  1340. mutex_unlock(&inst->persistbufs.lock);
  1341. return -EINVAL;
  1342. }
  1343. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1344. if (!ptr)
  1345. return -EINVAL;
  1346. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1347. if (dma_buf == pbuf->smem->dma_buf) {
  1348. pbuf->size =
  1349. (pbuf->size >= buf->size) ?
  1350. pbuf->size : buf->size;
  1351. *iova = pbuf->smem->device_addr + buf->offset;
  1352. mutex_unlock(&inst->persistbufs.lock);
  1353. atomic_inc(&pbuf->smem->refcount);
  1354. dma_buf_put(dma_buf);
  1355. dprintk(CVP_MEM,
  1356. "map persist Reuse fd %d, dma_buf %#llx\n",
  1357. pbuf->fd, pbuf->smem->dma_buf);
  1358. return 0;
  1359. }
  1360. }
  1361. mutex_unlock(&inst->persistbufs.lock);
  1362. dma_buf_put(dma_buf);
  1363. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1364. if (!pbuf) {
  1365. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1366. __func__);
  1367. return -ENOMEM;
  1368. }
  1369. if (is_params_pkt(pkt_type))
  1370. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1371. else
  1372. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1373. if (!smem) {
  1374. ret = -ENOMEM;
  1375. goto exit;
  1376. }
  1377. smem->pkt_type = pkt_type;
  1378. smem->buf_idx = buf_idx;
  1379. smem->fd = buf->fd;
  1380. pbuf->smem = smem;
  1381. pbuf->fd = buf->fd;
  1382. pbuf->size = buf->size;
  1383. pbuf->offset = buf->offset;
  1384. pbuf->ownership = CLIENT;
  1385. mutex_lock(&inst->persistbufs.lock);
  1386. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1387. mutex_unlock(&inst->persistbufs.lock);
  1388. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1389. *iova = smem->device_addr + buf->offset;
  1390. return 0;
  1391. exit:
  1392. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1393. return ret;
  1394. }
  1395. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1396. struct cvp_buf_type *buf,
  1397. struct msm_cvp_frame *frame,
  1398. u32 pkt_type, u32 buf_idx)
  1399. {
  1400. u32 iova = 0;
  1401. struct msm_cvp_smem *smem = NULL;
  1402. u32 nr;
  1403. u32 type;
  1404. if (!inst || !frame) {
  1405. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1406. return 0;
  1407. }
  1408. nr = frame->nr;
  1409. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1410. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1411. return 0;
  1412. }
  1413. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1414. if (!smem)
  1415. return 0;
  1416. smem->buf_idx = buf_idx;
  1417. frame->bufs[nr].fd = buf->fd;
  1418. frame->bufs[nr].smem = smem;
  1419. frame->bufs[nr].size = buf->size;
  1420. frame->bufs[nr].offset = buf->offset;
  1421. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1422. frame->nr++;
  1423. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1424. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1425. iova = smem->device_addr + buf->offset;
  1426. return iova;
  1427. }
  1428. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1429. struct msm_cvp_frame *frame)
  1430. {
  1431. u32 i;
  1432. u32 type;
  1433. struct msm_cvp_smem *smem = NULL;
  1434. struct cvp_internal_buf *buf;
  1435. type = EVA_KMD_BUFTYPE_OUTPUT;
  1436. for (i = 0; i < frame->nr; ++i) {
  1437. buf = &frame->bufs[i];
  1438. smem = buf->smem;
  1439. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1440. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1441. /* smem not in dmamap cache */
  1442. if (atomic_dec_and_test(&smem->refcount)) {
  1443. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1444. dma_heap_buffer_free(smem->dma_buf);
  1445. smem->buf_idx |= 0xdead0000;
  1446. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1447. buf->smem = NULL;
  1448. }
  1449. } else {
  1450. mutex_lock(&inst->dma_cache.lock);
  1451. if (atomic_dec_and_test(&smem->refcount)) {
  1452. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1453. print_smem(CVP_MEM, "Map dereference",
  1454. inst, smem);
  1455. smem->buf_idx |= 0x10000000;
  1456. }
  1457. mutex_unlock(&inst->dma_cache.lock);
  1458. }
  1459. }
  1460. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1461. }
  1462. static void backup_frame_buffers(struct msm_cvp_inst *inst,
  1463. struct msm_cvp_frame *frame)
  1464. {
  1465. /* Save frame buffers before unmap them */
  1466. int i = frame->nr;
  1467. if (i == 0 || i > MAX_FRAME_BUFFER_NUMS)
  1468. return;
  1469. inst->last_frame.ktid = frame->ktid;
  1470. inst->last_frame.nr = frame->nr;
  1471. do {
  1472. i--;
  1473. if (frame->bufs[i].smem->bitmap_index < MAX_DMABUF_NUMS) {
  1474. /*
  1475. * Frame buffer info can be found in dma_cache table,
  1476. * Skip saving
  1477. */
  1478. inst->last_frame.nr = 0;
  1479. return;
  1480. }
  1481. inst->last_frame.smem[i] = *(frame->bufs[i].smem);
  1482. } while (i);
  1483. }
  1484. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1485. {
  1486. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1487. bool found;
  1488. if (!inst) {
  1489. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1490. return;
  1491. }
  1492. ktid &= (FENCE_BIT - 1);
  1493. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1494. __func__, hash32_ptr(inst->session), ktid);
  1495. found = false;
  1496. mutex_lock(&inst->frames.lock);
  1497. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1498. if (frame->ktid == ktid) {
  1499. found = true;
  1500. list_del(&frame->list);
  1501. dprintk(CVP_CMD, "%s: "
  1502. "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n",
  1503. __func__, frame->pkt_type,
  1504. hash32_ptr(inst->session),
  1505. frame->ktid);
  1506. /* Save the previous frame mappings for debug */
  1507. backup_frame_buffers(inst, frame);
  1508. msm_cvp_unmap_frame_buf(inst, frame);
  1509. break;
  1510. }
  1511. }
  1512. mutex_unlock(&inst->frames.lock);
  1513. if (!found)
  1514. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1515. }
  1516. /*
  1517. * Unmap persistent buffer before sending RELEASE_PERSIST_BUFFERS to FW
  1518. * This packet is sent after SESSION_STOP. The assumption is FW/HW will
  1519. * NOT access any of the 3 persist buffer.
  1520. */
  1521. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  1522. struct eva_kmd_hfi_packet *in_pkt,
  1523. unsigned int offset, unsigned int buf_num)
  1524. {
  1525. struct cvp_buf_type *buf;
  1526. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1527. int i, ret;
  1528. u32 iova;
  1529. if (!offset || !buf_num)
  1530. return 0;
  1531. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1532. for (i = 0; i < buf_num; i++) {
  1533. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1534. offset += sizeof(*buf) >> 2;
  1535. if (buf->fd < 0 || !buf->size)
  1536. continue;
  1537. ret = msm_cvp_unmap_user_persist_buf(inst, buf,
  1538. cmd_hdr->packet_type, i, &iova);
  1539. if (ret) {
  1540. dprintk(CVP_ERR,
  1541. "%s: buf %d unmap failed.\n",
  1542. __func__, i);
  1543. return ret;
  1544. }
  1545. buf->fd = iova;
  1546. }
  1547. return 0;
  1548. }
  1549. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1550. struct eva_kmd_hfi_packet *in_pkt,
  1551. unsigned int offset, unsigned int buf_num)
  1552. {
  1553. struct cvp_buf_type *buf;
  1554. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1555. int i, ret;
  1556. u32 iova;
  1557. if (!offset || !buf_num)
  1558. return 0;
  1559. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1560. for (i = 0; i < buf_num; i++) {
  1561. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1562. offset += sizeof(*buf) >> 2;
  1563. if (buf->fd < 0 || !buf->size)
  1564. continue;
  1565. ret = msm_cvp_map_user_persist_buf(inst, buf,
  1566. cmd_hdr->packet_type, i, &iova);
  1567. if (ret) {
  1568. dprintk(CVP_ERR,
  1569. "%s: buf %d map failed.\n",
  1570. __func__, i);
  1571. return ret;
  1572. }
  1573. buf->fd = iova;
  1574. }
  1575. return 0;
  1576. }
  1577. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1578. struct eva_kmd_hfi_packet *in_pkt,
  1579. unsigned int offset, unsigned int buf_num)
  1580. {
  1581. struct cvp_buf_type *buf;
  1582. int i;
  1583. u32 iova;
  1584. u64 ktid;
  1585. struct msm_cvp_frame *frame;
  1586. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1587. struct msm_cvp_inst *instance = (struct msm_cvp_inst *)0xdeadbeef;
  1588. struct msm_cvp_core *core = NULL;
  1589. core = cvp_driver->cvp_core;
  1590. if (!core)
  1591. return -EINVAL;
  1592. if (!offset || !buf_num)
  1593. return 0;
  1594. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1595. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1596. ktid &= (FENCE_BIT - 1);
  1597. cmd_hdr->client_data.kdata = ktid;
  1598. dprintk(CVP_CMD, "%s: "
  1599. "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n",
  1600. __func__, cmd_hdr->packet_type,
  1601. cmd_hdr->session_id,
  1602. cmd_hdr->client_data.transaction_id,
  1603. cmd_hdr->client_data.kdata & (FENCE_BIT - 1));
  1604. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1605. if (!frame)
  1606. return -ENOMEM;
  1607. frame->ktid = ktid;
  1608. frame->nr = 0;
  1609. frame->pkt_type = cmd_hdr->packet_type;
  1610. for (i = 0; i < buf_num; i++) {
  1611. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1612. offset += sizeof(*buf) >> 2;
  1613. if (buf->fd < 0 || !buf->size) {
  1614. buf->fd = 0;
  1615. buf->size = 0;
  1616. continue;
  1617. }
  1618. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1619. if (!iova) {
  1620. dprintk(CVP_ERR,
  1621. "%s: buf %d register failed.\n",
  1622. __func__, i);
  1623. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1624. mutex_lock(&core->lock);
  1625. list_for_each_entry(instance, &core->instances, list) {
  1626. msm_cvp_print_inst_bufs(instance, false);
  1627. }
  1628. mutex_unlock(&core->lock);
  1629. msm_cvp_unmap_frame_buf(inst, frame);
  1630. return -EINVAL;
  1631. }
  1632. buf->fd = iova;
  1633. }
  1634. mutex_lock(&inst->frames.lock);
  1635. list_add_tail(&frame->list, &inst->frames.list);
  1636. mutex_unlock(&inst->frames.lock);
  1637. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1638. return 0;
  1639. }
  1640. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1641. {
  1642. int rc = 0, i;
  1643. struct cvp_internal_buf *cbuf, *dummy;
  1644. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1645. struct msm_cvp_smem *smem;
  1646. struct cvp_hal_session *session;
  1647. struct eva_kmd_buffer buf;
  1648. struct list_head *ptr = (struct list_head *)0xdead;
  1649. struct list_head *next = (struct list_head *)0xdead;
  1650. session = (struct cvp_hal_session *)inst->session;
  1651. mutex_lock(&inst->frames.lock);
  1652. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1653. list_del(&frame->list);
  1654. msm_cvp_unmap_frame_buf(inst, frame);
  1655. }
  1656. mutex_unlock(&inst->frames.lock);
  1657. mutex_lock(&inst->persistbufs.lock);
  1658. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1659. if (!ptr)
  1660. return -EINVAL;
  1661. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1662. smem = cbuf->smem;
  1663. if (!smem) {
  1664. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1665. mutex_unlock(&inst->persistbufs.lock);
  1666. return -EINVAL;
  1667. }
  1668. if (cbuf->ownership != DRIVER) {
  1669. dprintk(CVP_MEM,
  1670. "%s: %x : fd %d %pK size %d",
  1671. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1672. smem->dma_buf, cbuf->size);
  1673. list_del(&cbuf->list);
  1674. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1675. /*
  1676. * don't care refcount, has to remove mapping
  1677. * this is user persistent buffer
  1678. */
  1679. if (smem->device_addr) {
  1680. msm_cvp_unmap_smem(inst, smem,
  1681. "unmap persist");
  1682. msm_cvp_smem_put_dma_buf(
  1683. cbuf->smem->dma_buf);
  1684. smem->device_addr = 0;
  1685. }
  1686. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1687. cbuf->smem = NULL;
  1688. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1689. } else {
  1690. /*
  1691. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1692. * Leave dma_cache cleanup to unmap
  1693. */
  1694. cbuf->smem = NULL;
  1695. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1696. }
  1697. }
  1698. }
  1699. mutex_unlock(&inst->persistbufs.lock);
  1700. mutex_lock(&inst->dma_cache.lock);
  1701. for (i = 0; i < inst->dma_cache.nr; i++) {
  1702. smem = inst->dma_cache.entries[i];
  1703. if (atomic_read(&smem->refcount) == 0) {
  1704. print_smem(CVP_MEM, "free", inst, smem);
  1705. } else if (!(smem->flags & SMEM_PERSIST)) {
  1706. print_smem(CVP_WARN, "in use", inst, smem);
  1707. }
  1708. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1709. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1710. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1711. inst->dma_cache.entries[i] = NULL;
  1712. }
  1713. mutex_unlock(&inst->dma_cache.lock);
  1714. cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  1715. mutex_lock(&inst->cvpdspbufs.lock);
  1716. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1717. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1718. if (cbuf->ownership == CLIENT) {
  1719. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1720. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1721. cbuf->offset, cbuf->index,
  1722. (uint32_t)cbuf->smem->device_addr);
  1723. if (rc)
  1724. dprintk(CVP_ERR,
  1725. "%s: failed dsp deregistration fd=%d rc=%d",
  1726. __func__, cbuf->fd, rc);
  1727. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1728. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1729. } else if (cbuf->ownership == DSP) {
  1730. rc = cvp_dsp_fastrpc_unmap(inst->dsp_handle, cbuf);
  1731. if (rc)
  1732. dprintk(CVP_ERR,
  1733. "%s: failed to unmap buf from DSP\n",
  1734. __func__);
  1735. rc = cvp_release_dsp_buffers(inst, cbuf);
  1736. if (rc)
  1737. dprintk(CVP_ERR,
  1738. "%s Fail to free buffer 0x%x\n",
  1739. __func__, rc);
  1740. }
  1741. list_del(&cbuf->list);
  1742. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1743. }
  1744. mutex_unlock(&inst->cvpdspbufs.lock);
  1745. mutex_lock(&inst->cvpwnccbufs.lock);
  1746. if (inst->cvpwnccbufs_num != 0)
  1747. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1748. __func__, inst->cvpwnccbufs_num);
  1749. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1750. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1751. buf.fd = cbuf->fd;
  1752. buf.reserved[0] = cbuf->ktid;
  1753. mutex_unlock(&inst->cvpwnccbufs.lock);
  1754. msm_cvp_unmap_buf_wncc(inst, &buf);
  1755. mutex_lock(&inst->cvpwnccbufs.lock);
  1756. }
  1757. mutex_unlock(&inst->cvpwnccbufs.lock);
  1758. return rc;
  1759. }
  1760. #define MAX_NUM_FRAMES_DUMP 4
  1761. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1762. {
  1763. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1764. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1765. struct msm_cvp_core *core;
  1766. struct inst_snapshot *snap = NULL;
  1767. int i = 0, c = 0;
  1768. core = cvp_driver->cvp_core;
  1769. if (log && core->log.snapshot_index < 16) {
  1770. snap = &core->log.snapshot[core->log.snapshot_index];
  1771. snap->session = inst->session;
  1772. core->log.snapshot_index++;
  1773. }
  1774. if (!inst) {
  1775. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1776. __func__, inst);
  1777. return;
  1778. }
  1779. dprintk(CVP_ERR,
  1780. "---Buffer details for inst: %pK %s of type: %d---\n",
  1781. inst, inst->proc_name, inst->session_type);
  1782. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1783. mutex_lock(&inst->dma_cache.lock);
  1784. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1785. for (i = 0; i < inst->dma_cache.nr; i++)
  1786. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1787. mutex_unlock(&inst->dma_cache.lock);
  1788. i = 0;
  1789. dprintk(CVP_ERR, "frame buffer list\n");
  1790. mutex_lock(&inst->frames.lock);
  1791. list_for_each_entry(frame, &inst->frames.list, list) {
  1792. i++;
  1793. if (i <= MAX_NUM_FRAMES_DUMP) {
  1794. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n",
  1795. i, frame->ktid);
  1796. for (c = 0; c < frame->nr; c++)
  1797. _log_smem(snap, inst, frame->bufs[c].smem,
  1798. log);
  1799. }
  1800. }
  1801. if (i > MAX_NUM_FRAMES_DUMP)
  1802. dprintk(CVP_ERR, "Skipped %d frames' buffers\n",
  1803. (i - MAX_NUM_FRAMES_DUMP));
  1804. mutex_unlock(&inst->frames.lock);
  1805. mutex_lock(&inst->cvpdspbufs.lock);
  1806. dprintk(CVP_ERR, "dsp buffer list:\n");
  1807. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1808. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1809. mutex_unlock(&inst->cvpdspbufs.lock);
  1810. mutex_lock(&inst->cvpwnccbufs.lock);
  1811. dprintk(CVP_ERR, "wncc buffer list:\n");
  1812. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1813. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1814. mutex_unlock(&inst->cvpwnccbufs.lock);
  1815. mutex_lock(&inst->persistbufs.lock);
  1816. dprintk(CVP_ERR, "persist buffer list:\n");
  1817. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1818. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1819. mutex_unlock(&inst->persistbufs.lock);
  1820. dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid);
  1821. for (i = 0; i < inst->last_frame.nr; i++)
  1822. _log_smem(snap, inst, &inst->last_frame.smem[i], log);
  1823. dprintk(CVP_ERR, "unmapped wncc bufs\n");
  1824. for (i = 0; i < inst->unused_wncc_bufs.nr; i++)
  1825. _log_smem(snap, inst, &inst->unused_wncc_bufs.smem[i], log);
  1826. dprintk(CVP_ERR, "unmapped dsp bufs\n");
  1827. for (i = 0; i < inst->unused_dsp_bufs.nr; i++)
  1828. _log_smem(snap, inst, &inst->unused_dsp_bufs.smem[i], log);
  1829. }
  1830. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1831. u32 buffer_size)
  1832. {
  1833. struct cvp_internal_buf *buf;
  1834. struct msm_cvp_list *buf_list;
  1835. u32 smem_flags = SMEM_UNCACHED;
  1836. int rc = 0;
  1837. if (!inst) {
  1838. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1839. return NULL;
  1840. }
  1841. buf_list = &inst->persistbufs;
  1842. if (!buffer_size)
  1843. return NULL;
  1844. /* If PERSIST buffer requires secure mapping, uncomment
  1845. * below flags setting
  1846. * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1847. */
  1848. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1849. if (!buf) {
  1850. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1851. goto fail_kzalloc;
  1852. }
  1853. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1854. if (!buf->smem) {
  1855. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1856. goto fail_kzalloc;
  1857. }
  1858. buf->smem->flags = smem_flags;
  1859. rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */
  1860. &(inst->core->resources), buf->smem);
  1861. if (rc) {
  1862. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1863. goto err_no_mem;
  1864. }
  1865. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1866. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1867. atomic_inc(&buf->smem->refcount);
  1868. buf->size = buf->smem->size;
  1869. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1870. buf->ownership = DRIVER;
  1871. mutex_lock(&buf_list->lock);
  1872. list_add_tail(&buf->list, &buf_list->list);
  1873. mutex_unlock(&buf_list->lock);
  1874. return buf;
  1875. err_no_mem:
  1876. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1877. fail_kzalloc:
  1878. return NULL;
  1879. }
  1880. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1881. {
  1882. struct msm_cvp_smem *smem;
  1883. struct list_head *ptr = (struct list_head *)0xdead;
  1884. struct list_head *next = (struct list_head *)0xdead;
  1885. struct cvp_internal_buf *buf;
  1886. int rc = 0;
  1887. struct msm_cvp_core *core;
  1888. struct cvp_hfi_device *hdev;
  1889. if (!inst) {
  1890. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1891. return -EINVAL;
  1892. }
  1893. core = inst->core;
  1894. if (!core) {
  1895. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1896. return -EINVAL;
  1897. }
  1898. hdev = core->device;
  1899. if (!hdev) {
  1900. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1901. return -EINVAL;
  1902. }
  1903. dprintk(CVP_MEM, "release persist buffer!\n");
  1904. mutex_lock(&inst->persistbufs.lock);
  1905. /* Workaround for FW: release buffer means release all */
  1906. if (inst->state > MSM_CVP_CORE_INIT_DONE && inst->state <= MSM_CVP_CLOSE_DONE) {
  1907. rc = call_hfi_op(hdev, session_release_buffers,
  1908. (void *)inst->session);
  1909. if (!rc) {
  1910. mutex_unlock(&inst->persistbufs.lock);
  1911. rc = wait_for_sess_signal_receipt(inst,
  1912. HAL_SESSION_RELEASE_BUFFER_DONE);
  1913. if (rc)
  1914. dprintk(CVP_WARN,
  1915. "%s: wait release_arp signal failed, rc %d\n",
  1916. __func__, rc);
  1917. mutex_lock(&inst->persistbufs.lock);
  1918. } else {
  1919. dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n");
  1920. }
  1921. }
  1922. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1923. if (!ptr)
  1924. return -EINVAL;
  1925. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1926. smem = buf->smem;
  1927. if (!smem) {
  1928. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1929. mutex_unlock(&inst->persistbufs.lock);
  1930. return -EINVAL;
  1931. }
  1932. if (buf->ownership == DRIVER) {
  1933. dprintk(CVP_MEM,
  1934. "%s: %x : fd %d %pK size %d",
  1935. "free arp", hash32_ptr(inst->session), buf->fd,
  1936. smem->dma_buf, buf->size);
  1937. list_del(&buf->list);
  1938. atomic_dec(&smem->refcount);
  1939. msm_cvp_smem_free(smem);
  1940. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1941. buf->smem = NULL;
  1942. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1943. }
  1944. }
  1945. mutex_unlock(&inst->persistbufs.lock);
  1946. return rc;
  1947. }
  1948. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1949. struct cvp_internal_buf *buf,
  1950. u32 buffer_size,
  1951. u32 secure_type)
  1952. {
  1953. u32 smem_flags = SMEM_UNCACHED;
  1954. int rc = 0;
  1955. if (!inst) {
  1956. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1957. return -EINVAL;
  1958. }
  1959. if (!buf)
  1960. return -EINVAL;
  1961. if (!buffer_size)
  1962. return -EINVAL;
  1963. switch (secure_type) {
  1964. case 0:
  1965. break;
  1966. case 1:
  1967. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1968. break;
  1969. case 2:
  1970. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1971. break;
  1972. default:
  1973. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1974. __func__, secure_type);
  1975. return -EINVAL;
  1976. }
  1977. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1978. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1979. if (!buf->smem) {
  1980. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1981. goto fail_kzalloc_smem_cache;
  1982. }
  1983. buf->smem->flags = smem_flags;
  1984. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1985. &(inst->core->resources), buf->smem);
  1986. if (rc) {
  1987. dprintk(CVP_ERR, "Failed to allocate DSP buf\n");
  1988. goto err_no_mem;
  1989. }
  1990. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1991. atomic_inc(&buf->smem->refcount);
  1992. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1993. buf->size = buf->smem->size;
  1994. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1995. buf->ownership = DSP;
  1996. return rc;
  1997. err_no_mem:
  1998. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1999. fail_kzalloc_smem_cache:
  2000. return rc;
  2001. }
  2002. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  2003. struct cvp_internal_buf *buf)
  2004. {
  2005. struct msm_cvp_smem *smem;
  2006. int rc = 0;
  2007. if (!inst) {
  2008. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  2009. return -EINVAL;
  2010. }
  2011. if (!buf) {
  2012. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  2013. return -EINVAL;
  2014. }
  2015. smem = buf->smem;
  2016. if (!smem) {
  2017. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  2018. return -EINVAL;
  2019. }
  2020. if (buf->ownership == DSP) {
  2021. dprintk(CVP_MEM,
  2022. "%s: %x : fd %x %s size %d",
  2023. __func__, hash32_ptr(inst->session), buf->fd,
  2024. smem->dma_buf->name, buf->size);
  2025. atomic_dec(&smem->refcount);
  2026. msm_cvp_smem_free(smem);
  2027. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  2028. } else {
  2029. dprintk(CVP_ERR,
  2030. "%s: wrong owner %d %x : fd %x %s size %d",
  2031. __func__, buf->ownership, hash32_ptr(inst->session),
  2032. buf->fd, smem->dma_buf->name, buf->size);
  2033. }
  2034. return rc;
  2035. }
  2036. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  2037. struct eva_kmd_buffer *buf)
  2038. {
  2039. struct cvp_hfi_device *hdev;
  2040. struct cvp_hal_session *session;
  2041. struct msm_cvp_inst *s;
  2042. int rc = 0;
  2043. if (!inst || !inst->core || !buf) {
  2044. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2045. return -EINVAL;
  2046. }
  2047. s = cvp_get_inst_validate(inst->core, inst);
  2048. if (!s)
  2049. return -ECONNRESET;
  2050. session = (struct cvp_hal_session *)inst->session;
  2051. if (!session) {
  2052. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  2053. rc = -EINVAL;
  2054. goto exit;
  2055. }
  2056. hdev = inst->core->device;
  2057. print_client_buffer(CVP_HFI, "register", inst, buf);
  2058. if (buf->index)
  2059. rc = msm_cvp_map_buf_dsp(inst, buf);
  2060. else
  2061. rc = msm_cvp_map_buf_wncc(inst, buf);
  2062. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  2063. buf->fd, buf->reserved[0]);
  2064. exit:
  2065. cvp_put_inst(s);
  2066. return rc;
  2067. }
  2068. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  2069. struct eva_kmd_buffer *buf)
  2070. {
  2071. struct msm_cvp_inst *s;
  2072. int rc = 0;
  2073. if (!inst || !inst->core || !buf) {
  2074. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2075. return -EINVAL;
  2076. }
  2077. s = cvp_get_inst_validate(inst->core, inst);
  2078. if (!s)
  2079. return -ECONNRESET;
  2080. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  2081. if (buf->index)
  2082. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  2083. else
  2084. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  2085. cvp_put_inst(s);
  2086. return rc;
  2087. }