power.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/of_gpio.h>
  13. #include <linux/pinctrl/consumer.h>
  14. #include <linux/regulator/consumer.h>
  15. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  16. #include <soc/qcom/cmd-db.h>
  17. #endif
  18. #include "main.h"
  19. #include "debug.h"
  20. #include "bus.h"
  21. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  22. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  23. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  24. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  25. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  26. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  27. {"vdd-wlan", 0, 0, 0, 0, 0},
  28. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  29. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  30. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  31. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  32. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  33. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  34. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  35. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  36. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  37. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  38. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  39. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  40. };
  41. static struct cnss_clk_cfg cnss_clk_list[] = {
  42. {"rf_clk", 0, 0},
  43. };
  44. #else
  45. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  46. };
  47. static struct cnss_clk_cfg cnss_clk_list[] = {
  48. };
  49. #endif
  50. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  51. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  52. #define MAX_PROP_SIZE 32
  53. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  54. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  55. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  56. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  57. #define SOL_DEFAULT "sol_default"
  58. #define WLAN_EN_GPIO "wlan-en-gpio"
  59. #define BT_EN_GPIO "qcom,bt-en-gpio"
  60. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  61. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  62. #define WLAN_EN_ACTIVE "wlan_en_active"
  63. #define WLAN_EN_SLEEP "wlan_en_sleep"
  64. #define BOOTSTRAP_DELAY 1000
  65. #define WLAN_ENABLE_DELAY 1000
  66. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  67. #define TCS_OFFSET 0xC8
  68. #define TCS_CMD_OFFSET 0x10
  69. #define MAX_TCS_NUM 8
  70. #define MAX_TCS_CMD_NUM 5
  71. #define BT_CXMX_VOLTAGE_MV 950
  72. #define CNSS_MBOX_MSG_MAX_LEN 64
  73. #define CNSS_MBOX_TIMEOUT_MS 1000
  74. /**
  75. * enum cnss_vreg_param: Voltage regulator TCS param
  76. * @CNSS_VREG_VOLTAGE: Provides voltage level to be configured in TCS
  77. * @CNSS_VREG_MODE: Regulator mode
  78. * @CNSS_VREG_TCS_ENABLE: Set Voltage regulator enable config in TCS
  79. */
  80. enum cnss_vreg_param {
  81. CNSS_VREG_VOLTAGE,
  82. CNSS_VREG_MODE,
  83. CNSS_VREG_ENABLE,
  84. };
  85. /**
  86. * enum cnss_tcs_seq: TCS sequence ID for trigger
  87. * CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  88. * CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  89. * CNSS_TCS_ALL_SEQ: Update for both up and down triggers
  90. */
  91. enum cnss_tcs_seq {
  92. CNSS_TCS_UP_SEQ,
  93. CNSS_TCS_DOWN_SEQ,
  94. CNSS_TCS_ALL_SEQ,
  95. };
  96. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  97. struct cnss_vreg_info *vreg)
  98. {
  99. int ret = 0;
  100. struct device *dev;
  101. struct regulator *reg;
  102. const __be32 *prop;
  103. char prop_name[MAX_PROP_SIZE] = {0};
  104. int len;
  105. dev = &plat_priv->plat_dev->dev;
  106. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  107. if (IS_ERR(reg)) {
  108. ret = PTR_ERR(reg);
  109. if (ret == -ENODEV)
  110. return ret;
  111. else if (ret == -EPROBE_DEFER)
  112. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  113. vreg->cfg.name);
  114. else
  115. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  116. vreg->cfg.name, ret);
  117. return ret;
  118. }
  119. vreg->reg = reg;
  120. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  121. vreg->cfg.name);
  122. prop = of_get_property(dev->of_node, prop_name, &len);
  123. if (!prop || len != (5 * sizeof(__be32))) {
  124. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  125. prop ? "invalid format" : "doesn't exist");
  126. } else {
  127. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  128. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  129. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  130. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  131. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  132. }
  133. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  134. vreg->cfg.name, vreg->cfg.min_uv,
  135. vreg->cfg.max_uv, vreg->cfg.load_ua,
  136. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  137. return 0;
  138. }
  139. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  140. struct cnss_vreg_info *vreg)
  141. {
  142. struct device *dev = &plat_priv->plat_dev->dev;
  143. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  144. devm_regulator_put(vreg->reg);
  145. devm_kfree(dev, vreg);
  146. }
  147. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  148. {
  149. int ret = 0;
  150. if (vreg->enabled) {
  151. cnss_pr_dbg("Regulator %s is already enabled\n",
  152. vreg->cfg.name);
  153. return 0;
  154. }
  155. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  156. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  157. ret = regulator_set_voltage(vreg->reg,
  158. vreg->cfg.min_uv,
  159. vreg->cfg.max_uv);
  160. if (ret) {
  161. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  162. vreg->cfg.name, vreg->cfg.min_uv,
  163. vreg->cfg.max_uv, ret);
  164. goto out;
  165. }
  166. }
  167. if (vreg->cfg.load_ua) {
  168. ret = regulator_set_load(vreg->reg,
  169. vreg->cfg.load_ua);
  170. if (ret < 0) {
  171. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  172. vreg->cfg.name, vreg->cfg.load_ua,
  173. ret);
  174. goto out;
  175. }
  176. }
  177. if (vreg->cfg.delay_us)
  178. udelay(vreg->cfg.delay_us);
  179. ret = regulator_enable(vreg->reg);
  180. if (ret) {
  181. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  182. vreg->cfg.name, ret);
  183. goto out;
  184. }
  185. vreg->enabled = true;
  186. out:
  187. return ret;
  188. }
  189. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  190. {
  191. int ret = 0;
  192. if (!vreg->enabled) {
  193. cnss_pr_dbg("Regulator %s is already disabled\n",
  194. vreg->cfg.name);
  195. return 0;
  196. }
  197. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  198. if (vreg->cfg.load_ua) {
  199. ret = regulator_set_load(vreg->reg, 0);
  200. if (ret < 0)
  201. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  202. vreg->cfg.name, ret);
  203. }
  204. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  205. ret = regulator_set_voltage(vreg->reg, 0,
  206. vreg->cfg.max_uv);
  207. if (ret)
  208. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  209. vreg->cfg.name, ret);
  210. }
  211. return ret;
  212. }
  213. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  214. {
  215. int ret = 0;
  216. if (!vreg->enabled) {
  217. cnss_pr_dbg("Regulator %s is already disabled\n",
  218. vreg->cfg.name);
  219. return 0;
  220. }
  221. cnss_pr_dbg("Regulator %s is being disabled\n",
  222. vreg->cfg.name);
  223. ret = regulator_disable(vreg->reg);
  224. if (ret)
  225. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  226. vreg->cfg.name, ret);
  227. if (vreg->cfg.load_ua) {
  228. ret = regulator_set_load(vreg->reg, 0);
  229. if (ret < 0)
  230. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  231. vreg->cfg.name, ret);
  232. }
  233. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  234. ret = regulator_set_voltage(vreg->reg, 0,
  235. vreg->cfg.max_uv);
  236. if (ret)
  237. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  238. vreg->cfg.name, ret);
  239. }
  240. vreg->enabled = false;
  241. return ret;
  242. }
  243. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  244. enum cnss_vreg_type type)
  245. {
  246. switch (type) {
  247. case CNSS_VREG_PRIM:
  248. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  249. return cnss_vreg_list;
  250. default:
  251. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  252. *vreg_list_size = 0;
  253. return NULL;
  254. }
  255. }
  256. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  257. struct list_head *vreg_list,
  258. struct cnss_vreg_cfg *vreg_cfg,
  259. u32 vreg_list_size)
  260. {
  261. int ret = 0;
  262. int i;
  263. struct cnss_vreg_info *vreg;
  264. struct device *dev = &plat_priv->plat_dev->dev;
  265. if (!list_empty(vreg_list)) {
  266. cnss_pr_dbg("Vregs have already been updated\n");
  267. return 0;
  268. }
  269. for (i = 0; i < vreg_list_size; i++) {
  270. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  271. if (!vreg)
  272. return -ENOMEM;
  273. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  274. ret = cnss_get_vreg_single(plat_priv, vreg);
  275. if (ret != 0) {
  276. if (ret == -ENODEV) {
  277. devm_kfree(dev, vreg);
  278. continue;
  279. } else {
  280. devm_kfree(dev, vreg);
  281. return ret;
  282. }
  283. }
  284. list_add_tail(&vreg->list, vreg_list);
  285. }
  286. return 0;
  287. }
  288. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  289. struct list_head *vreg_list)
  290. {
  291. struct cnss_vreg_info *vreg;
  292. while (!list_empty(vreg_list)) {
  293. vreg = list_first_entry(vreg_list,
  294. struct cnss_vreg_info, list);
  295. list_del(&vreg->list);
  296. if (IS_ERR_OR_NULL(vreg->reg))
  297. continue;
  298. cnss_put_vreg_single(plat_priv, vreg);
  299. }
  300. }
  301. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  302. struct list_head *vreg_list)
  303. {
  304. struct cnss_vreg_info *vreg;
  305. int ret = 0;
  306. list_for_each_entry(vreg, vreg_list, list) {
  307. if (IS_ERR_OR_NULL(vreg->reg))
  308. continue;
  309. ret = cnss_vreg_on_single(vreg);
  310. if (ret)
  311. break;
  312. }
  313. if (!ret)
  314. return 0;
  315. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  316. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  317. continue;
  318. cnss_vreg_off_single(vreg);
  319. }
  320. return ret;
  321. }
  322. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  323. struct list_head *vreg_list)
  324. {
  325. struct cnss_vreg_info *vreg;
  326. list_for_each_entry_reverse(vreg, vreg_list, list) {
  327. if (IS_ERR_OR_NULL(vreg->reg))
  328. continue;
  329. cnss_vreg_off_single(vreg);
  330. }
  331. return 0;
  332. }
  333. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  334. struct list_head *vreg_list)
  335. {
  336. struct cnss_vreg_info *vreg;
  337. list_for_each_entry_reverse(vreg, vreg_list, list) {
  338. if (IS_ERR_OR_NULL(vreg->reg))
  339. continue;
  340. if (vreg->cfg.need_unvote)
  341. cnss_vreg_unvote_single(vreg);
  342. }
  343. return 0;
  344. }
  345. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  346. enum cnss_vreg_type type)
  347. {
  348. struct cnss_vreg_cfg *vreg_cfg;
  349. u32 vreg_list_size = 0;
  350. int ret = 0;
  351. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  352. if (!vreg_cfg)
  353. return -EINVAL;
  354. switch (type) {
  355. case CNSS_VREG_PRIM:
  356. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  357. vreg_cfg, vreg_list_size);
  358. break;
  359. default:
  360. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  361. return -EINVAL;
  362. }
  363. return ret;
  364. }
  365. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  366. enum cnss_vreg_type type)
  367. {
  368. switch (type) {
  369. case CNSS_VREG_PRIM:
  370. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  371. break;
  372. default:
  373. return;
  374. }
  375. }
  376. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  377. enum cnss_vreg_type type)
  378. {
  379. int ret = 0;
  380. switch (type) {
  381. case CNSS_VREG_PRIM:
  382. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  383. break;
  384. default:
  385. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  386. return -EINVAL;
  387. }
  388. return ret;
  389. }
  390. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  391. enum cnss_vreg_type type)
  392. {
  393. int ret = 0;
  394. switch (type) {
  395. case CNSS_VREG_PRIM:
  396. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  397. break;
  398. default:
  399. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  400. return -EINVAL;
  401. }
  402. return ret;
  403. }
  404. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  405. enum cnss_vreg_type type)
  406. {
  407. int ret = 0;
  408. switch (type) {
  409. case CNSS_VREG_PRIM:
  410. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  411. break;
  412. default:
  413. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  414. return -EINVAL;
  415. }
  416. return ret;
  417. }
  418. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  419. struct cnss_clk_info *clk_info)
  420. {
  421. struct device *dev = &plat_priv->plat_dev->dev;
  422. struct clk *clk;
  423. int ret;
  424. clk = devm_clk_get(dev, clk_info->cfg.name);
  425. if (IS_ERR(clk)) {
  426. ret = PTR_ERR(clk);
  427. if (clk_info->cfg.required)
  428. cnss_pr_err("Failed to get clock %s, err = %d\n",
  429. clk_info->cfg.name, ret);
  430. else
  431. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  432. clk_info->cfg.name, ret);
  433. return ret;
  434. }
  435. clk_info->clk = clk;
  436. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  437. clk_info->cfg.name, clk_info->cfg.freq);
  438. return 0;
  439. }
  440. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  441. struct cnss_clk_info *clk_info)
  442. {
  443. struct device *dev = &plat_priv->plat_dev->dev;
  444. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  445. devm_clk_put(dev, clk_info->clk);
  446. }
  447. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  448. {
  449. int ret;
  450. if (clk_info->enabled) {
  451. cnss_pr_dbg("Clock %s is already enabled\n",
  452. clk_info->cfg.name);
  453. return 0;
  454. }
  455. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  456. if (clk_info->cfg.freq) {
  457. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  458. if (ret) {
  459. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  460. clk_info->cfg.freq, clk_info->cfg.name,
  461. ret);
  462. return ret;
  463. }
  464. }
  465. ret = clk_prepare_enable(clk_info->clk);
  466. if (ret) {
  467. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  468. clk_info->cfg.name, ret);
  469. return ret;
  470. }
  471. clk_info->enabled = true;
  472. return 0;
  473. }
  474. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  475. {
  476. if (!clk_info->enabled) {
  477. cnss_pr_dbg("Clock %s is already disabled\n",
  478. clk_info->cfg.name);
  479. return 0;
  480. }
  481. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  482. clk_disable_unprepare(clk_info->clk);
  483. clk_info->enabled = false;
  484. return 0;
  485. }
  486. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  487. {
  488. struct device *dev;
  489. struct list_head *clk_list;
  490. struct cnss_clk_info *clk_info;
  491. int ret, i;
  492. if (!plat_priv)
  493. return -ENODEV;
  494. dev = &plat_priv->plat_dev->dev;
  495. clk_list = &plat_priv->clk_list;
  496. if (!list_empty(clk_list)) {
  497. cnss_pr_dbg("Clocks have already been updated\n");
  498. return 0;
  499. }
  500. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  501. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  502. if (!clk_info) {
  503. ret = -ENOMEM;
  504. goto cleanup;
  505. }
  506. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  507. sizeof(clk_info->cfg));
  508. ret = cnss_get_clk_single(plat_priv, clk_info);
  509. if (ret != 0) {
  510. if (clk_info->cfg.required) {
  511. devm_kfree(dev, clk_info);
  512. goto cleanup;
  513. } else {
  514. devm_kfree(dev, clk_info);
  515. continue;
  516. }
  517. }
  518. list_add_tail(&clk_info->list, clk_list);
  519. }
  520. return 0;
  521. cleanup:
  522. while (!list_empty(clk_list)) {
  523. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  524. list);
  525. list_del(&clk_info->list);
  526. if (IS_ERR_OR_NULL(clk_info->clk))
  527. continue;
  528. cnss_put_clk_single(plat_priv, clk_info);
  529. devm_kfree(dev, clk_info);
  530. }
  531. return ret;
  532. }
  533. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  534. {
  535. struct device *dev;
  536. struct list_head *clk_list;
  537. struct cnss_clk_info *clk_info;
  538. if (!plat_priv)
  539. return;
  540. dev = &plat_priv->plat_dev->dev;
  541. clk_list = &plat_priv->clk_list;
  542. while (!list_empty(clk_list)) {
  543. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  544. list);
  545. list_del(&clk_info->list);
  546. if (IS_ERR_OR_NULL(clk_info->clk))
  547. continue;
  548. cnss_put_clk_single(plat_priv, clk_info);
  549. devm_kfree(dev, clk_info);
  550. }
  551. }
  552. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  553. struct list_head *clk_list)
  554. {
  555. struct cnss_clk_info *clk_info;
  556. int ret = 0;
  557. list_for_each_entry(clk_info, clk_list, list) {
  558. if (IS_ERR_OR_NULL(clk_info->clk))
  559. continue;
  560. ret = cnss_clk_on_single(clk_info);
  561. if (ret)
  562. break;
  563. }
  564. if (!ret)
  565. return 0;
  566. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  567. if (IS_ERR_OR_NULL(clk_info->clk))
  568. continue;
  569. cnss_clk_off_single(clk_info);
  570. }
  571. return ret;
  572. }
  573. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  574. struct list_head *clk_list)
  575. {
  576. struct cnss_clk_info *clk_info;
  577. list_for_each_entry_reverse(clk_info, clk_list, list) {
  578. if (IS_ERR_OR_NULL(clk_info->clk))
  579. continue;
  580. cnss_clk_off_single(clk_info);
  581. }
  582. return 0;
  583. }
  584. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  585. {
  586. int ret = 0;
  587. struct device *dev;
  588. struct cnss_pinctrl_info *pinctrl_info;
  589. dev = &plat_priv->plat_dev->dev;
  590. pinctrl_info = &plat_priv->pinctrl_info;
  591. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  592. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  593. ret = PTR_ERR(pinctrl_info->pinctrl);
  594. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  595. goto out;
  596. }
  597. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  598. pinctrl_info->bootstrap_active =
  599. pinctrl_lookup_state(pinctrl_info->pinctrl,
  600. BOOTSTRAP_ACTIVE);
  601. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  602. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  603. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  604. ret);
  605. goto out;
  606. }
  607. }
  608. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  609. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  610. pinctrl_info->sol_default =
  611. pinctrl_lookup_state(pinctrl_info->pinctrl,
  612. SOL_DEFAULT);
  613. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  614. ret = PTR_ERR(pinctrl_info->sol_default);
  615. cnss_pr_err("Failed to get sol default state, err = %d\n",
  616. ret);
  617. goto out;
  618. }
  619. cnss_pr_dbg("Got sol default state\n");
  620. }
  621. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  622. pinctrl_info->wlan_en_active =
  623. pinctrl_lookup_state(pinctrl_info->pinctrl,
  624. WLAN_EN_ACTIVE);
  625. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  626. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  627. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  628. ret);
  629. goto out;
  630. }
  631. pinctrl_info->wlan_en_sleep =
  632. pinctrl_lookup_state(pinctrl_info->pinctrl,
  633. WLAN_EN_SLEEP);
  634. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  635. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  636. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  637. ret);
  638. goto out;
  639. }
  640. }
  641. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  642. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  643. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  644. BT_EN_GPIO, 0);
  645. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  646. } else {
  647. pinctrl_info->bt_en_gpio = -EINVAL;
  648. }
  649. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  650. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  651. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  652. XO_CLK_GPIO, 0);
  653. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  654. pinctrl_info->xo_clk_gpio);
  655. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  656. } else {
  657. pinctrl_info->xo_clk_gpio = -EINVAL;
  658. }
  659. return 0;
  660. out:
  661. return ret;
  662. }
  663. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  664. {
  665. struct device *dev;
  666. struct cnss_pinctrl_info *pinctrl_info;
  667. dev = &plat_priv->plat_dev->dev;
  668. pinctrl_info = &plat_priv->pinctrl_info;
  669. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  670. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  671. WLAN_SW_CTRL_GPIO,
  672. 0);
  673. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  674. pinctrl_info->wlan_sw_ctrl_gpio);
  675. } else {
  676. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  677. }
  678. return 0;
  679. }
  680. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  681. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  682. bool enable)
  683. {
  684. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  685. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  686. return;
  687. retry_gpio_req:
  688. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  689. if (ret) {
  690. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  691. /* wait for ~(10 - 20) ms */
  692. usleep_range(10000, 20000);
  693. goto retry_gpio_req;
  694. }
  695. }
  696. if (ret) {
  697. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  698. return;
  699. }
  700. if (enable) {
  701. gpio_direction_output(xo_clk_gpio, 1);
  702. /*XO CLK must be asserted for some time before WLAN_EN */
  703. usleep_range(100, 200);
  704. } else {
  705. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  706. usleep_range(2000, 5000);
  707. gpio_direction_output(xo_clk_gpio, 0);
  708. }
  709. gpio_free(xo_clk_gpio);
  710. }
  711. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  712. bool state)
  713. {
  714. int ret = 0;
  715. struct cnss_pinctrl_info *pinctrl_info;
  716. if (!plat_priv) {
  717. cnss_pr_err("plat_priv is NULL!\n");
  718. ret = -ENODEV;
  719. goto out;
  720. }
  721. pinctrl_info = &plat_priv->pinctrl_info;
  722. if (state) {
  723. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  724. ret = pinctrl_select_state
  725. (pinctrl_info->pinctrl,
  726. pinctrl_info->bootstrap_active);
  727. if (ret) {
  728. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  729. ret);
  730. goto out;
  731. }
  732. udelay(BOOTSTRAP_DELAY);
  733. }
  734. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  735. ret = pinctrl_select_state
  736. (pinctrl_info->pinctrl,
  737. pinctrl_info->sol_default);
  738. if (ret) {
  739. cnss_pr_err("Failed to select sol default state, err = %d\n",
  740. ret);
  741. goto out;
  742. }
  743. cnss_pr_dbg("Selected sol default state\n");
  744. }
  745. cnss_set_xo_clk_gpio_state(plat_priv, true);
  746. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  747. ret = pinctrl_select_state
  748. (pinctrl_info->pinctrl,
  749. pinctrl_info->wlan_en_active);
  750. if (ret) {
  751. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  752. ret);
  753. goto out;
  754. }
  755. udelay(WLAN_ENABLE_DELAY);
  756. }
  757. cnss_set_xo_clk_gpio_state(plat_priv, false);
  758. } else {
  759. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  760. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  761. pinctrl_info->wlan_en_sleep);
  762. if (ret) {
  763. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  764. ret);
  765. goto out;
  766. }
  767. }
  768. }
  769. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  770. state ? "Assert" : "De-assert");
  771. return 0;
  772. out:
  773. return ret;
  774. }
  775. /**
  776. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  777. * @plat_priv: Platform private data structure pointer
  778. *
  779. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  780. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  781. *
  782. * Return: Status of pinctrl select operation. 0 - Success.
  783. */
  784. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  785. {
  786. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  787. u8 wlan_en_state = 0;
  788. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  789. goto set_wlan_en;
  790. if (gpio_get_value(bt_en_gpio)) {
  791. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  792. ret = cnss_select_pinctrl_state(plat_priv, true);
  793. if (!ret)
  794. return ret;
  795. wlan_en_state = 1;
  796. }
  797. if (!gpio_get_value(bt_en_gpio)) {
  798. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  799. /* check for BT_EN_GPIO down race during above operation */
  800. if (wlan_en_state) {
  801. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  802. cnss_select_pinctrl_state(plat_priv, false);
  803. wlan_en_state = 0;
  804. }
  805. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  806. msleep(100);
  807. }
  808. set_wlan_en:
  809. if (!wlan_en_state)
  810. ret = cnss_select_pinctrl_state(plat_priv, true);
  811. return ret;
  812. }
  813. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  814. {
  815. int ret = 0;
  816. if (plat_priv->powered_on) {
  817. cnss_pr_dbg("Already powered up");
  818. return 0;
  819. }
  820. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  821. if (ret) {
  822. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  823. goto out;
  824. }
  825. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  826. if (ret) {
  827. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  828. goto vreg_off;
  829. }
  830. ret = cnss_select_pinctrl_enable(plat_priv);
  831. if (ret) {
  832. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  833. goto clk_off;
  834. }
  835. plat_priv->powered_on = true;
  836. cnss_enable_dev_sol_irq(plat_priv);
  837. cnss_set_host_sol_value(plat_priv, 0);
  838. return 0;
  839. clk_off:
  840. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  841. vreg_off:
  842. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  843. out:
  844. return ret;
  845. }
  846. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  847. {
  848. if (!plat_priv->powered_on) {
  849. cnss_pr_dbg("Already powered down");
  850. return;
  851. }
  852. cnss_disable_dev_sol_irq(plat_priv);
  853. cnss_select_pinctrl_state(plat_priv, false);
  854. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  855. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  856. plat_priv->powered_on = false;
  857. }
  858. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  859. {
  860. return plat_priv->powered_on;
  861. }
  862. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  863. {
  864. unsigned long pin_status = 0;
  865. set_bit(CNSS_WLAN_EN, &pin_status);
  866. set_bit(CNSS_PCIE_TXN, &pin_status);
  867. set_bit(CNSS_PCIE_TXP, &pin_status);
  868. set_bit(CNSS_PCIE_RXN, &pin_status);
  869. set_bit(CNSS_PCIE_RXP, &pin_status);
  870. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  871. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  872. set_bit(CNSS_PCIE_RST, &pin_status);
  873. plat_priv->pin_result.host_pin_result = pin_status;
  874. }
  875. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  876. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  877. {
  878. return cmd_db_ready();
  879. }
  880. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  881. const char *res_id)
  882. {
  883. return cmd_db_read_addr(res_id);
  884. }
  885. #else
  886. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  887. {
  888. return -EOPNOTSUPP;
  889. }
  890. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  891. const char *res_id)
  892. {
  893. return 0;
  894. }
  895. #endif
  896. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  897. {
  898. struct platform_device *plat_dev = plat_priv->plat_dev;
  899. struct resource *res;
  900. resource_size_t addr_len;
  901. void __iomem *tcs_cmd_base_addr;
  902. int ret = 0;
  903. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  904. if (!res) {
  905. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  906. goto out;
  907. }
  908. plat_priv->tcs_info.cmd_base_addr = res->start;
  909. addr_len = resource_size(res);
  910. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  911. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  912. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  913. if (!tcs_cmd_base_addr) {
  914. ret = -EINVAL;
  915. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  916. ret);
  917. goto out;
  918. }
  919. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  920. return 0;
  921. out:
  922. return ret;
  923. }
  924. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  925. {
  926. struct platform_device *plat_dev = plat_priv->plat_dev;
  927. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  928. const char *cmd_db_name;
  929. u32 cpr_pmic_addr = 0;
  930. int ret = 0;
  931. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  932. cnss_pr_dbg("TCS CMD not configured\n");
  933. return 0;
  934. }
  935. ret = of_property_read_string(plat_dev->dev.of_node,
  936. "qcom,cmd_db_name", &cmd_db_name);
  937. if (ret) {
  938. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  939. goto out;
  940. }
  941. ret = cnss_cmd_db_ready(plat_priv);
  942. if (ret) {
  943. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  944. goto out;
  945. }
  946. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  947. if (cpr_pmic_addr > 0) {
  948. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  949. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  950. cpr_info->cpr_pmic_addr, cmd_db_name);
  951. } else {
  952. cnss_pr_err("CPR PMIC address is not available for %s\n",
  953. cmd_db_name);
  954. ret = -EINVAL;
  955. goto out;
  956. }
  957. return 0;
  958. out:
  959. return ret;
  960. }
  961. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  962. {
  963. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  964. struct mbox_chan *chan;
  965. int ret = 0;
  966. mbox->dev = &plat_priv->plat_dev->dev;
  967. mbox->tx_block = true;
  968. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  969. mbox->knows_txdone = false;
  970. plat_priv->mbox_chan = NULL;
  971. ret = of_property_read_string(plat_priv->plat_dev->dev.of_node,
  972. "qcom,vreg_ol_cpr",
  973. &plat_priv->vreg_ol_cpr);
  974. if (ret)
  975. cnss_pr_dbg("Vreg for OL CPR not configured\n");
  976. ret = of_property_read_string(plat_priv->plat_dev->dev.of_node,
  977. "qcom,vreg_ipa",
  978. &plat_priv->vreg_ipa);
  979. if (ret)
  980. cnss_pr_dbg("Volt regulator for Int Power Amp not configured\n");
  981. if (!plat_priv->vreg_ol_cpr && !plat_priv->vreg_ipa)
  982. return 0;
  983. chan = mbox_request_channel(mbox, 0);
  984. if (IS_ERR(chan)) {
  985. cnss_pr_err("Failed to get mbox channel\n");
  986. return PTR_ERR(chan);
  987. }
  988. plat_priv->mbox_chan = chan;
  989. cnss_pr_dbg("Mbox channel initialized\n");
  990. return 0;
  991. }
  992. #if IS_ENABLED(CONFIG_MSM_QMP)
  993. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  994. const char *vreg_name,
  995. enum cnss_vreg_param param,
  996. enum cnss_tcs_seq seq, int val)
  997. {
  998. struct qmp_pkt pkt;
  999. char mbox_msg[CNSS_MBOX_MSG_MAX_LEN];
  1000. static const char * const vreg_param_str[] = {"v", "m", "e"};
  1001. static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"};
  1002. int ret = 0;
  1003. if (param > CNSS_VREG_ENABLE || seq > CNSS_TCS_ALL_SEQ || !vreg_name)
  1004. return -EINVAL;
  1005. snprintf(mbox_msg, CNSS_MBOX_MSG_MAX_LEN,
  1006. "{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name,
  1007. vreg_param_str[param], tcs_seq_str[seq], val);
  1008. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1009. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1010. pkt.data = mbox_msg;
  1011. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1012. if (ret < 0)
  1013. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1014. else
  1015. ret = 0;
  1016. return ret;
  1017. }
  1018. #else
  1019. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1020. const char *vreg_name,
  1021. enum cnss_vreg_param param,
  1022. enum cnss_tcs_seq seq, int val)
  1023. {
  1024. return 0;
  1025. }
  1026. #endif
  1027. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1028. {
  1029. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1030. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1031. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1032. int i, j;
  1033. if (cpr_info->voltage == 0) {
  1034. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1035. cpr_info->voltage);
  1036. return -EINVAL;
  1037. }
  1038. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  1039. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  1040. } else {
  1041. return cnss_aop_set_vreg_param(plat_priv,
  1042. plat_priv->vreg_ol_cpr,
  1043. CNSS_VREG_VOLTAGE,
  1044. CNSS_TCS_UP_SEQ,
  1045. cpr_info->voltage);
  1046. }
  1047. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1048. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1049. return 0;
  1050. }
  1051. if (cpr_info->cpr_pmic_addr == 0) {
  1052. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1053. cpr_info->cpr_pmic_addr);
  1054. return -EINVAL;
  1055. }
  1056. if (cpr_info->tcs_cmd_data_addr_io)
  1057. goto update_cpr;
  1058. for (i = 0; i < MAX_TCS_NUM; i++) {
  1059. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1060. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1061. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1062. offset;
  1063. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1064. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1065. tcs_cmd_data_addr = tcs_cmd_addr +
  1066. TCS_CMD_DATA_ADDR_OFFSET;
  1067. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1068. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1069. voltage_tmp, i, j);
  1070. if (voltage_tmp > voltage) {
  1071. voltage = voltage_tmp;
  1072. cpr_info->tcs_cmd_data_addr =
  1073. plat_priv->tcs_info.cmd_base_addr +
  1074. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1075. cpr_info->tcs_cmd_data_addr_io =
  1076. tcs_cmd_data_addr;
  1077. }
  1078. }
  1079. }
  1080. }
  1081. if (!cpr_info->tcs_cmd_data_addr_io) {
  1082. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1083. return -EINVAL;
  1084. }
  1085. update_cpr:
  1086. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1087. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1088. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1089. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1090. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1091. return 0;
  1092. }
  1093. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1094. {
  1095. struct platform_device *plat_dev = plat_priv->plat_dev;
  1096. u32 offset, addr_val, data_val;
  1097. void __iomem *tcs_cmd;
  1098. int ret;
  1099. static bool config_done;
  1100. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1101. return -EINVAL;
  1102. if (config_done) {
  1103. cnss_pr_dbg("IPA Vreg already configured\n");
  1104. return 0;
  1105. }
  1106. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1107. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1108. } else {
  1109. ret = cnss_aop_set_vreg_param(plat_priv,
  1110. plat_priv->vreg_ipa,
  1111. CNSS_VREG_ENABLE,
  1112. CNSS_TCS_UP_SEQ, 1);
  1113. if (ret == 0)
  1114. config_done = true;
  1115. return ret;
  1116. }
  1117. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1118. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1119. return -EINVAL;
  1120. }
  1121. ret = of_property_read_u32(plat_dev->dev.of_node,
  1122. "qcom,tcs_offset_int_pow_amp_vreg",
  1123. &offset);
  1124. if (ret) {
  1125. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1126. return -EINVAL;
  1127. }
  1128. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1129. addr_val = readl_relaxed(tcs_cmd);
  1130. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1131. /* 1 = enable Vreg */
  1132. writel_relaxed(1, tcs_cmd);
  1133. data_val = readl_relaxed(tcs_cmd);
  1134. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1135. config_done = true;
  1136. return 0;
  1137. }