dsi_pll_5nm.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/err.h>
  7. #include <linux/iopoll.h>
  8. #include <linux/delay.h>
  9. #include <linux/of.h>
  10. #include <linux/platform_device.h>
  11. #include "dsi_pll_5nm.h"
  12. #define VCO_DELAY_USEC 1
  13. #define MHZ_250 250000000UL
  14. #define MHZ_500 500000000UL
  15. #define MHZ_1000 1000000000UL
  16. #define MHZ_1100 1100000000UL
  17. #define MHZ_1900 1900000000UL
  18. #define MHZ_3000 3000000000UL
  19. struct dsi_pll_regs {
  20. u32 pll_prop_gain_rate;
  21. u32 pll_lockdet_rate;
  22. u32 decimal_div_start;
  23. u32 frac_div_start_low;
  24. u32 frac_div_start_mid;
  25. u32 frac_div_start_high;
  26. u32 pll_clock_inverters;
  27. u32 ssc_stepsize_low;
  28. u32 ssc_stepsize_high;
  29. u32 ssc_div_per_low;
  30. u32 ssc_div_per_high;
  31. u32 ssc_adjper_low;
  32. u32 ssc_adjper_high;
  33. u32 ssc_control;
  34. };
  35. struct dsi_pll_config {
  36. u32 ref_freq;
  37. bool div_override;
  38. u32 output_div;
  39. bool ignore_frac;
  40. bool disable_prescaler;
  41. bool enable_ssc;
  42. bool ssc_center;
  43. u32 dec_bits;
  44. u32 frac_bits;
  45. u32 lock_timer;
  46. u32 ssc_freq;
  47. u32 ssc_offset;
  48. u32 ssc_adj_per;
  49. u32 thresh_cycles;
  50. u32 refclk_cycles;
  51. };
  52. struct dsi_pll_5nm {
  53. struct dsi_pll_resource *rsc;
  54. struct dsi_pll_config pll_configuration;
  55. struct dsi_pll_regs reg_setup;
  56. bool cphy_enabled;
  57. };
  58. static inline bool dsi_pll_5nm_is_hw_revision(
  59. struct dsi_pll_resource *rsc)
  60. {
  61. return (rsc->pll_revision == DSI_PLL_5NM) ?
  62. true : false;
  63. }
  64. static inline void dsi_pll_set_pll_post_div(struct dsi_pll_resource *pll, u32
  65. pll_post_div)
  66. {
  67. u32 pll_post_div_val = 0;
  68. if (pll_post_div == 1)
  69. pll_post_div_val = 0;
  70. if (pll_post_div == 2)
  71. pll_post_div_val = 1;
  72. if (pll_post_div == 4)
  73. pll_post_div_val = 2;
  74. if (pll_post_div == 8)
  75. pll_post_div_val = 3;
  76. DSI_PLL_REG_W(pll->pll_base, PLL_PLL_OUTDIV_RATE, pll_post_div_val);
  77. if (pll->slave)
  78. DSI_PLL_REG_W(pll->slave->pll_base, PLL_PLL_OUTDIV_RATE,
  79. pll_post_div_val);
  80. }
  81. static inline int dsi_pll_get_pll_post_div(struct dsi_pll_resource *pll)
  82. {
  83. u32 reg_val;
  84. reg_val = DSI_PLL_REG_R(pll->pll_base, PLL_PLL_OUTDIV_RATE);
  85. return (1 << reg_val);
  86. }
  87. static inline void dsi_pll_set_phy_post_div(struct dsi_pll_resource *pll, u32
  88. phy_post_div)
  89. {
  90. u32 reg_val = 0;
  91. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  92. reg_val &= ~0x0F;
  93. reg_val |= phy_post_div;
  94. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  95. if (pll->slave) {
  96. reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG0);
  97. reg_val &= ~0x0F;
  98. reg_val |= phy_post_div;
  99. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  100. }
  101. }
  102. static inline int dsi_pll_get_phy_post_div(struct dsi_pll_resource *pll)
  103. {
  104. u32 reg_val = 0;
  105. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  106. return (reg_val & 0xF);
  107. }
  108. static inline void dsi_pll_set_dsi_clk(struct dsi_pll_resource *pll, u32
  109. dsi_clk)
  110. {
  111. u32 reg_val = 0;
  112. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
  113. reg_val &= ~0x3;
  114. reg_val |= dsi_clk;
  115. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG1, reg_val);
  116. if (pll->slave) {
  117. reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG1);
  118. reg_val &= ~0x3;
  119. reg_val |= dsi_clk;
  120. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG1, reg_val);
  121. }
  122. }
  123. static inline int dsi_pll_get_dsi_clk(struct dsi_pll_resource *pll)
  124. {
  125. u32 reg_val;
  126. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
  127. return (reg_val & 0x3);
  128. }
  129. static inline void dsi_pll_set_pclk_div(struct dsi_pll_resource *pll, u32
  130. pclk_div)
  131. {
  132. u32 reg_val = 0;
  133. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  134. reg_val &= ~0xF0;
  135. reg_val |= (pclk_div << 4);
  136. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  137. if (pll->slave) {
  138. reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG0);
  139. reg_val &= ~0xF0;
  140. reg_val |= (pclk_div << 4);
  141. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  142. }
  143. }
  144. static inline int dsi_pll_get_pclk_div(struct dsi_pll_resource *pll)
  145. {
  146. u32 reg_val;
  147. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  148. return ((reg_val & 0xF0) >> 4);
  149. }
  150. static struct dsi_pll_resource *pll_rsc_db[DSI_PLL_MAX];
  151. static struct dsi_pll_5nm plls[DSI_PLL_MAX];
  152. static void dsi_pll_config_slave(struct dsi_pll_resource *rsc)
  153. {
  154. u32 reg;
  155. struct dsi_pll_resource *orsc = pll_rsc_db[DSI_PLL_1];
  156. if (!rsc)
  157. return;
  158. /* Only DSI PLL0 can act as a master */
  159. if (rsc->index != DSI_PLL_0)
  160. return;
  161. /* default configuration: source is either internal or ref clock */
  162. rsc->slave = NULL;
  163. if (!orsc) {
  164. DSI_PLL_WARN(rsc,
  165. "slave PLL unavilable, assuming standalone config\n");
  166. return;
  167. }
  168. /* check to see if the source of DSI1 PLL bitclk is set to external */
  169. reg = DSI_PLL_REG_R(orsc->phy_base, PHY_CMN_CLK_CFG1);
  170. reg &= (BIT(2) | BIT(3));
  171. if (reg == 0x04)
  172. rsc->slave = pll_rsc_db[DSI_PLL_1]; /* external source */
  173. DSI_PLL_DBG(rsc, "Slave PLL %s\n",
  174. rsc->slave ? "configured" : "absent");
  175. }
  176. static void dsi_pll_setup_config(struct dsi_pll_5nm *pll,
  177. struct dsi_pll_resource *rsc)
  178. {
  179. struct dsi_pll_config *config = &pll->pll_configuration;
  180. config->ref_freq = 19200000;
  181. config->output_div = 1;
  182. config->dec_bits = 8;
  183. config->frac_bits = 18;
  184. config->lock_timer = 64;
  185. config->ssc_freq = 31500;
  186. config->ssc_offset = 4800;
  187. config->ssc_adj_per = 2;
  188. config->thresh_cycles = 32;
  189. config->refclk_cycles = 256;
  190. config->div_override = false;
  191. config->ignore_frac = false;
  192. config->disable_prescaler = false;
  193. config->enable_ssc = rsc->ssc_en;
  194. config->ssc_center = rsc->ssc_center;
  195. if (config->enable_ssc) {
  196. if (rsc->ssc_freq)
  197. config->ssc_freq = rsc->ssc_freq;
  198. if (rsc->ssc_ppm)
  199. config->ssc_offset = rsc->ssc_ppm;
  200. }
  201. dsi_pll_config_slave(rsc);
  202. }
  203. static void dsi_pll_calc_dec_frac(struct dsi_pll_5nm *pll,
  204. struct dsi_pll_resource *rsc)
  205. {
  206. struct dsi_pll_config *config = &pll->pll_configuration;
  207. struct dsi_pll_regs *regs = &pll->reg_setup;
  208. u64 fref = rsc->vco_ref_clk_rate;
  209. u64 pll_freq;
  210. u64 divider;
  211. u64 dec, dec_multiple;
  212. u32 frac;
  213. u64 multiplier;
  214. pll_freq = rsc->vco_current_rate;
  215. if (config->disable_prescaler)
  216. divider = fref;
  217. else
  218. divider = fref * 2;
  219. multiplier = 1 << config->frac_bits;
  220. dec_multiple = div_u64(pll_freq * multiplier, divider);
  221. div_u64_rem(dec_multiple, multiplier, &frac);
  222. dec = div_u64(dec_multiple, multiplier);
  223. switch (rsc->pll_revision) {
  224. case DSI_PLL_5NM:
  225. default:
  226. if (pll_freq <= 1000000000)
  227. regs->pll_clock_inverters = 0xA0;
  228. else if (pll_freq <= 2500000000)
  229. regs->pll_clock_inverters = 0x20;
  230. else if (pll_freq <= 3500000000)
  231. regs->pll_clock_inverters = 0x00;
  232. else
  233. regs->pll_clock_inverters = 0x40;
  234. break;
  235. }
  236. regs->pll_lockdet_rate = config->lock_timer;
  237. regs->decimal_div_start = dec;
  238. regs->frac_div_start_low = (frac & 0xff);
  239. regs->frac_div_start_mid = (frac & 0xff00) >> 8;
  240. regs->frac_div_start_high = (frac & 0x30000) >> 16;
  241. regs->pll_prop_gain_rate = 10;
  242. }
  243. static void dsi_pll_calc_ssc(struct dsi_pll_5nm *pll,
  244. struct dsi_pll_resource *rsc)
  245. {
  246. struct dsi_pll_config *config = &pll->pll_configuration;
  247. struct dsi_pll_regs *regs = &pll->reg_setup;
  248. u32 ssc_per;
  249. u32 ssc_mod;
  250. u64 ssc_step_size;
  251. u64 frac;
  252. if (!config->enable_ssc) {
  253. DSI_PLL_DBG(rsc, "SSC not enabled\n");
  254. return;
  255. }
  256. ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
  257. ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
  258. ssc_per -= ssc_mod;
  259. frac = regs->frac_div_start_low |
  260. (regs->frac_div_start_mid << 8) |
  261. (regs->frac_div_start_high << 16);
  262. ssc_step_size = regs->decimal_div_start;
  263. ssc_step_size *= (1 << config->frac_bits);
  264. ssc_step_size += frac;
  265. ssc_step_size *= config->ssc_offset;
  266. ssc_step_size *= (config->ssc_adj_per + 1);
  267. ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
  268. ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
  269. regs->ssc_div_per_low = ssc_per & 0xFF;
  270. regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
  271. regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
  272. regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
  273. regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
  274. regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
  275. regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
  276. DSI_PLL_DBG(rsc, "SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
  277. regs->decimal_div_start, frac, config->frac_bits);
  278. DSI_PLL_DBG(rsc, "SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
  279. ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
  280. }
  281. static void dsi_pll_ssc_commit(struct dsi_pll_5nm *pll,
  282. struct dsi_pll_resource *rsc)
  283. {
  284. void __iomem *pll_base = rsc->pll_base;
  285. struct dsi_pll_regs *regs = &pll->reg_setup;
  286. if (pll->pll_configuration.enable_ssc) {
  287. DSI_PLL_DBG(rsc, "SSC is enabled\n");
  288. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1,
  289. regs->ssc_stepsize_low);
  290. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1,
  291. regs->ssc_stepsize_high);
  292. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1,
  293. regs->ssc_div_per_low);
  294. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1,
  295. regs->ssc_div_per_high);
  296. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1,
  297. regs->ssc_adjper_low);
  298. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1,
  299. regs->ssc_adjper_high);
  300. DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL,
  301. SSC_EN | regs->ssc_control);
  302. }
  303. }
  304. static void dsi_pll_config_hzindep_reg(struct dsi_pll_5nm *pll,
  305. struct dsi_pll_resource *rsc)
  306. {
  307. void __iomem *pll_base = rsc->pll_base;
  308. u64 vco_rate = rsc->vco_current_rate;
  309. switch (rsc->pll_revision) {
  310. case DSI_PLL_5NM:
  311. default:
  312. if (vco_rate < 3100000000)
  313. DSI_PLL_REG_W(pll_base,
  314. PLL_ANALOG_CONTROLS_FIVE_1, 0x01);
  315. else
  316. DSI_PLL_REG_W(pll_base,
  317. PLL_ANALOG_CONTROLS_FIVE_1, 0x03);
  318. if (vco_rate < 1520000000)
  319. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x08);
  320. else if (vco_rate < 2990000000)
  321. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00);
  322. else
  323. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x01);
  324. break;
  325. }
  326. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE, 0x01);
  327. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_TWO, 0x03);
  328. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_THREE, 0x00);
  329. DSI_PLL_REG_W(pll_base, PLL_DSM_DIVIDER, 0x00);
  330. DSI_PLL_REG_W(pll_base, PLL_FEEDBACK_DIVIDER, 0x4e);
  331. DSI_PLL_REG_W(pll_base, PLL_CALIBRATION_SETTINGS, 0x40);
  332. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
  333. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
  334. DSI_PLL_REG_W(pll_base, PLL_OUTDIV, 0x00);
  335. DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00);
  336. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
  337. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
  338. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0xc0);
  339. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
  340. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
  341. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
  342. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x80);
  343. DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x29);
  344. DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x2f);
  345. DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x2a);
  346. switch (rsc->pll_revision) {
  347. case DSI_PLL_5NM:
  348. default:
  349. DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x3F);
  350. break;
  351. }
  352. DSI_PLL_REG_W(pll_base, PLL_PERF_OPTIMIZE, 0x22);
  353. if (rsc->slave)
  354. DSI_PLL_REG_W(rsc->slave->pll_base, PLL_PERF_OPTIMIZE, 0x22);
  355. }
  356. static void dsi_pll_init_val(struct dsi_pll_resource *rsc)
  357. {
  358. void __iomem *pll_base = rsc->pll_base;
  359. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_ONE, 0x00000000);
  360. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS, 0x0000003F);
  361. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS_TWO, 0x00000000);
  362. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FOUR, 0x00000000);
  363. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_CONTROLS, 0x00000080);
  364. DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES, 0x00000000);
  365. DSI_PLL_REG_W(pll_base, PLL_FREQ_UPDATE_CONTROL_OVERRIDES, 0x00000000);
  366. DSI_PLL_REG_W(pll_base, PLL_CMODE, 0x00000010);
  367. DSI_PLL_REG_W(pll_base, PLL_PSM_CTRL, 0x00000020);
  368. DSI_PLL_REG_W(pll_base, PLL_RSM_CTRL, 0x00000010);
  369. DSI_PLL_REG_W(pll_base, PLL_VCO_TUNE_MAP, 0x00000002);
  370. DSI_PLL_REG_W(pll_base, PLL_PLL_CNTRL, 0x0000001C);
  371. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_LOW, 0x00000000);
  372. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_HIGH, 0x00000002);
  373. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS, 0x00000020);
  374. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MIN, 0x00000000);
  375. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MAX, 0x000000FF);
  376. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_PFILT, 0x00000000);
  377. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_IFILT, 0x0000000A);
  378. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_TWO, 0x00000025);
  379. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0x000000BA);
  380. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_FOUR, 0x0000004F);
  381. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_HIGH, 0x0000000A);
  382. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_LOW, 0x00000000);
  383. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0000000C);
  384. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_THRESH, 0x00000020);
  385. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_HIGH, 0x00000000);
  386. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_LOW, 0x000000FF);
  387. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_HIGH, 0x00000010);
  388. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_LOW, 0x00000046);
  389. DSI_PLL_REG_W(pll_base, PLL_PLL_GAIN, 0x00000054);
  390. DSI_PLL_REG_W(pll_base, PLL_ICODE_LOW, 0x00000000);
  391. DSI_PLL_REG_W(pll_base, PLL_ICODE_HIGH, 0x00000000);
  392. DSI_PLL_REG_W(pll_base, PLL_LOCKDET, 0x00000040);
  393. DSI_PLL_REG_W(pll_base, PLL_FASTLOCK_CONTROL, 0x00000004);
  394. DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_ONE, 0x00000000);
  395. DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_TWO, 0x00000000);
  396. DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00000000);
  397. DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x00000010);
  398. DSI_PLL_REG_W(pll_base, PLL_RATE_CHANGE, 0x00000000);
  399. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS, 0x00000008);
  400. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x00000008);
  401. DSI_PLL_REG_W(pll_base, PLL_DEC_FRAC_MUXES, 0x00000000);
  402. DSI_PLL_REG_W(pll_base, PLL_MASH_CONTROL, 0x00000003);
  403. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW, 0x00000000);
  404. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH, 0x00000000);
  405. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW, 0x00000000);
  406. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH, 0x00000000);
  407. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW, 0x00000000);
  408. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH, 0x00000000);
  409. DSI_PLL_REG_W(pll_base, PLL_SSC_MUX_CONTROL, 0x00000000);
  410. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1, 0x00000000);
  411. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1, 0x00000000);
  412. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1, 0x00000000);
  413. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1, 0x00000000);
  414. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1, 0x00000000);
  415. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1, 0x00000000);
  416. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_2, 0x00000000);
  417. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_2, 0x00000000);
  418. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_2, 0x00000000);
  419. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_2, 0x00000000);
  420. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_2, 0x00000000);
  421. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_2, 0x00000000);
  422. DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL, 0x00000000);
  423. DSI_PLL_REG_W(pll_base, PLL_PLL_OUTDIV_RATE, 0x00000000);
  424. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, 0x00000040);
  425. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_2, 0x00000040);
  426. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0000000C);
  427. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_2, 0x0000000A);
  428. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0x000000C0);
  429. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_2, 0x00000000);
  430. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x00000054);
  431. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_2, 0x00000054);
  432. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x0000004C);
  433. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_2, 0x0000004C);
  434. DSI_PLL_REG_W(pll_base, PLL_PLL_FASTLOCK_EN_BAND, 0x00000003);
  435. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MID, 0x00000000);
  436. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_HIGH, 0x00000000);
  437. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MUX, 0x00000000);
  438. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x00000080);
  439. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x00000006);
  440. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_MIN_DELAY, 0x00000019);
  441. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS, 0x00000000);
  442. DSI_PLL_REG_W(pll_base, PLL_SPARE_AND_JPC_OVERRIDES, 0x00000000);
  443. DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_1, 0x00000040);
  444. DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_2, 0x00000020);
  445. DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_CTRL_1, 0x00000000);
  446. DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_ONE, 0x00000000);
  447. DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_TWO, 0x00000000);
  448. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL, 0x00000000);
  449. DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_LOW, 0x00000000);
  450. DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_HIGH, 0x00000000);
  451. DSI_PLL_REG_W(pll_base, PLL_FD_OUT_LOW, 0x00000000);
  452. DSI_PLL_REG_W(pll_base, PLL_FD_OUT_HIGH, 0x00000000);
  453. DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_STATUS_1, 0x00000000);
  454. DSI_PLL_REG_W(pll_base, PLL_PLL_MISC_CONFIG, 0x00000000);
  455. DSI_PLL_REG_W(pll_base, PLL_FLL_CONFIG, 0x00000002);
  456. DSI_PLL_REG_W(pll_base, PLL_FLL_FREQ_ACQ_TIME, 0x00000011);
  457. DSI_PLL_REG_W(pll_base, PLL_FLL_CODE0, 0x00000000);
  458. DSI_PLL_REG_W(pll_base, PLL_FLL_CODE1, 0x00000000);
  459. DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN0, 0x00000080);
  460. DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN1, 0x00000000);
  461. DSI_PLL_REG_W(pll_base, PLL_SW_RESET, 0x00000000);
  462. DSI_PLL_REG_W(pll_base, PLL_FAST_PWRUP, 0x00000000);
  463. DSI_PLL_REG_W(pll_base, PLL_LOCKTIME0, 0x00000000);
  464. DSI_PLL_REG_W(pll_base, PLL_LOCKTIME1, 0x00000000);
  465. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS_SEL, 0x00000000);
  466. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS0, 0x00000000);
  467. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS1, 0x00000000);
  468. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS2, 0x00000000);
  469. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS3, 0x00000000);
  470. DSI_PLL_REG_W(pll_base, PLL_ANALOG_FLL_CONTROL_OVERRIDES, 0x00000000);
  471. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG, 0x00000000);
  472. DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE0_STATUS, 0x00000000);
  473. DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE1_STATUS, 0x00000000);
  474. DSI_PLL_REG_W(pll_base, PLL_RESET_SM_STATUS, 0x00000000);
  475. DSI_PLL_REG_W(pll_base, PLL_TDC_OFFSET, 0x00000000);
  476. DSI_PLL_REG_W(pll_base, PLL_PS3_PWRDOWN_CONTROLS, 0x0000001D);
  477. DSI_PLL_REG_W(pll_base, PLL_PS4_PWRDOWN_CONTROLS, 0x0000001C);
  478. DSI_PLL_REG_W(pll_base, PLL_PLL_RST_CONTROLS, 0x000000FF);
  479. DSI_PLL_REG_W(pll_base, PLL_GEAR_BAND_SELECT_CONTROLS, 0x00000022);
  480. DSI_PLL_REG_W(pll_base, PLL_PSM_CLK_CONTROLS, 0x00000009);
  481. DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES_2, 0x00000000);
  482. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00000000);
  483. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_2, 0x00000000);
  484. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1, 0x00000040);
  485. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_2, 0x00000000);
  486. DSI_PLL_REG_W(pll_base, PLL_CMODE_1, 0x00000010);
  487. DSI_PLL_REG_W(pll_base, PLL_CMODE_2, 0x00000010);
  488. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE_2, 0x00000003);
  489. }
  490. static void dsi_pll_detect_phy_mode(struct dsi_pll_5nm *pll,
  491. struct dsi_pll_resource *rsc)
  492. {
  493. u32 reg_val;
  494. reg_val = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_GLBL_CTRL);
  495. pll->cphy_enabled = (reg_val & BIT(6)) ? true : false;
  496. }
  497. static void dsi_pll_commit(struct dsi_pll_5nm *pll,
  498. struct dsi_pll_resource *rsc)
  499. {
  500. void __iomem *pll_base = rsc->pll_base;
  501. struct dsi_pll_regs *reg = &pll->reg_setup;
  502. DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x12);
  503. DSI_PLL_REG_W(pll_base, PLL_DECIMAL_DIV_START_1,
  504. reg->decimal_div_start);
  505. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_LOW_1,
  506. reg->frac_div_start_low);
  507. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_MID_1,
  508. reg->frac_div_start_mid);
  509. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_HIGH_1,
  510. reg->frac_div_start_high);
  511. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, 0x40);
  512. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x06);
  513. DSI_PLL_REG_W(pll_base, PLL_CMODE_1,
  514. pll->cphy_enabled ? 0x00 : 0x10);
  515. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1,
  516. reg->pll_clock_inverters);
  517. }
  518. static int dsi_pll_5nm_lock_status(struct dsi_pll_resource *pll)
  519. {
  520. int rc;
  521. u32 status;
  522. u32 const delay_us = 100;
  523. u32 const timeout_us = 5000;
  524. rc = readl_poll_timeout_atomic(pll->pll_base + PLL_COMMON_STATUS_ONE,
  525. status,
  526. ((status & BIT(0)) > 0),
  527. delay_us,
  528. timeout_us);
  529. if (rc)
  530. DSI_PLL_ERR(pll, "lock failed, status=0x%08x\n", status);
  531. return rc;
  532. }
  533. static void dsi_pll_disable_pll_bias(struct dsi_pll_resource *rsc)
  534. {
  535. u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
  536. DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0);
  537. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data & ~BIT(5));
  538. ndelay(250);
  539. }
  540. static void dsi_pll_enable_pll_bias(struct dsi_pll_resource *rsc)
  541. {
  542. u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
  543. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data | BIT(5));
  544. DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0xc0);
  545. ndelay(250);
  546. }
  547. static void dsi_pll_disable_global_clk(struct dsi_pll_resource *rsc)
  548. {
  549. u32 data;
  550. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  551. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data & ~BIT(5)));
  552. }
  553. static void dsi_pll_enable_global_clk(struct dsi_pll_resource *rsc)
  554. {
  555. u32 data;
  556. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_3, 0x04);
  557. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  558. /* Turn on clk_en_sel bit prior to resync toggle fifo */
  559. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data | BIT(5) |
  560. BIT(4)));
  561. }
  562. static void dsi_pll_phy_dig_reset(struct dsi_pll_resource *rsc)
  563. {
  564. /*
  565. * Reset the PHY digital domain. This would be needed when
  566. * coming out of a CX or analog rail power collapse while
  567. * ensuring that the pads maintain LP00 or LP11 state
  568. */
  569. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
  570. wmb(); /* Ensure that the reset is asserted */
  571. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
  572. wmb(); /* Ensure that the reset is deasserted */
  573. }
  574. static void dsi_pll_disable_sub(struct dsi_pll_resource *rsc)
  575. {
  576. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_RBUF_CTRL, 0);
  577. dsi_pll_disable_pll_bias(rsc);
  578. }
  579. static void dsi_pll_unprepare_stub(struct clk_hw *hw)
  580. {
  581. return;
  582. }
  583. static int dsi_pll_prepare_stub(struct clk_hw *hw)
  584. {
  585. return 0;
  586. }
  587. static int dsi_pll_set_rate_stub(struct clk_hw *hw, unsigned long rate,
  588. unsigned long parent_rate)
  589. {
  590. return 0;
  591. }
  592. static long dsi_pll_byteclk_round_rate(struct clk_hw *hw, unsigned long rate,
  593. unsigned long *parent_rate)
  594. {
  595. struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
  596. struct dsi_pll_resource *pll_res = pll->priv;
  597. return pll_res->byteclk_rate;
  598. }
  599. static long dsi_pll_pclk_round_rate(struct clk_hw *hw, unsigned long rate,
  600. unsigned long *parent_rate)
  601. {
  602. struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
  603. struct dsi_pll_resource *pll_res = pll->priv;
  604. return pll_res->pclk_rate;
  605. }
  606. static unsigned long dsi_pll_vco_recalc_rate(struct dsi_pll_resource *pll)
  607. {
  608. u64 ref_clk;
  609. u64 multiplier;
  610. u32 frac;
  611. u32 dec;
  612. u32 pll_post_div;
  613. u64 pll_freq, tmp64;
  614. u64 vco_rate;
  615. ref_clk = pll->vco_ref_clk_rate;
  616. dec = DSI_PLL_REG_R(pll->pll_base, PLL_DECIMAL_DIV_START_1);
  617. dec &= 0xFF;
  618. frac = DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_LOW_1);
  619. frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_MID_1) & 0xFF)
  620. << 8);
  621. frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_HIGH_1) & 0x3)
  622. << 16);
  623. multiplier = 1 << 18;
  624. pll_freq = dec * (ref_clk * 2);
  625. tmp64 = (ref_clk * 2 * frac);
  626. pll_freq += div_u64(tmp64, multiplier);
  627. pll_post_div = dsi_pll_get_pll_post_div(pll);
  628. vco_rate = div_u64(pll_freq, pll_post_div);
  629. return vco_rate;
  630. }
  631. static unsigned long dsi_pll_byteclk_recalc_rate(struct clk_hw *hw,
  632. unsigned long parent_rate)
  633. {
  634. struct dsi_pll_clk *byte_pll = to_pll_clk_hw(hw);
  635. struct dsi_pll_resource *pll = NULL;
  636. u64 vco_rate = 0;
  637. u64 byte_rate = 0;
  638. u32 phy_post_div;
  639. if (!byte_pll->priv) {
  640. DSI_PLL_INFO(pll, "pll priv is null\n");
  641. return 0;
  642. }
  643. pll = byte_pll->priv;
  644. /*
  645. * In the case when byteclk rate is set, the recalculation function
  646. * should return the current rate. Recalc rate is also called during
  647. * clock registration, during which the function should reverse
  648. * calculate clock rates that were set as part of UEFI.
  649. */
  650. if (pll->byteclk_rate != 0) {
  651. DSI_PLL_DBG(pll, "returning byte clk rate = %lld %lld\n",
  652. pll->byteclk_rate, parent_rate);
  653. return pll->byteclk_rate;
  654. }
  655. vco_rate = dsi_pll_vco_recalc_rate(pll);
  656. phy_post_div = dsi_pll_get_phy_post_div(pll);
  657. byte_rate = div_u64(vco_rate, phy_post_div);
  658. if (pll->type == DSI_PHY_TYPE_DPHY)
  659. byte_rate = div_u64(vco_rate, 8);
  660. else
  661. byte_rate = div_u64(vco_rate, 7);
  662. return byte_rate;
  663. }
  664. static unsigned long dsi_pll_pclk_recalc_rate(struct clk_hw *hw,
  665. unsigned long parent_rate)
  666. {
  667. struct dsi_pll_clk *pix_pll = to_pll_clk_hw(hw);
  668. struct dsi_pll_resource *pll = NULL;
  669. u64 vco_rate = 0;
  670. u64 pclk_rate = 0;
  671. u32 phy_post_div, pclk_div;
  672. if (!pix_pll->priv) {
  673. DSI_PLL_INFO(pll, "pll priv is null\n");
  674. return 0;
  675. }
  676. pll = pix_pll->priv;
  677. /*
  678. * In the case when pclk rate is set, the recalculation function
  679. * should return the current rate. Recalc rate is also called during
  680. * clock registration, during which the function should reverse
  681. * calculate the clock rates that were set as part of UEFI.
  682. */
  683. if (pll->pclk_rate != 0) {
  684. DSI_PLL_DBG(pll, "returning pclk rate = %lld %lld\n",
  685. pll->pclk_rate, parent_rate);
  686. return pll->pclk_rate;
  687. }
  688. vco_rate = dsi_pll_vco_recalc_rate(pll);
  689. if (pll->type == DSI_PHY_TYPE_DPHY) {
  690. phy_post_div = dsi_pll_get_phy_post_div(pll);
  691. pclk_rate = div_u64(vco_rate, phy_post_div);
  692. pclk_rate = div_u64(pclk_rate, 2);
  693. pclk_div = dsi_pll_get_pclk_div(pll);
  694. pclk_rate = div_u64(pclk_rate, pclk_div);
  695. } else {
  696. pclk_rate = vco_rate * 2;
  697. pclk_rate = div_u64(pclk_rate, 7);
  698. pclk_div = dsi_pll_get_pclk_div(pll);
  699. pclk_rate = div_u64(pclk_rate, pclk_div);
  700. }
  701. return pclk_rate;
  702. }
  703. static const struct clk_ops pll_byteclk_ops = {
  704. .recalc_rate = dsi_pll_byteclk_recalc_rate,
  705. .set_rate = dsi_pll_set_rate_stub,
  706. .round_rate = dsi_pll_byteclk_round_rate,
  707. .prepare = dsi_pll_prepare_stub,
  708. .unprepare = dsi_pll_unprepare_stub,
  709. };
  710. static const struct clk_ops pll_pclk_ops = {
  711. .recalc_rate = dsi_pll_pclk_recalc_rate,
  712. .set_rate = dsi_pll_set_rate_stub,
  713. .round_rate = dsi_pll_pclk_round_rate,
  714. .prepare = dsi_pll_prepare_stub,
  715. .unprepare = dsi_pll_unprepare_stub,
  716. };
  717. /*
  718. * Clock tree for generating DSI byte and pclk.
  719. *
  720. *
  721. * +-------------------------------+ +----------------------------+
  722. * | dsi_phy_pll_out_byteclk | | dsi_phy_pll_out_dsiclk |
  723. * +---------------+---------------+ +--------------+-------------+
  724. * | |
  725. * | |
  726. * v v
  727. * dsi_byte_clk dsi_pclk
  728. *
  729. *
  730. */
  731. static struct dsi_pll_clk dsi0_phy_pll_out_byteclk = {
  732. .hw.init = &(struct clk_init_data){
  733. .name = "dsi0_phy_pll_out_byteclk",
  734. .ops = &pll_byteclk_ops,
  735. },
  736. };
  737. static struct dsi_pll_clk dsi1_phy_pll_out_byteclk = {
  738. .hw.init = &(struct clk_init_data){
  739. .name = "dsi1_phy_pll_out_byteclk",
  740. .ops = &pll_byteclk_ops,
  741. },
  742. };
  743. static struct dsi_pll_clk dsi0_phy_pll_out_dsiclk = {
  744. .hw.init = &(struct clk_init_data){
  745. .name = "dsi0_phy_pll_out_dsiclk",
  746. .ops = &pll_pclk_ops,
  747. },
  748. };
  749. static struct dsi_pll_clk dsi1_phy_pll_out_dsiclk = {
  750. .hw.init = &(struct clk_init_data){
  751. .name = "dsi1_phy_pll_out_dsiclk",
  752. .ops = &pll_pclk_ops,
  753. },
  754. };
  755. int dsi_pll_clock_register_5nm(struct platform_device *pdev,
  756. struct dsi_pll_resource *pll_res)
  757. {
  758. int rc = 0, ndx;
  759. struct clk *clk;
  760. struct clk_onecell_data *clk_data;
  761. int num_clks = 4;
  762. if (!pdev || !pdev->dev.of_node ||
  763. !pll_res || !pll_res->pll_base || !pll_res->phy_base) {
  764. DSI_PLL_ERR(pll_res, "Invalid params\n");
  765. return -EINVAL;
  766. }
  767. ndx = pll_res->index;
  768. if (ndx >= DSI_PLL_MAX) {
  769. DSI_PLL_ERR(pll_res, "not supported\n");
  770. return -EINVAL;
  771. }
  772. pll_rsc_db[ndx] = pll_res;
  773. plls[ndx].rsc = pll_res;
  774. pll_res->priv = &plls[ndx];
  775. pll_res->vco_delay = VCO_DELAY_USEC;
  776. pll_res->vco_min_rate = 600000000;
  777. pll_res->vco_ref_clk_rate = 19200000UL;
  778. clk_data = devm_kzalloc(&pdev->dev, sizeof(struct clk_onecell_data),
  779. GFP_KERNEL);
  780. if (!clk_data)
  781. return -ENOMEM;
  782. clk_data->clks = devm_kzalloc(&pdev->dev, (num_clks *
  783. sizeof(struct clk *)), GFP_KERNEL);
  784. if (!clk_data->clks)
  785. return -ENOMEM;
  786. clk_data->clk_num = num_clks;
  787. /* Establish client data */
  788. if (ndx == 0) {
  789. dsi0_phy_pll_out_byteclk.priv = pll_res;
  790. dsi0_phy_pll_out_dsiclk.priv = pll_res;
  791. clk = devm_clk_register(&pdev->dev,
  792. &dsi0_phy_pll_out_byteclk.hw);
  793. if (IS_ERR(clk)) {
  794. DSI_PLL_ERR(pll_res,
  795. "clk registration failed for DSI clock\n");
  796. rc = -EINVAL;
  797. goto clk_register_fail;
  798. }
  799. clk_data->clks[0] = clk;
  800. clk = devm_clk_register(&pdev->dev,
  801. &dsi0_phy_pll_out_dsiclk.hw);
  802. if (IS_ERR(clk)) {
  803. DSI_PLL_ERR(pll_res,
  804. "clk registration failed for DSI clock\n");
  805. rc = -EINVAL;
  806. goto clk_register_fail;
  807. }
  808. clk_data->clks[1] = clk;
  809. rc = of_clk_add_provider(pdev->dev.of_node,
  810. of_clk_src_onecell_get, clk_data);
  811. } else {
  812. dsi1_phy_pll_out_byteclk.priv = pll_res;
  813. dsi1_phy_pll_out_dsiclk.priv = pll_res;
  814. clk = devm_clk_register(&pdev->dev,
  815. &dsi1_phy_pll_out_byteclk.hw);
  816. if (IS_ERR(clk)) {
  817. DSI_PLL_ERR(pll_res,
  818. "clk registration failed for DSI clock\n");
  819. rc = -EINVAL;
  820. goto clk_register_fail;
  821. }
  822. clk_data->clks[2] = clk;
  823. clk = devm_clk_register(&pdev->dev,
  824. &dsi1_phy_pll_out_dsiclk.hw);
  825. if (IS_ERR(clk)) {
  826. DSI_PLL_ERR(pll_res,
  827. "clk registration failed for DSI clock\n");
  828. rc = -EINVAL;
  829. goto clk_register_fail;
  830. }
  831. clk_data->clks[3] = clk;
  832. rc = of_clk_add_provider(pdev->dev.of_node,
  833. of_clk_src_onecell_get, clk_data);
  834. }
  835. if (!rc) {
  836. DSI_PLL_INFO(pll_res, "Registered clocks successfully\n");
  837. return rc;
  838. }
  839. clk_register_fail:
  840. return rc;
  841. }
  842. static int dsi_pll_5nm_set_byteclk_div(struct dsi_pll_resource *pll,
  843. bool commit)
  844. {
  845. int i = 0;
  846. int table_size;
  847. u32 pll_post_div = 0, phy_post_div = 0;
  848. struct dsi_pll_div_table *table;
  849. u32 bitclk_rate;
  850. if (pll->type == DSI_PHY_TYPE_DPHY) {
  851. bitclk_rate = pll->byteclk_rate * 8;
  852. table_size = ARRAY_SIZE(pll_5nm_dphy);
  853. table = pll_5nm_dphy;
  854. } else {
  855. bitclk_rate = pll->byteclk_rate * 7;
  856. table_size = ARRAY_SIZE(pll_5nm_cphy);
  857. table = pll_5nm_cphy;
  858. }
  859. for (i = 0; i < table_size; i++) {
  860. if ((table[i].min_hz <= bitclk_rate) &&
  861. (bitclk_rate <= table[i].max_hz)) {
  862. pll_post_div = table[i].pll_div;
  863. phy_post_div = table[i].phy_div;
  864. break;
  865. }
  866. }
  867. DSI_PLL_DBG(pll, "bit clk rate: %llu, pll_post_div: %d, phy_post_div: %d\n",
  868. bitclk_rate, pll_post_div, phy_post_div);
  869. if (commit) {
  870. dsi_pll_set_pll_post_div(pll, pll_post_div);
  871. dsi_pll_set_phy_post_div(pll, phy_post_div);
  872. }
  873. pll->vco_rate = bitclk_rate * pll_post_div * phy_post_div;
  874. return 0;
  875. }
  876. static int dsi_pll_5nm_set_pclk_div(struct dsi_pll_resource *pll, bool commit)
  877. {
  878. int dsi_clk = 0, pclk_div = 0;
  879. u64 pclk_src_rate;
  880. u32 pll_post_div;
  881. u32 phy_post_div;
  882. pll_post_div = dsi_pll_get_pll_post_div(pll);
  883. pclk_src_rate = div_u64(pll->vco_rate, pll_post_div);
  884. if (pll->type == DSI_PHY_TYPE_DPHY) {
  885. dsi_clk = 0x1;
  886. phy_post_div = dsi_pll_get_phy_post_div(pll);
  887. pclk_src_rate = div_u64(pclk_src_rate, phy_post_div);
  888. pclk_src_rate = div_u64(pclk_src_rate, 2);
  889. } else {
  890. dsi_clk = 0x3;
  891. pclk_src_rate *= 2;
  892. pclk_src_rate = div_u64(pclk_src_rate, 7);
  893. }
  894. pclk_div = DIV_ROUND_CLOSEST(pclk_src_rate, pll->pclk_rate);
  895. DSI_PLL_DBG(pll, "pclk rate: %llu, dsi_clk: %d, pclk_div: %d\n",
  896. pll->pclk_rate, dsi_clk, pclk_div);
  897. if (commit) {
  898. dsi_pll_set_dsi_clk(pll, dsi_clk);
  899. dsi_pll_set_pclk_div(pll, pclk_div);
  900. }
  901. return 0;
  902. }
  903. static int dsi_pll_5nm_vco_set_rate(struct dsi_pll_resource *pll_res)
  904. {
  905. struct dsi_pll_5nm *pll;
  906. if (pll_res->pll_on)
  907. return 0;
  908. pll = pll_res->priv;
  909. if (!pll) {
  910. DSI_PLL_ERR(pll_res, "pll configuration not found\n");
  911. return -EINVAL;
  912. }
  913. DSI_PLL_DBG(pll_res, "rate=%lu\n", pll_res->vco_rate);
  914. pll_res->vco_current_rate = pll_res->vco_rate;
  915. dsi_pll_detect_phy_mode(pll, pll_res);
  916. dsi_pll_setup_config(pll, pll_res);
  917. dsi_pll_calc_dec_frac(pll, pll_res);
  918. dsi_pll_calc_ssc(pll, pll_res);
  919. dsi_pll_commit(pll, pll_res);
  920. dsi_pll_config_hzindep_reg(pll, pll_res);
  921. dsi_pll_ssc_commit(pll, pll_res);
  922. /* flush, ensure all register writes are done*/
  923. wmb();
  924. return 0;
  925. }
  926. static int dsi_pll_read_stored_trim_codes(struct dsi_pll_resource *pll_res,
  927. unsigned long vco_clk_rate)
  928. {
  929. int i;
  930. bool found = false;
  931. if (!pll_res->dfps)
  932. return -EINVAL;
  933. for (i = 0; i < pll_res->dfps->vco_rate_cnt; i++) {
  934. struct dfps_codes_info *codes_info =
  935. &pll_res->dfps->codes_dfps[i];
  936. DSI_PLL_DBG(pll_res, "valid=%d vco_rate=%d, code %d %d %d\n",
  937. codes_info->is_valid, codes_info->clk_rate,
  938. codes_info->pll_codes.pll_codes_1,
  939. codes_info->pll_codes.pll_codes_2,
  940. codes_info->pll_codes.pll_codes_3);
  941. if (vco_clk_rate != codes_info->clk_rate &&
  942. codes_info->is_valid)
  943. continue;
  944. pll_res->cache_pll_trim_codes[0] =
  945. codes_info->pll_codes.pll_codes_1;
  946. pll_res->cache_pll_trim_codes[1] =
  947. codes_info->pll_codes.pll_codes_2;
  948. pll_res->cache_pll_trim_codes[2] =
  949. codes_info->pll_codes.pll_codes_3;
  950. found = true;
  951. break;
  952. }
  953. if (!found)
  954. return -EINVAL;
  955. DSI_PLL_DBG(pll_res, "trim_code_0=0x%x trim_code_1=0x%x trim_code_2=0x%x\n",
  956. pll_res->cache_pll_trim_codes[0],
  957. pll_res->cache_pll_trim_codes[1],
  958. pll_res->cache_pll_trim_codes[2]);
  959. return 0;
  960. }
  961. static void dsi_pll_5nm_dynamic_refresh(struct dsi_pll_5nm *pll,
  962. struct dsi_pll_resource *rsc)
  963. {
  964. u32 data;
  965. u32 offset = DSI_PHY_TO_PLL_OFFSET;
  966. u32 upper_addr = 0;
  967. u32 upper_addr2 = 0;
  968. struct dsi_pll_regs *reg = &pll->reg_setup;
  969. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  970. data &= ~BIT(5);
  971. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL0,
  972. PHY_CMN_CLK_CFG1, PHY_CMN_PLL_CNTRL, data, 0);
  973. upper_addr |= (upper_8_bit(PHY_CMN_CLK_CFG1) << 0);
  974. upper_addr |= (upper_8_bit(PHY_CMN_PLL_CNTRL) << 1);
  975. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL1,
  976. PHY_CMN_RBUF_CTRL,
  977. (PLL_CORE_INPUT_OVERRIDE + offset),
  978. 0, 0x12);
  979. upper_addr |= (upper_8_bit(PHY_CMN_RBUF_CTRL) << 2);
  980. upper_addr |= (upper_8_bit(PLL_CORE_INPUT_OVERRIDE + offset) << 3);
  981. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL2,
  982. (PLL_DECIMAL_DIV_START_1 + offset),
  983. (PLL_FRAC_DIV_START_LOW_1 + offset),
  984. reg->decimal_div_start, reg->frac_div_start_low);
  985. upper_addr |= (upper_8_bit(PLL_DECIMAL_DIV_START_1 + offset) << 4);
  986. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_LOW_1 + offset) << 5);
  987. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL3,
  988. (PLL_FRAC_DIV_START_MID_1 + offset),
  989. (PLL_FRAC_DIV_START_HIGH_1 + offset),
  990. reg->frac_div_start_mid, reg->frac_div_start_high);
  991. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_MID_1 + offset) << 6);
  992. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_HIGH_1 + offset) << 7);
  993. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL4,
  994. (PLL_SYSTEM_MUXES + offset),
  995. (PLL_PLL_LOCKDET_RATE_1 + offset),
  996. 0xc0, 0x10);
  997. upper_addr |= (upper_8_bit(PLL_SYSTEM_MUXES + offset) << 8);
  998. upper_addr |= (upper_8_bit(PLL_PLL_LOCKDET_RATE_1 + offset) << 9);
  999. data = DSI_PLL_REG_R(rsc->pll_base, PLL_PLL_OUTDIV_RATE) & 0x03;
  1000. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL5,
  1001. (PLL_PLL_OUTDIV_RATE + offset),
  1002. (PLL_PLL_LOCK_DELAY + offset),
  1003. data, 0x06);
  1004. upper_addr |= (upper_8_bit(PLL_PLL_OUTDIV_RATE + offset) << 10);
  1005. upper_addr |= (upper_8_bit(PLL_PLL_LOCK_DELAY + offset) << 11);
  1006. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL6,
  1007. (PLL_CMODE_1 + offset),
  1008. (PLL_CLOCK_INVERTERS_1 + offset),
  1009. pll->cphy_enabled ? 0x00 : 0x10,
  1010. reg->pll_clock_inverters);
  1011. upper_addr |= (upper_8_bit(PLL_CMODE_1 + offset) << 12);
  1012. upper_addr |= (upper_8_bit(PLL_CLOCK_INVERTERS_1 + offset) << 13);
  1013. data = DSI_PLL_REG_R(rsc->pll_base, PLL_VCO_CONFIG_1);
  1014. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL7,
  1015. (PLL_ANALOG_CONTROLS_FIVE_1 + offset),
  1016. (PLL_VCO_CONFIG_1 + offset),
  1017. 0x01, data);
  1018. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE_1 + offset) << 14);
  1019. upper_addr |= (upper_8_bit(PLL_VCO_CONFIG_1 + offset) << 15);
  1020. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL8,
  1021. (PLL_ANALOG_CONTROLS_FIVE + offset),
  1022. (PLL_ANALOG_CONTROLS_TWO + offset), 0x01, 0x03);
  1023. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE + offset) << 16);
  1024. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_TWO + offset) << 17);
  1025. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL9,
  1026. (PLL_ANALOG_CONTROLS_THREE + offset),
  1027. (PLL_DSM_DIVIDER + offset),
  1028. rsc->cache_pll_trim_codes[2], 0x00);
  1029. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_THREE + offset) << 18);
  1030. upper_addr |= (upper_8_bit(PLL_DSM_DIVIDER + offset) << 19);
  1031. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL10,
  1032. (PLL_FEEDBACK_DIVIDER + offset),
  1033. (PLL_CALIBRATION_SETTINGS + offset), 0x4E, 0x40);
  1034. upper_addr |= (upper_8_bit(PLL_FEEDBACK_DIVIDER + offset) << 20);
  1035. upper_addr |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 21);
  1036. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL11,
  1037. (PLL_BAND_SEL_CAL_SETTINGS_THREE + offset),
  1038. (PLL_FREQ_DETECT_SETTINGS_ONE + offset), 0xBA, 0x0C);
  1039. upper_addr |= (upper_8_bit(PLL_BAND_SEL_CAL_SETTINGS_THREE + offset)
  1040. << 22);
  1041. upper_addr |= (upper_8_bit(PLL_FREQ_DETECT_SETTINGS_ONE + offset)
  1042. << 23);
  1043. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL12,
  1044. (PLL_OUTDIV + offset),
  1045. (PLL_CORE_OVERRIDE + offset), 0, 0);
  1046. upper_addr |= (upper_8_bit(PLL_OUTDIV + offset) << 24);
  1047. upper_addr |= (upper_8_bit(PLL_CORE_OVERRIDE + offset) << 25);
  1048. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL13,
  1049. (PLL_PLL_DIGITAL_TIMERS_TWO + offset),
  1050. (PLL_PLL_PROP_GAIN_RATE_1 + offset),
  1051. 0x08, reg->pll_prop_gain_rate);
  1052. upper_addr |= (upper_8_bit(PLL_PLL_DIGITAL_TIMERS_TWO + offset) << 26);
  1053. upper_addr |= (upper_8_bit(PLL_PLL_PROP_GAIN_RATE_1 + offset) << 27);
  1054. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL14,
  1055. (PLL_PLL_BAND_SEL_RATE_1 + offset),
  1056. (PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset),
  1057. 0xC0, 0x82);
  1058. upper_addr |= (upper_8_bit(PLL_PLL_BAND_SEL_RATE_1 + offset) << 28);
  1059. upper_addr |= (upper_8_bit(PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset)
  1060. << 29);
  1061. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL15,
  1062. (PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset),
  1063. (PLL_PLL_LOCK_OVERRIDE + offset),
  1064. 0x4c, 0x80);
  1065. upper_addr |= (upper_8_bit(PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset)
  1066. << 30);
  1067. upper_addr |= (upper_8_bit(PLL_PLL_LOCK_OVERRIDE + offset) << 31);
  1068. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL16,
  1069. (PLL_PFILT + offset),
  1070. (PLL_IFILT + offset),
  1071. 0x29, 0x3f);
  1072. upper_addr2 |= (upper_8_bit(PLL_PFILT + offset) << 0);
  1073. upper_addr2 |= (upper_8_bit(PLL_IFILT + offset) << 1);
  1074. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL17,
  1075. (PLL_SYSTEM_MUXES + offset),
  1076. (PLL_CALIBRATION_SETTINGS + offset),
  1077. 0xe0, 0x44);
  1078. upper_addr2 |= (upper_8_bit(PLL_BAND_SEL_CAL + offset) << 2);
  1079. upper_addr2 |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 3);
  1080. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG0);
  1081. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL18,
  1082. PHY_CMN_CTRL_2, PHY_CMN_CLK_CFG0, 0x40, data);
  1083. if (rsc->slave)
  1084. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1085. DSI_DYNAMIC_REFRESH_PLL_CTRL10,
  1086. PHY_CMN_CLK_CFG0, PHY_CMN_CTRL_0,
  1087. data, 0x7f);
  1088. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL27,
  1089. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1090. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL28,
  1091. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1092. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL29,
  1093. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1094. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1) | BIT(5);
  1095. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL30,
  1096. PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL, data, 0x01);
  1097. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL31,
  1098. PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1, data, data);
  1099. if (rsc->slave) {
  1100. data = DSI_PLL_REG_R(rsc->slave->phy_base, PHY_CMN_CLK_CFG1) |
  1101. BIT(5);
  1102. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1103. DSI_DYNAMIC_REFRESH_PLL_CTRL30,
  1104. PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL,
  1105. data, 0x01);
  1106. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1107. DSI_DYNAMIC_REFRESH_PLL_CTRL31,
  1108. PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1,
  1109. data, data);
  1110. }
  1111. DSI_PLL_REG_W(rsc->dyn_pll_base,
  1112. DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR, upper_addr);
  1113. DSI_PLL_REG_W(rsc->dyn_pll_base,
  1114. DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR2, upper_addr2);
  1115. wmb(); /* commit register writes */
  1116. }
  1117. static int dsi_pll_5nm_dynamic_clk_vco_set_rate(struct dsi_pll_resource *rsc)
  1118. {
  1119. int rc;
  1120. struct dsi_pll_5nm *pll;
  1121. u32 rate;
  1122. if (!rsc) {
  1123. DSI_PLL_ERR(rsc, "pll resource not found\n");
  1124. return -EINVAL;
  1125. }
  1126. rate = rsc->vco_rate;
  1127. pll = rsc->priv;
  1128. if (!pll) {
  1129. DSI_PLL_ERR(rsc, "pll configuration not found\n");
  1130. return -EINVAL;
  1131. }
  1132. rc = dsi_pll_read_stored_trim_codes(rsc, rate);
  1133. if (rc) {
  1134. DSI_PLL_ERR(rsc, "cannot find pll codes rate=%ld\n", rate);
  1135. return -EINVAL;
  1136. }
  1137. DSI_PLL_DBG(rsc, "ndx=%d, rate=%lu\n", rate);
  1138. rsc->vco_current_rate = rate;
  1139. dsi_pll_setup_config(pll, rsc);
  1140. dsi_pll_calc_dec_frac(pll, rsc);
  1141. /* program dynamic refresh control registers */
  1142. dsi_pll_5nm_dynamic_refresh(pll, rsc);
  1143. return 0;
  1144. }
  1145. static int dsi_pll_5nm_enable(struct dsi_pll_resource *rsc)
  1146. {
  1147. int rc = 0;
  1148. /* Start PLL */
  1149. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0x01);
  1150. /*
  1151. * ensure all PLL configurations are written prior to checking
  1152. * for PLL lock.
  1153. */
  1154. wmb();
  1155. /* Check for PLL lock */
  1156. rc = dsi_pll_5nm_lock_status(rsc);
  1157. if (rc) {
  1158. DSI_PLL_ERR(rsc, "lock failed\n");
  1159. goto error;
  1160. }
  1161. rsc->pll_on = true;
  1162. /*
  1163. * assert power on reset for PHY digital in case the PLL is
  1164. * enabled after CX of analog domain power collapse. This needs
  1165. * to be done before enabling the global clk.
  1166. */
  1167. dsi_pll_phy_dig_reset(rsc);
  1168. if (rsc->slave)
  1169. dsi_pll_phy_dig_reset(rsc->slave);
  1170. dsi_pll_enable_global_clk(rsc);
  1171. if (rsc->slave)
  1172. dsi_pll_enable_global_clk(rsc->slave);
  1173. /* flush, ensure all register writes are done*/
  1174. wmb();
  1175. error:
  1176. return rc;
  1177. }
  1178. static int dsi_pll_5nm_disable(struct dsi_pll_resource *rsc)
  1179. {
  1180. int rc = 0;
  1181. if (!rsc->pll_on) {
  1182. DSI_PLL_ERR(rsc, "is not enabled\n");
  1183. return -EINVAL;
  1184. }
  1185. DSI_PLL_DBG(rsc, "stop PLL\n");
  1186. /*
  1187. * To avoid any stray glitches while
  1188. * abruptly powering down the PLL
  1189. * make sure to gate the clock using
  1190. * the clock enable bit before powering
  1191. * down the PLL
  1192. */
  1193. dsi_pll_disable_global_clk(rsc);
  1194. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0);
  1195. dsi_pll_disable_sub(rsc);
  1196. if (rsc->slave) {
  1197. dsi_pll_disable_global_clk(rsc->slave);
  1198. dsi_pll_disable_sub(rsc->slave);
  1199. }
  1200. /* flush, ensure all register writes are done*/
  1201. wmb();
  1202. rsc->pll_on = false;
  1203. return rc;
  1204. }
  1205. int dsi_pll_5nm_configure(void *pll, bool commit)
  1206. {
  1207. int rc = 0;
  1208. struct dsi_pll_resource *rsc = (struct dsi_pll_resource *)pll;
  1209. /* PLL power needs to be enabled before accessing PLL registers */
  1210. dsi_pll_enable_pll_bias(rsc);
  1211. if (rsc->slave)
  1212. dsi_pll_enable_pll_bias(rsc->slave);
  1213. dsi_pll_init_val(rsc);
  1214. rc = dsi_pll_5nm_set_byteclk_div(rsc, commit);
  1215. if (commit) {
  1216. rc = dsi_pll_5nm_set_pclk_div(rsc, commit);
  1217. rc = dsi_pll_5nm_vco_set_rate(rsc);
  1218. } else {
  1219. rc = dsi_pll_5nm_dynamic_clk_vco_set_rate(rsc);
  1220. }
  1221. return 0;
  1222. }
  1223. int dsi_pll_5nm_toggle(void *pll, bool prepare)
  1224. {
  1225. int rc = 0;
  1226. struct dsi_pll_resource *pll_res = (struct dsi_pll_resource *)pll;
  1227. if (!pll_res) {
  1228. DSI_PLL_ERR(pll_res, "dsi pll resources are not available\n");
  1229. return -EINVAL;
  1230. }
  1231. if (prepare) {
  1232. rc = dsi_pll_5nm_enable(pll_res);
  1233. if (rc)
  1234. DSI_PLL_ERR(pll_res, "enable failed: %d\n", rc);
  1235. } else {
  1236. rc = dsi_pll_5nm_disable(pll_res);
  1237. if (rc)
  1238. DSI_PLL_ERR(pll_res, "disable failed: %d\n", rc);
  1239. }
  1240. return rc;
  1241. }