dp_rx.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. #ifdef RX_DESC_SANITY_WAR
  86. static inline
  87. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  88. hal_ring_handle_t hal_ring_hdl,
  89. hal_ring_desc_t ring_desc,
  90. struct dp_rx_desc *rx_desc)
  91. {
  92. uint8_t return_buffer_manager;
  93. if (qdf_unlikely(!rx_desc)) {
  94. /*
  95. * This is an unlikely case where the cookie obtained
  96. * from the ring_desc is invalid and hence we are not
  97. * able to find the corresponding rx_desc
  98. */
  99. goto fail;
  100. }
  101. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  102. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  103. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  104. goto fail;
  105. }
  106. return QDF_STATUS_SUCCESS;
  107. fail:
  108. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  109. dp_err("Ring Desc:");
  110. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  111. ring_desc);
  112. return QDF_STATUS_E_NULL_VALUE;
  113. }
  114. #else
  115. static inline
  116. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  117. hal_ring_handle_t hal_ring_hdl,
  118. hal_ring_desc_t ring_desc,
  119. struct dp_rx_desc *rx_desc)
  120. {
  121. return QDF_STATUS_SUCCESS;
  122. }
  123. #endif
  124. /*
  125. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  126. * called during dp rx initialization
  127. * and at the end of dp_rx_process.
  128. *
  129. * @soc: core txrx main context
  130. * @mac_id: mac_id which is one of 3 mac_ids
  131. * @dp_rxdma_srng: dp rxdma circular ring
  132. * @rx_desc_pool: Pointer to free Rx descriptor pool
  133. * @num_req_buffers: number of buffer to be replenished
  134. * @desc_list: list of descs if called from dp_rx_process
  135. * or NULL during dp rx initialization or out of buffer
  136. * interrupt.
  137. * @tail: tail of descs list
  138. * @func_name: name of the caller function
  139. * Return: return success or failure
  140. */
  141. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  142. struct dp_srng *dp_rxdma_srng,
  143. struct rx_desc_pool *rx_desc_pool,
  144. uint32_t num_req_buffers,
  145. union dp_rx_desc_list_elem_t **desc_list,
  146. union dp_rx_desc_list_elem_t **tail,
  147. const char *func_name)
  148. {
  149. uint32_t num_alloc_desc;
  150. uint16_t num_desc_to_free = 0;
  151. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  152. uint32_t num_entries_avail;
  153. uint32_t count;
  154. int sync_hw_ptr = 1;
  155. qdf_dma_addr_t paddr;
  156. qdf_nbuf_t rx_netbuf;
  157. void *rxdma_ring_entry;
  158. union dp_rx_desc_list_elem_t *next;
  159. QDF_STATUS ret;
  160. uint16_t buf_size = rx_desc_pool->buf_size;
  161. uint8_t buf_alignment = rx_desc_pool->buf_alignment;
  162. void *rxdma_srng;
  163. rxdma_srng = dp_rxdma_srng->hal_srng;
  164. if (!rxdma_srng) {
  165. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  166. "rxdma srng not initialized");
  167. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  168. return QDF_STATUS_E_FAILURE;
  169. }
  170. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  171. "requested %d buffers for replenish", num_req_buffers);
  172. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  173. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  174. rxdma_srng,
  175. sync_hw_ptr);
  176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  177. "no of available entries in rxdma ring: %d",
  178. num_entries_avail);
  179. if (!(*desc_list) && (num_entries_avail >
  180. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  181. num_req_buffers = num_entries_avail;
  182. } else if (num_entries_avail < num_req_buffers) {
  183. num_desc_to_free = num_req_buffers - num_entries_avail;
  184. num_req_buffers = num_entries_avail;
  185. }
  186. if (qdf_unlikely(!num_req_buffers)) {
  187. num_desc_to_free = num_req_buffers;
  188. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  189. goto free_descs;
  190. }
  191. /*
  192. * if desc_list is NULL, allocate the descs from freelist
  193. */
  194. if (!(*desc_list)) {
  195. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  196. rx_desc_pool,
  197. num_req_buffers,
  198. desc_list,
  199. tail);
  200. if (!num_alloc_desc) {
  201. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  202. "no free rx_descs in freelist");
  203. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  204. num_req_buffers);
  205. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  206. return QDF_STATUS_E_NOMEM;
  207. }
  208. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  209. "%d rx desc allocated", num_alloc_desc);
  210. num_req_buffers = num_alloc_desc;
  211. }
  212. count = 0;
  213. while (count < num_req_buffers) {
  214. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  215. buf_size,
  216. RX_BUFFER_RESERVATION,
  217. buf_alignment,
  218. FALSE);
  219. if (qdf_unlikely(!rx_netbuf)) {
  220. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  221. break;
  222. }
  223. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, rx_netbuf,
  224. QDF_DMA_FROM_DEVICE, buf_size);
  225. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  226. qdf_nbuf_free(rx_netbuf);
  227. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  228. continue;
  229. }
  230. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  231. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  232. /*
  233. * check if the physical address of nbuf->data is
  234. * less then 0x50000000 then free the nbuf and try
  235. * allocating new nbuf. We can try for 100 times.
  236. * this is a temp WAR till we fix it properly.
  237. */
  238. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, rx_desc_pool);
  239. if (ret == QDF_STATUS_E_FAILURE) {
  240. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  241. break;
  242. }
  243. count++;
  244. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  245. rxdma_srng);
  246. qdf_assert_always(rxdma_ring_entry);
  247. next = (*desc_list)->next;
  248. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  249. /* rx_desc.in_use should be zero at this time*/
  250. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  251. (*desc_list)->rx_desc.in_use = 1;
  252. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  253. func_name, RX_DESC_REPLENISHED);
  254. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  255. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  256. (unsigned long long)paddr,
  257. (*desc_list)->rx_desc.cookie);
  258. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  259. (*desc_list)->rx_desc.cookie,
  260. rx_desc_pool->owner);
  261. *desc_list = next;
  262. }
  263. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  264. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  265. count, num_desc_to_free);
  266. /* No need to count the number of bytes received during replenish.
  267. * Therefore set replenish.pkts.bytes as 0.
  268. */
  269. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  270. free_descs:
  271. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  272. /*
  273. * add any available free desc back to the free list
  274. */
  275. if (*desc_list)
  276. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  277. mac_id, rx_desc_pool);
  278. return QDF_STATUS_SUCCESS;
  279. }
  280. /*
  281. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  282. * pkts to RAW mode simulation to
  283. * decapsulate the pkt.
  284. *
  285. * @vdev: vdev on which RAW mode is enabled
  286. * @nbuf_list: list of RAW pkts to process
  287. * @peer: peer object from which the pkt is rx
  288. *
  289. * Return: void
  290. */
  291. void
  292. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  293. struct dp_peer *peer)
  294. {
  295. qdf_nbuf_t deliver_list_head = NULL;
  296. qdf_nbuf_t deliver_list_tail = NULL;
  297. qdf_nbuf_t nbuf;
  298. nbuf = nbuf_list;
  299. while (nbuf) {
  300. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  301. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  302. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  303. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  304. /*
  305. * reset the chfrag_start and chfrag_end bits in nbuf cb
  306. * as this is a non-amsdu pkt and RAW mode simulation expects
  307. * these bit s to be 0 for non-amsdu pkt.
  308. */
  309. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  310. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  311. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  312. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  313. }
  314. nbuf = next;
  315. }
  316. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  317. &deliver_list_tail, peer->mac_addr.raw);
  318. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  319. }
  320. #ifdef DP_LFR
  321. /*
  322. * In case of LFR, data of a new peer might be sent up
  323. * even before peer is added.
  324. */
  325. static inline struct dp_vdev *
  326. dp_get_vdev_from_peer(struct dp_soc *soc,
  327. uint16_t peer_id,
  328. struct dp_peer *peer,
  329. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  330. {
  331. struct dp_vdev *vdev;
  332. uint8_t vdev_id;
  333. if (unlikely(!peer)) {
  334. if (peer_id != HTT_INVALID_PEER) {
  335. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  336. mpdu_desc_info.peer_meta_data);
  337. QDF_TRACE(QDF_MODULE_ID_DP,
  338. QDF_TRACE_LEVEL_DEBUG,
  339. FL("PeerID %d not found use vdevID %d"),
  340. peer_id, vdev_id);
  341. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  342. vdev_id);
  343. } else {
  344. QDF_TRACE(QDF_MODULE_ID_DP,
  345. QDF_TRACE_LEVEL_DEBUG,
  346. FL("Invalid PeerID %d"),
  347. peer_id);
  348. return NULL;
  349. }
  350. } else {
  351. vdev = peer->vdev;
  352. }
  353. return vdev;
  354. }
  355. #else
  356. static inline struct dp_vdev *
  357. dp_get_vdev_from_peer(struct dp_soc *soc,
  358. uint16_t peer_id,
  359. struct dp_peer *peer,
  360. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  361. {
  362. if (unlikely(!peer)) {
  363. QDF_TRACE(QDF_MODULE_ID_DP,
  364. QDF_TRACE_LEVEL_DEBUG,
  365. FL("Peer not found for peerID %d"),
  366. peer_id);
  367. return NULL;
  368. } else {
  369. return peer->vdev;
  370. }
  371. }
  372. #endif
  373. #ifndef FEATURE_WDS
  374. static void
  375. dp_rx_da_learn(struct dp_soc *soc,
  376. uint8_t *rx_tlv_hdr,
  377. struct dp_peer *ta_peer,
  378. qdf_nbuf_t nbuf)
  379. {
  380. }
  381. #endif
  382. /*
  383. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  384. *
  385. * @soc: core txrx main context
  386. * @ta_peer : source peer entry
  387. * @rx_tlv_hdr : start address of rx tlvs
  388. * @nbuf : nbuf that has to be intrabss forwarded
  389. *
  390. * Return: bool: true if it is forwarded else false
  391. */
  392. static bool
  393. dp_rx_intrabss_fwd(struct dp_soc *soc,
  394. struct dp_peer *ta_peer,
  395. uint8_t *rx_tlv_hdr,
  396. qdf_nbuf_t nbuf,
  397. struct hal_rx_msdu_metadata msdu_metadata)
  398. {
  399. uint16_t len;
  400. uint8_t is_frag;
  401. struct dp_peer *da_peer;
  402. struct dp_ast_entry *ast_entry;
  403. qdf_nbuf_t nbuf_copy;
  404. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  405. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  406. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  407. tid_stats.tid_rx_stats[ring_id][tid];
  408. /* check if the destination peer is available in peer table
  409. * and also check if the source peer and destination peer
  410. * belong to the same vap and destination peer is not bss peer.
  411. */
  412. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  413. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  414. if (!ast_entry)
  415. return false;
  416. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  417. ast_entry->is_active = TRUE;
  418. return false;
  419. }
  420. da_peer = ast_entry->peer;
  421. if (!da_peer)
  422. return false;
  423. /* TA peer cannot be same as peer(DA) on which AST is present
  424. * this indicates a change in topology and that AST entries
  425. * are yet to be updated.
  426. */
  427. if (da_peer == ta_peer)
  428. return false;
  429. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  430. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  431. is_frag = qdf_nbuf_is_frag(nbuf);
  432. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  433. /* linearize the nbuf just before we send to
  434. * dp_tx_send()
  435. */
  436. if (qdf_unlikely(is_frag)) {
  437. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  438. return false;
  439. nbuf = qdf_nbuf_unshare(nbuf);
  440. if (!nbuf) {
  441. DP_STATS_INC_PKT(ta_peer,
  442. rx.intra_bss.fail,
  443. 1,
  444. len);
  445. /* return true even though the pkt is
  446. * not forwarded. Basically skb_unshare
  447. * failed and we want to continue with
  448. * next nbuf.
  449. */
  450. tid_stats->fail_cnt[INTRABSS_DROP]++;
  451. return true;
  452. }
  453. }
  454. if (!dp_tx_send((struct cdp_soc_t *)soc,
  455. ta_peer->vdev->vdev_id, nbuf)) {
  456. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  457. len);
  458. return true;
  459. } else {
  460. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  461. len);
  462. tid_stats->fail_cnt[INTRABSS_DROP]++;
  463. return false;
  464. }
  465. }
  466. }
  467. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  468. * source, then clone the pkt and send the cloned pkt for
  469. * intra BSS forwarding and original pkt up the network stack
  470. * Note: how do we handle multicast pkts. do we forward
  471. * all multicast pkts as is or let a higher layer module
  472. * like igmpsnoop decide whether to forward or not with
  473. * Mcast enhancement.
  474. */
  475. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  476. !ta_peer->bss_peer))) {
  477. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  478. goto end;
  479. nbuf_copy = qdf_nbuf_copy(nbuf);
  480. if (!nbuf_copy)
  481. goto end;
  482. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  483. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  484. /* Set cb->ftype to intrabss FWD */
  485. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  486. if (dp_tx_send((struct cdp_soc_t *)soc,
  487. ta_peer->vdev->vdev_id, nbuf_copy)) {
  488. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  489. tid_stats->fail_cnt[INTRABSS_DROP]++;
  490. qdf_nbuf_free(nbuf_copy);
  491. } else {
  492. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  493. tid_stats->intrabss_cnt++;
  494. }
  495. }
  496. end:
  497. /* return false as we have to still send the original pkt
  498. * up the stack
  499. */
  500. return false;
  501. }
  502. #ifdef MESH_MODE_SUPPORT
  503. /**
  504. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  505. *
  506. * @vdev: DP Virtual device handle
  507. * @nbuf: Buffer pointer
  508. * @rx_tlv_hdr: start of rx tlv header
  509. * @peer: pointer to peer
  510. *
  511. * This function allocated memory for mesh receive stats and fill the
  512. * required stats. Stores the memory address in skb cb.
  513. *
  514. * Return: void
  515. */
  516. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  517. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  518. {
  519. struct mesh_recv_hdr_s *rx_info = NULL;
  520. uint32_t pkt_type;
  521. uint32_t nss;
  522. uint32_t rate_mcs;
  523. uint32_t bw;
  524. uint8_t primary_chan_num;
  525. uint32_t center_chan_freq;
  526. struct dp_soc *soc;
  527. /* fill recv mesh stats */
  528. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  529. /* upper layers are resposible to free this memory */
  530. if (!rx_info) {
  531. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  532. "Memory allocation failed for mesh rx stats");
  533. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  534. return;
  535. }
  536. rx_info->rs_flags = MESH_RXHDR_VER1;
  537. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  538. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  539. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  540. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  541. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  542. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  543. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  544. if (vdev->osif_get_key)
  545. vdev->osif_get_key(vdev->osif_vdev,
  546. &rx_info->rs_decryptkey[0],
  547. &peer->mac_addr.raw[0],
  548. rx_info->rs_keyix);
  549. }
  550. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  551. soc = vdev->pdev->soc;
  552. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  553. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  554. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  555. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  556. soc->ctrl_psoc,
  557. vdev->pdev->pdev_id,
  558. center_chan_freq);
  559. }
  560. rx_info->rs_channel = primary_chan_num;
  561. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  562. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  563. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  564. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  565. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  566. (bw << 24);
  567. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  568. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  569. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  570. rx_info->rs_flags,
  571. rx_info->rs_rssi,
  572. rx_info->rs_channel,
  573. rx_info->rs_ratephy1,
  574. rx_info->rs_keyix);
  575. }
  576. /**
  577. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  578. *
  579. * @vdev: DP Virtual device handle
  580. * @nbuf: Buffer pointer
  581. * @rx_tlv_hdr: start of rx tlv header
  582. *
  583. * This checks if the received packet is matching any filter out
  584. * catogery and and drop the packet if it matches.
  585. *
  586. * Return: status(0 indicates drop, 1 indicate to no drop)
  587. */
  588. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  589. uint8_t *rx_tlv_hdr)
  590. {
  591. union dp_align_mac_addr mac_addr;
  592. struct dp_soc *soc = vdev->pdev->soc;
  593. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  594. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  595. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  596. rx_tlv_hdr))
  597. return QDF_STATUS_SUCCESS;
  598. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  599. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  600. rx_tlv_hdr))
  601. return QDF_STATUS_SUCCESS;
  602. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  603. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  604. rx_tlv_hdr) &&
  605. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  606. rx_tlv_hdr))
  607. return QDF_STATUS_SUCCESS;
  608. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  609. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  610. rx_tlv_hdr,
  611. &mac_addr.raw[0]))
  612. return QDF_STATUS_E_FAILURE;
  613. if (!qdf_mem_cmp(&mac_addr.raw[0],
  614. &vdev->mac_addr.raw[0],
  615. QDF_MAC_ADDR_SIZE))
  616. return QDF_STATUS_SUCCESS;
  617. }
  618. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  619. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  620. rx_tlv_hdr,
  621. &mac_addr.raw[0]))
  622. return QDF_STATUS_E_FAILURE;
  623. if (!qdf_mem_cmp(&mac_addr.raw[0],
  624. &vdev->mac_addr.raw[0],
  625. QDF_MAC_ADDR_SIZE))
  626. return QDF_STATUS_SUCCESS;
  627. }
  628. }
  629. return QDF_STATUS_E_FAILURE;
  630. }
  631. #else
  632. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  633. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  634. {
  635. }
  636. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  637. uint8_t *rx_tlv_hdr)
  638. {
  639. return QDF_STATUS_E_FAILURE;
  640. }
  641. #endif
  642. #ifdef FEATURE_NAC_RSSI
  643. /**
  644. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  645. * clients
  646. * @pdev: DP pdev handle
  647. * @rx_pkt_hdr: Rx packet Header
  648. *
  649. * return: dp_vdev*
  650. */
  651. static
  652. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  653. uint8_t *rx_pkt_hdr)
  654. {
  655. struct ieee80211_frame *wh;
  656. struct dp_neighbour_peer *peer = NULL;
  657. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  658. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  659. return NULL;
  660. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  661. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  662. neighbour_peer_list_elem) {
  663. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  664. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  665. QDF_TRACE(
  666. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  667. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  668. peer->neighbour_peers_macaddr.raw[0],
  669. peer->neighbour_peers_macaddr.raw[1],
  670. peer->neighbour_peers_macaddr.raw[2],
  671. peer->neighbour_peers_macaddr.raw[3],
  672. peer->neighbour_peers_macaddr.raw[4],
  673. peer->neighbour_peers_macaddr.raw[5]);
  674. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  675. return pdev->monitor_vdev;
  676. }
  677. }
  678. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  679. return NULL;
  680. }
  681. /**
  682. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  683. * @soc: DP SOC handle
  684. * @mpdu: mpdu for which peer is invalid
  685. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  686. * pool_id has same mapping)
  687. *
  688. * return: integer type
  689. */
  690. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  691. uint8_t mac_id)
  692. {
  693. struct dp_invalid_peer_msg msg;
  694. struct dp_vdev *vdev = NULL;
  695. struct dp_pdev *pdev = NULL;
  696. struct ieee80211_frame *wh;
  697. qdf_nbuf_t curr_nbuf, next_nbuf;
  698. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  699. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  700. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  701. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  702. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  703. "Drop decapped frames");
  704. goto free;
  705. }
  706. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  707. if (!DP_FRAME_IS_DATA(wh)) {
  708. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  709. "NAWDS valid only for data frames");
  710. goto free;
  711. }
  712. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  713. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  714. "Invalid nbuf length");
  715. goto free;
  716. }
  717. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  718. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  719. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  720. "PDEV %s", !pdev ? "not found" : "down");
  721. goto free;
  722. }
  723. if (pdev->filter_neighbour_peers) {
  724. /* Next Hop scenario not yet handle */
  725. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  726. if (vdev) {
  727. dp_rx_mon_deliver(soc, pdev->pdev_id,
  728. pdev->invalid_peer_head_msdu,
  729. pdev->invalid_peer_tail_msdu);
  730. pdev->invalid_peer_head_msdu = NULL;
  731. pdev->invalid_peer_tail_msdu = NULL;
  732. return 0;
  733. }
  734. }
  735. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  736. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  737. QDF_MAC_ADDR_SIZE) == 0) {
  738. goto out;
  739. }
  740. }
  741. if (!vdev) {
  742. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  743. "VDEV not found");
  744. goto free;
  745. }
  746. out:
  747. msg.wh = wh;
  748. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  749. msg.nbuf = mpdu;
  750. msg.vdev_id = vdev->vdev_id;
  751. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  752. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  753. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  754. pdev->pdev_id, &msg);
  755. free:
  756. /* Drop and free packet */
  757. curr_nbuf = mpdu;
  758. while (curr_nbuf) {
  759. next_nbuf = qdf_nbuf_next(curr_nbuf);
  760. qdf_nbuf_free(curr_nbuf);
  761. curr_nbuf = next_nbuf;
  762. }
  763. return 0;
  764. }
  765. /**
  766. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  767. * @soc: DP SOC handle
  768. * @mpdu: mpdu for which peer is invalid
  769. * @mpdu_done: if an mpdu is completed
  770. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  771. * pool_id has same mapping)
  772. *
  773. * return: integer type
  774. */
  775. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  776. qdf_nbuf_t mpdu, bool mpdu_done,
  777. uint8_t mac_id)
  778. {
  779. /* Only trigger the process when mpdu is completed */
  780. if (mpdu_done)
  781. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  782. }
  783. #else
  784. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  785. uint8_t mac_id)
  786. {
  787. qdf_nbuf_t curr_nbuf, next_nbuf;
  788. struct dp_pdev *pdev;
  789. struct dp_vdev *vdev = NULL;
  790. struct ieee80211_frame *wh;
  791. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  792. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  793. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  794. if (!DP_FRAME_IS_DATA(wh)) {
  795. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  796. "only for data frames");
  797. goto free;
  798. }
  799. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  800. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  801. "Invalid nbuf length");
  802. goto free;
  803. }
  804. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  805. if (!pdev) {
  806. QDF_TRACE(QDF_MODULE_ID_DP,
  807. QDF_TRACE_LEVEL_ERROR,
  808. "PDEV not found");
  809. goto free;
  810. }
  811. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  812. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  813. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  814. QDF_MAC_ADDR_SIZE) == 0) {
  815. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  816. goto out;
  817. }
  818. }
  819. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  820. if (!vdev) {
  821. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  822. "VDEV not found");
  823. goto free;
  824. }
  825. out:
  826. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  827. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  828. free:
  829. /* reset the head and tail pointers */
  830. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  831. if (pdev) {
  832. pdev->invalid_peer_head_msdu = NULL;
  833. pdev->invalid_peer_tail_msdu = NULL;
  834. }
  835. /* Drop and free packet */
  836. curr_nbuf = mpdu;
  837. while (curr_nbuf) {
  838. next_nbuf = qdf_nbuf_next(curr_nbuf);
  839. qdf_nbuf_free(curr_nbuf);
  840. curr_nbuf = next_nbuf;
  841. }
  842. /* Reset the head and tail pointers */
  843. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  844. if (pdev) {
  845. pdev->invalid_peer_head_msdu = NULL;
  846. pdev->invalid_peer_tail_msdu = NULL;
  847. }
  848. return 0;
  849. }
  850. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  851. qdf_nbuf_t mpdu, bool mpdu_done,
  852. uint8_t mac_id)
  853. {
  854. /* Process the nbuf */
  855. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  856. }
  857. #endif
  858. #ifdef RECEIVE_OFFLOAD
  859. /**
  860. * dp_rx_print_offload_info() - Print offload info from RX TLV
  861. * @soc: dp soc handle
  862. * @rx_tlv: RX TLV for which offload information is to be printed
  863. *
  864. * Return: None
  865. */
  866. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  867. {
  868. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  869. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  870. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  871. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  872. rx_tlv));
  873. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  874. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  875. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  876. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  877. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  878. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  879. dp_verbose_debug("---------------------------------------------------------");
  880. }
  881. /**
  882. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  883. * @soc: DP SOC handle
  884. * @rx_tlv: RX TLV received for the msdu
  885. * @msdu: msdu for which GRO info needs to be filled
  886. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  887. *
  888. * Return: None
  889. */
  890. static
  891. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  892. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  893. {
  894. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  895. return;
  896. /* Filling up RX offload info only for TCP packets */
  897. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  898. return;
  899. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  900. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  901. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  902. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  903. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  904. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  905. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  906. rx_tlv);
  907. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  908. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  909. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  910. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  911. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  912. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  913. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  914. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  915. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  916. HAL_RX_TLV_GET_IPV6(rx_tlv);
  917. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  918. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  919. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  920. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  921. dp_rx_print_offload_info(soc, rx_tlv);
  922. }
  923. #else
  924. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  925. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  926. {
  927. }
  928. #endif /* RECEIVE_OFFLOAD */
  929. /**
  930. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  931. *
  932. * @nbuf: pointer to msdu.
  933. * @mpdu_len: mpdu length
  934. *
  935. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  936. */
  937. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  938. {
  939. bool last_nbuf;
  940. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  941. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  942. last_nbuf = false;
  943. } else {
  944. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  945. last_nbuf = true;
  946. }
  947. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  948. return last_nbuf;
  949. }
  950. /**
  951. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  952. * multiple nbufs.
  953. * @nbuf: pointer to the first msdu of an amsdu.
  954. *
  955. * This function implements the creation of RX frag_list for cases
  956. * where an MSDU is spread across multiple nbufs.
  957. *
  958. * Return: returns the head nbuf which contains complete frag_list.
  959. */
  960. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  961. {
  962. qdf_nbuf_t parent, frag_list, next = NULL;
  963. uint16_t frag_list_len = 0;
  964. uint16_t mpdu_len;
  965. bool last_nbuf;
  966. /*
  967. * Use msdu len got from REO entry descriptor instead since
  968. * there is case the RX PKT TLV is corrupted while msdu_len
  969. * from REO descriptor is right for non-raw RX scatter msdu.
  970. */
  971. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  972. /*
  973. * this is a case where the complete msdu fits in one single nbuf.
  974. * in this case HW sets both start and end bit and we only need to
  975. * reset these bits for RAW mode simulator to decap the pkt
  976. */
  977. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  978. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  979. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  980. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  981. return nbuf;
  982. }
  983. /*
  984. * This is a case where we have multiple msdus (A-MSDU) spread across
  985. * multiple nbufs. here we create a fraglist out of these nbufs.
  986. *
  987. * the moment we encounter a nbuf with continuation bit set we
  988. * know for sure we have an MSDU which is spread across multiple
  989. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  990. */
  991. parent = nbuf;
  992. frag_list = nbuf->next;
  993. nbuf = nbuf->next;
  994. /*
  995. * set the start bit in the first nbuf we encounter with continuation
  996. * bit set. This has the proper mpdu length set as it is the first
  997. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  998. * nbufs will form the frag_list of the parent nbuf.
  999. */
  1000. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1001. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1002. /*
  1003. * this is where we set the length of the fragments which are
  1004. * associated to the parent nbuf. We iterate through the frag_list
  1005. * till we hit the last_nbuf of the list.
  1006. */
  1007. do {
  1008. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1009. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1010. frag_list_len += qdf_nbuf_len(nbuf);
  1011. if (last_nbuf) {
  1012. next = nbuf->next;
  1013. nbuf->next = NULL;
  1014. break;
  1015. }
  1016. nbuf = nbuf->next;
  1017. } while (!last_nbuf);
  1018. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1019. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1020. parent->next = next;
  1021. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1022. return parent;
  1023. }
  1024. /**
  1025. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1026. * to pass in correct fields
  1027. *
  1028. * @vdev: pdev handle
  1029. * @tx_desc: tx descriptor
  1030. * @tid: tid value
  1031. * Return: none
  1032. */
  1033. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1034. {
  1035. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1036. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1037. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1038. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1039. uint32_t interframe_delay =
  1040. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1041. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1042. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1043. /*
  1044. * Update interframe delay stats calculated at deliver_data_ol point.
  1045. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1046. * interframe delay will not be calculate correctly for 1st frame.
  1047. * On the other side, this will help in avoiding extra per packet check
  1048. * of vdev->prev_rx_deliver_tstamp.
  1049. */
  1050. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1051. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1052. vdev->prev_rx_deliver_tstamp = current_ts;
  1053. }
  1054. /**
  1055. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1056. * @pdev: dp pdev reference
  1057. * @buf_list: buffer list to be dropepd
  1058. *
  1059. * Return: int (number of bufs dropped)
  1060. */
  1061. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1062. qdf_nbuf_t buf_list)
  1063. {
  1064. struct cdp_tid_rx_stats *stats = NULL;
  1065. uint8_t tid = 0, ring_id = 0;
  1066. int num_dropped = 0;
  1067. qdf_nbuf_t buf, next_buf;
  1068. buf = buf_list;
  1069. while (buf) {
  1070. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1071. next_buf = qdf_nbuf_queue_next(buf);
  1072. tid = qdf_nbuf_get_tid_val(buf);
  1073. if (qdf_likely(pdev)) {
  1074. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1075. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1076. stats->delivered_to_stack--;
  1077. }
  1078. qdf_nbuf_free(buf);
  1079. buf = next_buf;
  1080. num_dropped++;
  1081. }
  1082. return num_dropped;
  1083. }
  1084. #ifdef PEER_CACHE_RX_PKTS
  1085. /**
  1086. * dp_rx_flush_rx_cached() - flush cached rx frames
  1087. * @peer: peer
  1088. * @drop: flag to drop frames or forward to net stack
  1089. *
  1090. * Return: None
  1091. */
  1092. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1093. {
  1094. struct dp_peer_cached_bufq *bufqi;
  1095. struct dp_rx_cached_buf *cache_buf = NULL;
  1096. ol_txrx_rx_fp data_rx = NULL;
  1097. int num_buff_elem;
  1098. QDF_STATUS status;
  1099. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1100. qdf_atomic_dec(&peer->flush_in_progress);
  1101. return;
  1102. }
  1103. qdf_spin_lock_bh(&peer->peer_info_lock);
  1104. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1105. data_rx = peer->vdev->osif_rx;
  1106. else
  1107. drop = true;
  1108. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1109. bufqi = &peer->bufq_info;
  1110. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1111. qdf_list_remove_front(&bufqi->cached_bufq,
  1112. (qdf_list_node_t **)&cache_buf);
  1113. while (cache_buf) {
  1114. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1115. cache_buf->buf);
  1116. bufqi->entries -= num_buff_elem;
  1117. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1118. if (drop) {
  1119. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1120. cache_buf->buf);
  1121. } else {
  1122. /* Flush the cached frames to OSIF DEV */
  1123. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1124. if (status != QDF_STATUS_SUCCESS)
  1125. bufqi->dropped = dp_rx_drop_nbuf_list(
  1126. peer->vdev->pdev,
  1127. cache_buf->buf);
  1128. }
  1129. qdf_mem_free(cache_buf);
  1130. cache_buf = NULL;
  1131. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1132. qdf_list_remove_front(&bufqi->cached_bufq,
  1133. (qdf_list_node_t **)&cache_buf);
  1134. }
  1135. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1136. qdf_atomic_dec(&peer->flush_in_progress);
  1137. }
  1138. /**
  1139. * dp_rx_enqueue_rx() - cache rx frames
  1140. * @peer: peer
  1141. * @rx_buf_list: cache buffer list
  1142. *
  1143. * Return: None
  1144. */
  1145. static QDF_STATUS
  1146. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1147. {
  1148. struct dp_rx_cached_buf *cache_buf;
  1149. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1150. int num_buff_elem;
  1151. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1152. bufqi->dropped);
  1153. if (!peer->valid) {
  1154. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1155. rx_buf_list);
  1156. return QDF_STATUS_E_INVAL;
  1157. }
  1158. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1159. if (bufqi->entries >= bufqi->thresh) {
  1160. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1161. rx_buf_list);
  1162. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1163. return QDF_STATUS_E_RESOURCES;
  1164. }
  1165. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1166. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1167. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1168. if (!cache_buf) {
  1169. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1170. "Failed to allocate buf to cache rx frames");
  1171. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1172. rx_buf_list);
  1173. return QDF_STATUS_E_NOMEM;
  1174. }
  1175. cache_buf->buf = rx_buf_list;
  1176. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1177. qdf_list_insert_back(&bufqi->cached_bufq,
  1178. &cache_buf->node);
  1179. bufqi->entries += num_buff_elem;
  1180. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1181. return QDF_STATUS_SUCCESS;
  1182. }
  1183. static inline
  1184. bool dp_rx_is_peer_cache_bufq_supported(void)
  1185. {
  1186. return true;
  1187. }
  1188. #else
  1189. static inline
  1190. bool dp_rx_is_peer_cache_bufq_supported(void)
  1191. {
  1192. return false;
  1193. }
  1194. static inline QDF_STATUS
  1195. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1196. {
  1197. return QDF_STATUS_SUCCESS;
  1198. }
  1199. #endif
  1200. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1201. /**
  1202. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1203. * using the appropriate call back functions.
  1204. * @soc: soc
  1205. * @vdev: vdev
  1206. * @peer: peer
  1207. * @nbuf_head: skb list head
  1208. * @nbuf_tail: skb list tail
  1209. *
  1210. * Return: None
  1211. */
  1212. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1213. struct dp_vdev *vdev,
  1214. struct dp_peer *peer,
  1215. qdf_nbuf_t nbuf_head)
  1216. {
  1217. /* Function pointer initialized only when FISA is enabled */
  1218. if (vdev->osif_fisa_rx)
  1219. /* on failure send it via regular path */
  1220. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1221. else
  1222. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1223. }
  1224. #else
  1225. /**
  1226. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1227. * using the appropriate call back functions.
  1228. * @soc: soc
  1229. * @vdev: vdev
  1230. * @peer: peer
  1231. * @nbuf_head: skb list head
  1232. * @nbuf_tail: skb list tail
  1233. *
  1234. * Check the return status of the call back function and drop
  1235. * the packets if the return status indicates a failure.
  1236. *
  1237. * Return: None
  1238. */
  1239. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1240. struct dp_vdev *vdev,
  1241. struct dp_peer *peer,
  1242. qdf_nbuf_t nbuf_head)
  1243. {
  1244. int num_nbuf = 0;
  1245. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1246. /* Function pointer initialized only when FISA is enabled */
  1247. if (vdev->osif_fisa_rx)
  1248. /* on failure send it via regular path */
  1249. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1250. else if (vdev->osif_rx)
  1251. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1252. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1253. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1254. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1255. if (peer)
  1256. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1257. }
  1258. }
  1259. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1260. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1261. struct dp_vdev *vdev,
  1262. struct dp_peer *peer,
  1263. qdf_nbuf_t nbuf_head,
  1264. qdf_nbuf_t nbuf_tail)
  1265. {
  1266. int num_nbuf = 0;
  1267. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1268. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1269. /*
  1270. * This is a special case where vdev is invalid,
  1271. * so we cannot know the pdev to which this packet
  1272. * belonged. Hence we update the soc rx error stats.
  1273. */
  1274. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1275. return;
  1276. }
  1277. /*
  1278. * highly unlikely to have a vdev without a registered rx
  1279. * callback function. if so let us free the nbuf_list.
  1280. */
  1281. if (qdf_unlikely(!vdev->osif_rx)) {
  1282. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1283. dp_rx_enqueue_rx(peer, nbuf_head);
  1284. } else {
  1285. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1286. nbuf_head);
  1287. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1288. }
  1289. return;
  1290. }
  1291. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1292. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1293. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1294. &nbuf_tail, peer->mac_addr.raw);
  1295. }
  1296. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1297. }
  1298. /**
  1299. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1300. * @nbuf: pointer to the first msdu of an amsdu.
  1301. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1302. *
  1303. * The ipsumed field of the skb is set based on whether HW validated the
  1304. * IP/TCP/UDP checksum.
  1305. *
  1306. * Return: void
  1307. */
  1308. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1309. qdf_nbuf_t nbuf,
  1310. uint8_t *rx_tlv_hdr)
  1311. {
  1312. qdf_nbuf_rx_cksum_t cksum = {0};
  1313. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1314. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1315. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1316. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1317. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1318. } else {
  1319. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1320. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1321. }
  1322. }
  1323. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1324. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1325. { \
  1326. qdf_nbuf_t nbuf_local; \
  1327. struct dp_peer *peer_local; \
  1328. struct dp_vdev *vdev_local = vdev_hdl; \
  1329. do { \
  1330. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1331. break; \
  1332. nbuf_local = nbuf; \
  1333. peer_local = peer; \
  1334. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1335. break; \
  1336. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1337. break; \
  1338. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1339. (nbuf_local), \
  1340. (peer_local), 0, 1); \
  1341. } while (0); \
  1342. }
  1343. #else
  1344. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1345. #endif
  1346. /**
  1347. * dp_rx_msdu_stats_update() - update per msdu stats.
  1348. * @soc: core txrx main context
  1349. * @nbuf: pointer to the first msdu of an amsdu.
  1350. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1351. * @peer: pointer to the peer object.
  1352. * @ring_id: reo dest ring number on which pkt is reaped.
  1353. * @tid_stats: per tid rx stats.
  1354. *
  1355. * update all the per msdu stats for that nbuf.
  1356. * Return: void
  1357. */
  1358. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1359. qdf_nbuf_t nbuf,
  1360. uint8_t *rx_tlv_hdr,
  1361. struct dp_peer *peer,
  1362. uint8_t ring_id,
  1363. struct cdp_tid_rx_stats *tid_stats)
  1364. {
  1365. bool is_ampdu, is_not_amsdu;
  1366. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1367. struct dp_vdev *vdev = peer->vdev;
  1368. qdf_ether_header_t *eh;
  1369. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1370. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1371. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1372. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1373. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1374. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1375. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1376. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1377. tid_stats->msdu_cnt++;
  1378. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1379. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1380. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1381. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1382. tid_stats->mcast_msdu_cnt++;
  1383. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1384. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1385. tid_stats->bcast_msdu_cnt++;
  1386. }
  1387. }
  1388. /*
  1389. * currently we can return from here as we have similar stats
  1390. * updated at per ppdu level instead of msdu level
  1391. */
  1392. if (!soc->process_rx_status)
  1393. return;
  1394. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1395. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1396. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1397. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1398. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1399. tid = qdf_nbuf_get_tid_val(nbuf);
  1400. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1401. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1402. rx_tlv_hdr);
  1403. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1404. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1405. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1406. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1407. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1408. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1409. DP_STATS_INC(peer, rx.bw[bw], 1);
  1410. /*
  1411. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1412. * then increase index [nss - 1] in array counter.
  1413. */
  1414. if (nss > 0 && (pkt_type == DOT11_N ||
  1415. pkt_type == DOT11_AC ||
  1416. pkt_type == DOT11_AX))
  1417. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1418. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1419. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1420. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1421. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1422. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1423. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1424. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1425. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1426. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1427. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1428. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1429. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1430. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1431. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1432. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1433. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1434. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1435. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1436. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1437. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1438. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1439. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1440. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1441. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1442. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1443. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1444. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1445. if ((soc->process_rx_status) &&
  1446. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1447. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1448. if (!vdev->pdev)
  1449. return;
  1450. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1451. &peer->stats, peer->peer_id,
  1452. UPDATE_PEER_STATS,
  1453. vdev->pdev->pdev_id);
  1454. #endif
  1455. }
  1456. }
  1457. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1458. uint8_t *rx_tlv_hdr,
  1459. qdf_nbuf_t nbuf,
  1460. struct hal_rx_msdu_metadata msdu_info)
  1461. {
  1462. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1463. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1464. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1465. qdf_nbuf_is_da_valid(nbuf) &&
  1466. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1467. return false;
  1468. return true;
  1469. }
  1470. #ifndef WDS_VENDOR_EXTENSION
  1471. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1472. struct dp_vdev *vdev,
  1473. struct dp_peer *peer)
  1474. {
  1475. return 1;
  1476. }
  1477. #endif
  1478. #ifdef RX_DESC_DEBUG_CHECK
  1479. /**
  1480. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1481. * corruption
  1482. *
  1483. * @ring_desc: REO ring descriptor
  1484. * @rx_desc: Rx descriptor
  1485. *
  1486. * Return: NONE
  1487. */
  1488. static inline
  1489. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1490. struct dp_rx_desc *rx_desc)
  1491. {
  1492. struct hal_buf_info hbi;
  1493. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1494. /* Sanity check for possible buffer paddr corruption */
  1495. qdf_assert_always((&hbi)->paddr ==
  1496. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1497. }
  1498. #else
  1499. static inline
  1500. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1501. struct dp_rx_desc *rx_desc)
  1502. {
  1503. }
  1504. #endif
  1505. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1506. static inline
  1507. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1508. {
  1509. bool limit_hit = false;
  1510. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1511. limit_hit =
  1512. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1513. if (limit_hit)
  1514. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1515. return limit_hit;
  1516. }
  1517. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1518. {
  1519. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1520. }
  1521. #else
  1522. static inline
  1523. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1524. {
  1525. return false;
  1526. }
  1527. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1528. {
  1529. return false;
  1530. }
  1531. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1532. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1533. /**
  1534. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1535. * no corresbonding peer found
  1536. * @soc: core txrx main context
  1537. * @nbuf: pkt skb pointer
  1538. *
  1539. * This function will try to deliver some RX special frames to stack
  1540. * even there is no peer matched found. for instance, LFR case, some
  1541. * eapol data will be sent to host before peer_map done.
  1542. *
  1543. * Return: None
  1544. */
  1545. static
  1546. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1547. {
  1548. uint16_t peer_id;
  1549. uint8_t vdev_id;
  1550. struct dp_vdev *vdev;
  1551. uint32_t l2_hdr_offset = 0;
  1552. uint16_t msdu_len = 0;
  1553. uint32_t pkt_len = 0;
  1554. uint8_t *rx_tlv_hdr;
  1555. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1556. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1557. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1558. if (peer_id > soc->max_peers)
  1559. goto deliver_fail;
  1560. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1561. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1562. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1563. goto deliver_fail;
  1564. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1565. goto deliver_fail;
  1566. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1567. l2_hdr_offset =
  1568. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1569. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1570. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1571. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1572. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1573. qdf_nbuf_pull_head(nbuf,
  1574. RX_PKT_TLVS_LEN +
  1575. l2_hdr_offset);
  1576. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1577. qdf_nbuf_set_exc_frame(nbuf, 1);
  1578. if (QDF_STATUS_SUCCESS !=
  1579. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1580. goto deliver_fail;
  1581. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1582. return;
  1583. }
  1584. deliver_fail:
  1585. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1586. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1587. qdf_nbuf_free(nbuf);
  1588. }
  1589. #else
  1590. static inline
  1591. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1592. {
  1593. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1594. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1595. qdf_nbuf_free(nbuf);
  1596. }
  1597. #endif
  1598. /**
  1599. * dp_rx_srng_get_num_pending() - get number of pending entries
  1600. * @hal_soc: hal soc opaque pointer
  1601. * @hal_ring: opaque pointer to the HAL Rx Ring
  1602. * @num_entries: number of entries in the hal_ring.
  1603. * @near_full: pointer to a boolean. This is set if ring is near full.
  1604. *
  1605. * The function returns the number of entries in a destination ring which are
  1606. * yet to be reaped. The function also checks if the ring is near full.
  1607. * If more than half of the ring needs to be reaped, the ring is considered
  1608. * approaching full.
  1609. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1610. * entries. It should not be called within a SRNG lock. HW pointer value is
  1611. * synced into cached_hp.
  1612. *
  1613. * Return: Number of pending entries if any
  1614. */
  1615. static
  1616. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1617. hal_ring_handle_t hal_ring_hdl,
  1618. uint32_t num_entries,
  1619. bool *near_full)
  1620. {
  1621. uint32_t num_pending = 0;
  1622. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1623. hal_ring_hdl,
  1624. true);
  1625. if (num_entries && (num_pending >= num_entries >> 1))
  1626. *near_full = true;
  1627. else
  1628. *near_full = false;
  1629. return num_pending;
  1630. }
  1631. #ifdef WLAN_SUPPORT_RX_FISA
  1632. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1633. {
  1634. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1635. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1636. }
  1637. /**
  1638. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1639. * @nbuf: pkt skb pointer
  1640. * @l3_padding: l3 padding
  1641. *
  1642. * Return: None
  1643. */
  1644. static inline
  1645. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1646. {
  1647. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1648. }
  1649. #else
  1650. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1651. {
  1652. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1653. }
  1654. static inline
  1655. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1656. {
  1657. }
  1658. #endif
  1659. /**
  1660. * dp_rx_process() - Brain of the Rx processing functionality
  1661. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1662. * @int_ctx: per interrupt context
  1663. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1664. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1665. * @quota: No. of units (packets) that can be serviced in one shot.
  1666. *
  1667. * This function implements the core of Rx functionality. This is
  1668. * expected to handle only non-error frames.
  1669. *
  1670. * Return: uint32_t: No. of elements processed
  1671. */
  1672. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1673. uint8_t reo_ring_num, uint32_t quota)
  1674. {
  1675. hal_ring_desc_t ring_desc;
  1676. hal_soc_handle_t hal_soc;
  1677. struct dp_rx_desc *rx_desc = NULL;
  1678. qdf_nbuf_t nbuf, next;
  1679. bool near_full;
  1680. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1681. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1682. uint32_t num_pending;
  1683. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1684. uint16_t msdu_len = 0;
  1685. uint16_t peer_id;
  1686. uint8_t vdev_id;
  1687. struct dp_peer *peer;
  1688. struct dp_vdev *vdev;
  1689. uint32_t pkt_len = 0;
  1690. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1691. struct hal_rx_msdu_desc_info msdu_desc_info;
  1692. enum hal_reo_error_status error;
  1693. uint32_t peer_mdata;
  1694. uint8_t *rx_tlv_hdr;
  1695. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1696. uint8_t mac_id = 0;
  1697. struct dp_pdev *rx_pdev;
  1698. struct dp_srng *dp_rxdma_srng;
  1699. struct rx_desc_pool *rx_desc_pool;
  1700. struct dp_soc *soc = int_ctx->soc;
  1701. uint8_t ring_id = 0;
  1702. uint8_t core_id = 0;
  1703. struct cdp_tid_rx_stats *tid_stats;
  1704. qdf_nbuf_t nbuf_head;
  1705. qdf_nbuf_t nbuf_tail;
  1706. qdf_nbuf_t deliver_list_head;
  1707. qdf_nbuf_t deliver_list_tail;
  1708. uint32_t num_rx_bufs_reaped = 0;
  1709. uint32_t intr_id;
  1710. struct hif_opaque_softc *scn;
  1711. int32_t tid = 0;
  1712. bool is_prev_msdu_last = true;
  1713. uint32_t num_entries_avail = 0;
  1714. uint32_t rx_ol_pkt_cnt = 0;
  1715. uint32_t num_entries = 0;
  1716. struct hal_rx_msdu_metadata msdu_metadata;
  1717. QDF_STATUS status;
  1718. DP_HIST_INIT();
  1719. qdf_assert_always(soc && hal_ring_hdl);
  1720. hal_soc = soc->hal_soc;
  1721. qdf_assert_always(hal_soc);
  1722. scn = soc->hif_handle;
  1723. hif_pm_runtime_mark_dp_rx_busy(scn);
  1724. intr_id = int_ctx->dp_intr_id;
  1725. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1726. more_data:
  1727. /* reset local variables here to be re-used in the function */
  1728. nbuf_head = NULL;
  1729. nbuf_tail = NULL;
  1730. deliver_list_head = NULL;
  1731. deliver_list_tail = NULL;
  1732. peer = NULL;
  1733. vdev = NULL;
  1734. num_rx_bufs_reaped = 0;
  1735. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1736. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1737. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1738. qdf_mem_zero(head, sizeof(head));
  1739. qdf_mem_zero(tail, sizeof(tail));
  1740. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1741. /*
  1742. * Need API to convert from hal_ring pointer to
  1743. * Ring Type / Ring Id combo
  1744. */
  1745. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1746. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1747. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1748. goto done;
  1749. }
  1750. /*
  1751. * start reaping the buffers from reo ring and queue
  1752. * them in per vdev queue.
  1753. * Process the received pkts in a different per vdev loop.
  1754. */
  1755. while (qdf_likely(quota &&
  1756. (ring_desc = hal_srng_dst_peek(hal_soc,
  1757. hal_ring_hdl)))) {
  1758. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1759. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1760. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1761. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1762. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1763. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1764. /* Don't know how to deal with this -- assert */
  1765. qdf_assert(0);
  1766. }
  1767. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1768. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1769. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  1770. ring_desc, rx_desc);
  1771. if (QDF_IS_STATUS_ERROR(status)) {
  1772. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  1773. qdf_assert_always(rx_desc->unmapped);
  1774. qdf_nbuf_unmap_nbytes_single(
  1775. soc->osdev,
  1776. rx_desc->nbuf,
  1777. QDF_DMA_FROM_DEVICE,
  1778. RX_DATA_BUFFER_SIZE);
  1779. rx_desc->unmapped = 1;
  1780. qdf_nbuf_free(rx_desc->nbuf);
  1781. dp_rx_add_to_free_desc_list(
  1782. &head[rx_desc->pool_id],
  1783. &tail[rx_desc->pool_id],
  1784. rx_desc);
  1785. }
  1786. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1787. continue;
  1788. }
  1789. /*
  1790. * this is a unlikely scenario where the host is reaping
  1791. * a descriptor which it already reaped just a while ago
  1792. * but is yet to replenish it back to HW.
  1793. * In this case host will dump the last 128 descriptors
  1794. * including the software descriptor rx_desc and assert.
  1795. */
  1796. if (qdf_unlikely(!rx_desc->in_use)) {
  1797. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1798. dp_info_rl("Reaping rx_desc not in use!");
  1799. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1800. ring_desc, rx_desc);
  1801. /* ignore duplicate RX desc and continue to process */
  1802. /* Pop out the descriptor */
  1803. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1804. continue;
  1805. }
  1806. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1807. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1808. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1809. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1810. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1811. ring_desc, rx_desc);
  1812. }
  1813. /* Get MPDU DESC info */
  1814. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1815. /* Get MSDU DESC info */
  1816. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1817. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  1818. HAL_MSDU_F_MSDU_CONTINUATION)) {
  1819. /* previous msdu has end bit set, so current one is
  1820. * the new MPDU
  1821. */
  1822. if (is_prev_msdu_last) {
  1823. /* Get number of entries available in HW ring */
  1824. num_entries_avail =
  1825. hal_srng_dst_num_valid(hal_soc,
  1826. hal_ring_hdl, 1);
  1827. /* For new MPDU check if we can read complete
  1828. * MPDU by comparing the number of buffers
  1829. * available and number of buffers needed to
  1830. * reap this MPDU
  1831. */
  1832. if (((msdu_desc_info.msdu_len /
  1833. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  1834. 1)) > num_entries_avail) {
  1835. DP_STATS_INC(
  1836. soc,
  1837. rx.msdu_scatter_wait_break,
  1838. 1);
  1839. break;
  1840. }
  1841. is_prev_msdu_last = false;
  1842. }
  1843. }
  1844. core_id = smp_processor_id();
  1845. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1846. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1847. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1848. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1849. HAL_MPDU_F_RAW_AMPDU))
  1850. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1851. if (!is_prev_msdu_last &&
  1852. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1853. is_prev_msdu_last = true;
  1854. /* Pop out the descriptor*/
  1855. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1856. rx_bufs_reaped[rx_desc->pool_id]++;
  1857. peer_mdata = mpdu_desc_info.peer_meta_data;
  1858. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1859. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1860. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1861. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1862. /*
  1863. * save msdu flags first, last and continuation msdu in
  1864. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1865. * length to nbuf->cb. This ensures the info required for
  1866. * per pkt processing is always in the same cache line.
  1867. * This helps in improving throughput for smaller pkt
  1868. * sizes.
  1869. */
  1870. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1871. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1872. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1873. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1874. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1875. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1876. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1877. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1878. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1879. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1880. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1881. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1882. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1883. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1884. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1885. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1886. /*
  1887. * move unmap after scattered msdu waiting break logic
  1888. * in case double skb unmap happened.
  1889. */
  1890. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1891. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1892. QDF_DMA_FROM_DEVICE,
  1893. rx_desc_pool->buf_size);
  1894. rx_desc->unmapped = 1;
  1895. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1896. /*
  1897. * if continuation bit is set then we have MSDU spread
  1898. * across multiple buffers, let us not decrement quota
  1899. * till we reap all buffers of that MSDU.
  1900. */
  1901. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1902. quota -= 1;
  1903. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1904. &tail[rx_desc->pool_id],
  1905. rx_desc);
  1906. num_rx_bufs_reaped++;
  1907. /*
  1908. * only if complete msdu is received for scatter case,
  1909. * then allow break.
  1910. */
  1911. if (is_prev_msdu_last &&
  1912. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1913. break;
  1914. }
  1915. done:
  1916. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1917. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1918. /*
  1919. * continue with next mac_id if no pkts were reaped
  1920. * from that pool
  1921. */
  1922. if (!rx_bufs_reaped[mac_id])
  1923. continue;
  1924. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  1925. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1926. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1927. rx_desc_pool, rx_bufs_reaped[mac_id],
  1928. &head[mac_id], &tail[mac_id]);
  1929. }
  1930. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1931. /* Peer can be NULL is case of LFR */
  1932. if (qdf_likely(peer))
  1933. vdev = NULL;
  1934. /*
  1935. * BIG loop where each nbuf is dequeued from global queue,
  1936. * processed and queued back on a per vdev basis. These nbufs
  1937. * are sent to stack as and when we run out of nbufs
  1938. * or a new nbuf dequeued from global queue has a different
  1939. * vdev when compared to previous nbuf.
  1940. */
  1941. nbuf = nbuf_head;
  1942. while (nbuf) {
  1943. next = nbuf->next;
  1944. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1945. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1946. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1947. dp_rx_deliver_to_stack(soc, vdev, peer,
  1948. deliver_list_head,
  1949. deliver_list_tail);
  1950. deliver_list_head = NULL;
  1951. deliver_list_tail = NULL;
  1952. }
  1953. /* Get TID from struct cb->tid_val, save to tid */
  1954. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1955. tid = qdf_nbuf_get_tid_val(nbuf);
  1956. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1957. peer = dp_peer_find_by_id(soc, peer_id);
  1958. if (peer) {
  1959. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1960. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1961. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1962. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1963. QDF_NBUF_RX_PKT_DATA_TRACK;
  1964. }
  1965. rx_bufs_used++;
  1966. if (qdf_likely(peer)) {
  1967. vdev = peer->vdev;
  1968. } else {
  1969. nbuf->next = NULL;
  1970. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1971. nbuf = next;
  1972. continue;
  1973. }
  1974. if (qdf_unlikely(!vdev)) {
  1975. qdf_nbuf_free(nbuf);
  1976. nbuf = next;
  1977. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1978. dp_peer_unref_del_find_by_id(peer);
  1979. continue;
  1980. }
  1981. rx_pdev = vdev->pdev;
  1982. DP_RX_TID_SAVE(nbuf, tid);
  1983. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1984. qdf_nbuf_set_timestamp(nbuf);
  1985. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1986. tid_stats =
  1987. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1988. /*
  1989. * Check if DMA completed -- msdu_done is the last bit
  1990. * to be written
  1991. */
  1992. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  1993. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1994. dp_err("MSDU DONE failure");
  1995. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1996. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1997. QDF_TRACE_LEVEL_INFO);
  1998. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1999. qdf_nbuf_free(nbuf);
  2000. qdf_assert(0);
  2001. nbuf = next;
  2002. continue;
  2003. }
  2004. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2005. /*
  2006. * First IF condition:
  2007. * 802.11 Fragmented pkts are reinjected to REO
  2008. * HW block as SG pkts and for these pkts we only
  2009. * need to pull the RX TLVS header length.
  2010. * Second IF condition:
  2011. * The below condition happens when an MSDU is spread
  2012. * across multiple buffers. This can happen in two cases
  2013. * 1. The nbuf size is smaller then the received msdu.
  2014. * ex: we have set the nbuf size to 2048 during
  2015. * nbuf_alloc. but we received an msdu which is
  2016. * 2304 bytes in size then this msdu is spread
  2017. * across 2 nbufs.
  2018. *
  2019. * 2. AMSDUs when RAW mode is enabled.
  2020. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2021. * across 1st nbuf and 2nd nbuf and last MSDU is
  2022. * spread across 2nd nbuf and 3rd nbuf.
  2023. *
  2024. * for these scenarios let us create a skb frag_list and
  2025. * append these buffers till the last MSDU of the AMSDU
  2026. * Third condition:
  2027. * This is the most likely case, we receive 802.3 pkts
  2028. * decapsulated by HW, here we need to set the pkt length.
  2029. */
  2030. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2031. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2032. bool is_mcbc, is_sa_vld, is_da_vld;
  2033. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2034. rx_tlv_hdr);
  2035. is_sa_vld =
  2036. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2037. rx_tlv_hdr);
  2038. is_da_vld =
  2039. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2040. rx_tlv_hdr);
  2041. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2042. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2043. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2044. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2045. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2046. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2047. nbuf = dp_rx_sg_create(nbuf);
  2048. next = nbuf->next;
  2049. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2050. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2051. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2052. } else {
  2053. qdf_nbuf_free(nbuf);
  2054. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2055. dp_info_rl("scatter msdu len %d, dropped",
  2056. msdu_len);
  2057. nbuf = next;
  2058. dp_peer_unref_del_find_by_id(peer);
  2059. continue;
  2060. }
  2061. } else {
  2062. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2063. pkt_len = msdu_len +
  2064. msdu_metadata.l3_hdr_pad +
  2065. RX_PKT_TLVS_LEN;
  2066. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2067. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2068. }
  2069. /*
  2070. * process frame for mulitpass phrase processing
  2071. */
  2072. if (qdf_unlikely(vdev->multipass_en)) {
  2073. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2074. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2075. qdf_nbuf_free(nbuf);
  2076. nbuf = next;
  2077. dp_peer_unref_del_find_by_id(peer);
  2078. continue;
  2079. }
  2080. }
  2081. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2082. QDF_TRACE(QDF_MODULE_ID_DP,
  2083. QDF_TRACE_LEVEL_ERROR,
  2084. FL("Policy Check Drop pkt"));
  2085. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2086. /* Drop & free packet */
  2087. qdf_nbuf_free(nbuf);
  2088. /* Statistics */
  2089. nbuf = next;
  2090. dp_peer_unref_del_find_by_id(peer);
  2091. continue;
  2092. }
  2093. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2094. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2095. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2096. rx_tlv_hdr) ==
  2097. false))) {
  2098. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2099. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2100. qdf_nbuf_free(nbuf);
  2101. nbuf = next;
  2102. dp_peer_unref_del_find_by_id(peer);
  2103. continue;
  2104. }
  2105. if (soc->process_rx_status)
  2106. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2107. /* Update the protocol tag in SKB based on CCE metadata */
  2108. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2109. reo_ring_num, false, true);
  2110. /* Update the flow tag in SKB based on FSE metadata */
  2111. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2112. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2113. ring_id, tid_stats);
  2114. if (qdf_unlikely(vdev->mesh_vdev)) {
  2115. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2116. == QDF_STATUS_SUCCESS) {
  2117. QDF_TRACE(QDF_MODULE_ID_DP,
  2118. QDF_TRACE_LEVEL_INFO_MED,
  2119. FL("mesh pkt filtered"));
  2120. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2121. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2122. 1);
  2123. qdf_nbuf_free(nbuf);
  2124. nbuf = next;
  2125. dp_peer_unref_del_find_by_id(peer);
  2126. continue;
  2127. }
  2128. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2129. }
  2130. if (qdf_likely(vdev->rx_decap_type ==
  2131. htt_cmn_pkt_type_ethernet) &&
  2132. qdf_likely(!vdev->mesh_vdev)) {
  2133. /* WDS Destination Address Learning */
  2134. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2135. /* Due to HW issue, sometimes we see that the sa_idx
  2136. * and da_idx are invalid with sa_valid and da_valid
  2137. * bits set
  2138. *
  2139. * in this case we also see that value of
  2140. * sa_sw_peer_id is set as 0
  2141. *
  2142. * Drop the packet if sa_idx and da_idx OOB or
  2143. * sa_sw_peerid is 0
  2144. */
  2145. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2146. msdu_metadata)) {
  2147. qdf_nbuf_free(nbuf);
  2148. nbuf = next;
  2149. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2150. dp_peer_unref_del_find_by_id(peer);
  2151. continue;
  2152. }
  2153. /* WDS Source Port Learning */
  2154. if (qdf_likely(vdev->wds_enabled))
  2155. dp_rx_wds_srcport_learn(soc,
  2156. rx_tlv_hdr,
  2157. peer,
  2158. nbuf,
  2159. msdu_metadata);
  2160. /* Intrabss-fwd */
  2161. if (dp_rx_check_ap_bridge(vdev))
  2162. if (dp_rx_intrabss_fwd(soc,
  2163. peer,
  2164. rx_tlv_hdr,
  2165. nbuf,
  2166. msdu_metadata)) {
  2167. nbuf = next;
  2168. dp_peer_unref_del_find_by_id(peer);
  2169. tid_stats->intrabss_cnt++;
  2170. continue; /* Get next desc */
  2171. }
  2172. }
  2173. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2174. DP_RX_LIST_APPEND(deliver_list_head,
  2175. deliver_list_tail,
  2176. nbuf);
  2177. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2178. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2179. tid_stats->delivered_to_stack++;
  2180. nbuf = next;
  2181. dp_peer_unref_del_find_by_id(peer);
  2182. }
  2183. if (qdf_likely(deliver_list_head)) {
  2184. if (qdf_likely(peer))
  2185. dp_rx_deliver_to_stack(soc, vdev, peer,
  2186. deliver_list_head,
  2187. deliver_list_tail);
  2188. else {
  2189. nbuf = deliver_list_head;
  2190. while (nbuf) {
  2191. next = nbuf->next;
  2192. nbuf->next = NULL;
  2193. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2194. nbuf = next;
  2195. }
  2196. }
  2197. }
  2198. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2199. if (quota) {
  2200. num_pending =
  2201. dp_rx_srng_get_num_pending(hal_soc,
  2202. hal_ring_hdl,
  2203. num_entries,
  2204. &near_full);
  2205. if (num_pending) {
  2206. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2207. if (!hif_exec_should_yield(scn, intr_id))
  2208. goto more_data;
  2209. if (qdf_unlikely(near_full)) {
  2210. DP_STATS_INC(soc, rx.near_full, 1);
  2211. goto more_data;
  2212. }
  2213. }
  2214. }
  2215. if (vdev && vdev->osif_fisa_flush)
  2216. vdev->osif_fisa_flush(soc, reo_ring_num);
  2217. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2218. vdev->osif_gro_flush(vdev->osif_vdev,
  2219. reo_ring_num);
  2220. }
  2221. }
  2222. /* Update histogram statistics by looping through pdev's */
  2223. DP_RX_HIST_STATS_PER_PDEV();
  2224. return rx_bufs_used; /* Assume no scale factor for now */
  2225. }
  2226. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2227. {
  2228. QDF_STATUS ret;
  2229. if (vdev->osif_rx_flush) {
  2230. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2231. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2232. dp_err("Failed to flush rx pkts for vdev %d\n",
  2233. vdev->vdev_id);
  2234. return ret;
  2235. }
  2236. }
  2237. return QDF_STATUS_SUCCESS;
  2238. }
  2239. static QDF_STATUS
  2240. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2241. struct dp_pdev *dp_pdev,
  2242. struct rx_desc_pool *rx_desc_pool)
  2243. {
  2244. qdf_dma_addr_t paddr;
  2245. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2246. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2247. RX_BUFFER_RESERVATION,
  2248. rx_desc_pool->buf_alignment, FALSE);
  2249. if (!(*nbuf)) {
  2250. dp_err("nbuf alloc failed");
  2251. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2252. return ret;
  2253. }
  2254. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, *nbuf,
  2255. QDF_DMA_FROM_DEVICE,
  2256. rx_desc_pool->buf_size);
  2257. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2258. qdf_nbuf_free(*nbuf);
  2259. dp_err("nbuf map failed");
  2260. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2261. return ret;
  2262. }
  2263. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2264. ret = check_x86_paddr(dp_soc, nbuf, &paddr, rx_desc_pool);
  2265. if (ret == QDF_STATUS_E_FAILURE) {
  2266. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev, *nbuf,
  2267. QDF_DMA_FROM_DEVICE,
  2268. rx_desc_pool->buf_size);
  2269. qdf_nbuf_free(*nbuf);
  2270. dp_err("nbuf check x86 failed");
  2271. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2272. return ret;
  2273. }
  2274. return QDF_STATUS_SUCCESS;
  2275. }
  2276. QDF_STATUS
  2277. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2278. struct dp_srng *dp_rxdma_srng,
  2279. struct rx_desc_pool *rx_desc_pool,
  2280. uint32_t num_req_buffers)
  2281. {
  2282. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2283. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2284. union dp_rx_desc_list_elem_t *next;
  2285. void *rxdma_ring_entry;
  2286. qdf_dma_addr_t paddr;
  2287. qdf_nbuf_t *rx_nbuf_arr;
  2288. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2289. uint32_t buffer_index, nbuf_ptrs_per_page;
  2290. qdf_nbuf_t nbuf;
  2291. QDF_STATUS ret;
  2292. int page_idx, total_pages;
  2293. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2294. union dp_rx_desc_list_elem_t *tail = NULL;
  2295. int sync_hw_ptr = 1;
  2296. uint32_t num_entries_avail;
  2297. if (qdf_unlikely(!rxdma_srng)) {
  2298. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2299. return QDF_STATUS_E_FAILURE;
  2300. }
  2301. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2302. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2303. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2304. rxdma_srng,
  2305. sync_hw_ptr);
  2306. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2307. if (!num_entries_avail) {
  2308. dp_err("Num of available entries is zero, nothing to do");
  2309. return QDF_STATUS_E_NOMEM;
  2310. }
  2311. if (num_entries_avail < num_req_buffers)
  2312. num_req_buffers = num_entries_avail;
  2313. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2314. num_req_buffers, &desc_list, &tail);
  2315. if (!nr_descs) {
  2316. dp_err("no free rx_descs in freelist");
  2317. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2318. return QDF_STATUS_E_NOMEM;
  2319. }
  2320. dp_debug("got %u RX descs for driver attach", nr_descs);
  2321. /*
  2322. * Try to allocate pointers to the nbuf one page at a time.
  2323. * Take pointers that can fit in one page of memory and
  2324. * iterate through the total descriptors that need to be
  2325. * allocated in order of pages. Reuse the pointers that
  2326. * have been allocated to fit in one page across each
  2327. * iteration to index into the nbuf.
  2328. */
  2329. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2330. /*
  2331. * Add an extra page to store the remainder if any
  2332. */
  2333. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2334. total_pages++;
  2335. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2336. if (!rx_nbuf_arr) {
  2337. dp_err("failed to allocate nbuf array");
  2338. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2339. QDF_BUG(0);
  2340. return QDF_STATUS_E_NOMEM;
  2341. }
  2342. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2343. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2344. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2345. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2346. /*
  2347. * The last page of buffer pointers may not be required
  2348. * completely based on the number of descriptors. Below
  2349. * check will ensure we are allocating only the
  2350. * required number of descriptors.
  2351. */
  2352. if (nr_nbuf_total >= nr_descs)
  2353. break;
  2354. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2355. &rx_nbuf_arr[nr_nbuf],
  2356. dp_pdev, rx_desc_pool);
  2357. if (QDF_IS_STATUS_ERROR(ret))
  2358. break;
  2359. nr_nbuf_total++;
  2360. }
  2361. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2362. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2363. rxdma_ring_entry =
  2364. hal_srng_src_get_next(dp_soc->hal_soc,
  2365. rxdma_srng);
  2366. qdf_assert_always(rxdma_ring_entry);
  2367. next = desc_list->next;
  2368. nbuf = rx_nbuf_arr[buffer_index];
  2369. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2370. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2371. desc_list->rx_desc.in_use = 1;
  2372. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2373. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2374. __func__,
  2375. RX_DESC_REPLENISHED);
  2376. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2377. desc_list->rx_desc.cookie,
  2378. rx_desc_pool->owner);
  2379. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2380. desc_list = next;
  2381. }
  2382. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2383. }
  2384. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2385. qdf_mem_free(rx_nbuf_arr);
  2386. if (!nr_nbuf_total) {
  2387. dp_err("No nbuf's allocated");
  2388. QDF_BUG(0);
  2389. return QDF_STATUS_E_RESOURCES;
  2390. }
  2391. /* No need to count the number of bytes received during replenish.
  2392. * Therefore set replenish.pkts.bytes as 0.
  2393. */
  2394. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2395. return QDF_STATUS_SUCCESS;
  2396. }
  2397. /*
  2398. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2399. * pool
  2400. *
  2401. * @pdev: core txrx pdev context
  2402. *
  2403. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2404. * QDF_STATUS_E_NOMEM
  2405. */
  2406. QDF_STATUS
  2407. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2408. {
  2409. struct dp_soc *soc = pdev->soc;
  2410. uint32_t rxdma_entries;
  2411. uint32_t rx_sw_desc_weight;
  2412. struct dp_srng *dp_rxdma_srng;
  2413. struct rx_desc_pool *rx_desc_pool;
  2414. uint32_t status = QDF_STATUS_SUCCESS;
  2415. int mac_for_pdev;
  2416. mac_for_pdev = pdev->lmac_id;
  2417. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2418. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2419. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2420. return status;
  2421. }
  2422. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2423. rxdma_entries = dp_rxdma_srng->num_entries;
  2424. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2425. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2426. status = dp_rx_desc_pool_alloc(soc,
  2427. rx_sw_desc_weight * rxdma_entries,
  2428. rx_desc_pool);
  2429. if (status != QDF_STATUS_SUCCESS)
  2430. return status;
  2431. return status;
  2432. }
  2433. /*
  2434. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2435. *
  2436. * @pdev: core txrx pdev context
  2437. */
  2438. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2439. {
  2440. int mac_for_pdev = pdev->lmac_id;
  2441. struct dp_soc *soc = pdev->soc;
  2442. struct rx_desc_pool *rx_desc_pool;
  2443. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2444. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2445. }
  2446. /*
  2447. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2448. *
  2449. * @pdev: core txrx pdev context
  2450. *
  2451. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2452. * QDF_STATUS_E_NOMEM
  2453. */
  2454. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2455. {
  2456. int mac_for_pdev = pdev->lmac_id;
  2457. struct dp_soc *soc = pdev->soc;
  2458. uint32_t rxdma_entries;
  2459. uint32_t rx_sw_desc_weight;
  2460. struct dp_srng *dp_rxdma_srng;
  2461. struct rx_desc_pool *rx_desc_pool;
  2462. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2463. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2464. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2465. return QDF_STATUS_SUCCESS;
  2466. }
  2467. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2468. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2469. return QDF_STATUS_E_NOMEM;
  2470. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2471. rxdma_entries = dp_rxdma_srng->num_entries;
  2472. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2473. rx_sw_desc_weight =
  2474. wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2475. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2476. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2477. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2478. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2479. rx_sw_desc_weight * rxdma_entries,
  2480. rx_desc_pool);
  2481. return QDF_STATUS_SUCCESS;
  2482. }
  2483. /*
  2484. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2485. * @pdev: core txrx pdev context
  2486. *
  2487. * This function resets the freelist of rx descriptors and destroys locks
  2488. * associated with this list of descriptors.
  2489. */
  2490. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2491. {
  2492. int mac_for_pdev = pdev->lmac_id;
  2493. struct dp_soc *soc = pdev->soc;
  2494. struct rx_desc_pool *rx_desc_pool;
  2495. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2496. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2497. }
  2498. /*
  2499. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2500. *
  2501. * @pdev: core txrx pdev context
  2502. *
  2503. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2504. * QDF_STATUS_E_NOMEM
  2505. */
  2506. QDF_STATUS
  2507. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2508. {
  2509. int mac_for_pdev = pdev->lmac_id;
  2510. struct dp_soc *soc = pdev->soc;
  2511. struct dp_srng *dp_rxdma_srng;
  2512. struct rx_desc_pool *rx_desc_pool;
  2513. uint32_t rxdma_entries;
  2514. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2515. rxdma_entries = dp_rxdma_srng->num_entries;
  2516. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2517. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2518. rx_desc_pool, rxdma_entries - 1);
  2519. }
  2520. /*
  2521. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2522. *
  2523. * @pdev: core txrx pdev context
  2524. */
  2525. void
  2526. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2527. {
  2528. int mac_for_pdev = pdev->lmac_id;
  2529. struct dp_soc *soc = pdev->soc;
  2530. struct rx_desc_pool *rx_desc_pool;
  2531. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2532. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2533. }
  2534. /*
  2535. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2536. * @soc: core txrx main context
  2537. * @pdev: core txrx pdev context
  2538. *
  2539. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2540. * until retry times reaches max threshold or succeeded.
  2541. *
  2542. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2543. */
  2544. qdf_nbuf_t
  2545. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2546. {
  2547. uint8_t *buf;
  2548. int32_t nbuf_retry_count;
  2549. QDF_STATUS ret;
  2550. qdf_nbuf_t nbuf = NULL;
  2551. for (nbuf_retry_count = 0; nbuf_retry_count <
  2552. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2553. nbuf_retry_count++) {
  2554. /* Allocate a new skb */
  2555. nbuf = qdf_nbuf_alloc(soc->osdev,
  2556. RX_DATA_BUFFER_SIZE,
  2557. RX_BUFFER_RESERVATION,
  2558. RX_DATA_BUFFER_ALIGNMENT,
  2559. FALSE);
  2560. if (!nbuf) {
  2561. DP_STATS_INC(pdev,
  2562. replenish.nbuf_alloc_fail, 1);
  2563. continue;
  2564. }
  2565. buf = qdf_nbuf_data(nbuf);
  2566. memset(buf, 0, RX_DATA_BUFFER_SIZE);
  2567. ret = qdf_nbuf_map_nbytes_single(soc->osdev, nbuf,
  2568. QDF_DMA_FROM_DEVICE,
  2569. RX_DATA_BUFFER_SIZE);
  2570. /* nbuf map failed */
  2571. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2572. qdf_nbuf_free(nbuf);
  2573. DP_STATS_INC(pdev, replenish.map_err, 1);
  2574. continue;
  2575. }
  2576. /* qdf_nbuf alloc and map succeeded */
  2577. break;
  2578. }
  2579. /* qdf_nbuf still alloc or map failed */
  2580. if (qdf_unlikely(nbuf_retry_count >=
  2581. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2582. return NULL;
  2583. return nbuf;
  2584. }
  2585. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2586. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2587. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2588. uint8_t *rx_tlv_hdr)
  2589. {
  2590. uint32_t l2_hdr_offset = 0;
  2591. uint16_t msdu_len = 0;
  2592. uint32_t skip_len;
  2593. l2_hdr_offset =
  2594. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2595. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2596. skip_len = l2_hdr_offset;
  2597. } else {
  2598. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2599. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  2600. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2601. }
  2602. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2603. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2604. qdf_nbuf_pull_head(nbuf, skip_len);
  2605. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2606. qdf_nbuf_set_exc_frame(nbuf, 1);
  2607. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2608. nbuf, NULL);
  2609. return true;
  2610. }
  2611. return false;
  2612. }
  2613. #endif