hal_srng.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. #include "qdf_ssr_driver_dump.h"
  27. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  28. #ifdef QCA_WIFI_QCA8074
  29. void hal_qca6290_attach(struct hal_soc *hal);
  30. #endif
  31. #ifdef QCA_WIFI_QCA8074
  32. void hal_qca8074_attach(struct hal_soc *hal);
  33. #endif
  34. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  35. defined(QCA_WIFI_QCA9574)
  36. void hal_qca8074v2_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCA6390
  39. void hal_qca6390_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6490
  42. void hal_qca6490_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCN9000
  45. void hal_qcn9000_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCN9224
  48. void hal_qcn9224v2_attach(struct hal_soc *hal);
  49. #endif
  50. #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
  51. void hal_qcn6122_attach(struct hal_soc *hal);
  52. #endif
  53. #ifdef QCA_WIFI_QCN6432
  54. void hal_qcn6432_attach(struct hal_soc *hal);
  55. #endif
  56. #ifdef QCA_WIFI_QCA6750
  57. void hal_qca6750_attach(struct hal_soc *hal);
  58. #endif
  59. #ifdef QCA_WIFI_QCA5018
  60. void hal_qca5018_attach(struct hal_soc *hal);
  61. #endif
  62. #ifdef QCA_WIFI_QCA5332
  63. void hal_qca5332_attach(struct hal_soc *hal);
  64. #endif
  65. #ifdef QCA_WIFI_KIWI
  66. void hal_kiwi_attach(struct hal_soc *hal);
  67. #endif
  68. #ifdef ENABLE_VERBOSE_DEBUG
  69. bool is_hal_verbose_debug_enabled;
  70. #endif
  71. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  72. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  73. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  74. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  75. #ifdef ENABLE_HAL_REG_WR_HISTORY
  76. struct hal_reg_write_fail_history hal_reg_wr_hist;
  77. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  78. uint32_t offset,
  79. uint32_t wr_val, uint32_t rd_val)
  80. {
  81. struct hal_reg_write_fail_entry *record;
  82. int idx;
  83. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  84. HAL_REG_WRITE_HIST_SIZE);
  85. record = &hal_soc->reg_wr_fail_hist->record[idx];
  86. record->timestamp = qdf_get_log_timestamp();
  87. record->reg_offset = offset;
  88. record->write_val = wr_val;
  89. record->read_val = rd_val;
  90. }
  91. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  92. {
  93. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  94. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  95. }
  96. #else
  97. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  98. {
  99. }
  100. #endif
  101. /**
  102. * hal_get_srng_ring_id() - get the ring id of a described ring
  103. * @hal: hal_soc data structure
  104. * @ring_type: type enum describing the ring
  105. * @ring_num: which ring of the ring type
  106. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  107. *
  108. * Return: the ring id or -EINVAL if the ring does not exist.
  109. */
  110. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  111. int ring_num, int mac_id)
  112. {
  113. struct hal_hw_srng_config *ring_config =
  114. HAL_SRNG_CONFIG(hal, ring_type);
  115. int ring_id;
  116. if (ring_num >= ring_config->max_rings) {
  117. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  118. "%s: ring_num exceeded maximum no. of supported rings",
  119. __func__);
  120. /* TODO: This is a programming error. Assert if this happens */
  121. return -EINVAL;
  122. }
  123. /*
  124. * Some DMAC rings share a common source ring, hence don't provide them
  125. * with separate ring IDs per LMAC.
  126. */
  127. if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
  128. ring_id = (ring_config->start_ring_id + ring_num +
  129. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  130. } else {
  131. ring_id = ring_config->start_ring_id + ring_num;
  132. }
  133. return ring_id;
  134. }
  135. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  136. {
  137. /* TODO: Should we allocate srng structures dynamically? */
  138. return &(hal->srng_list[ring_id]);
  139. }
  140. #ifndef SHADOW_REG_CONFIG_DISABLED
  141. #define HP_OFFSET_IN_REG_START 1
  142. #define OFFSET_FROM_HP_TO_TP 4
  143. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  144. int shadow_config_index,
  145. int ring_type,
  146. int ring_num)
  147. {
  148. struct hal_srng *srng;
  149. int ring_id;
  150. struct hal_hw_srng_config *ring_config =
  151. HAL_SRNG_CONFIG(hal_soc, ring_type);
  152. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  153. if (ring_id < 0)
  154. return;
  155. srng = hal_get_srng(hal_soc, ring_id);
  156. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  157. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  158. + hal_soc->dev_base_addr;
  159. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  160. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  161. shadow_config_index);
  162. } else {
  163. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  164. + hal_soc->dev_base_addr;
  165. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  166. srng->u.src_ring.hp_addr,
  167. hal_soc->dev_base_addr, shadow_config_index);
  168. }
  169. }
  170. #endif
  171. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  172. void hal_set_one_target_reg_config(struct hal_soc *hal,
  173. uint32_t target_reg_offset,
  174. int list_index)
  175. {
  176. int i = list_index;
  177. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  178. hal->list_shadow_reg_config[i].target_register =
  179. target_reg_offset;
  180. hal->num_generic_shadow_regs_configured++;
  181. }
  182. qdf_export_symbol(hal_set_one_target_reg_config);
  183. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  184. #define MAX_REO_REMAP_SHADOW_REGS 4
  185. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  186. {
  187. uint32_t target_reg_offset;
  188. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  189. int i;
  190. struct hal_hw_srng_config *srng_config =
  191. &hal->hw_srng_table[WBM2SW_RELEASE];
  192. uint32_t reo_reg_base;
  193. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  194. target_reg_offset =
  195. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  196. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  197. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  198. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  199. }
  200. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  201. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  202. * HAL_IPA_TX_COMP_RING_IDX);
  203. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  204. return QDF_STATUS_SUCCESS;
  205. }
  206. qdf_export_symbol(hal_set_shadow_regs);
  207. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  208. {
  209. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  210. int shadow_config_index = hal->num_shadow_registers_configured;
  211. int i;
  212. int num_regs = hal->num_generic_shadow_regs_configured;
  213. for (i = 0; i < num_regs; i++) {
  214. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  215. hal->shadow_config[shadow_config_index].addr =
  216. hal->list_shadow_reg_config[i].target_register;
  217. hal->list_shadow_reg_config[i].shadow_config_index =
  218. shadow_config_index;
  219. hal->list_shadow_reg_config[i].va =
  220. SHADOW_REGISTER(shadow_config_index) +
  221. (uintptr_t)hal->dev_base_addr;
  222. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  223. hal->shadow_config[shadow_config_index].addr,
  224. SHADOW_REGISTER(shadow_config_index),
  225. shadow_config_index);
  226. shadow_config_index++;
  227. hal->num_shadow_registers_configured++;
  228. }
  229. return QDF_STATUS_SUCCESS;
  230. }
  231. qdf_export_symbol(hal_construct_shadow_regs);
  232. #endif
  233. #ifndef SHADOW_REG_CONFIG_DISABLED
  234. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  235. int ring_type,
  236. int ring_num)
  237. {
  238. uint32_t target_register;
  239. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  240. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  241. int shadow_config_index = hal->num_shadow_registers_configured;
  242. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  243. QDF_ASSERT(0);
  244. return QDF_STATUS_E_RESOURCES;
  245. }
  246. hal->num_shadow_registers_configured++;
  247. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  248. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  249. *ring_num);
  250. /* if the ring is a dst ring, we need to shadow the tail pointer */
  251. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  252. target_register += OFFSET_FROM_HP_TO_TP;
  253. hal->shadow_config[shadow_config_index].addr = target_register;
  254. /* update hp/tp addr in the hal_soc structure*/
  255. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  256. ring_num);
  257. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  258. target_register,
  259. SHADOW_REGISTER(shadow_config_index),
  260. shadow_config_index,
  261. ring_type, ring_num);
  262. return QDF_STATUS_SUCCESS;
  263. }
  264. qdf_export_symbol(hal_set_one_shadow_config);
  265. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  266. {
  267. int ring_type, ring_num;
  268. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  269. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  270. struct hal_hw_srng_config *srng_config =
  271. &hal->hw_srng_table[ring_type];
  272. if (ring_type == CE_SRC ||
  273. ring_type == CE_DST ||
  274. ring_type == CE_DST_STATUS)
  275. continue;
  276. if (srng_config->lmac_ring)
  277. continue;
  278. for (ring_num = 0; ring_num < srng_config->max_rings;
  279. ring_num++)
  280. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  281. }
  282. return QDF_STATUS_SUCCESS;
  283. }
  284. qdf_export_symbol(hal_construct_srng_shadow_regs);
  285. #else
  286. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  287. {
  288. return QDF_STATUS_SUCCESS;
  289. }
  290. qdf_export_symbol(hal_construct_srng_shadow_regs);
  291. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  292. int ring_num)
  293. {
  294. return QDF_STATUS_SUCCESS;
  295. }
  296. qdf_export_symbol(hal_set_one_shadow_config);
  297. #endif
  298. void hal_get_shadow_config(void *hal_soc,
  299. struct pld_shadow_reg_v2_cfg **shadow_config,
  300. int *num_shadow_registers_configured)
  301. {
  302. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  303. *shadow_config = &hal->shadow_config[0].v2;
  304. *num_shadow_registers_configured =
  305. hal->num_shadow_registers_configured;
  306. }
  307. qdf_export_symbol(hal_get_shadow_config);
  308. #ifdef CONFIG_SHADOW_V3
  309. void hal_get_shadow_v3_config(void *hal_soc,
  310. struct pld_shadow_reg_v3_cfg **shadow_config,
  311. int *num_shadow_registers_configured)
  312. {
  313. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  314. *shadow_config = &hal->shadow_config[0].v3;
  315. *num_shadow_registers_configured =
  316. hal->num_shadow_registers_configured;
  317. }
  318. qdf_export_symbol(hal_get_shadow_v3_config);
  319. #endif
  320. static bool hal_validate_shadow_register(struct hal_soc *hal,
  321. uint32_t *destination,
  322. uint32_t *shadow_address)
  323. {
  324. unsigned int index;
  325. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  326. int destination_ba_offset =
  327. ((char *)destination) - (char *)hal->dev_base_addr;
  328. index = shadow_address - shadow_0_offset;
  329. if (index >= MAX_SHADOW_REGISTERS) {
  330. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  331. "%s: index %x out of bounds", __func__, index);
  332. goto error;
  333. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  334. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  335. "%s: sanity check failure, expected %x, found %x",
  336. __func__, destination_ba_offset,
  337. hal->shadow_config[index].addr);
  338. goto error;
  339. }
  340. return true;
  341. error:
  342. qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
  343. hal->dev_base_addr, destination, shadow_address,
  344. shadow_0_offset, index);
  345. QDF_BUG(0);
  346. return false;
  347. }
  348. static void hal_target_based_configure(struct hal_soc *hal)
  349. {
  350. /*
  351. * Indicate Initialization of srngs to avoid force wake
  352. * as umac power collapse is not enabled yet
  353. */
  354. hal->init_phase = true;
  355. switch (hal->target_type) {
  356. #ifdef QCA_WIFI_QCA6290
  357. case TARGET_TYPE_QCA6290:
  358. hal->use_register_windowing = true;
  359. hal_qca6290_attach(hal);
  360. break;
  361. #endif
  362. #ifdef QCA_WIFI_QCA6390
  363. case TARGET_TYPE_QCA6390:
  364. hal->use_register_windowing = true;
  365. hal_qca6390_attach(hal);
  366. break;
  367. #endif
  368. #ifdef QCA_WIFI_QCA6490
  369. case TARGET_TYPE_QCA6490:
  370. hal->use_register_windowing = true;
  371. hal_qca6490_attach(hal);
  372. break;
  373. #endif
  374. #ifdef QCA_WIFI_QCA6750
  375. case TARGET_TYPE_QCA6750:
  376. hal->use_register_windowing = true;
  377. hal->static_window_map = true;
  378. hal_qca6750_attach(hal);
  379. break;
  380. #endif
  381. #ifdef QCA_WIFI_KIWI
  382. case TARGET_TYPE_KIWI:
  383. case TARGET_TYPE_MANGO:
  384. case TARGET_TYPE_PEACH:
  385. hal->use_register_windowing = true;
  386. hal_kiwi_attach(hal);
  387. break;
  388. #endif
  389. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  390. case TARGET_TYPE_QCA8074:
  391. hal_qca8074_attach(hal);
  392. break;
  393. #endif
  394. #if defined(QCA_WIFI_QCA8074V2)
  395. case TARGET_TYPE_QCA8074V2:
  396. hal_qca8074v2_attach(hal);
  397. break;
  398. #endif
  399. #if defined(QCA_WIFI_QCA6018)
  400. case TARGET_TYPE_QCA6018:
  401. hal_qca8074v2_attach(hal);
  402. break;
  403. #endif
  404. #if defined(QCA_WIFI_QCA9574)
  405. case TARGET_TYPE_QCA9574:
  406. hal_qca8074v2_attach(hal);
  407. break;
  408. #endif
  409. #if defined(QCA_WIFI_QCN6122)
  410. case TARGET_TYPE_QCN6122:
  411. hal->use_register_windowing = true;
  412. /*
  413. * Static window map is enabled for qcn9000 to use 2mb bar
  414. * size and use multiple windows to write into registers.
  415. */
  416. hal->static_window_map = true;
  417. hal_qcn6122_attach(hal);
  418. break;
  419. #endif
  420. #if defined(QCA_WIFI_QCN9160)
  421. case TARGET_TYPE_QCN9160:
  422. hal->use_register_windowing = true;
  423. /*
  424. * Static window map is enabled for qcn9160 to use 2mb bar
  425. * size and use multiple windows to write into registers.
  426. */
  427. hal->static_window_map = true;
  428. hal_qcn6122_attach(hal);
  429. break;
  430. #endif
  431. #if defined(QCA_WIFI_QCN6432)
  432. case TARGET_TYPE_QCN6432:
  433. hal->use_register_windowing = true;
  434. /*
  435. * Static window map is enabled for qcn6432 to use 2mb bar
  436. * size and use multiple windows to write into registers.
  437. */
  438. hal->static_window_map = true;
  439. hal_qcn6432_attach(hal);
  440. break;
  441. #endif
  442. #ifdef QCA_WIFI_QCN9000
  443. case TARGET_TYPE_QCN9000:
  444. hal->use_register_windowing = true;
  445. /*
  446. * Static window map is enabled for qcn9000 to use 2mb bar
  447. * size and use multiple windows to write into registers.
  448. */
  449. hal->static_window_map = true;
  450. hal_qcn9000_attach(hal);
  451. break;
  452. #endif
  453. #ifdef QCA_WIFI_QCA5018
  454. case TARGET_TYPE_QCA5018:
  455. hal->use_register_windowing = true;
  456. hal->static_window_map = true;
  457. hal_qca5018_attach(hal);
  458. break;
  459. #endif
  460. #ifdef QCA_WIFI_QCN9224
  461. case TARGET_TYPE_QCN9224:
  462. hal->use_register_windowing = true;
  463. hal->static_window_map = true;
  464. if (hal->version == 1)
  465. qdf_assert_always(0);
  466. else
  467. hal_qcn9224v2_attach(hal);
  468. break;
  469. #endif
  470. #ifdef QCA_WIFI_QCA5332
  471. case TARGET_TYPE_QCA5332:
  472. hal->use_register_windowing = true;
  473. hal->static_window_map = true;
  474. hal_qca5332_attach(hal);
  475. break;
  476. #endif
  477. #ifdef QCA_WIFI_WCN6450
  478. case TARGET_TYPE_WCN6450:
  479. hal->use_register_windowing = true;
  480. hal->static_window_map = true;
  481. hal_wcn6450_attach(hal);
  482. break;
  483. #endif
  484. default:
  485. break;
  486. }
  487. }
  488. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  489. {
  490. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  491. struct hif_target_info *tgt_info =
  492. hif_get_target_info_handle(hal_soc->hif_handle);
  493. return tgt_info->target_type;
  494. }
  495. qdf_export_symbol(hal_get_target_type);
  496. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  497. /**
  498. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  499. * @hal: hal_soc pointer
  500. *
  501. * Return: true if throughput is high, else false.
  502. */
  503. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  504. {
  505. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  506. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  507. }
  508. static inline
  509. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  510. char *buf, qdf_size_t size)
  511. {
  512. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  513. srng->wstats.enqueues, srng->wstats.dequeues,
  514. srng->wstats.coalesces, srng->wstats.direct);
  515. return buf;
  516. }
  517. /* bytes for local buffer */
  518. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  519. #ifndef WLAN_SOFTUMAC_SUPPORT
  520. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  521. {
  522. struct hal_srng *srng;
  523. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  524. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  525. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  526. hal_debug("SW2TCL1: %s",
  527. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  528. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  529. hal_debug("WBM2SW0: %s",
  530. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  531. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  532. hal_debug("REO2SW1: %s",
  533. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  534. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  535. hal_debug("REO2SW2: %s",
  536. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  537. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  538. hal_debug("REO2SW3: %s",
  539. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  540. }
  541. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  542. {
  543. uint32_t *hist;
  544. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  545. hist = hal->stats.wstats.sched_delay;
  546. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  547. qdf_atomic_read(&hal->stats.wstats.enqueues),
  548. hal->stats.wstats.dequeues,
  549. qdf_atomic_read(&hal->stats.wstats.coalesces),
  550. qdf_atomic_read(&hal->stats.wstats.direct),
  551. qdf_atomic_read(&hal->stats.wstats.q_depth),
  552. hal->stats.wstats.max_q_depth,
  553. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  554. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  555. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  556. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  557. }
  558. #else
  559. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  560. {
  561. }
  562. /* TODO: Need separate logic for Evros */
  563. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  564. {
  565. }
  566. #endif
  567. int hal_get_reg_write_pending_work(void *hal_soc)
  568. {
  569. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  570. return qdf_atomic_read(&hal->active_work_cnt);
  571. }
  572. #endif
  573. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  574. #ifdef MEMORY_DEBUG
  575. /*
  576. * Length of the queue(array) used to hold delayed register writes.
  577. * Must be a multiple of 2.
  578. */
  579. #define HAL_REG_WRITE_QUEUE_LEN 128
  580. #else
  581. #define HAL_REG_WRITE_QUEUE_LEN 32
  582. #endif
  583. /**
  584. * hal_process_reg_write_q_elem() - process a register write queue element
  585. * @hal: hal_soc pointer
  586. * @q_elem: pointer to hal register write queue element
  587. *
  588. * Return: The value which was written to the address
  589. */
  590. static uint32_t
  591. hal_process_reg_write_q_elem(struct hal_soc *hal,
  592. struct hal_reg_write_q_elem *q_elem)
  593. {
  594. struct hal_srng *srng = q_elem->srng;
  595. uint32_t write_val;
  596. SRNG_LOCK(&srng->lock);
  597. srng->reg_write_in_progress = false;
  598. srng->wstats.dequeues++;
  599. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  600. q_elem->dequeue_val = srng->u.src_ring.hp;
  601. hal_write_address_32_mb(hal,
  602. srng->u.src_ring.hp_addr,
  603. srng->u.src_ring.hp, false);
  604. write_val = srng->u.src_ring.hp;
  605. } else {
  606. q_elem->dequeue_val = srng->u.dst_ring.tp;
  607. hal_write_address_32_mb(hal,
  608. srng->u.dst_ring.tp_addr,
  609. srng->u.dst_ring.tp, false);
  610. write_val = srng->u.dst_ring.tp;
  611. }
  612. hal_srng_reg_his_add(srng, write_val);
  613. q_elem->valid = 0;
  614. srng->last_dequeue_time = q_elem->dequeue_time;
  615. SRNG_UNLOCK(&srng->lock);
  616. return write_val;
  617. }
  618. /**
  619. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  620. * @hal: hal_soc pointer
  621. * @delay_us: delay in us
  622. *
  623. * Return: None
  624. */
  625. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  626. uint64_t delay_us)
  627. {
  628. uint32_t *hist;
  629. hist = hal->stats.wstats.sched_delay;
  630. if (delay_us < 100)
  631. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  632. else if (delay_us < 1000)
  633. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  634. else if (delay_us < 5000)
  635. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  636. else
  637. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  638. }
  639. #ifdef SHADOW_WRITE_DELAY
  640. #define SHADOW_WRITE_MIN_DELTA_US 5
  641. #define SHADOW_WRITE_DELAY_US 50
  642. /*
  643. * Never add those srngs which are performance relate.
  644. * The delay itself will hit performance heavily.
  645. */
  646. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  647. (s)->ring_id == HAL_SRNG_CE_1_DST)
  648. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  649. {
  650. struct hal_srng *srng = elem->srng;
  651. struct hal_soc *hal;
  652. qdf_time_t now;
  653. qdf_iomem_t real_addr;
  654. if (qdf_unlikely(!srng))
  655. return false;
  656. hal = srng->hal_soc;
  657. if (qdf_unlikely(!hal))
  658. return false;
  659. /* Check if it is target srng, and valid shadow reg */
  660. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  661. return false;
  662. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  663. real_addr = SRNG_SRC_ADDR(srng, HP);
  664. else
  665. real_addr = SRNG_DST_ADDR(srng, TP);
  666. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  667. return false;
  668. /* Check the time delta from last write of same srng */
  669. now = qdf_get_log_timestamp();
  670. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  671. SHADOW_WRITE_MIN_DELTA_US)
  672. return false;
  673. /* Delay dequeue, and record */
  674. qdf_udelay(SHADOW_WRITE_DELAY_US);
  675. srng->wstats.dequeue_delay++;
  676. hal->stats.wstats.dequeue_delay++;
  677. return true;
  678. }
  679. #else
  680. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  681. {
  682. return false;
  683. }
  684. #endif
  685. #define MAX_DELAYED_REG_WRITE_RETRY 5
  686. /**
  687. * hal_reg_write_work() - Worker to process delayed writes
  688. * @arg: hal_soc pointer
  689. *
  690. * Return: None
  691. */
  692. static void hal_reg_write_work(void *arg)
  693. {
  694. int32_t q_depth, write_val;
  695. struct hal_soc *hal = arg;
  696. struct hal_reg_write_q_elem *q_elem;
  697. uint64_t delta_us;
  698. uint8_t ring_id;
  699. uint32_t *addr;
  700. uint32_t num_processed = 0;
  701. uint8_t retry_count = 0;
  702. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  703. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  704. q_elem->cpu_id = qdf_get_cpu();
  705. /* Make sure q_elem consistent in the memory for multi-cores */
  706. qdf_rmb();
  707. if (!q_elem->valid)
  708. return;
  709. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  710. if (q_depth > hal->stats.wstats.max_q_depth)
  711. hal->stats.wstats.max_q_depth = q_depth;
  712. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  713. hal->stats.wstats.prevent_l1_fails++;
  714. return;
  715. }
  716. while (true) {
  717. qdf_rmb();
  718. if (!q_elem->valid)
  719. break;
  720. qdf_rmb();
  721. /* buy some more time to make sure all fields
  722. * in q_elem is updated per different CPUs, in
  723. * case wmb/rmb is not taken effect
  724. */
  725. if (qdf_unlikely(!q_elem->srng ||
  726. (qdf_atomic_read(&q_elem->ring_id) !=
  727. q_elem->srng->ring_id))) {
  728. hal_err_rl("q_elem fields not up to date 0x%x 0x%x",
  729. q_elem->srng ? q_elem->srng->ring_id : 0xDEAD,
  730. qdf_atomic_read(&q_elem->ring_id));
  731. if (retry_count++ < MAX_DELAYED_REG_WRITE_RETRY) {
  732. /* Sleep for 1ms before retry */
  733. qdf_sleep(1);
  734. continue;
  735. }
  736. qdf_assert_always(0);
  737. }
  738. q_elem->dequeue_time = qdf_get_log_timestamp();
  739. ring_id = q_elem->srng->ring_id;
  740. addr = q_elem->addr;
  741. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  742. q_elem->enqueue_time);
  743. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  744. hal->stats.wstats.dequeues++;
  745. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  746. if (hal_reg_write_need_delay(q_elem))
  747. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  748. q_elem->srng->ring_id, q_elem->addr);
  749. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  750. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  751. hal->read_idx, ring_id, addr, write_val, delta_us);
  752. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  753. q_elem->dequeue_val,
  754. q_elem->enqueue_time,
  755. q_elem->dequeue_time);
  756. num_processed++;
  757. hal->read_idx = (hal->read_idx + 1) &
  758. (HAL_REG_WRITE_QUEUE_LEN - 1);
  759. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  760. retry_count = 0;
  761. }
  762. hif_allow_link_low_power_states(hal->hif_handle);
  763. /*
  764. * Decrement active_work_cnt by the number of elements dequeued after
  765. * hif_allow_link_low_power_states.
  766. * This makes sure that hif_try_complete_tasks will wait till we make
  767. * the bus access in hif_allow_link_low_power_states. This will avoid
  768. * race condition between delayed register worker and bus suspend
  769. * (system suspend or runtime suspend).
  770. *
  771. * The following decrement should be done at the end!
  772. */
  773. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  774. }
  775. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  776. {
  777. qdf_flush_work(&hal->reg_write_work);
  778. qdf_disable_work(&hal->reg_write_work);
  779. }
  780. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  781. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  782. }
  783. /**
  784. * hal_reg_write_enqueue() - enqueue register writes into kworker
  785. * @hal_soc: hal_soc pointer
  786. * @srng: srng pointer
  787. * @addr: iomem address of register
  788. * @value: value to be written to iomem address
  789. *
  790. * This function executes from within the SRNG LOCK
  791. *
  792. * Return: None
  793. */
  794. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  795. struct hal_srng *srng,
  796. void __iomem *addr,
  797. uint32_t value)
  798. {
  799. struct hal_reg_write_q_elem *q_elem;
  800. uint32_t write_idx;
  801. if (srng->reg_write_in_progress) {
  802. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  803. srng->ring_id, addr, value);
  804. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  805. srng->wstats.coalesces++;
  806. return;
  807. }
  808. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  809. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  810. q_elem = &hal_soc->reg_write_queue[write_idx];
  811. if (q_elem->valid) {
  812. hal_err("queue full");
  813. QDF_BUG(0);
  814. return;
  815. }
  816. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  817. srng->wstats.enqueues++;
  818. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  819. q_elem->srng = srng;
  820. q_elem->addr = addr;
  821. qdf_atomic_set(&q_elem->ring_id, srng->ring_id);
  822. q_elem->enqueue_val = value;
  823. q_elem->enqueue_time = qdf_get_log_timestamp();
  824. /*
  825. * Before the valid flag is set to true, all the other
  826. * fields in the q_elem needs to be updated in memory.
  827. * Else there is a chance that the dequeuing worker thread
  828. * might read stale entries and process incorrect srng.
  829. */
  830. qdf_wmb();
  831. q_elem->valid = true;
  832. /*
  833. * After all other fields in the q_elem has been updated
  834. * in memory successfully, the valid flag needs to be updated
  835. * in memory in time too.
  836. * Else there is a chance that the dequeuing worker thread
  837. * might read stale valid flag and the work will be bypassed
  838. * for this round. And if there is no other work scheduled
  839. * later, this hal register writing won't be updated any more.
  840. */
  841. qdf_wmb();
  842. srng->reg_write_in_progress = true;
  843. qdf_atomic_inc(&hal_soc->active_work_cnt);
  844. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  845. write_idx, srng->ring_id, addr, value);
  846. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  847. &hal_soc->reg_write_work);
  848. }
  849. /**
  850. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  851. * @hal: hal_soc pointer
  852. *
  853. * Initialize main data structures to process register writes in a delayed
  854. * workqueue.
  855. *
  856. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  857. */
  858. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  859. {
  860. hal->reg_write_wq =
  861. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  862. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  863. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  864. sizeof(*hal->reg_write_queue));
  865. if (!hal->reg_write_queue) {
  866. hal_err("unable to allocate memory");
  867. QDF_BUG(0);
  868. return QDF_STATUS_E_NOMEM;
  869. }
  870. /* Initial value of indices */
  871. hal->read_idx = 0;
  872. qdf_atomic_set(&hal->write_idx, -1);
  873. return QDF_STATUS_SUCCESS;
  874. }
  875. /**
  876. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  877. * @hal: hal_soc pointer
  878. *
  879. * De-initialize main data structures to process register writes in a delayed
  880. * workqueue.
  881. *
  882. * Return: None
  883. */
  884. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  885. {
  886. __hal_flush_reg_write_work(hal);
  887. qdf_flush_workqueue(0, hal->reg_write_wq);
  888. qdf_destroy_workqueue(0, hal->reg_write_wq);
  889. qdf_mem_free(hal->reg_write_queue);
  890. }
  891. #else
  892. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  893. {
  894. return QDF_STATUS_SUCCESS;
  895. }
  896. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  897. {
  898. }
  899. #endif
  900. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  901. #ifdef HAL_RECORD_SUSPEND_WRITE
  902. static struct hal_suspend_write_history
  903. g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
  904. static
  905. void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
  906. {
  907. uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
  908. (HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
  909. struct hal_suspend_write_record *cur_event =
  910. &hal_suspend_write_event.record[index];
  911. cur_event->ts = qdf_get_log_timestamp();
  912. cur_event->ring_id = ring_id;
  913. cur_event->value = value;
  914. cur_event->direct_wcount = count;
  915. qdf_atomic_inc(g_hal_suspend_write_history.index);
  916. }
  917. static inline
  918. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  919. {
  920. if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
  921. hal_event_suspend_record(ring_id, value, count);
  922. }
  923. #else
  924. static inline
  925. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  926. {
  927. }
  928. #endif
  929. #ifdef QCA_WIFI_QCA6750
  930. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  931. struct hal_srng *srng,
  932. void __iomem *addr,
  933. uint32_t value)
  934. {
  935. uint8_t vote_access;
  936. switch (srng->ring_type) {
  937. case CE_SRC:
  938. case CE_DST:
  939. case CE_DST_STATUS:
  940. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  941. HIF_EP_VOTE_NONDP_ACCESS);
  942. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  943. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  944. PLD_MHI_STATE_L0 ==
  945. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  946. hal_write_address_32_mb(hal_soc, addr, value, false);
  947. hal_srng_reg_his_add(srng, value);
  948. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  949. srng->wstats.direct++;
  950. } else {
  951. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  952. }
  953. break;
  954. default:
  955. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  956. HIF_EP_VOTE_DP_ACCESS) ==
  957. HIF_EP_VOTE_ACCESS_DISABLE ||
  958. hal_is_reg_write_tput_level_high(hal_soc) ||
  959. PLD_MHI_STATE_L0 ==
  960. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  961. hal_write_address_32_mb(hal_soc, addr, value, false);
  962. hal_srng_reg_his_add(srng, value);
  963. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  964. srng->wstats.direct++;
  965. } else {
  966. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  967. }
  968. break;
  969. }
  970. }
  971. #else
  972. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  973. struct hal_srng *srng,
  974. void __iomem *addr,
  975. uint32_t value)
  976. {
  977. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  978. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  979. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  980. srng->wstats.direct++;
  981. hal_write_address_32_mb(hal_soc, addr, value, false);
  982. hal_srng_reg_his_add(srng, value);
  983. } else {
  984. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  985. }
  986. hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
  987. }
  988. #endif
  989. #endif
  990. #ifdef HAL_SRNG_REG_HIS_DEBUG
  991. inline void hal_free_srng_history(struct hal_soc *hal)
  992. {
  993. int i;
  994. for (i = 0; i < HAL_SRNG_ID_MAX; i++)
  995. qdf_mem_free(hal->srng_list[i].reg_his_ctx);
  996. }
  997. inline bool hal_alloc_srng_history(struct hal_soc *hal)
  998. {
  999. int i;
  1000. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1001. hal->srng_list[i].reg_his_ctx =
  1002. qdf_mem_malloc(sizeof(struct hal_srng_reg_his_ctx));
  1003. if (!hal->srng_list[i].reg_his_ctx) {
  1004. hal_err("srng_hist alloc failed");
  1005. hal_free_srng_history(hal);
  1006. return false;
  1007. }
  1008. }
  1009. return true;
  1010. }
  1011. #else
  1012. inline void hal_free_srng_history(struct hal_soc *hal)
  1013. {
  1014. }
  1015. inline bool hal_alloc_srng_history(struct hal_soc *hal)
  1016. {
  1017. return true;
  1018. }
  1019. #endif
  1020. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1021. {
  1022. struct hal_soc *hal;
  1023. int i;
  1024. hal = qdf_mem_common_alloc(sizeof(*hal));
  1025. if (!hal) {
  1026. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1027. "%s: hal_soc allocation failed", __func__);
  1028. goto fail0;
  1029. }
  1030. hal->hif_handle = hif_handle;
  1031. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1032. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1033. hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
  1034. hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */
  1035. hal->qdf_dev = qdf_dev;
  1036. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1037. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1038. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1039. if (!hal->shadow_rdptr_mem_paddr) {
  1040. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1041. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1042. __func__);
  1043. goto fail1;
  1044. }
  1045. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1046. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1047. hal->shadow_wrptr_mem_vaddr =
  1048. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1049. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1050. &(hal->shadow_wrptr_mem_paddr));
  1051. if (!hal->shadow_wrptr_mem_vaddr) {
  1052. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1053. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1054. __func__);
  1055. goto fail2;
  1056. }
  1057. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1058. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1059. if (!hal_alloc_srng_history(hal))
  1060. goto fail2;
  1061. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1062. hal->srng_list[i].initialized = 0;
  1063. hal->srng_list[i].ring_id = i;
  1064. }
  1065. qdf_spinlock_create(&hal->register_access_lock);
  1066. hal->register_window = 0;
  1067. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1068. hal->version = hif_get_soc_version(hif_handle);
  1069. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  1070. if (!hal->ops) {
  1071. hal_err("unable to allocable memory for HAL ops");
  1072. goto fail3;
  1073. }
  1074. hal_target_based_configure(hal);
  1075. hal_reg_write_fail_history_init(hal);
  1076. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1077. qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal));
  1078. qdf_atomic_init(&hal->active_work_cnt);
  1079. if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) {
  1080. hal_err("unable to initialize delayed reg write");
  1081. goto fail4;
  1082. }
  1083. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  1084. return (void *)hal;
  1085. fail4:
  1086. qdf_ssr_driver_dump_unregister_region("hal_soc");
  1087. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1088. qdf_mem_free(hal->ops);
  1089. fail3:
  1090. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1091. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1092. HAL_MAX_LMAC_RINGS,
  1093. hal->shadow_wrptr_mem_vaddr,
  1094. hal->shadow_wrptr_mem_paddr, 0);
  1095. fail2:
  1096. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1097. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1098. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1099. fail1:
  1100. qdf_mem_common_free(hal);
  1101. fail0:
  1102. return NULL;
  1103. }
  1104. qdf_export_symbol(hal_attach);
  1105. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1106. {
  1107. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1108. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1109. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1110. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1111. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1112. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1113. hif_read_phy_mem_base((void *)hal->hif_handle,
  1114. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1115. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1116. return;
  1117. }
  1118. qdf_export_symbol(hal_get_meminfo);
  1119. void hal_detach(void *hal_soc)
  1120. {
  1121. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1122. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1123. hal_delayed_reg_write_deinit(hal);
  1124. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1125. qdf_ssr_driver_dump_unregister_region("hal_soc");
  1126. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1127. qdf_mem_free(hal->ops);
  1128. hal_free_srng_history(hal);
  1129. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1130. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1131. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1132. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1133. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1134. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1135. qdf_mem_common_free(hal);
  1136. return;
  1137. }
  1138. qdf_export_symbol(hal_detach);
  1139. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1140. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1141. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1142. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1143. /**
  1144. * hal_ce_dst_setup() - Initialize CE destination ring registers
  1145. * @hal: HAL SOC handle
  1146. * @srng: SRNG ring pointer
  1147. * @ring_num: ring number
  1148. */
  1149. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1150. int ring_num)
  1151. {
  1152. uint32_t reg_val = 0;
  1153. uint32_t reg_addr;
  1154. struct hal_hw_srng_config *ring_config =
  1155. HAL_SRNG_CONFIG(hal, CE_DST);
  1156. /* set DEST_MAX_LENGTH according to ce assignment */
  1157. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1158. ring_config->reg_start[R0_INDEX] +
  1159. (ring_num * ring_config->reg_size[R0_INDEX]));
  1160. reg_val = HAL_REG_READ(hal, reg_addr);
  1161. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1162. reg_val |= srng->u.dst_ring.max_buffer_length &
  1163. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1164. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1165. if (srng->prefetch_timer) {
  1166. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1167. ring_config->reg_start[R0_INDEX] +
  1168. (ring_num * ring_config->reg_size[R0_INDEX]));
  1169. reg_val = HAL_REG_READ(hal, reg_addr);
  1170. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1171. reg_val |= srng->prefetch_timer;
  1172. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1173. reg_val = HAL_REG_READ(hal, reg_addr);
  1174. }
  1175. }
  1176. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1177. uint32_t *ix0, uint32_t *ix1,
  1178. uint32_t *ix2, uint32_t *ix3)
  1179. {
  1180. uint32_t reg_offset;
  1181. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1182. uint32_t reo_reg_base;
  1183. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1184. if (read) {
  1185. if (ix0) {
  1186. reg_offset =
  1187. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1188. reo_reg_base);
  1189. *ix0 = HAL_REG_READ(hal, reg_offset);
  1190. }
  1191. if (ix1) {
  1192. reg_offset =
  1193. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1194. reo_reg_base);
  1195. *ix1 = HAL_REG_READ(hal, reg_offset);
  1196. }
  1197. if (ix2) {
  1198. reg_offset =
  1199. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1200. reo_reg_base);
  1201. *ix2 = HAL_REG_READ(hal, reg_offset);
  1202. }
  1203. if (ix3) {
  1204. reg_offset =
  1205. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1206. reo_reg_base);
  1207. *ix3 = HAL_REG_READ(hal, reg_offset);
  1208. }
  1209. } else {
  1210. if (ix0) {
  1211. reg_offset =
  1212. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1213. reo_reg_base);
  1214. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1215. *ix0, true);
  1216. }
  1217. if (ix1) {
  1218. reg_offset =
  1219. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1220. reo_reg_base);
  1221. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1222. *ix1, true);
  1223. }
  1224. if (ix2) {
  1225. reg_offset =
  1226. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1227. reo_reg_base);
  1228. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1229. *ix2, true);
  1230. }
  1231. if (ix3) {
  1232. reg_offset =
  1233. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1234. reo_reg_base);
  1235. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1236. *ix3, true);
  1237. }
  1238. }
  1239. }
  1240. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1241. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1242. {
  1243. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1244. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1245. }
  1246. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1247. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1248. struct hal_srng *srng,
  1249. uint32_t *vaddr)
  1250. {
  1251. uint32_t reg_offset;
  1252. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1253. if (!srng)
  1254. return;
  1255. srng->u.dst_ring.hp_addr = vaddr;
  1256. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1257. HAL_REG_WRITE_CONFIRM_RETRY(
  1258. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1259. if (vaddr) {
  1260. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1261. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1262. "hp_addr=%pK, cached_hp=%d",
  1263. (void *)srng->u.dst_ring.hp_addr,
  1264. srng->u.dst_ring.cached_hp);
  1265. }
  1266. }
  1267. qdf_export_symbol(hal_srng_dst_init_hp);
  1268. void hal_srng_dst_update_hp_addr(struct hal_soc_handle *hal_soc,
  1269. hal_ring_handle_t hal_ring_hdl)
  1270. {
  1271. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1272. int32_t hw_hp;
  1273. int32_t hw_tp;
  1274. if (!srng)
  1275. return;
  1276. if (srng->u.dst_ring.hp_addr) {
  1277. hal_get_hw_hptp(hal_soc, hal_ring_hdl, &hw_hp, &hw_tp,
  1278. WBM2SW_RELEASE);
  1279. *srng->u.dst_ring.hp_addr = hw_hp;
  1280. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1281. "hw_hp=%d", hw_hp);
  1282. }
  1283. }
  1284. qdf_export_symbol(hal_srng_dst_update_hp_addr);
  1285. /**
  1286. * hal_srng_hw_init - Private function to initialize SRNG HW
  1287. * @hal: HAL SOC handle
  1288. * @srng: SRNG ring pointer
  1289. * @idle_check: Check if ring is idle
  1290. * @idx: ring index
  1291. */
  1292. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1293. struct hal_srng *srng, bool idle_check, uint32_t idx)
  1294. {
  1295. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1296. hal_srng_src_hw_init(hal, srng, idle_check, idx);
  1297. else
  1298. hal_srng_dst_hw_init(hal, srng, idle_check, idx);
  1299. }
  1300. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1301. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1302. int ring_type, int ring_num)
  1303. {
  1304. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1305. struct hal_hw_srng_config *ring_config =
  1306. HAL_SRNG_CONFIG(hal, ring_type);
  1307. return ring_config->nf_irq_support;
  1308. }
  1309. /**
  1310. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1311. * ring params
  1312. * @srng: SRNG handle
  1313. * @ring_params: ring params for this SRNG
  1314. *
  1315. * Return: None
  1316. */
  1317. static inline void
  1318. hal_srng_set_msi2_params(struct hal_srng *srng,
  1319. struct hal_srng_params *ring_params)
  1320. {
  1321. srng->msi2_addr = ring_params->msi2_addr;
  1322. srng->msi2_data = ring_params->msi2_data;
  1323. }
  1324. /**
  1325. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1326. * @srng: SRNG handle
  1327. * @ring_params: ring params for this SRNG
  1328. *
  1329. * Return: None
  1330. */
  1331. static inline void
  1332. hal_srng_get_nf_params(struct hal_srng *srng,
  1333. struct hal_srng_params *ring_params)
  1334. {
  1335. ring_params->msi2_addr = srng->msi2_addr;
  1336. ring_params->msi2_data = srng->msi2_data;
  1337. }
  1338. /**
  1339. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1340. * @srng: SRNG handle where the params are to be set
  1341. * @ring_params: ring params, from where threshold is to be fetched
  1342. *
  1343. * Return: None
  1344. */
  1345. static inline void
  1346. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1347. struct hal_srng_params *ring_params)
  1348. {
  1349. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1350. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1351. }
  1352. #else
  1353. static inline void
  1354. hal_srng_set_msi2_params(struct hal_srng *srng,
  1355. struct hal_srng_params *ring_params)
  1356. {
  1357. }
  1358. static inline void
  1359. hal_srng_get_nf_params(struct hal_srng *srng,
  1360. struct hal_srng_params *ring_params)
  1361. {
  1362. }
  1363. static inline void
  1364. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1365. struct hal_srng_params *ring_params)
  1366. {
  1367. }
  1368. #endif
  1369. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1370. /**
  1371. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1372. * @srng: Source ring pointer
  1373. *
  1374. * Return: None
  1375. */
  1376. static inline
  1377. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1378. {
  1379. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1380. }
  1381. #else
  1382. static inline
  1383. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1384. {
  1385. }
  1386. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1387. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1388. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1389. {
  1390. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1391. ((srng->num_entries * 90) / 100);
  1392. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1393. ((srng->num_entries * 80) / 100);
  1394. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1395. ((srng->num_entries * 70) / 100);
  1396. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1397. ((srng->num_entries * 60) / 100);
  1398. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1399. ((srng->num_entries * 50) / 100);
  1400. /* Below 50% threshold is not needed */
  1401. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1402. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1403. srng->ring_id,
  1404. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1405. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1406. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1407. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1408. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1409. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1410. }
  1411. #else
  1412. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1413. {
  1414. }
  1415. #endif
  1416. void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id,
  1417. struct hal_srng_params *ring_params, bool idle_check,
  1418. uint32_t idx)
  1419. {
  1420. int ring_id;
  1421. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1422. hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal;
  1423. struct hal_srng *srng;
  1424. struct hal_hw_srng_config *ring_config =
  1425. HAL_SRNG_CONFIG(hal, ring_type);
  1426. void *dev_base_addr;
  1427. int i;
  1428. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1429. if (ring_id < 0)
  1430. return NULL;
  1431. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1432. srng = hal_get_srng(hal_soc, ring_id);
  1433. if (srng->initialized) {
  1434. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1435. return NULL;
  1436. }
  1437. hal_srng_reg_his_init(srng);
  1438. dev_base_addr = hal->dev_base_addr;
  1439. srng->ring_id = ring_id;
  1440. srng->ring_type = ring_type;
  1441. srng->ring_dir = ring_config->ring_dir;
  1442. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1443. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1444. srng->entry_size = ring_config->entry_size;
  1445. srng->num_entries = ring_params->num_entries;
  1446. srng->ring_size = srng->num_entries * srng->entry_size;
  1447. srng->ring_size_mask = srng->ring_size - 1;
  1448. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1449. srng->msi_addr = ring_params->msi_addr;
  1450. srng->msi_data = ring_params->msi_data;
  1451. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1452. srng->intr_batch_cntr_thres_entries =
  1453. ring_params->intr_batch_cntr_thres_entries;
  1454. srng->pointer_timer_threshold =
  1455. ring_params->pointer_timer_threshold;
  1456. srng->pointer_num_threshold =
  1457. ring_params->pointer_num_threshold;
  1458. if (!idle_check)
  1459. srng->prefetch_timer = ring_params->prefetch_timer;
  1460. srng->hal_soc = hal_soc;
  1461. hal_srng_set_msi2_params(srng, ring_params);
  1462. hal_srng_update_high_wm_thresholds(srng);
  1463. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1464. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1465. + (ring_num * ring_config->reg_size[i]);
  1466. }
  1467. /* Zero out the entire ring memory */
  1468. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1469. srng->num_entries) << 2);
  1470. srng->flags = ring_params->flags;
  1471. /* For cached descriptors flush and invalidate the memory*/
  1472. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1473. qdf_nbuf_dma_clean_range(
  1474. srng->ring_base_vaddr,
  1475. srng->ring_base_vaddr +
  1476. ((srng->entry_size * srng->num_entries)));
  1477. qdf_nbuf_dma_inv_range(
  1478. srng->ring_base_vaddr,
  1479. srng->ring_base_vaddr +
  1480. ((srng->entry_size * srng->num_entries)));
  1481. }
  1482. #ifdef BIG_ENDIAN_HOST
  1483. /* TODO: See if we should we get these flags from caller */
  1484. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1485. srng->flags |= HAL_SRNG_MSI_SWAP;
  1486. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1487. #endif
  1488. hal_srng_last_desc_cleared_init(srng);
  1489. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1490. srng->u.src_ring.hp = 0;
  1491. srng->u.src_ring.reap_hp = srng->ring_size -
  1492. srng->entry_size;
  1493. srng->u.src_ring.tp_addr =
  1494. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1495. srng->u.src_ring.low_threshold =
  1496. ring_params->low_threshold * srng->entry_size;
  1497. if (srng->u.src_ring.tp_addr)
  1498. qdf_mem_zero(srng->u.src_ring.tp_addr,
  1499. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1500. if (ring_config->lmac_ring) {
  1501. /* For LMAC rings, head pointer updates will be done
  1502. * through FW by writing to a shared memory location
  1503. */
  1504. srng->u.src_ring.hp_addr =
  1505. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1506. HAL_SRNG_LMAC1_ID_START]);
  1507. srng->flags |= HAL_SRNG_LMAC_RING;
  1508. if (srng->u.src_ring.hp_addr)
  1509. qdf_mem_zero(srng->u.src_ring.hp_addr,
  1510. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1511. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1512. srng->u.src_ring.hp_addr =
  1513. hal_get_window_address(hal,
  1514. SRNG_SRC_ADDR(srng, HP));
  1515. if (CHECK_SHADOW_REGISTERS) {
  1516. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1517. QDF_TRACE_LEVEL_ERROR,
  1518. "%s: Ring (%d, %d) missing shadow config",
  1519. __func__, ring_type, ring_num);
  1520. }
  1521. } else {
  1522. hal_validate_shadow_register(hal,
  1523. SRNG_SRC_ADDR(srng, HP),
  1524. srng->u.src_ring.hp_addr);
  1525. }
  1526. } else {
  1527. /* During initialization loop count in all the descriptors
  1528. * will be set to zero, and HW will set it to 1 on completing
  1529. * descriptor update in first loop, and increments it by 1 on
  1530. * subsequent loops (loop count wraps around after reaching
  1531. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1532. * loop count in descriptors updated by HW (to be processed
  1533. * by SW).
  1534. */
  1535. hal_srng_set_nf_thresholds(srng, ring_params);
  1536. srng->u.dst_ring.loop_cnt = 1;
  1537. srng->u.dst_ring.tp = 0;
  1538. srng->u.dst_ring.hp_addr =
  1539. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1540. if (srng->u.dst_ring.hp_addr)
  1541. qdf_mem_zero(srng->u.dst_ring.hp_addr,
  1542. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1543. if (ring_config->lmac_ring) {
  1544. /* For LMAC rings, tail pointer updates will be done
  1545. * through FW by writing to a shared memory location
  1546. */
  1547. srng->u.dst_ring.tp_addr =
  1548. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1549. HAL_SRNG_LMAC1_ID_START]);
  1550. srng->flags |= HAL_SRNG_LMAC_RING;
  1551. if (srng->u.dst_ring.tp_addr)
  1552. qdf_mem_zero(srng->u.dst_ring.tp_addr,
  1553. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1554. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1555. srng->u.dst_ring.tp_addr =
  1556. hal_get_window_address(hal,
  1557. SRNG_DST_ADDR(srng, TP));
  1558. if (CHECK_SHADOW_REGISTERS) {
  1559. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1560. QDF_TRACE_LEVEL_ERROR,
  1561. "%s: Ring (%d, %d) missing shadow config",
  1562. __func__, ring_type, ring_num);
  1563. }
  1564. } else {
  1565. hal_validate_shadow_register(hal,
  1566. SRNG_DST_ADDR(srng, TP),
  1567. srng->u.dst_ring.tp_addr);
  1568. }
  1569. }
  1570. if (!(ring_config->lmac_ring)) {
  1571. /*
  1572. * UMAC reset has idle check enabled.
  1573. * During UMAC reset Tx ring halt is set
  1574. * by Wi-Fi FW during pre-reset stage,
  1575. * avoid Tx ring halt again.
  1576. */
  1577. if (idle_check && idx) {
  1578. if (!hal->ops->hal_tx_ring_halt_get(hal_hdl)) {
  1579. qdf_print("\nTx ring halt not set:Ring(%d, %d)",
  1580. ring_type, ring_num);
  1581. qdf_assert_always(0);
  1582. }
  1583. hal_srng_hw_init(hal, srng, idle_check, idx);
  1584. goto ce_setup;
  1585. }
  1586. if (idx) {
  1587. hal->ops->hal_tx_ring_halt_set(hal_hdl);
  1588. do {
  1589. hal_info("Waiting for ring reset");
  1590. } while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl)));
  1591. }
  1592. hal_srng_hw_init(hal, srng, idle_check, idx);
  1593. if (idx) {
  1594. hal->ops->hal_tx_ring_halt_reset(hal_hdl);
  1595. }
  1596. ce_setup:
  1597. if (ring_type == CE_DST) {
  1598. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1599. hal_ce_dst_setup(hal, srng, ring_num);
  1600. }
  1601. }
  1602. SRNG_LOCK_INIT(&srng->lock);
  1603. srng->srng_event = 0;
  1604. srng->initialized = true;
  1605. return (void *)srng;
  1606. }
  1607. qdf_export_symbol(hal_srng_setup_idx);
  1608. /**
  1609. * hal_srng_setup - Initialize HW SRNG ring.
  1610. * @hal_soc: Opaque HAL SOC handle
  1611. * @ring_type: one of the types from hal_ring_type
  1612. * @ring_num: Ring number if there are multiple rings of same type (staring
  1613. * from 0)
  1614. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1615. * @ring_params: SRNG ring params in hal_srng_params structure.
  1616. * @idle_check: Check if ring is idle
  1617. *
  1618. * Callers are expected to allocate contiguous ring memory of size
  1619. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1620. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1621. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1622. * and size of each ring entry should be queried using the API
  1623. * hal_srng_get_entrysize
  1624. *
  1625. * Return: Opaque pointer to ring on success
  1626. * NULL on failure (if given ring is not available)
  1627. */
  1628. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1629. int mac_id, struct hal_srng_params *ring_params,
  1630. bool idle_check)
  1631. {
  1632. return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id,
  1633. ring_params, idle_check, 0);
  1634. }
  1635. qdf_export_symbol(hal_srng_setup);
  1636. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
  1637. bool umac_reset_inprogress)
  1638. {
  1639. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1640. SRNG_LOCK_DESTROY(&srng->lock);
  1641. srng->initialized = 0;
  1642. if (umac_reset_inprogress)
  1643. hal_srng_hw_disable(hal_soc, srng);
  1644. }
  1645. qdf_export_symbol(hal_srng_cleanup);
  1646. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1647. {
  1648. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1649. struct hal_hw_srng_config *ring_config =
  1650. HAL_SRNG_CONFIG(hal, ring_type);
  1651. return ring_config->entry_size << 2;
  1652. }
  1653. qdf_export_symbol(hal_srng_get_entrysize);
  1654. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1655. {
  1656. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1657. struct hal_hw_srng_config *ring_config =
  1658. HAL_SRNG_CONFIG(hal, ring_type);
  1659. return ring_config->max_size / ring_config->entry_size;
  1660. }
  1661. qdf_export_symbol(hal_srng_max_entries);
  1662. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1663. {
  1664. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1665. struct hal_hw_srng_config *ring_config =
  1666. HAL_SRNG_CONFIG(hal, ring_type);
  1667. return ring_config->ring_dir;
  1668. }
  1669. void hal_srng_dump(struct hal_srng *srng)
  1670. {
  1671. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1672. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1673. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1674. srng->u.src_ring.hp,
  1675. srng->u.src_ring.reap_hp,
  1676. *srng->u.src_ring.tp_addr,
  1677. srng->u.src_ring.cached_tp);
  1678. } else {
  1679. hal_debug("=== DST RING %d ===", srng->ring_id);
  1680. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1681. srng->u.dst_ring.tp,
  1682. *srng->u.dst_ring.hp_addr,
  1683. srng->u.dst_ring.cached_hp,
  1684. srng->u.dst_ring.loop_cnt);
  1685. }
  1686. }
  1687. void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1688. hal_ring_handle_t hal_ring_hdl,
  1689. struct hal_srng_params *ring_params)
  1690. {
  1691. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1692. int i =0;
  1693. ring_params->ring_id = srng->ring_id;
  1694. ring_params->ring_dir = srng->ring_dir;
  1695. ring_params->entry_size = srng->entry_size;
  1696. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1697. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1698. ring_params->num_entries = srng->num_entries;
  1699. ring_params->msi_addr = srng->msi_addr;
  1700. ring_params->msi_data = srng->msi_data;
  1701. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1702. ring_params->intr_batch_cntr_thres_entries =
  1703. srng->intr_batch_cntr_thres_entries;
  1704. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1705. ring_params->flags = srng->flags;
  1706. ring_params->ring_id = srng->ring_id;
  1707. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1708. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1709. hal_srng_get_nf_params(srng, ring_params);
  1710. }
  1711. qdf_export_symbol(hal_get_srng_params);
  1712. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1713. uint32_t low_threshold)
  1714. {
  1715. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1716. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1717. }
  1718. qdf_export_symbol(hal_set_low_threshold);
  1719. #ifdef FEATURE_RUNTIME_PM
  1720. void
  1721. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1722. hal_ring_handle_t hal_ring_hdl,
  1723. uint32_t rtpm_id)
  1724. {
  1725. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  1726. if (qdf_unlikely(!hal_ring_hdl)) {
  1727. qdf_print("Error: Invalid hal_ring\n");
  1728. return;
  1729. }
  1730. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1731. if (hif_system_pm_state_check(hal_soc->hif_handle)) {
  1732. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1733. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1734. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1735. } else {
  1736. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1737. }
  1738. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1739. } else {
  1740. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1741. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1742. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1743. }
  1744. }
  1745. qdf_export_symbol(hal_srng_rtpm_access_end);
  1746. #endif /* FEATURE_RUNTIME_PM */
  1747. #ifdef FORCE_WAKE
  1748. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1749. {
  1750. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1751. hal_soc->init_phase = init_phase;
  1752. }
  1753. #endif /* FORCE_WAKE */