hal_srng.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "hal_reo.h"
  21. #include "target_type.h"
  22. #include "qdf_module.h"
  23. #include "wcss_version.h"
  24. #ifdef QCA_WIFI_QCA8074
  25. void hal_qca6290_attach(struct hal_soc *hal);
  26. #endif
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca8074_attach(struct hal_soc *hal);
  29. #endif
  30. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  31. defined(QCA_WIFI_QCA9574)
  32. void hal_qca8074v2_attach(struct hal_soc *hal);
  33. #endif
  34. #ifdef QCA_WIFI_QCA6390
  35. void hal_qca6390_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6490
  38. void hal_qca6490_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCN9000
  41. void hal_qcn9000_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN6122
  44. void hal_qcn6122_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCA6750
  47. void hal_qca6750_attach(struct hal_soc *hal);
  48. #endif
  49. #ifdef QCA_WIFI_QCA5018
  50. void hal_qca5018_attach(struct hal_soc *hal);
  51. #endif
  52. #ifdef QCA_WIFI_WCN7850
  53. void hal_wcn7850_attach(struct hal_soc *hal);
  54. #endif
  55. #ifdef ENABLE_VERBOSE_DEBUG
  56. bool is_hal_verbose_debug_enabled;
  57. #endif
  58. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  59. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  60. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  61. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  62. #ifdef ENABLE_HAL_REG_WR_HISTORY
  63. struct hal_reg_write_fail_history hal_reg_wr_hist;
  64. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  65. uint32_t offset,
  66. uint32_t wr_val, uint32_t rd_val)
  67. {
  68. struct hal_reg_write_fail_entry *record;
  69. int idx;
  70. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  71. HAL_REG_WRITE_HIST_SIZE);
  72. record = &hal_soc->reg_wr_fail_hist->record[idx];
  73. record->timestamp = qdf_get_log_timestamp();
  74. record->reg_offset = offset;
  75. record->write_val = wr_val;
  76. record->read_val = rd_val;
  77. }
  78. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  79. {
  80. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  81. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  82. }
  83. #else
  84. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  85. {
  86. }
  87. #endif
  88. /**
  89. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  90. * @hal: hal_soc data structure
  91. * @ring_type: type enum describing the ring
  92. * @ring_num: which ring of the ring type
  93. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  94. *
  95. * Return: the ring id or -EINVAL if the ring does not exist.
  96. */
  97. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  98. int ring_num, int mac_id)
  99. {
  100. struct hal_hw_srng_config *ring_config =
  101. HAL_SRNG_CONFIG(hal, ring_type);
  102. int ring_id;
  103. if (ring_num >= ring_config->max_rings) {
  104. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  105. "%s: ring_num exceeded maximum no. of supported rings",
  106. __func__);
  107. /* TODO: This is a programming error. Assert if this happens */
  108. return -EINVAL;
  109. }
  110. if (ring_config->lmac_ring) {
  111. ring_id = ring_config->start_ring_id + ring_num +
  112. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  113. } else {
  114. ring_id = ring_config->start_ring_id + ring_num;
  115. }
  116. return ring_id;
  117. }
  118. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  119. {
  120. /* TODO: Should we allocate srng structures dynamically? */
  121. return &(hal->srng_list[ring_id]);
  122. }
  123. #define HP_OFFSET_IN_REG_START 1
  124. #define OFFSET_FROM_HP_TO_TP 4
  125. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  126. int shadow_config_index,
  127. int ring_type,
  128. int ring_num)
  129. {
  130. struct hal_srng *srng;
  131. int ring_id;
  132. struct hal_hw_srng_config *ring_config =
  133. HAL_SRNG_CONFIG(hal_soc, ring_type);
  134. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  135. if (ring_id < 0)
  136. return;
  137. srng = hal_get_srng(hal_soc, ring_id);
  138. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  139. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  140. + hal_soc->dev_base_addr;
  141. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  142. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  143. shadow_config_index);
  144. } else {
  145. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  146. + hal_soc->dev_base_addr;
  147. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  148. srng->u.src_ring.hp_addr,
  149. hal_soc->dev_base_addr, shadow_config_index);
  150. }
  151. }
  152. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  153. void hal_set_one_target_reg_config(struct hal_soc *hal,
  154. uint32_t target_reg_offset,
  155. int list_index)
  156. {
  157. int i = list_index;
  158. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  159. hal->list_shadow_reg_config[i].target_register =
  160. target_reg_offset;
  161. hal->num_generic_shadow_regs_configured++;
  162. }
  163. qdf_export_symbol(hal_set_one_target_reg_config);
  164. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  165. #define MAX_REO_REMAP_SHADOW_REGS 4
  166. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  167. {
  168. uint32_t target_reg_offset;
  169. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  170. int i;
  171. struct hal_hw_srng_config *srng_config =
  172. &hal->hw_srng_table[WBM2SW_RELEASE];
  173. uint32_t reo_reg_base;
  174. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  175. target_reg_offset =
  176. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  177. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  178. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  179. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  180. }
  181. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  182. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  183. * HAL_IPA_TX_COMP_RING_IDX);
  184. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  185. return QDF_STATUS_SUCCESS;
  186. }
  187. qdf_export_symbol(hal_set_shadow_regs);
  188. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  189. {
  190. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  191. int shadow_config_index = hal->num_shadow_registers_configured;
  192. int i;
  193. int num_regs = hal->num_generic_shadow_regs_configured;
  194. for (i = 0; i < num_regs; i++) {
  195. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  196. hal->shadow_config[shadow_config_index].addr =
  197. hal->list_shadow_reg_config[i].target_register;
  198. hal->list_shadow_reg_config[i].shadow_config_index =
  199. shadow_config_index;
  200. hal->list_shadow_reg_config[i].va =
  201. SHADOW_REGISTER(shadow_config_index) +
  202. (uintptr_t)hal->dev_base_addr;
  203. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  204. hal->shadow_config[shadow_config_index].addr,
  205. SHADOW_REGISTER(shadow_config_index),
  206. shadow_config_index);
  207. shadow_config_index++;
  208. hal->num_shadow_registers_configured++;
  209. }
  210. return QDF_STATUS_SUCCESS;
  211. }
  212. qdf_export_symbol(hal_construct_shadow_regs);
  213. #endif
  214. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  215. int ring_type,
  216. int ring_num)
  217. {
  218. uint32_t target_register;
  219. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  220. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  221. int shadow_config_index = hal->num_shadow_registers_configured;
  222. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  223. QDF_ASSERT(0);
  224. return QDF_STATUS_E_RESOURCES;
  225. }
  226. hal->num_shadow_registers_configured++;
  227. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  228. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  229. *ring_num);
  230. /* if the ring is a dst ring, we need to shadow the tail pointer */
  231. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  232. target_register += OFFSET_FROM_HP_TO_TP;
  233. hal->shadow_config[shadow_config_index].addr = target_register;
  234. /* update hp/tp addr in the hal_soc structure*/
  235. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  236. ring_num);
  237. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  238. target_register,
  239. SHADOW_REGISTER(shadow_config_index),
  240. shadow_config_index,
  241. ring_type, ring_num);
  242. return QDF_STATUS_SUCCESS;
  243. }
  244. qdf_export_symbol(hal_set_one_shadow_config);
  245. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  246. {
  247. int ring_type, ring_num;
  248. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  249. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  250. struct hal_hw_srng_config *srng_config =
  251. &hal->hw_srng_table[ring_type];
  252. if (ring_type == CE_SRC ||
  253. ring_type == CE_DST ||
  254. ring_type == CE_DST_STATUS)
  255. continue;
  256. if (srng_config->lmac_ring)
  257. continue;
  258. for (ring_num = 0; ring_num < srng_config->max_rings;
  259. ring_num++)
  260. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  261. }
  262. return QDF_STATUS_SUCCESS;
  263. }
  264. qdf_export_symbol(hal_construct_srng_shadow_regs);
  265. void hal_get_shadow_config(void *hal_soc,
  266. struct pld_shadow_reg_v2_cfg **shadow_config,
  267. int *num_shadow_registers_configured)
  268. {
  269. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  270. *shadow_config = hal->shadow_config;
  271. *num_shadow_registers_configured =
  272. hal->num_shadow_registers_configured;
  273. }
  274. qdf_export_symbol(hal_get_shadow_config);
  275. static bool hal_validate_shadow_register(struct hal_soc *hal,
  276. uint32_t *destination,
  277. uint32_t *shadow_address)
  278. {
  279. unsigned int index;
  280. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  281. int destination_ba_offset =
  282. ((char *)destination) - (char *)hal->dev_base_addr;
  283. index = shadow_address - shadow_0_offset;
  284. if (index >= MAX_SHADOW_REGISTERS) {
  285. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  286. "%s: index %x out of bounds", __func__, index);
  287. goto error;
  288. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  289. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  290. "%s: sanity check failure, expected %x, found %x",
  291. __func__, destination_ba_offset,
  292. hal->shadow_config[index].addr);
  293. goto error;
  294. }
  295. return true;
  296. error:
  297. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  298. hal->dev_base_addr, destination, shadow_address,
  299. shadow_0_offset, index);
  300. QDF_BUG(0);
  301. return false;
  302. }
  303. static void hal_target_based_configure(struct hal_soc *hal)
  304. {
  305. /**
  306. * Indicate Initialization of srngs to avoid force wake
  307. * as umac power collapse is not enabled yet
  308. */
  309. hal->init_phase = true;
  310. switch (hal->target_type) {
  311. #ifdef QCA_WIFI_QCA6290
  312. case TARGET_TYPE_QCA6290:
  313. hal->use_register_windowing = true;
  314. hal_qca6290_attach(hal);
  315. break;
  316. #endif
  317. #ifdef QCA_WIFI_QCA6390
  318. case TARGET_TYPE_QCA6390:
  319. hal->use_register_windowing = true;
  320. hal_qca6390_attach(hal);
  321. break;
  322. #endif
  323. #ifdef QCA_WIFI_QCA6490
  324. case TARGET_TYPE_QCA6490:
  325. hal->use_register_windowing = true;
  326. hal_qca6490_attach(hal);
  327. break;
  328. #endif
  329. #ifdef QCA_WIFI_QCA6750
  330. case TARGET_TYPE_QCA6750:
  331. hal->use_register_windowing = true;
  332. hal->static_window_map = true;
  333. hal_qca6750_attach(hal);
  334. break;
  335. #endif
  336. #ifdef QCA_WIFI_WCN7850
  337. case TARGET_TYPE_WCN7850:
  338. hal->use_register_windowing = true;
  339. hal_wcn7850_attach(hal);
  340. hal->init_phase = false;
  341. break;
  342. #endif
  343. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  344. case TARGET_TYPE_QCA8074:
  345. hal_qca8074_attach(hal);
  346. break;
  347. #endif
  348. #if defined(QCA_WIFI_QCA8074V2)
  349. case TARGET_TYPE_QCA8074V2:
  350. hal_qca8074v2_attach(hal);
  351. break;
  352. #endif
  353. #if defined(QCA_WIFI_QCA6018)
  354. case TARGET_TYPE_QCA6018:
  355. hal_qca8074v2_attach(hal);
  356. break;
  357. #endif
  358. #if defined(QCA_WIFI_QCA9574)
  359. case TARGET_TYPE_QCA9574:
  360. hal_qca8074v2_attach(hal);
  361. break;
  362. #endif
  363. #if defined(QCA_WIFI_QCN6122)
  364. case TARGET_TYPE_QCN6122:
  365. hal->use_register_windowing = true;
  366. /*
  367. * Static window map is enabled for qcn9000 to use 2mb bar
  368. * size and use multiple windows to write into registers.
  369. */
  370. hal->static_window_map = true;
  371. hal_qcn6122_attach(hal);
  372. break;
  373. #endif
  374. #ifdef QCA_WIFI_QCN9000
  375. case TARGET_TYPE_QCN9000:
  376. hal->use_register_windowing = true;
  377. /*
  378. * Static window map is enabled for qcn9000 to use 2mb bar
  379. * size and use multiple windows to write into registers.
  380. */
  381. hal->static_window_map = true;
  382. hal_qcn9000_attach(hal);
  383. break;
  384. #endif
  385. #ifdef QCA_WIFI_QCA5018
  386. case TARGET_TYPE_QCA5018:
  387. hal->use_register_windowing = true;
  388. hal->static_window_map = true;
  389. hal_qca5018_attach(hal);
  390. break;
  391. #endif
  392. default:
  393. break;
  394. }
  395. }
  396. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  397. {
  398. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  399. struct hif_target_info *tgt_info =
  400. hif_get_target_info_handle(hal_soc->hif_handle);
  401. return tgt_info->target_type;
  402. }
  403. qdf_export_symbol(hal_get_target_type);
  404. #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  405. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  406. /**
  407. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  408. * @hal: hal_soc pointer
  409. *
  410. * Return: true if throughput is high, else false.
  411. */
  412. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  413. {
  414. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  415. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  416. }
  417. static inline
  418. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  419. char *buf, qdf_size_t size)
  420. {
  421. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  422. srng->wstats.enqueues, srng->wstats.dequeues,
  423. srng->wstats.coalesces, srng->wstats.direct);
  424. return buf;
  425. }
  426. /* bytes for local buffer */
  427. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  428. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  429. {
  430. struct hal_srng *srng;
  431. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  432. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  433. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  434. hal_debug("SW2TCL1: %s",
  435. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  436. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  437. hal_debug("WBM2SW0: %s",
  438. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  439. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  440. hal_debug("REO2SW1: %s",
  441. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  442. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  443. hal_debug("REO2SW2: %s",
  444. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  445. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  446. hal_debug("REO2SW3: %s",
  447. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  448. }
  449. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  450. /**
  451. * hal_dump_tcl_stats() - dump the TCL reg write stats
  452. * @hal: hal_soc pointer
  453. *
  454. * Return: None
  455. */
  456. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  457. {
  458. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  459. uint32_t *hist = hal->tcl_stats.sched_delay;
  460. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  461. hal_debug("TCL: %s sched-delay hist %u %u %u %u",
  462. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)),
  463. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  464. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  465. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  466. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  467. hal_debug("wq_dly %u wq_dir %u tim_enq %u tim_dir %u enq_tim_cnt %u dir_tim_cnt %u rst_tim_cnt %u",
  468. hal->tcl_stats.wq_delayed,
  469. hal->tcl_stats.wq_direct,
  470. hal->tcl_stats.timer_enq,
  471. hal->tcl_stats.timer_direct,
  472. hal->tcl_stats.enq_timer_set,
  473. hal->tcl_stats.direct_timer_set,
  474. hal->tcl_stats.timer_reset);
  475. }
  476. #else
  477. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  478. {
  479. }
  480. #endif
  481. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  482. {
  483. uint32_t *hist;
  484. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  485. hist = hal->stats.wstats.sched_delay;
  486. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  487. qdf_atomic_read(&hal->stats.wstats.enqueues),
  488. hal->stats.wstats.dequeues,
  489. qdf_atomic_read(&hal->stats.wstats.coalesces),
  490. qdf_atomic_read(&hal->stats.wstats.direct),
  491. qdf_atomic_read(&hal->stats.wstats.q_depth),
  492. hal->stats.wstats.max_q_depth,
  493. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  494. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  495. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  496. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  497. hal_dump_tcl_stats(hal);
  498. }
  499. int hal_get_reg_write_pending_work(void *hal_soc)
  500. {
  501. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  502. return qdf_atomic_read(&hal->active_work_cnt);
  503. }
  504. #endif
  505. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  506. #ifdef MEMORY_DEBUG
  507. /*
  508. * Length of the queue(array) used to hold delayed register writes.
  509. * Must be a multiple of 2.
  510. */
  511. #define HAL_REG_WRITE_QUEUE_LEN 128
  512. #else
  513. #define HAL_REG_WRITE_QUEUE_LEN 32
  514. #endif
  515. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  516. /**
  517. * hal_process_reg_write_q_elem() - process a regiter write queue element
  518. * @hal: hal_soc pointer
  519. * @q_elem: pointer to hal regiter write queue element
  520. *
  521. * Return: The value which was written to the address
  522. */
  523. static uint32_t
  524. hal_process_reg_write_q_elem(struct hal_soc *hal,
  525. struct hal_reg_write_q_elem *q_elem)
  526. {
  527. struct hal_srng *srng = q_elem->srng;
  528. uint32_t write_val;
  529. SRNG_LOCK(&srng->lock);
  530. srng->reg_write_in_progress = false;
  531. srng->wstats.dequeues++;
  532. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  533. write_val = srng->u.src_ring.hp;
  534. q_elem->dequeue_val = write_val;
  535. q_elem->valid = 0;
  536. SRNG_UNLOCK(&srng->lock);
  537. hal_write_address_32_mb(hal,
  538. srng->u.src_ring.hp_addr,
  539. write_val, false);
  540. } else {
  541. write_val = srng->u.dst_ring.tp;
  542. q_elem->dequeue_val = write_val;
  543. q_elem->valid = 0;
  544. SRNG_UNLOCK(&srng->lock);
  545. hal_write_address_32_mb(hal,
  546. srng->u.dst_ring.tp_addr,
  547. write_val, false);
  548. }
  549. return write_val;
  550. }
  551. #else
  552. /**
  553. * hal_process_reg_write_q_elem() - process a regiter write queue element
  554. * @hal: hal_soc pointer
  555. * @q_elem: pointer to hal regiter write queue element
  556. *
  557. * Return: The value which was written to the address
  558. */
  559. static uint32_t
  560. hal_process_reg_write_q_elem(struct hal_soc *hal,
  561. struct hal_reg_write_q_elem *q_elem)
  562. {
  563. struct hal_srng *srng = q_elem->srng;
  564. uint32_t write_val;
  565. SRNG_LOCK(&srng->lock);
  566. srng->reg_write_in_progress = false;
  567. srng->wstats.dequeues++;
  568. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  569. q_elem->dequeue_val = srng->u.src_ring.hp;
  570. hal_write_address_32_mb(hal,
  571. srng->u.src_ring.hp_addr,
  572. srng->u.src_ring.hp, false);
  573. write_val = srng->u.src_ring.hp;
  574. } else {
  575. q_elem->dequeue_val = srng->u.dst_ring.tp;
  576. hal_write_address_32_mb(hal,
  577. srng->u.dst_ring.tp_addr,
  578. srng->u.dst_ring.tp, false);
  579. write_val = srng->u.dst_ring.tp;
  580. }
  581. q_elem->valid = 0;
  582. srng->last_dequeue_time = q_elem->dequeue_time;
  583. SRNG_UNLOCK(&srng->lock);
  584. return write_val;
  585. }
  586. #endif
  587. /**
  588. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  589. * @hal: hal_soc pointer
  590. * @delay: delay in us
  591. *
  592. * Return: None
  593. */
  594. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  595. uint64_t delay_us)
  596. {
  597. uint32_t *hist;
  598. hist = hal->stats.wstats.sched_delay;
  599. if (delay_us < 100)
  600. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  601. else if (delay_us < 1000)
  602. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  603. else if (delay_us < 5000)
  604. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  605. else
  606. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  607. }
  608. #ifdef SHADOW_WRITE_DELAY
  609. #define SHADOW_WRITE_MIN_DELTA_US 5
  610. #define SHADOW_WRITE_DELAY_US 50
  611. /*
  612. * Never add those srngs which are performance relate.
  613. * The delay itself will hit performance heavily.
  614. */
  615. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  616. (s)->ring_id == HAL_SRNG_CE_1_DST)
  617. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  618. {
  619. struct hal_srng *srng = elem->srng;
  620. struct hal_soc *hal;
  621. qdf_time_t now;
  622. qdf_iomem_t real_addr;
  623. if (qdf_unlikely(!srng))
  624. return false;
  625. hal = srng->hal_soc;
  626. if (qdf_unlikely(!hal))
  627. return false;
  628. /* Check if it is target srng, and valid shadow reg */
  629. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  630. return false;
  631. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  632. real_addr = SRNG_SRC_ADDR(srng, HP);
  633. else
  634. real_addr = SRNG_DST_ADDR(srng, TP);
  635. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  636. return false;
  637. /* Check the time delta from last write of same srng */
  638. now = qdf_get_log_timestamp();
  639. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  640. SHADOW_WRITE_MIN_DELTA_US)
  641. return false;
  642. /* Delay dequeue, and record */
  643. qdf_udelay(SHADOW_WRITE_DELAY_US);
  644. srng->wstats.dequeue_delay++;
  645. hal->stats.wstats.dequeue_delay++;
  646. return true;
  647. }
  648. #else
  649. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  650. {
  651. return false;
  652. }
  653. #endif
  654. /**
  655. * hal_reg_write_work() - Worker to process delayed writes
  656. * @arg: hal_soc pointer
  657. *
  658. * Return: None
  659. */
  660. static void hal_reg_write_work(void *arg)
  661. {
  662. int32_t q_depth, write_val;
  663. struct hal_soc *hal = arg;
  664. struct hal_reg_write_q_elem *q_elem;
  665. uint64_t delta_us;
  666. uint8_t ring_id;
  667. uint32_t *addr;
  668. uint32_t num_processed = 0;
  669. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  670. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  671. /* Make sure q_elem consistent in the memory for multi-cores */
  672. qdf_rmb();
  673. if (!q_elem->valid)
  674. return;
  675. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  676. if (q_depth > hal->stats.wstats.max_q_depth)
  677. hal->stats.wstats.max_q_depth = q_depth;
  678. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  679. hal->stats.wstats.prevent_l1_fails++;
  680. return;
  681. }
  682. while (true) {
  683. qdf_rmb();
  684. if (!q_elem->valid)
  685. break;
  686. q_elem->dequeue_time = qdf_get_log_timestamp();
  687. ring_id = q_elem->srng->ring_id;
  688. addr = q_elem->addr;
  689. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  690. q_elem->enqueue_time);
  691. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  692. hal->stats.wstats.dequeues++;
  693. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  694. if (hal_reg_write_need_delay(q_elem))
  695. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  696. q_elem->srng->ring_id, q_elem->addr);
  697. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  698. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  699. hal->read_idx, ring_id, addr, write_val, delta_us);
  700. num_processed++;
  701. hal->read_idx = (hal->read_idx + 1) &
  702. (HAL_REG_WRITE_QUEUE_LEN - 1);
  703. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  704. }
  705. hif_allow_link_low_power_states(hal->hif_handle);
  706. /*
  707. * Decrement active_work_cnt by the number of elements dequeued after
  708. * hif_allow_link_low_power_states.
  709. * This makes sure that hif_try_complete_tasks will wait till we make
  710. * the bus access in hif_allow_link_low_power_states. This will avoid
  711. * race condition between delayed register worker and bus suspend
  712. * (system suspend or runtime suspend).
  713. *
  714. * The following decrement should be done at the end!
  715. */
  716. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  717. }
  718. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  719. {
  720. qdf_cancel_work(&hal->reg_write_work);
  721. }
  722. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  723. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  724. }
  725. /**
  726. * hal_reg_write_enqueue() - enqueue register writes into kworker
  727. * @hal_soc: hal_soc pointer
  728. * @srng: srng pointer
  729. * @addr: iomem address of regiter
  730. * @value: value to be written to iomem address
  731. *
  732. * This function executes from within the SRNG LOCK
  733. *
  734. * Return: None
  735. */
  736. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  737. struct hal_srng *srng,
  738. void __iomem *addr,
  739. uint32_t value)
  740. {
  741. struct hal_reg_write_q_elem *q_elem;
  742. uint32_t write_idx;
  743. if (srng->reg_write_in_progress) {
  744. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  745. srng->ring_id, addr, value);
  746. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  747. srng->wstats.coalesces++;
  748. return;
  749. }
  750. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  751. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  752. q_elem = &hal_soc->reg_write_queue[write_idx];
  753. if (q_elem->valid) {
  754. hal_err("queue full");
  755. QDF_BUG(0);
  756. return;
  757. }
  758. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  759. srng->wstats.enqueues++;
  760. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  761. q_elem->srng = srng;
  762. q_elem->addr = addr;
  763. q_elem->enqueue_val = value;
  764. q_elem->enqueue_time = qdf_get_log_timestamp();
  765. /*
  766. * Before the valid flag is set to true, all the other
  767. * fields in the q_elem needs to be updated in memory.
  768. * Else there is a chance that the dequeuing worker thread
  769. * might read stale entries and process incorrect srng.
  770. */
  771. qdf_wmb();
  772. q_elem->valid = true;
  773. /*
  774. * After all other fields in the q_elem has been updated
  775. * in memory successfully, the valid flag needs to be updated
  776. * in memory in time too.
  777. * Else there is a chance that the dequeuing worker thread
  778. * might read stale valid flag and the work will be bypassed
  779. * for this round. And if there is no other work scheduled
  780. * later, this hal register writing won't be updated any more.
  781. */
  782. qdf_wmb();
  783. srng->reg_write_in_progress = true;
  784. qdf_atomic_inc(&hal_soc->active_work_cnt);
  785. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  786. write_idx, srng->ring_id, addr, value);
  787. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  788. &hal_soc->reg_write_work);
  789. }
  790. /**
  791. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  792. * @hal_soc: hal_soc pointer
  793. *
  794. * Initialize main data structures to process register writes in a delayed
  795. * workqueue.
  796. *
  797. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  798. */
  799. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  800. {
  801. hal->reg_write_wq =
  802. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  803. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  804. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  805. sizeof(*hal->reg_write_queue));
  806. if (!hal->reg_write_queue) {
  807. hal_err("unable to allocate memory");
  808. QDF_BUG(0);
  809. return QDF_STATUS_E_NOMEM;
  810. }
  811. /* Initial value of indices */
  812. hal->read_idx = 0;
  813. qdf_atomic_set(&hal->write_idx, -1);
  814. return QDF_STATUS_SUCCESS;
  815. }
  816. /**
  817. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  818. * @hal_soc: hal_soc pointer
  819. *
  820. * De-initialize main data structures to process register writes in a delayed
  821. * workqueue.
  822. *
  823. * Return: None
  824. */
  825. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  826. {
  827. __hal_flush_reg_write_work(hal);
  828. qdf_flush_workqueue(0, hal->reg_write_wq);
  829. qdf_destroy_workqueue(0, hal->reg_write_wq);
  830. qdf_mem_free(hal->reg_write_queue);
  831. }
  832. #else
  833. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  834. {
  835. return QDF_STATUS_SUCCESS;
  836. }
  837. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  838. {
  839. }
  840. #endif
  841. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  842. #ifdef MEMORY_DEBUG
  843. /**
  844. * hal_reg_write_get_timestamp() - Function to get the timestamp
  845. *
  846. * Return: return present simestamp
  847. */
  848. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  849. {
  850. return qdf_get_log_timestamp();
  851. }
  852. /**
  853. * hal_del_reg_write_ts_usecs() - Convert the timestamp to micro secs
  854. * @ts: timestamp value to be converted
  855. *
  856. * Return: return the timestamp in micro secs
  857. */
  858. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  859. {
  860. return qdf_log_timestamp_to_usecs(ts);
  861. }
  862. /**
  863. * hal_tcl_write_fill_sched_delay_hist() - fill TCL reg write delay histogram
  864. * @hal: hal_soc pointer
  865. * @delay: delay in us
  866. *
  867. * Return: None
  868. */
  869. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  870. {
  871. uint32_t *hist;
  872. uint32_t delay_us;
  873. hal->tcl_stats.deq_time = hal_del_reg_write_get_ts();
  874. delay_us = hal_del_reg_write_ts_usecs(hal->tcl_stats.deq_time -
  875. hal->tcl_stats.enq_time);
  876. hist = hal->tcl_stats.sched_delay;
  877. if (delay_us < 100)
  878. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  879. else if (delay_us < 1000)
  880. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  881. else if (delay_us < 5000)
  882. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  883. else
  884. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  885. }
  886. #else
  887. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  888. {
  889. return 0;
  890. }
  891. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  892. {
  893. return 0;
  894. }
  895. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  896. {
  897. }
  898. #endif
  899. /**
  900. * hal_tcl_reg_write_work() - Worker to process delayed SW2TCL1 writes
  901. * @arg: hal_soc pointer
  902. *
  903. * Return: None
  904. */
  905. static void hal_tcl_reg_write_work(void *arg)
  906. {
  907. struct hal_soc *hal = arg;
  908. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  909. SRNG_LOCK(&srng->lock);
  910. srng->wstats.dequeues++;
  911. hal_tcl_write_fill_sched_delay_hist(hal);
  912. /*
  913. * During the tranition of low to high tput scenario, reg write moves
  914. * from delayed to direct write context, there is a little chance that
  915. * worker thread gets scheduled later than direct context write which
  916. * already wrote the latest HP value. This check can catch that case
  917. * and avoid the repetitive writing of the same HP value.
  918. */
  919. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  920. srng->last_reg_wr_val = srng->u.src_ring.hp;
  921. if (hal->tcl_direct) {
  922. /*
  923. * TCL reg writes have been moved to direct context and
  924. * the assumption is that PCIe bus stays in Active state
  925. * during high tput, hence its fine to write the HP
  926. * while the SRNG_LOCK is being held.
  927. */
  928. hal->tcl_stats.wq_direct++;
  929. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  930. srng->last_reg_wr_val, false);
  931. srng->reg_write_in_progress = false;
  932. SRNG_UNLOCK(&srng->lock);
  933. } else {
  934. /*
  935. * TCL reg write to happen in delayed context,
  936. * write operation might take time due to possibility of
  937. * PCIe bus stays in low power state during low tput,
  938. * Hence release the SRNG_LOCK before writing.
  939. */
  940. hal->tcl_stats.wq_delayed++;
  941. srng->reg_write_in_progress = false;
  942. SRNG_UNLOCK(&srng->lock);
  943. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  944. srng->last_reg_wr_val, false);
  945. }
  946. } else {
  947. srng->reg_write_in_progress = false;
  948. SRNG_UNLOCK(&srng->lock);
  949. }
  950. /*
  951. * Decrement active_work_cnt to make sure that hif_try_complete_tasks
  952. * will wait. This will avoid race condition between delayed register
  953. * worker and bus suspend (system suspend or runtime suspend).
  954. *
  955. * The following decrement should be done at the end!
  956. */
  957. qdf_atomic_dec(&hal->active_work_cnt);
  958. qdf_atomic_set(&hal->tcl_work_active, false);
  959. }
  960. static void __hal_flush_tcl_reg_write_work(struct hal_soc *hal)
  961. {
  962. qdf_cancel_work(&hal->tcl_reg_write_work);
  963. }
  964. /**
  965. * hal_tcl_reg_write_enqueue() - enqueue TCL register writes into kworker
  966. * @hal_soc: hal_soc pointer
  967. * @srng: srng pointer
  968. * @addr: iomem address of regiter
  969. * @value: value to be written to iomem address
  970. *
  971. * This function executes from within the SRNG LOCK
  972. *
  973. * Return: None
  974. */
  975. static void hal_tcl_reg_write_enqueue(struct hal_soc *hal_soc,
  976. struct hal_srng *srng,
  977. void __iomem *addr,
  978. uint32_t value)
  979. {
  980. hal_soc->tcl_stats.enq_time = hal_del_reg_write_get_ts();
  981. if (qdf_queue_work(hal_soc->qdf_dev, hal_soc->tcl_reg_write_wq,
  982. &hal_soc->tcl_reg_write_work)) {
  983. srng->reg_write_in_progress = true;
  984. qdf_atomic_inc(&hal_soc->active_work_cnt);
  985. qdf_atomic_set(&hal_soc->tcl_work_active, true);
  986. srng->wstats.enqueues++;
  987. } else {
  988. hal_soc->tcl_stats.enq_timer_set++;
  989. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  990. }
  991. }
  992. /**
  993. * hal_tcl_reg_write_timer() - timer handler to take care of pending TCL writes
  994. * @arg: srng handle
  995. *
  996. * This function handles the pending TCL reg writes missed due to the previous
  997. * scheduled worker running.
  998. *
  999. * Return: None
  1000. */
  1001. static void hal_tcl_reg_write_timer(void *arg)
  1002. {
  1003. hal_ring_handle_t srng_hdl = arg;
  1004. struct hal_srng *srng;
  1005. struct hal_soc *hal;
  1006. srng = (struct hal_srng *)srng_hdl;
  1007. hal = srng->hal_soc;
  1008. if (hif_pm_runtime_get(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE,
  1009. true)) {
  1010. hal_srng_set_event(srng_hdl, HAL_SRNG_FLUSH_EVENT);
  1011. hal_srng_inc_flush_cnt(srng_hdl);
  1012. goto fail;
  1013. }
  1014. SRNG_LOCK(&srng->lock);
  1015. if (hal->tcl_direct) {
  1016. /*
  1017. * Due to the previous scheduled worker still running,
  1018. * direct reg write cannot be performed, so posted the
  1019. * pending writes to timer context.
  1020. */
  1021. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  1022. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1023. srng->wstats.direct++;
  1024. hal->tcl_stats.timer_direct++;
  1025. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  1026. srng->last_reg_wr_val, false);
  1027. }
  1028. } else {
  1029. /*
  1030. * Due to the previous scheduled worker still running,
  1031. * queue_work from delayed context would fail,
  1032. * so retry from timer context.
  1033. */
  1034. if (qdf_queue_work(hal->qdf_dev, hal->tcl_reg_write_wq,
  1035. &hal->tcl_reg_write_work)) {
  1036. srng->reg_write_in_progress = true;
  1037. qdf_atomic_inc(&hal->active_work_cnt);
  1038. qdf_atomic_set(&hal->tcl_work_active, true);
  1039. srng->wstats.enqueues++;
  1040. hal->tcl_stats.timer_enq++;
  1041. } else {
  1042. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  1043. hal->tcl_stats.timer_reset++;
  1044. qdf_timer_mod(&hal->tcl_reg_write_timer, 1);
  1045. }
  1046. }
  1047. }
  1048. SRNG_UNLOCK(&srng->lock);
  1049. hif_pm_runtime_put(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE);
  1050. fail:
  1051. return;
  1052. }
  1053. /**
  1054. * hal_delayed_tcl_reg_write_init() - Initialization for delayed TCL reg writes
  1055. * @hal_soc: hal_soc pointer
  1056. *
  1057. * Initialize main data structures to process TCL register writes in a delayed
  1058. * workqueue.
  1059. *
  1060. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  1061. */
  1062. static QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1063. {
  1064. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  1065. QDF_STATUS status;
  1066. hal->tcl_reg_write_wq =
  1067. qdf_alloc_high_prior_ordered_workqueue("hal_tcl_reg_write_wq");
  1068. if (!hal->tcl_reg_write_wq) {
  1069. hal_err("hal_tcl_reg_write_wq alloc failed");
  1070. return QDF_STATUS_E_NOMEM;
  1071. }
  1072. status = qdf_create_work(0, &hal->tcl_reg_write_work,
  1073. hal_tcl_reg_write_work, hal);
  1074. if (status != QDF_STATUS_SUCCESS) {
  1075. hal_err("tcl_reg_write_work create failed");
  1076. goto fail;
  1077. }
  1078. status = qdf_timer_init(hal->qdf_dev, &hal->tcl_reg_write_timer,
  1079. hal_tcl_reg_write_timer, (void *)srng,
  1080. QDF_TIMER_TYPE_WAKE_APPS);
  1081. if (status != QDF_STATUS_SUCCESS) {
  1082. hal_err("tcl_reg_write_timer init failed");
  1083. goto fail;
  1084. }
  1085. qdf_atomic_init(&hal->tcl_work_active);
  1086. return QDF_STATUS_SUCCESS;
  1087. fail:
  1088. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1089. return status;
  1090. }
  1091. /**
  1092. * hal_delayed_tcl_reg_write_deinit() - De-Initialize delayed TCL reg writes
  1093. * @hal_soc: hal_soc pointer
  1094. *
  1095. * De-initialize main data structures to process TCL register writes in a
  1096. * delayed workqueue.
  1097. *
  1098. * Return: None
  1099. */
  1100. static void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1101. {
  1102. qdf_timer_stop(&hal->tcl_reg_write_timer);
  1103. qdf_timer_free(&hal->tcl_reg_write_timer);
  1104. __hal_flush_tcl_reg_write_work(hal);
  1105. qdf_flush_workqueue(0, hal->tcl_reg_write_wq);
  1106. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1107. }
  1108. #else
  1109. static inline QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1110. {
  1111. return QDF_STATUS_SUCCESS;
  1112. }
  1113. static inline void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1114. {
  1115. }
  1116. #endif
  1117. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  1118. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1119. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1120. struct hal_srng *srng,
  1121. void __iomem *addr,
  1122. uint32_t value)
  1123. {
  1124. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1125. }
  1126. #else
  1127. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1128. struct hal_srng *srng,
  1129. void __iomem *addr,
  1130. uint32_t value)
  1131. {
  1132. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1133. srng->wstats.direct++;
  1134. hal_write_address_32_mb(hal_soc, addr, value, false);
  1135. }
  1136. #endif
  1137. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1138. struct hal_srng *srng,
  1139. void __iomem *addr,
  1140. uint32_t value)
  1141. {
  1142. switch (srng->ring_type) {
  1143. case TCL_DATA:
  1144. if (hal_is_reg_write_tput_level_high(hal_soc)) {
  1145. hal_soc->tcl_direct = true;
  1146. if (srng->reg_write_in_progress ||
  1147. !qdf_atomic_read(&hal_soc->tcl_work_active)) {
  1148. /*
  1149. * Now the delayed work have either completed
  1150. * the writing or not even scheduled and would
  1151. * be blocked by SRNG_LOCK, hence it is fine to
  1152. * do direct write here.
  1153. */
  1154. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1155. srng->wstats.direct++;
  1156. hal_write_address_32_mb(hal_soc, addr,
  1157. srng->last_reg_wr_val,
  1158. false);
  1159. } else {
  1160. hal_soc->tcl_stats.direct_timer_set++;
  1161. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  1162. }
  1163. } else {
  1164. hal_soc->tcl_direct = false;
  1165. if (srng->reg_write_in_progress) {
  1166. srng->wstats.coalesces++;
  1167. } else {
  1168. hal_tcl_reg_write_enqueue(hal_soc, srng,
  1169. addr, value);
  1170. }
  1171. }
  1172. break;
  1173. case CE_SRC:
  1174. case CE_DST:
  1175. case CE_DST_STATUS:
  1176. hal_reg_write_enqueue_v2(hal_soc, srng, addr, value);
  1177. break;
  1178. default:
  1179. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1180. srng->wstats.direct++;
  1181. hal_write_address_32_mb(hal_soc, addr, value, false);
  1182. break;
  1183. }
  1184. }
  1185. #else
  1186. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1187. #ifdef QCA_WIFI_QCA6750
  1188. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1189. struct hal_srng *srng,
  1190. void __iomem *addr,
  1191. uint32_t value)
  1192. {
  1193. uint8_t vote_access;
  1194. switch (srng->ring_type) {
  1195. case CE_SRC:
  1196. case CE_DST:
  1197. case CE_DST_STATUS:
  1198. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  1199. HIF_EP_VOTE_NONDP_ACCESS);
  1200. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  1201. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  1202. PLD_MHI_STATE_L0 ==
  1203. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  1204. hal_write_address_32_mb(hal_soc, addr, value, false);
  1205. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1206. srng->wstats.direct++;
  1207. } else {
  1208. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1209. }
  1210. break;
  1211. default:
  1212. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  1213. HIF_EP_VOTE_DP_ACCESS) ==
  1214. HIF_EP_VOTE_ACCESS_DISABLE ||
  1215. hal_is_reg_write_tput_level_high(hal_soc) ||
  1216. PLD_MHI_STATE_L0 ==
  1217. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  1218. hal_write_address_32_mb(hal_soc, addr, value, false);
  1219. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1220. srng->wstats.direct++;
  1221. } else {
  1222. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1223. }
  1224. break;
  1225. }
  1226. }
  1227. #else
  1228. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1229. struct hal_srng *srng,
  1230. void __iomem *addr,
  1231. uint32_t value)
  1232. {
  1233. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  1234. hal_is_reg_write_tput_level_high(hal_soc)) {
  1235. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1236. srng->wstats.direct++;
  1237. hal_write_address_32_mb(hal_soc, addr, value, false);
  1238. } else {
  1239. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1240. }
  1241. }
  1242. #endif
  1243. #endif
  1244. #endif
  1245. /**
  1246. * hal_attach - Initialize HAL layer
  1247. * @hif_handle: Opaque HIF handle
  1248. * @qdf_dev: QDF device
  1249. *
  1250. * Return: Opaque HAL SOC handle
  1251. * NULL on failure (if given ring is not available)
  1252. *
  1253. * This function should be called as part of HIF initialization (for accessing
  1254. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1255. *
  1256. */
  1257. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1258. {
  1259. struct hal_soc *hal;
  1260. int i;
  1261. hal = qdf_mem_malloc(sizeof(*hal));
  1262. if (!hal) {
  1263. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1264. "%s: hal_soc allocation failed", __func__);
  1265. goto fail0;
  1266. }
  1267. hal->hif_handle = hif_handle;
  1268. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1269. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1270. hal->qdf_dev = qdf_dev;
  1271. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1272. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1273. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1274. if (!hal->shadow_rdptr_mem_paddr) {
  1275. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1276. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1277. __func__);
  1278. goto fail1;
  1279. }
  1280. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1281. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1282. hal->shadow_wrptr_mem_vaddr =
  1283. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1284. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1285. &(hal->shadow_wrptr_mem_paddr));
  1286. if (!hal->shadow_wrptr_mem_vaddr) {
  1287. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1288. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1289. __func__);
  1290. goto fail2;
  1291. }
  1292. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1293. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1294. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1295. hal->srng_list[i].initialized = 0;
  1296. hal->srng_list[i].ring_id = i;
  1297. }
  1298. qdf_spinlock_create(&hal->register_access_lock);
  1299. hal->register_window = 0;
  1300. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1301. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  1302. if (!hal->ops) {
  1303. hal_err("unable to allocable memory for HAL ops");
  1304. goto fail3;
  1305. }
  1306. hal_target_based_configure(hal);
  1307. hal_reg_write_fail_history_init(hal);
  1308. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1309. qdf_atomic_init(&hal->active_work_cnt);
  1310. hal_delayed_reg_write_init(hal);
  1311. hal_delayed_tcl_reg_write_init(hal);
  1312. return (void *)hal;
  1313. fail3:
  1314. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1315. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1316. HAL_MAX_LMAC_RINGS,
  1317. hal->shadow_wrptr_mem_vaddr,
  1318. hal->shadow_wrptr_mem_paddr, 0);
  1319. fail2:
  1320. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1321. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1322. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1323. fail1:
  1324. qdf_mem_free(hal);
  1325. fail0:
  1326. return NULL;
  1327. }
  1328. qdf_export_symbol(hal_attach);
  1329. /**
  1330. * hal_mem_info - Retrieve hal memory base address
  1331. *
  1332. * @hal_soc: Opaque HAL SOC handle
  1333. * @mem: pointer to structure to be updated with hal mem info
  1334. */
  1335. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1336. {
  1337. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1338. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1339. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1340. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1341. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1342. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1343. hif_read_phy_mem_base((void *)hal->hif_handle,
  1344. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1345. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1346. return;
  1347. }
  1348. qdf_export_symbol(hal_get_meminfo);
  1349. /**
  1350. * hal_detach - Detach HAL layer
  1351. * @hal_soc: HAL SOC handle
  1352. *
  1353. * Return: Opaque HAL SOC handle
  1354. * NULL on failure (if given ring is not available)
  1355. *
  1356. * This function should be called as part of HIF initialization (for accessing
  1357. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1358. *
  1359. */
  1360. extern void hal_detach(void *hal_soc)
  1361. {
  1362. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1363. hal_delayed_reg_write_deinit(hal);
  1364. hal_delayed_tcl_reg_write_deinit(hal);
  1365. qdf_mem_free(hal->ops);
  1366. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1367. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1368. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1369. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1370. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1371. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1372. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1373. qdf_mem_free(hal);
  1374. return;
  1375. }
  1376. qdf_export_symbol(hal_detach);
  1377. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1378. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1379. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1380. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1381. /**
  1382. * hal_ce_dst_setup - Initialize CE destination ring registers
  1383. * @hal_soc: HAL SOC handle
  1384. * @srng: SRNG ring pointer
  1385. */
  1386. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1387. int ring_num)
  1388. {
  1389. uint32_t reg_val = 0;
  1390. uint32_t reg_addr;
  1391. struct hal_hw_srng_config *ring_config =
  1392. HAL_SRNG_CONFIG(hal, CE_DST);
  1393. /* set DEST_MAX_LENGTH according to ce assignment */
  1394. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1395. ring_config->reg_start[R0_INDEX] +
  1396. (ring_num * ring_config->reg_size[R0_INDEX]));
  1397. reg_val = HAL_REG_READ(hal, reg_addr);
  1398. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1399. reg_val |= srng->u.dst_ring.max_buffer_length &
  1400. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1401. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1402. if (srng->prefetch_timer) {
  1403. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1404. ring_config->reg_start[R0_INDEX] +
  1405. (ring_num * ring_config->reg_size[R0_INDEX]));
  1406. reg_val = HAL_REG_READ(hal, reg_addr);
  1407. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1408. reg_val |= srng->prefetch_timer;
  1409. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1410. reg_val = HAL_REG_READ(hal, reg_addr);
  1411. }
  1412. }
  1413. /**
  1414. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1415. * @hal: HAL SOC handle
  1416. * @read: boolean value to indicate if read or write
  1417. * @ix0: pointer to store IX0 reg value
  1418. * @ix1: pointer to store IX1 reg value
  1419. * @ix2: pointer to store IX2 reg value
  1420. * @ix3: pointer to store IX3 reg value
  1421. */
  1422. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1423. uint32_t *ix0, uint32_t *ix1,
  1424. uint32_t *ix2, uint32_t *ix3)
  1425. {
  1426. uint32_t reg_offset;
  1427. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1428. uint32_t reo_reg_base;
  1429. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1430. if (read) {
  1431. if (ix0) {
  1432. reg_offset =
  1433. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1434. reo_reg_base);
  1435. *ix0 = HAL_REG_READ(hal, reg_offset);
  1436. }
  1437. if (ix1) {
  1438. reg_offset =
  1439. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1440. reo_reg_base);
  1441. *ix1 = HAL_REG_READ(hal, reg_offset);
  1442. }
  1443. if (ix2) {
  1444. reg_offset =
  1445. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1446. reo_reg_base);
  1447. *ix2 = HAL_REG_READ(hal, reg_offset);
  1448. }
  1449. if (ix3) {
  1450. reg_offset =
  1451. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1452. reo_reg_base);
  1453. *ix3 = HAL_REG_READ(hal, reg_offset);
  1454. }
  1455. } else {
  1456. if (ix0) {
  1457. reg_offset =
  1458. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1459. reo_reg_base);
  1460. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1461. *ix0, true);
  1462. }
  1463. if (ix1) {
  1464. reg_offset =
  1465. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1466. reo_reg_base);
  1467. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1468. *ix1, true);
  1469. }
  1470. if (ix2) {
  1471. reg_offset =
  1472. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1473. reo_reg_base);
  1474. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1475. *ix2, true);
  1476. }
  1477. if (ix3) {
  1478. reg_offset =
  1479. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1480. reo_reg_base);
  1481. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1482. *ix3, true);
  1483. }
  1484. }
  1485. }
  1486. /**
  1487. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1488. * pointer and confirm that write went through by reading back the value
  1489. * @srng: sring pointer
  1490. * @paddr: physical address
  1491. *
  1492. * Return: None
  1493. */
  1494. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1495. {
  1496. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1497. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1498. }
  1499. /**
  1500. * hal_srng_dst_init_hp() - Initialize destination ring head
  1501. * pointer
  1502. * @hal_soc: hal_soc handle
  1503. * @srng: sring pointer
  1504. * @vaddr: virtual address
  1505. */
  1506. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1507. struct hal_srng *srng,
  1508. uint32_t *vaddr)
  1509. {
  1510. uint32_t reg_offset;
  1511. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1512. if (!srng)
  1513. return;
  1514. srng->u.dst_ring.hp_addr = vaddr;
  1515. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1516. HAL_REG_WRITE_CONFIRM_RETRY(
  1517. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1518. if (vaddr) {
  1519. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1520. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1521. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1522. (void *)srng->u.dst_ring.hp_addr,
  1523. srng->u.dst_ring.cached_hp,
  1524. *srng->u.dst_ring.hp_addr);
  1525. }
  1526. }
  1527. /**
  1528. * hal_srng_hw_init - Private function to initialize SRNG HW
  1529. * @hal_soc: HAL SOC handle
  1530. * @srng: SRNG ring pointer
  1531. */
  1532. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1533. struct hal_srng *srng)
  1534. {
  1535. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1536. hal_srng_src_hw_init(hal, srng);
  1537. else
  1538. hal_srng_dst_hw_init(hal, srng);
  1539. }
  1540. #ifdef CONFIG_SHADOW_V2
  1541. #define ignore_shadow false
  1542. #define CHECK_SHADOW_REGISTERS true
  1543. #else
  1544. #define ignore_shadow true
  1545. #define CHECK_SHADOW_REGISTERS false
  1546. #endif
  1547. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1548. /**
  1549. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1550. * supported on this SRNG
  1551. * @hal_soc: HAL SoC handle
  1552. * @ring_type: SRNG type
  1553. * @ring_num: ring number
  1554. *
  1555. * Return: true, if near full irq is supported for this SRNG
  1556. * false, if near full irq is not supported for this SRNG
  1557. */
  1558. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1559. int ring_type, int ring_num)
  1560. {
  1561. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1562. struct hal_hw_srng_config *ring_config =
  1563. HAL_SRNG_CONFIG(hal, ring_type);
  1564. return ring_config->nf_irq_support;
  1565. }
  1566. /**
  1567. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1568. * ring params
  1569. * @srng: SRNG handle
  1570. * @ring_params: ring params for this SRNG
  1571. *
  1572. * Return: None
  1573. */
  1574. static inline void
  1575. hal_srng_set_msi2_params(struct hal_srng *srng,
  1576. struct hal_srng_params *ring_params)
  1577. {
  1578. srng->msi2_addr = ring_params->msi2_addr;
  1579. srng->msi2_data = ring_params->msi2_data;
  1580. }
  1581. /**
  1582. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1583. * @srng: SRNG handle
  1584. * @ring_params: ring params for this SRNG
  1585. *
  1586. * Return: None
  1587. */
  1588. static inline void
  1589. hal_srng_get_nf_params(struct hal_srng *srng,
  1590. struct hal_srng_params *ring_params)
  1591. {
  1592. ring_params->msi2_addr = srng->msi2_addr;
  1593. ring_params->msi2_data = srng->msi2_data;
  1594. }
  1595. /**
  1596. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1597. * @srng: SRNG handle where the params are to be set
  1598. * @ring_params: ring params, from where threshold is to be fetched
  1599. *
  1600. * Return: None
  1601. */
  1602. static inline void
  1603. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1604. struct hal_srng_params *ring_params)
  1605. {
  1606. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1607. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1608. }
  1609. #else
  1610. static inline void
  1611. hal_srng_set_msi2_params(struct hal_srng *srng,
  1612. struct hal_srng_params *ring_params)
  1613. {
  1614. }
  1615. static inline void
  1616. hal_srng_get_nf_params(struct hal_srng *srng,
  1617. struct hal_srng_params *ring_params)
  1618. {
  1619. }
  1620. static inline void
  1621. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1622. struct hal_srng_params *ring_params)
  1623. {
  1624. }
  1625. #endif
  1626. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1627. /**
  1628. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1629. *
  1630. * @srng: Source ring pointer
  1631. *
  1632. * Return: None
  1633. */
  1634. static inline
  1635. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1636. {
  1637. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1638. }
  1639. #else
  1640. static inline
  1641. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1642. {
  1643. }
  1644. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1645. /**
  1646. * hal_srng_setup - Initialize HW SRNG ring.
  1647. * @hal_soc: Opaque HAL SOC handle
  1648. * @ring_type: one of the types from hal_ring_type
  1649. * @ring_num: Ring number if there are multiple rings of same type (staring
  1650. * from 0)
  1651. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1652. * @ring_params: SRNG ring params in hal_srng_params structure.
  1653. * Callers are expected to allocate contiguous ring memory of size
  1654. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1655. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1656. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1657. * and size of each ring entry should be queried using the API
  1658. * hal_srng_get_entrysize
  1659. *
  1660. * Return: Opaque pointer to ring on success
  1661. * NULL on failure (if given ring is not available)
  1662. */
  1663. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1664. int mac_id, struct hal_srng_params *ring_params)
  1665. {
  1666. int ring_id;
  1667. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1668. struct hal_srng *srng;
  1669. struct hal_hw_srng_config *ring_config =
  1670. HAL_SRNG_CONFIG(hal, ring_type);
  1671. void *dev_base_addr;
  1672. int i;
  1673. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1674. if (ring_id < 0)
  1675. return NULL;
  1676. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1677. srng = hal_get_srng(hal_soc, ring_id);
  1678. if (srng->initialized) {
  1679. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1680. return NULL;
  1681. }
  1682. dev_base_addr = hal->dev_base_addr;
  1683. srng->ring_id = ring_id;
  1684. srng->ring_type = ring_type;
  1685. srng->ring_dir = ring_config->ring_dir;
  1686. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1687. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1688. srng->entry_size = ring_config->entry_size;
  1689. srng->num_entries = ring_params->num_entries;
  1690. srng->ring_size = srng->num_entries * srng->entry_size;
  1691. srng->ring_size_mask = srng->ring_size - 1;
  1692. srng->msi_addr = ring_params->msi_addr;
  1693. srng->msi_data = ring_params->msi_data;
  1694. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1695. srng->intr_batch_cntr_thres_entries =
  1696. ring_params->intr_batch_cntr_thres_entries;
  1697. srng->prefetch_timer = ring_params->prefetch_timer;
  1698. srng->hal_soc = hal_soc;
  1699. hal_srng_set_msi2_params(srng, ring_params);
  1700. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1701. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1702. + (ring_num * ring_config->reg_size[i]);
  1703. }
  1704. /* Zero out the entire ring memory */
  1705. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1706. srng->num_entries) << 2);
  1707. srng->flags = ring_params->flags;
  1708. #ifdef BIG_ENDIAN_HOST
  1709. /* TODO: See if we should we get these flags from caller */
  1710. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1711. srng->flags |= HAL_SRNG_MSI_SWAP;
  1712. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1713. #endif
  1714. hal_srng_last_desc_cleared_init(srng);
  1715. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1716. srng->u.src_ring.hp = 0;
  1717. srng->u.src_ring.reap_hp = srng->ring_size -
  1718. srng->entry_size;
  1719. srng->u.src_ring.tp_addr =
  1720. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1721. srng->u.src_ring.low_threshold =
  1722. ring_params->low_threshold * srng->entry_size;
  1723. if (ring_config->lmac_ring) {
  1724. /* For LMAC rings, head pointer updates will be done
  1725. * through FW by writing to a shared memory location
  1726. */
  1727. srng->u.src_ring.hp_addr =
  1728. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1729. HAL_SRNG_LMAC1_ID_START]);
  1730. srng->flags |= HAL_SRNG_LMAC_RING;
  1731. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1732. srng->u.src_ring.hp_addr =
  1733. hal_get_window_address(hal,
  1734. SRNG_SRC_ADDR(srng, HP));
  1735. if (CHECK_SHADOW_REGISTERS) {
  1736. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1737. QDF_TRACE_LEVEL_ERROR,
  1738. "%s: Ring (%d, %d) missing shadow config",
  1739. __func__, ring_type, ring_num);
  1740. }
  1741. } else {
  1742. hal_validate_shadow_register(hal,
  1743. SRNG_SRC_ADDR(srng, HP),
  1744. srng->u.src_ring.hp_addr);
  1745. }
  1746. } else {
  1747. /* During initialization loop count in all the descriptors
  1748. * will be set to zero, and HW will set it to 1 on completing
  1749. * descriptor update in first loop, and increments it by 1 on
  1750. * subsequent loops (loop count wraps around after reaching
  1751. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1752. * loop count in descriptors updated by HW (to be processed
  1753. * by SW).
  1754. */
  1755. hal_srng_set_nf_thresholds(srng, ring_params);
  1756. srng->u.dst_ring.loop_cnt = 1;
  1757. srng->u.dst_ring.tp = 0;
  1758. srng->u.dst_ring.hp_addr =
  1759. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1760. if (ring_config->lmac_ring) {
  1761. /* For LMAC rings, tail pointer updates will be done
  1762. * through FW by writing to a shared memory location
  1763. */
  1764. srng->u.dst_ring.tp_addr =
  1765. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1766. HAL_SRNG_LMAC1_ID_START]);
  1767. srng->flags |= HAL_SRNG_LMAC_RING;
  1768. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1769. srng->u.dst_ring.tp_addr =
  1770. hal_get_window_address(hal,
  1771. SRNG_DST_ADDR(srng, TP));
  1772. if (CHECK_SHADOW_REGISTERS) {
  1773. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1774. QDF_TRACE_LEVEL_ERROR,
  1775. "%s: Ring (%d, %d) missing shadow config",
  1776. __func__, ring_type, ring_num);
  1777. }
  1778. } else {
  1779. hal_validate_shadow_register(hal,
  1780. SRNG_DST_ADDR(srng, TP),
  1781. srng->u.dst_ring.tp_addr);
  1782. }
  1783. }
  1784. if (!(ring_config->lmac_ring)) {
  1785. hal_srng_hw_init(hal, srng);
  1786. if (ring_type == CE_DST) {
  1787. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1788. hal_ce_dst_setup(hal, srng, ring_num);
  1789. }
  1790. }
  1791. SRNG_LOCK_INIT(&srng->lock);
  1792. srng->srng_event = 0;
  1793. srng->initialized = true;
  1794. return (void *)srng;
  1795. }
  1796. qdf_export_symbol(hal_srng_setup);
  1797. /**
  1798. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1799. * @hal_soc: Opaque HAL SOC handle
  1800. * @hal_srng: Opaque HAL SRNG pointer
  1801. */
  1802. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1803. {
  1804. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1805. SRNG_LOCK_DESTROY(&srng->lock);
  1806. srng->initialized = 0;
  1807. }
  1808. qdf_export_symbol(hal_srng_cleanup);
  1809. /**
  1810. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1811. * @hal_soc: Opaque HAL SOC handle
  1812. * @ring_type: one of the types from hal_ring_type
  1813. *
  1814. */
  1815. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1816. {
  1817. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1818. struct hal_hw_srng_config *ring_config =
  1819. HAL_SRNG_CONFIG(hal, ring_type);
  1820. return ring_config->entry_size << 2;
  1821. }
  1822. qdf_export_symbol(hal_srng_get_entrysize);
  1823. /**
  1824. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1825. * @hal_soc: Opaque HAL SOC handle
  1826. * @ring_type: one of the types from hal_ring_type
  1827. *
  1828. * Return: Maximum number of entries for the given ring_type
  1829. */
  1830. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1831. {
  1832. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1833. struct hal_hw_srng_config *ring_config =
  1834. HAL_SRNG_CONFIG(hal, ring_type);
  1835. return ring_config->max_size / ring_config->entry_size;
  1836. }
  1837. qdf_export_symbol(hal_srng_max_entries);
  1838. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1839. {
  1840. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1841. struct hal_hw_srng_config *ring_config =
  1842. HAL_SRNG_CONFIG(hal, ring_type);
  1843. return ring_config->ring_dir;
  1844. }
  1845. /**
  1846. * hal_srng_dump - Dump ring status
  1847. * @srng: hal srng pointer
  1848. */
  1849. void hal_srng_dump(struct hal_srng *srng)
  1850. {
  1851. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1852. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1853. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1854. srng->u.src_ring.hp,
  1855. srng->u.src_ring.reap_hp,
  1856. *srng->u.src_ring.tp_addr,
  1857. srng->u.src_ring.cached_tp);
  1858. } else {
  1859. hal_debug("=== DST RING %d ===", srng->ring_id);
  1860. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1861. srng->u.dst_ring.tp,
  1862. *srng->u.dst_ring.hp_addr,
  1863. srng->u.dst_ring.cached_hp,
  1864. srng->u.dst_ring.loop_cnt);
  1865. }
  1866. }
  1867. /**
  1868. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1869. *
  1870. * @hal_soc: Opaque HAL SOC handle
  1871. * @hal_ring: Ring pointer (Source or Destination ring)
  1872. * @ring_params: SRNG parameters will be returned through this structure
  1873. */
  1874. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1875. hal_ring_handle_t hal_ring_hdl,
  1876. struct hal_srng_params *ring_params)
  1877. {
  1878. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1879. int i =0;
  1880. ring_params->ring_id = srng->ring_id;
  1881. ring_params->ring_dir = srng->ring_dir;
  1882. ring_params->entry_size = srng->entry_size;
  1883. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1884. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1885. ring_params->num_entries = srng->num_entries;
  1886. ring_params->msi_addr = srng->msi_addr;
  1887. ring_params->msi_data = srng->msi_data;
  1888. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1889. ring_params->intr_batch_cntr_thres_entries =
  1890. srng->intr_batch_cntr_thres_entries;
  1891. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1892. ring_params->flags = srng->flags;
  1893. ring_params->ring_id = srng->ring_id;
  1894. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1895. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1896. hal_srng_get_nf_params(srng, ring_params);
  1897. }
  1898. qdf_export_symbol(hal_get_srng_params);
  1899. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1900. uint32_t low_threshold)
  1901. {
  1902. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1903. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1904. }
  1905. qdf_export_symbol(hal_set_low_threshold);
  1906. #ifdef FORCE_WAKE
  1907. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1908. {
  1909. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1910. hal_soc->init_phase = init_phase;
  1911. }
  1912. #endif /* FORCE_WAKE */