ファイル
android_kernel_samsung_sm86…/ubwcp/ubwcp_main.c
Amol Jadi 1a1a0adee1 ubwcp: refactor code to reduce warn prints and robust error handling
Conversion between ioctl/internal/hw image formats is made consistent and
eliminated need for warn calls. Ioctl handling is broken down into
multiple functions.

Change-Id: Ic2786466f5dd7d6b2a380e030f8e04ead67dfe8c
Signed-off-by: Amol Jadi <quic_ajadi@quicinc.com>
2023-05-29 14:50:56 -07:00

3485 行
87 KiB
C
Raw Blame 履歴

このファイルには曖昧(ambiguous)なUnicode文字が含まれています
このファイルには、他の文字と見間違える可能性があるUnicode文字が含まれています。 それが意図的なものと考えられる場合は、この警告を無視して構いません。 それらの文字を表示するにはエスケープボタンを使用します。
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/dma-buf.h>
#include <linux/slab.h>
#include <linux/cdev.h>
#include <linux/hashtable.h>
#include <linux/scatterlist.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/regulator/consumer.h>
#include <linux/numa.h>
#include <linux/memory_hotplug.h>
#include <asm/page.h>
#include <linux/delay.h>
#include <linux/ubwcp_dma_heap.h>
#include <linux/debugfs.h>
#include <linux/clk.h>
#include <linux/iommu.h>
#include <linux/set_memory.h>
#include <linux/range.h>
MODULE_IMPORT_NS(DMA_BUF);
#include "include/kernel/ubwcp.h"
#include "ubwcp_hw.h"
#include "include/uapi/ubwcp_ioctl.h"
#define CREATE_TRACE_POINTS
#include "ubwcp_trace.h"
#define UBWCP_NUM_DEVICES 1
#define UBWCP_DEVICE_NAME "ubwcp"
#define UBWCP_BUFFER_DESC_OFFSET 64
#define UBWCP_BUFFER_DESC_COUNT 256
#define CACHE_ADDR(x) ((x) >> 6)
#define PAGE_ADDR(x) ((x) >> 12)
#define UBWCP_ALIGN(_x, _y) ((((_x) + (_y) - 1)/(_y))*(_y))
#define DBG_BUF_ATTR(fmt, args...) do { if (ubwcp_debug_trace_enable) \
pr_err("ubwcp: %s(): " fmt "\n", __func__, ##args); \
} while (0)
#define DBG(fmt, args...) do { if (ubwcp_debug_trace_enable) \
pr_err("ubwcp: %s(): " fmt "\n", __func__, ##args); \
} while (0)
#define ERR(fmt, args...) pr_err("ubwcp: %d: %s(): ~~~ERROR~~~: " fmt "\n", __LINE__, __func__, ##args)
#define ERR_RATE_LIMIT(fmt, args...) pr_err_ratelimited("ubwcp: %s(): ~~~ERROR~~~: " fmt "\n",\
__func__, ##args)
#define FENTRY() DBG("")
#define META_DATA_PITCH_ALIGN 64
#define META_DATA_HEIGHT_ALIGN 16
#define META_DATA_SIZE_ALIGN 4096
#define PIXEL_DATA_SIZE_ALIGN 4096
#define UBWCP_SYNC_GRANULE 0x4000000L /* 64 MB */
/* Max values for attributes */
#define MAX_ATTR_WIDTH (10*1024)
#define MAX_ATTR_HEIGHT (10*1024)
#define MAX_ATTR_STRIDE (64*1024)
#define MAX_ATTR_PLANAR_PAD 4096
#define MAX_ATTR_SCANLN_HT_DELTA (32*1024)
enum ula_remove_mem_status {
ULA_REMOVE_MEM_SUCCESS = 0,
ULA_REMOVE_MEM_ABORTED = 1
};
struct ubwcp_desc {
int idx;
void *ptr;
};
struct tile_dimension {
u16 width;
u16 height;
};
struct ubwcp_plane_info {
u16 pixel_bytes;
u16 per_pixel;
struct tile_dimension tilesize_p; /* pixels */
struct tile_dimension macrotilesize_p; /* pixels */
};
struct ubwcp_image_format_info {
u16 planes;
struct ubwcp_plane_info p_info[2];
};
enum ubwcp_std_image_format {
RGBA = 0,
NV12 = 1,
NV124R = 2,
P010 = 3,
TP10 = 4,
P016 = 5,
INFO_FORMAT_LIST_SIZE,
};
enum ubwcp_state {
UBWCP_STATE_READY = 0,
UBWCP_STATE_INVALID = -1,
UBWCP_STATE_FAULT = -2,
};
struct ubwcp_driver {
/* cdev related */
dev_t devt;
struct class *dev_class; //sysfs dev class
struct device *dev_sys; //sysfs dev
struct cdev cdev; //char dev
/* debugfs */
struct dentry *debugfs_root;
bool read_err_irq_en;
bool write_err_irq_en;
bool decode_err_irq_en;
bool encode_err_irq_en;
/* ubwcp devices */
struct device *dev; //ubwcp device
struct device *dev_desc_cb; //smmu dev for descriptors
struct device *dev_buf_cb; //smmu dev for ubwcp buffers
void __iomem *base; //ubwcp base address
struct regulator *vdd;
struct clk **clocks;
int num_clocks;
/* interrupts */
int irq_range_ck_rd;
int irq_range_ck_wr;
int irq_encode;
int irq_decode;
/* ula address pool */
u64 ula_pool_base;
u64 ula_pool_size;
struct gen_pool *ula_pool;
configure_mmap mmap_config_fptr;
/* HW version */
u32 hw_ver_major;
u32 hw_ver_minor;
/* keep track of all potential buffers.
* hash table index'ed using dma_buf ptr.
* 2**13 = 8192 hash values
*/
DECLARE_HASHTABLE(buf_table, 13);
/* buffer descriptor */
void *buffer_desc_base; /* CPU address */
dma_addr_t buffer_desc_dma_handle; /* dma address */
size_t buffer_desc_size;
struct ubwcp_desc desc_list[UBWCP_BUFFER_DESC_COUNT];
struct ubwcp_image_format_info format_info[INFO_FORMAT_LIST_SIZE];
/* driver state */
enum ubwcp_state state;
atomic_t num_non_lin_buffers;
bool mem_online;
struct mutex desc_lock; /* allocate/free descriptors */
spinlock_t buf_table_lock; /* add/remove dma_buf into list of managed bufffers */
struct mutex mem_hotplug_lock; /* memory hotplug lock */
struct mutex ula_lock; /* allocate/free ula */
struct mutex ubwcp_flush_lock; /* ubwcp flush */
struct mutex hw_range_ck_lock; /* range ck */
struct list_head err_handler_list; /* error handler list */
spinlock_t err_handler_list_lock; /* err_handler_list lock */
struct dev_pagemap pgmap;
};
struct ubwcp_buf {
struct hlist_node hnode;
struct ubwcp_driver *ubwcp;
struct ubwcp_buffer_attrs buf_attr;
bool perm;
struct ubwcp_desc *desc;
bool buf_attr_set;
enum dma_data_direction dma_dir;
int lock_count;
/* dma_buf info */
struct dma_buf *dma_buf;
struct dma_buf_attachment *attachment;
struct sg_table *sgt;
/* ula info */
phys_addr_t ula_pa;
size_t ula_size;
/* meta metadata */
struct ubwcp_hw_meta_metadata mmdata;
struct mutex lock;
};
static struct ubwcp_driver *me;
static u32 ubwcp_debug_trace_enable;
static struct ubwcp_driver *ubwcp_get_driver(void)
{
if (!me)
WARN(1, "ubwcp: driver ptr requested but driver not initialized");
return me;
}
static void image_format_init(struct ubwcp_driver *ubwcp)
{ /* planes, bytes/p, Tp , MTp */
ubwcp->format_info[RGBA] = (struct ubwcp_image_format_info)
{1, {{4, 1, {16, 4}, {64, 16}}}};
ubwcp->format_info[NV12] = (struct ubwcp_image_format_info)
{2, {{1, 1, {32, 8}, {128, 32}},
{2, 1, {16, 8}, { 64, 32}}}};
ubwcp->format_info[NV124R] = (struct ubwcp_image_format_info)
{2, {{1, 1, {64, 4}, {256, 16}},
{2, 1, {32, 4}, {128, 16}}}};
ubwcp->format_info[P010] = (struct ubwcp_image_format_info)
{2, {{2, 1, {32, 4}, {128, 16}},
{4, 1, {16, 4}, { 64, 16}}}};
ubwcp->format_info[TP10] = (struct ubwcp_image_format_info)
{2, {{4, 3, {48, 4}, {192, 16}},
{8, 3, {24, 4}, { 96, 16}}}};
ubwcp->format_info[P016] = (struct ubwcp_image_format_info)
{2, {{2, 1, {32, 4}, {128, 16}},
{4, 1, {16, 4}, { 64, 16}}}};
}
static void ubwcp_buf_desc_list_init(struct ubwcp_driver *ubwcp)
{
int idx;
struct ubwcp_desc *desc_list = ubwcp->desc_list;
for (idx = 0; idx < UBWCP_BUFFER_DESC_COUNT; idx++) {
desc_list[idx].idx = -1;
desc_list[idx].ptr = NULL;
}
}
static int ubwcp_init_clocks(struct ubwcp_driver *ubwcp, struct device *dev)
{
const char *cname;
struct property *prop;
int i;
ubwcp->num_clocks =
of_property_count_strings(dev->of_node, "clock-names");
if (ubwcp->num_clocks < 1) {
ubwcp->num_clocks = 0;
return 0;
}
ubwcp->clocks = devm_kzalloc(dev,
sizeof(*ubwcp->clocks) * ubwcp->num_clocks, GFP_KERNEL);
if (!ubwcp->clocks)
return -ENOMEM;
i = 0;
of_property_for_each_string(dev->of_node, "clock-names",
prop, cname) {
struct clk *c = devm_clk_get(dev, cname);
if (IS_ERR(c)) {
ERR("Couldn't get clock: %s\n", cname);
return PTR_ERR(c);
}
ubwcp->clocks[i] = c;
++i;
}
return 0;
}
static int ubwcp_enable_clocks(struct ubwcp_driver *ubwcp)
{
int i, ret = 0;
for (i = 0; i < ubwcp->num_clocks; ++i) {
ret = clk_prepare_enable(ubwcp->clocks[i]);
if (ret) {
ERR("Couldn't enable clock #%d\n", i);
while (i--)
clk_disable_unprepare(ubwcp->clocks[i]);
break;
}
}
return ret;
}
static void ubwcp_disable_clocks(struct ubwcp_driver *ubwcp)
{
int i;
for (i = ubwcp->num_clocks; i; --i)
clk_disable_unprepare(ubwcp->clocks[i - 1]);
}
/* UBWCP Power control */
static int ubwcp_power(struct ubwcp_driver *ubwcp, bool enable)
{
int ret = 0;
if (enable)
ret = regulator_enable(ubwcp->vdd);
else
ret = regulator_disable(ubwcp->vdd);
if (ret) {
ERR("regulator call (enable: %d) failed: %d", enable, ret);
return ret;
}
if (enable) {
ret = ubwcp_enable_clocks(ubwcp);
if (ret) {
ERR("enable clocks failed: %d", ret);
regulator_disable(ubwcp->vdd);
return ret;
}
} else {
ubwcp_disable_clocks(ubwcp);
}
return ret;
}
/* get ubwcp_buf corresponding to the given dma_buf */
static struct ubwcp_buf *dma_buf_to_ubwcp_buf(struct dma_buf *dmabuf)
{
struct ubwcp_buf *buf = NULL;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
unsigned long flags;
if (!dmabuf || !ubwcp)
return NULL;
spin_lock_irqsave(&ubwcp->buf_table_lock, flags);
/* look up ubwcp_buf corresponding to this dma_buf */
hash_for_each_possible(ubwcp->buf_table, buf, hnode, (u64)dmabuf) {
if (buf->dma_buf == dmabuf)
break;
}
spin_unlock_irqrestore(&ubwcp->buf_table_lock, flags);
return buf;
}
/* return ubwcp hardware version */
int ubwcp_get_hw_version(struct ubwcp_ioctl_hw_version *ver)
{
struct ubwcp_driver *ubwcp;
FENTRY();
if (!ver) {
ERR("invalid version ptr");
return -EINVAL;
}
ubwcp = ubwcp_get_driver();
if (!ubwcp)
return -1;
if (ubwcp->state != UBWCP_STATE_FAULT)
return -EPERM;
ver->major = ubwcp->hw_ver_major;
ver->minor = ubwcp->hw_ver_minor;
return 0;
}
EXPORT_SYMBOL(ubwcp_get_hw_version);
static int ula_add_mem(struct ubwcp_driver *ubwcp)
{
int ret = 0;
int nid;
void *ptr;
nid = memory_add_physaddr_to_nid(ubwcp->ula_pool_base);
DBG("calling memremap_pages()...");
ubwcp->pgmap.type = MEMORY_DEVICE_GENERIC;
ubwcp->pgmap.nr_range = 1;
ubwcp->pgmap.range.start = ubwcp->ula_pool_base;
ubwcp->pgmap.range.end = ubwcp->ula_pool_base + ubwcp->ula_pool_size - 1;
trace_ubwcp_memremap_pages_start(ubwcp->ula_pool_size);
ptr = memremap_pages(&ubwcp->pgmap, nid);
trace_ubwcp_memremap_pages_end(ubwcp->ula_pool_size);
if (IS_ERR(ptr)) {
ret = IS_ERR(ptr);
ERR("memremap_pages() failed st:0x%lx sz:0x%lx err: %d",
ubwcp->ula_pool_base,
ubwcp->ula_pool_size,
ret);
} else {
DBG("memremap_pages() ula_pool_base:0x%llx, size:0x%zx, kernel addr:0x%p",
ubwcp->ula_pool_base,
ubwcp->ula_pool_size,
page_to_virt(pfn_to_page(PFN_DOWN(ubwcp->ula_pool_base))));
}
return ret;
}
static int ula_map_uncached(u64 base, u64 size)
{
int ret;
trace_ubwcp_set_direct_map_range_uncached_start(size);
ret = set_direct_map_range_uncached((unsigned long)phys_to_virt(base), size >> PAGE_SHIFT);
trace_ubwcp_set_direct_map_range_uncached_end(size);
if (ret)
ERR("set_direct_map_range_uncached failed st:0x%lx num pages:%lu err: %d",
base, size >> PAGE_SHIFT, ret);
return ret;
}
static void ula_unmap(struct ubwcp_driver *ubwcp)
{
DBG("Calling memunmap_pages() for ULA PA pool");
trace_ubwcp_memunmap_pages_start(ubwcp->ula_pool_size);
memunmap_pages(&ubwcp->pgmap);
trace_ubwcp_memunmap_pages_end(ubwcp->ula_pool_size);
}
static void ula_sync_for_cpu(struct device *dev, u64 addr, unsigned long size)
{
trace_ubwcp_dma_sync_single_for_cpu_start(size);
dma_sync_single_for_cpu(dev, addr, size, DMA_BIDIRECTIONAL);
trace_ubwcp_dma_sync_single_for_cpu_end(size);
}
/** Remove ula memory in chunks
* Abort if new buffer addition is detected
* If remove succeeds or aborted, return success
* status value indicates if mem was removed or aborted (not removed)
* Otherwise return failure
*/
static int ula_remove_mem(struct ubwcp_driver *ubwcp, enum ula_remove_mem_status *status)
{
int ret = 0;
unsigned long sync_remain = ubwcp->ula_pool_size;
unsigned long sync_offset = 0;
unsigned long sync_size = 0;
ret = ula_map_uncached(ubwcp->ula_pool_base, ubwcp->ula_pool_size);
if (ret)
return ret;
trace_ubwcp_offline_sync_start(ubwcp->ula_pool_size);
while (sync_remain > 0) {
if (atomic_read(&ubwcp->num_non_lin_buffers) > 0) {
trace_ubwcp_offline_sync_end(ubwcp->ula_pool_size);
ula_unmap(ubwcp);
if (ula_add_mem(ubwcp)) {
ERR("remove mem: failed to add back during abort");
return -1;
}
*status = ULA_REMOVE_MEM_ABORTED;
return 0;
}
if (UBWCP_SYNC_GRANULE > sync_remain) {
sync_size = sync_remain;
sync_remain = 0;
} else {
sync_size = UBWCP_SYNC_GRANULE;
sync_remain -= UBWCP_SYNC_GRANULE;
}
ula_sync_for_cpu(ubwcp->dev, ubwcp->ula_pool_base + sync_offset, sync_size);
sync_offset += sync_size;
}
trace_ubwcp_offline_sync_end(ubwcp->ula_pool_size);
ula_unmap(ubwcp);
*status = ULA_REMOVE_MEM_SUCCESS;
return 0;
}
static int inc_num_non_lin_buffers(struct ubwcp_driver *ubwcp)
{
atomic_inc(&ubwcp->num_non_lin_buffers);
mutex_lock(&ubwcp->mem_hotplug_lock);
if (!ubwcp->mem_online) {
if (atomic_read(&ubwcp->num_non_lin_buffers) == 0) {
ERR("Bad state: num_non_lin_buffers should not be 0");
goto err;
}
if (ubwcp_power(ubwcp, true))
goto err;
if (ula_add_mem(ubwcp))
goto err_add_memory;
ubwcp->mem_online = true;
}
mutex_unlock(&ubwcp->mem_hotplug_lock);
return 0;
err_add_memory:
ubwcp_power(ubwcp, false);
err:
atomic_dec(&ubwcp->num_non_lin_buffers);
mutex_unlock(&ubwcp->mem_hotplug_lock);
ubwcp->state = UBWCP_STATE_FAULT;
return -1;
}
static int dec_num_non_lin_buffers(struct ubwcp_driver *ubwcp)
{
int ret;
enum ula_remove_mem_status remove_status;
atomic_dec(&ubwcp->num_non_lin_buffers);
mutex_lock(&ubwcp->mem_hotplug_lock);
if (atomic_read(&ubwcp->num_non_lin_buffers) == 0) {
DBG("last buffer: ~~~~~~~~~~~");
if (!ubwcp->mem_online) {
ERR("Bad state: mem_online should not be false");
goto err;
}
ret = ula_remove_mem(ubwcp, &remove_status);
if (ret)
goto err;
if (remove_status == ULA_REMOVE_MEM_SUCCESS) {
ubwcp->mem_online = false;
if (ubwcp_power(ubwcp, false))
goto err;
} else if (remove_status == ULA_REMOVE_MEM_ABORTED) {
DBG("ula memory offline aborted");
} else {
ERR("unexpected ula remove status: %d", remove_status);
goto err;
}
}
mutex_unlock(&ubwcp->mem_hotplug_lock);
return 0;
err:
atomic_inc(&ubwcp->num_non_lin_buffers);
mutex_unlock(&ubwcp->mem_hotplug_lock);
ubwcp->state = UBWCP_STATE_FAULT;
return -1;
}
/**
*
* Initialize ubwcp buffer for the given dma_buf. This
* initializes ubwcp internal data structures and possibly hw to
* use ubwcp for this buffer.
*
* @param dmabuf : ptr to the buffer to be configured for ubwcp
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_init_buffer(struct dma_buf *dmabuf)
{
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
unsigned long flags;
FENTRY();
trace_ubwcp_init_buffer_start(dmabuf);
if (!ubwcp) {
trace_ubwcp_init_buffer_end(dmabuf);
return -1;
}
if (ubwcp->state != UBWCP_STATE_READY) {
ERR("driver in invalid state: %d", ubwcp->state);
trace_ubwcp_init_buffer_end(dmabuf);
return -EPERM;
}
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
trace_ubwcp_init_buffer_end(dmabuf);
return -EINVAL;
}
if (dma_buf_to_ubwcp_buf(dmabuf)) {
ERR("dma_buf already initialized for ubwcp");
trace_ubwcp_init_buffer_end(dmabuf);
return -EEXIST;
}
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf) {
ERR("failed to alloc for new ubwcp_buf");
trace_ubwcp_init_buffer_end(dmabuf);
return -ENOMEM;
}
mutex_init(&buf->lock);
buf->dma_buf = dmabuf;
buf->ubwcp = ubwcp;
buf->buf_attr.image_format = UBWCP_LINEAR;
spin_lock_irqsave(&ubwcp->buf_table_lock, flags);
hash_add(ubwcp->buf_table, &buf->hnode, (u64)buf->dma_buf);
spin_unlock_irqrestore(&ubwcp->buf_table_lock, flags);
trace_ubwcp_init_buffer_end(dmabuf);
return 0;
}
static void dump_attributes(struct ubwcp_buffer_attrs *attr)
{
DBG_BUF_ATTR("");
DBG_BUF_ATTR("image_format: %d", attr->image_format);
DBG_BUF_ATTR("major_ubwc_ver: %d", attr->major_ubwc_ver);
DBG_BUF_ATTR("minor_ubwc_ver: %d", attr->minor_ubwc_ver);
DBG_BUF_ATTR("compression_type: %d", attr->compression_type);
DBG_BUF_ATTR("lossy_params: %llu", attr->lossy_params);
DBG_BUF_ATTR("width: %d", attr->width);
DBG_BUF_ATTR("height: %d", attr->height);
DBG_BUF_ATTR("stride: %d", attr->stride);
DBG_BUF_ATTR("scanlines: %d", attr->scanlines);
DBG_BUF_ATTR("planar_padding: %d", attr->planar_padding);
DBG_BUF_ATTR("subsample: %d", attr->subsample);
DBG_BUF_ATTR("sub_system_target: %d", attr->sub_system_target);
DBG_BUF_ATTR("y_offset: %d", attr->y_offset);
DBG_BUF_ATTR("batch_size: %d", attr->batch_size);
DBG_BUF_ATTR("");
}
static int to_std_format(u16 ioctl_image_format, enum ubwcp_std_image_format *format)
{
switch (ioctl_image_format) {
case UBWCP_RGBA8888:
*format = RGBA;
return 0;
case UBWCP_NV12:
case UBWCP_NV12_Y:
case UBWCP_NV12_UV:
*format = NV12;
return 0;
case UBWCP_NV124R:
case UBWCP_NV124R_Y:
case UBWCP_NV124R_UV:
*format = NV124R;
return 0;
case UBWCP_TP10:
case UBWCP_TP10_Y:
case UBWCP_TP10_UV:
*format = TP10;
return 0;
case UBWCP_P010:
case UBWCP_P010_Y:
case UBWCP_P010_UV:
*format = P010;
return 0;
case UBWCP_P016:
case UBWCP_P016_Y:
case UBWCP_P016_UV:
*format = P016;
return 0;
default:
ERR("Failed to convert ioctl image format to std format: %d", ioctl_image_format);
return -1;
}
}
static int std_to_hw_img_fmt(enum ubwcp_std_image_format format, u16 *hw_fmt)
{
switch (format) {
case RGBA:
*hw_fmt = HW_BUFFER_FORMAT_RGBA;
return 0;
case NV12:
*hw_fmt = HW_BUFFER_FORMAT_NV12;
return 0;
case NV124R:
*hw_fmt = HW_BUFFER_FORMAT_NV124R;
return 0;
case P010:
*hw_fmt = HW_BUFFER_FORMAT_P010;
return 0;
case TP10:
*hw_fmt = HW_BUFFER_FORMAT_TP10;
return 0;
case P016:
*hw_fmt = HW_BUFFER_FORMAT_P016;
return 0;
default:
ERR("Failed to convert std image format to hw format: %d", format);
return -1;
}
}
static int get_stride_alignment(enum ubwcp_std_image_format format, u16 *align)
{
switch (format) {
case TP10:
*align = 64;
return 0;
case NV12:
*align = 128;
return 0;
case RGBA:
case NV124R:
case P010:
case P016:
*align = 256;
return 0;
default:
return -1;
}
}
/* returns stride of compressed image */
static u32 get_compressed_stride(struct ubwcp_driver *ubwcp,
enum ubwcp_std_image_format format, u32 width)
{
struct ubwcp_plane_info p_info;
u16 macro_tile_width_p;
u16 pixel_bytes;
u16 per_pixel;
p_info = ubwcp->format_info[format].p_info[0];
macro_tile_width_p = p_info.macrotilesize_p.width;
pixel_bytes = p_info.pixel_bytes;
per_pixel = p_info.per_pixel;
return UBWCP_ALIGN(width, macro_tile_width_p)*pixel_bytes/per_pixel;
}
static void
ubwcp_pixel_to_bytes(struct ubwcp_driver *ubwcp,
enum ubwcp_std_image_format format,
u32 width_p, u32 height_p,
u32 *width_b, u32 *height_b)
{
u16 pixel_bytes;
u16 per_pixel;
struct ubwcp_image_format_info f_info;
struct ubwcp_plane_info p_info;
f_info = ubwcp->format_info[format];
p_info = f_info.p_info[0];
pixel_bytes = p_info.pixel_bytes;
per_pixel = p_info.per_pixel;
*width_b = (width_p*pixel_bytes)/per_pixel;
*height_b = (height_p*pixel_bytes)/per_pixel;
}
/* check if linear stride conforms to hw limitations
* always returns false for linear image
*/
static bool stride_is_valid(struct ubwcp_driver *ubwcp,
enum ubwcp_std_image_format format, u32 width, u32 lin_stride)
{
u32 compressed_stride;
u32 width_b;
u32 height_b;
ubwcp_pixel_to_bytes(ubwcp, format, width, 0, &width_b, &height_b);
if ((lin_stride < width_b) || (lin_stride > MAX_ATTR_STRIDE)) {
ERR("Invalid stride: %u width: %u width_b: %u", lin_stride, width, width_b);
return false;
}
if (format == TP10) {
if(!IS_ALIGNED(lin_stride, 64)) {
ERR("stride must be aligned to 64: %d", lin_stride);
return false;
}
} else {
compressed_stride = get_compressed_stride(ubwcp, format, width);
if (lin_stride != compressed_stride) {
ERR("linear stride: %d must be same as compressed stride: %d",
lin_stride, compressed_stride);
return false;
}
}
return true;
}
static bool ioctl_format_is_valid(u16 ioctl_image_format)
{
switch (ioctl_image_format) {
case UBWCP_LINEAR:
case UBWCP_RGBA8888:
case UBWCP_NV12:
case UBWCP_NV12_Y:
case UBWCP_NV12_UV:
case UBWCP_NV124R:
case UBWCP_NV124R_Y:
case UBWCP_NV124R_UV:
case UBWCP_TP10:
case UBWCP_TP10_Y:
case UBWCP_TP10_UV:
case UBWCP_P010:
case UBWCP_P010_Y:
case UBWCP_P010_UV:
case UBWCP_P016:
case UBWCP_P016_Y:
case UBWCP_P016_UV:
return true;
default:
return false;
}
}
/* validate buffer attributes */
static bool ubwcp_buf_attrs_valid(struct ubwcp_driver *ubwcp, struct ubwcp_buffer_attrs *attr)
{
enum ubwcp_std_image_format format;
if (attr->unused1 || attr->unused2 || attr->unused3 || attr->unused4 || attr->unused5 ||
attr->unused6 || attr->unused7 || attr->unused8 || attr->unused9) {
ERR("buf attr unused values must be set to 0");
goto err;
}
if (!ioctl_format_is_valid(attr->image_format)) {
ERR("invalid image format: %d", attr->image_format);
goto err;
}
/* rest of the fields are ignored for linear format */
if (attr->image_format == UBWCP_LINEAR) {
goto valid;
}
if (to_std_format(attr->image_format, &format))
goto err;
if (attr->major_ubwc_ver || attr->minor_ubwc_ver) {
ERR("major/minor ubwc ver must be 0. major: %d minor: %d",
attr->major_ubwc_ver, attr->minor_ubwc_ver);
goto err;
}
if (attr->compression_type != UBWCP_COMPRESSION_LOSSLESS) {
ERR("compression_type is not valid: %d",
attr->compression_type);
goto err;
}
if (attr->lossy_params != 0) {
ERR("lossy_params is not valid: %d", attr->lossy_params);
goto err;
}
if (attr->width > MAX_ATTR_WIDTH) {
ERR("width is invalid (above upper limit): %d", attr->width);
goto err;
}
if (attr->height > MAX_ATTR_HEIGHT) {
ERR("height is invalid (above upper limit): %d", attr->height);
goto err;
}
if(!stride_is_valid(ubwcp, format, attr->width, attr->stride)) {
ERR("stride is invalid: %d", attr->stride);
goto err;
}
if ((attr->scanlines < attr->height) ||
(attr->scanlines > attr->height + MAX_ATTR_SCANLN_HT_DELTA)) {
ERR("scanlines is not valid - height: %d scanlines: %d",
attr->height, attr->scanlines);
goto err;
}
if (attr->planar_padding > MAX_ATTR_PLANAR_PAD) {
ERR("planar_padding is not valid: %d", attr->planar_padding);
goto err;
}
if (attr->subsample != UBWCP_SUBSAMPLE_4_2_0) {
ERR("subsample is not valid: %d", attr->subsample);
goto err;
}
if (attr->sub_system_target & ~UBWCP_SUBSYSTEM_TARGET_CPU) {
ERR("sub_system_target other that CPU is not supported: %d",
attr->sub_system_target);
goto err;
}
if (!(attr->sub_system_target & UBWCP_SUBSYSTEM_TARGET_CPU)) {
ERR("sub_system_target is not set to CPU: %d",
attr->sub_system_target);
goto err;
}
if (attr->y_offset != 0) {
ERR("y_offset is not valid: %d", attr->y_offset);
goto err;
}
if (attr->batch_size != 1) {
ERR("batch_size is not valid: %d", attr->batch_size);
goto err;
}
valid:
dump_attributes(attr);
return true;
err:
dump_attributes(attr);
return false;
}
/* calculate and return metadata buffer size for a given plane
* and buffer attributes
* NOTE: in this function, we will only pass in NV12 format.
* NOT NV12_Y or NV12_UV etc.
* the Y or UV information is in the "plane"
* "format" here purely means "encoding format" and no information
* if some plane data is missing.
*/
static size_t metadata_buf_sz(struct ubwcp_driver *ubwcp,
enum ubwcp_std_image_format format,
u32 width, u32 height, u8 plane)
{
size_t size;
u64 pitch;
u64 lines;
u64 tile_width;
u32 tile_height;
struct ubwcp_image_format_info f_info;
struct ubwcp_plane_info p_info;
f_info = ubwcp->format_info[format];
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("Calculating metadata buffer size: format = %d, plane = %d", format, plane);
if (plane >= f_info.planes) {
ERR("Format does not have requested plane info: format: %d, plane: %d",
format, plane);
WARN(1, "Fix this!!!!!");
return 0;
}
p_info = f_info.p_info[plane];
/* UV plane */
if (plane == 1) {
width = width/2;
height = height/2;
}
tile_width = p_info.tilesize_p.width;
tile_height = p_info.tilesize_p.height;
/* pitch: # of tiles in a row
* lines: # of tile rows
*/
pitch = UBWCP_ALIGN((width + tile_width - 1)/tile_width, META_DATA_PITCH_ALIGN);
lines = UBWCP_ALIGN((height + tile_height - 1)/tile_height, META_DATA_HEIGHT_ALIGN);
DBG_BUF_ATTR("image params : %d x %d (pixels)", width, height);
DBG_BUF_ATTR("tile params : %d x %d (pixels)", tile_width, tile_height);
DBG_BUF_ATTR("pitch : %d (%d)", pitch, width/tile_width);
DBG_BUF_ATTR("lines : %d (%d)", lines, height);
DBG_BUF_ATTR("size (p*l*bytes) : %d", pitch*lines*1);
/* x1 below is only to clarify that we are multiplying by 1 bytes/tile */
size = UBWCP_ALIGN(pitch*lines*1, META_DATA_SIZE_ALIGN);
DBG_BUF_ATTR("size (aligned 4K): %zu (0x%zx)", size, size);
return size;
}
/* calculate and return size of pixel data buffer for a given plane
* and buffer attributes
*/
static size_t pixeldata_buf_sz(struct ubwcp_driver *ubwcp,
u16 format, u32 width,
u32 height, u8 plane)
{
size_t size;
u64 pitch;
u64 lines;
u16 pixel_bytes;
u16 per_pixel;
u64 macro_tile_width_p;
u64 macro_tile_height_p;
struct ubwcp_image_format_info f_info;
struct ubwcp_plane_info p_info;
f_info = ubwcp->format_info[format];
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("Calculating Pixeldata buffer size: format = %d, plane = %d", format, plane);
if (plane >= f_info.planes) {
ERR("Format does not have requested plane info: format: %d, plane: %d",
format, plane);
WARN(1, "Fix this!!!!!");
return 0;
}
p_info = f_info.p_info[plane];
pixel_bytes = p_info.pixel_bytes;
per_pixel = p_info.per_pixel;
/* UV plane */
if (plane == 1) {
width = width/2;
height = height/2;
}
macro_tile_width_p = p_info.macrotilesize_p.width;
macro_tile_height_p = p_info.macrotilesize_p.height;
/* align pixel width and height macro tile width and height */
pitch = UBWCP_ALIGN(width, macro_tile_width_p);
lines = UBWCP_ALIGN(height, macro_tile_height_p);
DBG_BUF_ATTR("image params : %d x %d (pixels)", width, height);
DBG_BUF_ATTR("macro tile params: %d x %d (pixels)", macro_tile_width_p,
macro_tile_height_p);
DBG_BUF_ATTR("bytes_per_pixel : %d/%d", pixel_bytes, per_pixel);
DBG_BUF_ATTR("pitch : %d", pitch);
DBG_BUF_ATTR("lines : %d", lines);
DBG_BUF_ATTR("size (p*l*bytes) : %d", (pitch*lines*pixel_bytes)/per_pixel);
size = UBWCP_ALIGN((pitch*lines*pixel_bytes)/per_pixel, PIXEL_DATA_SIZE_ALIGN);
DBG_BUF_ATTR("size (aligned 4K): %zu (0x%zx)", size, size);
return size;
}
static int get_tile_height(struct ubwcp_driver *ubwcp, enum ubwcp_std_image_format format,
u8 plane)
{
struct ubwcp_image_format_info f_info;
struct ubwcp_plane_info p_info;
f_info = ubwcp->format_info[format];
p_info = f_info.p_info[plane];
return p_info.tilesize_p.height;
}
/*
* plane: must be 0 or 1 (1st plane == 0, 2nd plane == 1)
*/
static size_t ubwcp_ula_size(struct ubwcp_driver *ubwcp, u16 format,
u32 stride_b, u32 scanlines, u8 plane,
bool add_tile_pad)
{
size_t size;
DBG_BUF_ATTR("%s(format = %d, plane = %d)", __func__, format, plane);
/* UV plane */
if (plane == 1)
scanlines = scanlines/2;
if (add_tile_pad) {
int tile_height = get_tile_height(ubwcp, format, plane);
/* Align plane size to plane tile height */
scanlines = ((scanlines + tile_height - 1) / tile_height) * tile_height;
}
size = stride_b*scanlines;
DBG_BUF_ATTR("Size of plane-%u: (%u * %u) = %zu (0x%zx)",
plane, stride_b, scanlines, size, size);
return size;
}
static int missing_plane_from_format(u16 ioctl_image_format)
{
int missing_plane;
switch (ioctl_image_format) {
case UBWCP_NV12_Y:
missing_plane = 2;
break;
case UBWCP_NV12_UV:
missing_plane = 1;
break;
case UBWCP_NV124R_Y:
missing_plane = 2;
break;
case UBWCP_NV124R_UV:
missing_plane = 1;
break;
case UBWCP_TP10_Y:
missing_plane = 2;
break;
case UBWCP_TP10_UV:
missing_plane = 1;
break;
case UBWCP_P010_Y:
missing_plane = 2;
break;
case UBWCP_P010_UV:
missing_plane = 1;
break;
case UBWCP_P016_Y:
missing_plane = 2;
break;
case UBWCP_P016_UV:
missing_plane = 1;
break;
default:
missing_plane = 0;
}
return missing_plane;
}
static int planes_in_format(enum ubwcp_std_image_format format)
{
if (format == RGBA)
return 1;
else
return 2;
}
static int ubwcp_validate_uv_align(struct ubwcp_driver *ubwcp,
struct ubwcp_buffer_attrs *attr,
size_t ula_y_plane_size,
size_t uv_start_offset)
{
int ret = 0;
size_t ula_y_plane_size_align;
size_t y_tile_align_bytes;
int y_tile_height;
int planes;
enum ubwcp_std_image_format format;
ret = to_std_format(attr->image_format, &format);
if (ret)
goto err;
/* Only validate UV align if there is both a Y and UV plane */
planes = planes_in_format(format);
if (planes != 2)
return 0;
/* Check it is cache line size aligned */
if ((uv_start_offset % 64) != 0) {
ret = -EINVAL;
ERR("uv_start_offset %zu not cache line aligned",
uv_start_offset);
goto err;
}
/*
* Check that UV plane does not overlap with any of the Y planes tiles
*/
y_tile_height = get_tile_height(ubwcp, format, 0);
y_tile_align_bytes = y_tile_height * attr->stride;
ula_y_plane_size_align = ((ula_y_plane_size + y_tile_align_bytes - 1) /
y_tile_align_bytes) * y_tile_align_bytes;
if (uv_start_offset < ula_y_plane_size_align) {
ret = -EINVAL;
ERR("uv offset %zu less than y plane align %zu for y plane size %zu",
uv_start_offset, ula_y_plane_size_align,
ula_y_plane_size);
goto err;
}
return 0;
err:
return ret;
}
/* calculate ULA buffer parms */
static int ubwcp_calc_ula_params(struct ubwcp_driver *ubwcp,
struct ubwcp_buffer_attrs *attr,
size_t *ula_size,
size_t *ula_y_plane_size,
size_t *uv_start_offset)
{
size_t size;
enum ubwcp_std_image_format format;
int planes;
int missing_plane;
u32 stride;
u32 scanlines;
u32 planar_padding;
int ret;
ret = to_std_format(attr->image_format, &format);
if (ret)
return ret;
stride = attr->stride;
scanlines = attr->scanlines;
planar_padding = attr->planar_padding;
/* Number of "expected" planes in "the standard defined" image format */
planes = planes_in_format(format);
/* any plane missing?
* valid missing_plane values:
* 0 == no plane missing
* 1 == 1st plane missing
* 2 == 2nd plane missing
*/
missing_plane = missing_plane_from_format(attr->image_format);
DBG_BUF_ATTR("ula params -->");
DBG_BUF_ATTR("ioctl_image_format : %d, std_format: %d", attr->image_format, format);
DBG_BUF_ATTR("planes_in_format : %d", planes);
DBG_BUF_ATTR("missing_plane : %d", missing_plane);
DBG_BUF_ATTR("Planar Padding : %d", planar_padding);
if (planes == 1) {
/* uv_start beyond ULA range */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 0, true);
*uv_start_offset = size;
*ula_y_plane_size = size;
} else {
if (!missing_plane) {
/* size for both planes and padding */
/* Don't pad out Y plane as client would not expect this padding */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 0, false);
*ula_y_plane_size = size;
size += planar_padding;
*uv_start_offset = size;
size += ubwcp_ula_size(ubwcp, format, stride, scanlines, 1, true);
} else {
if (missing_plane == 2) {
/* Y-only image, set uv_start beyond ULA range */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 0, true);
*uv_start_offset = size;
*ula_y_plane_size = size;
} else {
/* first plane data is not there */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 1, true);
*uv_start_offset = 0; /* uv data is at the beginning */
*ula_y_plane_size = 0;
}
}
}
*ula_size = UBWCP_ALIGN(size, 4096);
DBG_BUF_ATTR("ULA_Size: %zu (0x%x) (before 4K align: %zu)", *ula_size, *ula_size, size);
return 0;
}
/* calculate UBWCP buffer parms */
static int ubwcp_calc_ubwcp_buf_params(struct ubwcp_driver *ubwcp,
struct ubwcp_buffer_attrs *attr,
size_t *md_p0, size_t *pd_p0,
size_t *md_p1, size_t *pd_p1,
size_t *stride_tp10_b)
{
int planes;
int missing_plane;
enum ubwcp_std_image_format format;
size_t stride_tp10_p;
int ret;
FENTRY();
ret = to_std_format(attr->image_format, &format);
if (ret)
return ret;
missing_plane = missing_plane_from_format(attr->image_format);
planes = planes_in_format(format);
DBG_BUF_ATTR("ubwcp params -->");
DBG_BUF_ATTR("ioctl_image_format : %d, std_format: %d", attr->image_format, format);
DBG_BUF_ATTR("planes_in_format : %d", planes);
DBG_BUF_ATTR("missing_plane : %d", missing_plane);
*md_p0 = 0;
*pd_p0 = 0;
*md_p1 = 0;
*pd_p1 = 0;
*stride_tp10_b = 0;
if (!missing_plane) {
*md_p0 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
*pd_p0 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
if (planes == 2) {
*md_p1 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
*pd_p1 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
}
} else {
if (missing_plane == 1) {
*md_p1 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
*pd_p1 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
} else {
*md_p0 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
*pd_p0 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
}
}
if (format == TP10) {
stride_tp10_p = UBWCP_ALIGN(attr->width, 192);
*stride_tp10_b = (stride_tp10_p/3) + stride_tp10_p;
}
return 0;
}
/* reserve ULA address space of the given size */
static phys_addr_t ubwcp_ula_alloc(struct ubwcp_driver *ubwcp, size_t size)
{
phys_addr_t pa;
mutex_lock(&ubwcp->ula_lock);
pa = gen_pool_alloc(ubwcp->ula_pool, size);
mutex_unlock(&ubwcp->ula_lock);
return pa;
}
/* free ULA address space of the given address and size */
static void ubwcp_ula_free(struct ubwcp_driver *ubwcp, phys_addr_t pa, size_t size)
{
mutex_lock(&ubwcp->ula_lock);
if (!gen_pool_has_addr(ubwcp->ula_pool, pa, size)) {
ERR("Attempt to free mem not from gen_pool: pa: %p, size: %zx", pa, size);
goto err;
}
DBG("addr: %p, size: %zx", pa, size);
gen_pool_free(ubwcp->ula_pool, pa, size);
mutex_unlock(&ubwcp->ula_lock);
return;
err:
mutex_unlock(&ubwcp->ula_lock);
}
/* free up or expand current_pa and return the new pa */
static phys_addr_t ubwcp_ula_realloc(struct ubwcp_driver *ubwcp,
phys_addr_t pa,
size_t size,
size_t new_size)
{
if (size == new_size)
return pa;
if (pa)
ubwcp_ula_free(ubwcp, pa, size);
return ubwcp_ula_alloc(ubwcp, new_size);
}
/* unmap dma buf */
static void ubwcp_dma_unmap(struct ubwcp_buf *buf)
{
FENTRY();
if (buf->dma_buf && buf->attachment) {
DBG("Calling dma_buf_unmap_attachment()");
dma_buf_unmap_attachment(buf->attachment, buf->sgt, DMA_BIDIRECTIONAL);
buf->sgt = NULL;
dma_buf_detach(buf->dma_buf, buf->attachment);
buf->attachment = NULL;
}
}
static bool verify_dma_buf_size(struct ubwcp_buf *buf, size_t min_size)
{
size_t dma_len;
dma_len = sg_dma_len(buf->sgt->sgl);
if (dma_len < min_size) {
ERR("dma len: %zu is less than min ubwcp buffer size: %zu", dma_len, min_size);
return false;
} else
return true;
}
/* dma map ubwcp buffer */
static int ubwcp_dma_map(struct ubwcp_buf *buf,
struct device *dev,
dma_addr_t *iova)
{
int ret = 0;
struct dma_buf *dma_buf = buf->dma_buf;
struct dma_buf_attachment *attachment;
struct sg_table *sgt;
/* Map buffer to SMMU and get IOVA */
attachment = dma_buf_attach(dma_buf, dev);
if (IS_ERR(attachment)) {
ret = PTR_ERR(attachment);
ERR("dma_buf_attach() failed: %d", ret);
goto err;
}
dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
dma_set_seg_boundary(dev, (unsigned long)DMA_BIT_MASK(64));
sgt = dma_buf_map_attachment(attachment, DMA_BIDIRECTIONAL);
if (IS_ERR_OR_NULL(sgt)) {
ret = PTR_ERR(sgt);
ERR("dma_buf_map_attachment() failed: %d", ret);
goto err_detach;
}
if (sgt->nents != 1) {
ERR("nents = %d", sgt->nents);
goto err_unmap;
}
*iova = sg_dma_address(sgt->sgl);
buf->attachment = attachment;
buf->sgt = sgt;
return ret;
err_unmap:
dma_buf_unmap_attachment(attachment, sgt, DMA_BIDIRECTIONAL);
err_detach:
dma_buf_detach(dma_buf, attachment);
err:
if (!ret)
ret = -1;
return ret;
}
static void reset_buf_attrs(struct ubwcp_buf *buf)
{
struct ubwcp_hw_meta_metadata *mmdata;
struct ubwcp_driver *ubwcp;
ubwcp = buf->ubwcp;
mmdata = &buf->mmdata;
ubwcp_dma_unmap(buf);
/* reset ula params */
if (buf->ula_size) {
ubwcp_ula_free(ubwcp, buf->ula_pa, buf->ula_size);
buf->ula_size = 0;
buf->ula_pa = 0;
}
/* reset ubwcp params */
memset(mmdata, 0, sizeof(*mmdata));
buf->buf_attr_set = false;
buf->buf_attr.image_format = UBWCP_LINEAR;
}
static void print_mmdata_desc(struct ubwcp_hw_meta_metadata *mmdata)
{
DBG_BUF_ATTR("");
DBG_BUF_ATTR("--------MM_DATA DESC ---------");
DBG_BUF_ATTR("uv_start_addr : 0x%08llx (cache addr) (actual: 0x%llx)",
mmdata->uv_start_addr, mmdata->uv_start_addr << 6);
DBG_BUF_ATTR("format : 0x%08x", mmdata->format);
DBG_BUF_ATTR("stride : 0x%08x (cache addr) (actual: 0x%x)",
mmdata->stride, mmdata->stride << 6);
DBG_BUF_ATTR("stride_ubwcp : 0x%08x (cache addr) (actual: 0x%zx)",
mmdata->stride_ubwcp, mmdata->stride_ubwcp << 6);
DBG_BUF_ATTR("metadata_base_y : 0x%08x (page addr) (actual: 0x%llx)",
mmdata->metadata_base_y, mmdata->metadata_base_y << 12);
DBG_BUF_ATTR("metadata_base_uv: 0x%08x (page addr) (actual: 0x%zx)",
mmdata->metadata_base_uv, mmdata->metadata_base_uv << 12);
DBG_BUF_ATTR("buffer_y_offset : 0x%08x (page addr) (actual: 0x%zx)",
mmdata->buffer_y_offset, mmdata->buffer_y_offset << 12);
DBG_BUF_ATTR("buffer_uv_offset: 0x%08x (page addr) (actual: 0x%zx)",
mmdata->buffer_uv_offset, mmdata->buffer_uv_offset << 12);
DBG_BUF_ATTR("width_height : 0x%08x (width: 0x%x height: 0x%x)",
mmdata->width_height, mmdata->width_height >> 16, mmdata->width_height & 0xFFFF);
DBG_BUF_ATTR("");
}
/* set buffer attributes:
* Failure:
* This call may fail for multiple reasons and it will leave the buffer in an undefined state.
* In some situations it may leave the buffer in linear mapped state, and in other situations it
* may leave the buffer in previously set attributes state.
*/
int ubwcp_set_buf_attrs(struct dma_buf *dmabuf, struct ubwcp_buffer_attrs *attr)
{
int ret = 0;
size_t ula_size = 0;
size_t uv_start_offset = 0;
size_t ula_y_plane_size = 0;
phys_addr_t ula_pa = 0x0;
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp;
size_t metadata_p0;
size_t pixeldata_p0;
size_t metadata_p1;
size_t pixeldata_p1;
size_t iova_min_size;
size_t stride_tp10_b;
dma_addr_t iova_base;
struct ubwcp_hw_meta_metadata *mmdata;
u64 uv_start;
u32 stride_b;
u32 width_b;
u32 height_b;
enum ubwcp_std_image_format std_image_format;
bool is_non_lin_buf;
u16 hw_img_format;
FENTRY();
trace_ubwcp_set_buf_attrs_start(dmabuf);
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
ret = -EINVAL;
goto err_validation;
}
if (!attr) {
ERR("NULL attr ptr");
ret = -EINVAL;
goto err_validation;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("No corresponding ubwcp_buf for the passed in dma_buf");
ret = -EINVAL;
goto err_validation;
}
ubwcp = buf->ubwcp;
if (ubwcp->state != UBWCP_STATE_READY) {
ret = EPERM;
goto err_validation;
}
if (!ubwcp_buf_attrs_valid(ubwcp, attr)) {
ERR("Invalid buf attrs");
ret = -EINVAL;
goto err_validation;
}
mutex_lock(&buf->lock);
if (buf->lock_count) {
ERR("Cannot set attr when buffer is locked");
ret = -EBUSY;
goto unlock;
}
mmdata = &buf->mmdata;
is_non_lin_buf = (buf->buf_attr.image_format != UBWCP_LINEAR);
/* note: this also checks if buf is mmap'ed */
ret = ubwcp->mmap_config_fptr(buf->dma_buf, true, 0, 0);
if (ret) {
ERR("dma_buf_mmap_config(0,0) failed: %d", ret);
goto unlock;
}
if (attr->image_format == UBWCP_LINEAR) {
DBG_BUF_ATTR("Linear format requested");
if (buf->buf_attr_set)
reset_buf_attrs(buf);
if (is_non_lin_buf) {
/*
* Changing buffer from ubwc to linear so decrement
* number of ubwc buffers
*/
ret = dec_num_non_lin_buffers(ubwcp);
}
mutex_unlock(&buf->lock);
trace_ubwcp_set_buf_attrs_end(dmabuf);
return ret;
}
if (to_std_format(attr->image_format, &std_image_format)) {
ERR("Unable to map ioctl image format to std image format");
goto unlock;
}
if (std_to_hw_img_fmt(std_image_format, &hw_img_format)) {
ERR("Unable to map std image format to hw image format");
goto unlock;
}
/* Calculate uncompressed-buffer size. */
ret = ubwcp_calc_ula_params(ubwcp, attr, &ula_size, &ula_y_plane_size, &uv_start_offset);
if (ret) {
ERR("ubwcp_calc_ula_params() failed: %d", ret);
goto unlock;
}
ret = ubwcp_validate_uv_align(ubwcp, attr, ula_y_plane_size, uv_start_offset);
if (ret) {
ERR("ubwcp_validate_uv_align() failed: %d", ret);
goto unlock;
}
ret = ubwcp_calc_ubwcp_buf_params(ubwcp, attr, &metadata_p0, &pixeldata_p0, &metadata_p1,
&pixeldata_p1, &stride_tp10_b);
if (ret) {
ERR("ubwcp_calc_buf_params() failed: %d", ret);
goto unlock;
}
iova_min_size = metadata_p0 + pixeldata_p0 + metadata_p1 + pixeldata_p1;
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("------Summary ULA Calculated Params ------");
DBG_BUF_ATTR("ULA Size : %8zu (0x%8zx)", ula_size, ula_size);
DBG_BUF_ATTR("UV Start Offset : %8zu (0x%8zx)", uv_start_offset, uv_start_offset);
DBG_BUF_ATTR("------Summary UBCP Calculated Params ------");
DBG_BUF_ATTR("metadata_p0 : %8d (0x%8zx)", metadata_p0, metadata_p0);
DBG_BUF_ATTR("pixeldata_p0 : %8d (0x%8zx)", pixeldata_p0, pixeldata_p0);
DBG_BUF_ATTR("metadata_p1 : %8d (0x%8zx)", metadata_p1, metadata_p1);
DBG_BUF_ATTR("pixeldata_p1 : %8d (0x%8zx)", pixeldata_p1, pixeldata_p1);
DBG_BUF_ATTR("stride_tp10 : %8d (0x%8zx)", stride_tp10_b, stride_tp10_b);
DBG_BUF_ATTR("iova_min_size : %8d (0x%8zx)", iova_min_size, iova_min_size);
DBG_BUF_ATTR("");
/* assign ULA PA with uncompressed-size range */
ula_pa = ubwcp_ula_realloc(ubwcp, buf->ula_pa, buf->ula_size, ula_size);
if (!ula_pa) {
ERR("ubwcp_ula_alloc/realloc() failed. running out of ULA PA space?");
goto err;
}
buf->ula_size = ula_size;
buf->ula_pa = ula_pa;
DBG_BUF_ATTR("Allocated ULA_PA: 0x%p of size: 0x%zx", ula_pa, ula_size);
DBG_BUF_ATTR("");
/* dma map only the first time attribute is set */
if (!buf->buf_attr_set) {
/* linear -> ubwcp. map ubwcp buffer */
ret = ubwcp_dma_map(buf, ubwcp->dev_buf_cb, &iova_base);
if (ret) {
ERR("ubwcp_dma_map() failed: %d", ret);
goto err;
}
DBG_BUF_ATTR("dma_buf IOVA range: 0x%llx + min_size (0x%zx): 0x%llx",
iova_base, iova_min_size, iova_base + iova_min_size);
}
if(!verify_dma_buf_size(buf, iova_min_size))
goto err;
uv_start = ula_pa + uv_start_offset;
if (!IS_ALIGNED(uv_start, 64)) {
ERR("ERROR: uv_start is NOT aligned to cache line");
goto err;
}
/* Convert height and width to bytes for writing to mmdata */
if (std_image_format != TP10) {
ubwcp_pixel_to_bytes(ubwcp, std_image_format, attr->width,
attr->height, &width_b, &height_b);
} else {
/* for tp10 image compression, we need to program p010 width/height */
ubwcp_pixel_to_bytes(ubwcp, P010, attr->width,
attr->height, &width_b, &height_b);
}
stride_b = attr->stride;
/* create the mmdata descriptor */
memset(mmdata, 0, sizeof(*mmdata));
mmdata->uv_start_addr = CACHE_ADDR(uv_start);
mmdata->format = hw_img_format;
if (std_image_format != TP10) {
mmdata->stride = CACHE_ADDR(stride_b); /* uncompressed stride */
} else {
mmdata->stride = CACHE_ADDR(stride_tp10_b); /* compressed stride */
mmdata->stride_ubwcp = CACHE_ADDR(stride_b); /* uncompressed stride */
}
mmdata->metadata_base_y = PAGE_ADDR(iova_base);
mmdata->metadata_base_uv = PAGE_ADDR(iova_base + metadata_p0 + pixeldata_p0);
mmdata->buffer_y_offset = PAGE_ADDR(metadata_p0);
mmdata->buffer_uv_offset = PAGE_ADDR(metadata_p1);
/* NOTE: For version 1.1, both width & height needs to be in bytes.
* For other versions, width in bytes & height in pixels.
*/
if ((ubwcp->hw_ver_major == 1) && (ubwcp->hw_ver_minor == 1))
mmdata->width_height = width_b << 16 | height_b;
else
mmdata->width_height = width_b << 16 | attr->height;
print_mmdata_desc(mmdata);
if (!is_non_lin_buf) {
/*
* Changing buffer from linear to ubwc so increment
* number of ubwc buffers
*/
ret = inc_num_non_lin_buffers(ubwcp);
}
if (ret) {
ERR("inc_num_non_lin_buffers failed: %d", ret);
goto err;
}
/* inform ULA-PA to dma-heap */
DBG_BUF_ATTR("Calling mmap_config(): ULA_PA: 0x%p size: 0x%zx", ula_pa, ula_size);
ret = ubwcp->mmap_config_fptr(buf->dma_buf, false, buf->ula_pa, buf->ula_size);
if (ret) {
ERR("dma_buf_mmap_config() failed: %d", ret);
if (!is_non_lin_buf)
dec_num_non_lin_buffers(ubwcp);
goto err;
}
buf->buf_attr = *attr;
buf->buf_attr_set = true;
mutex_unlock(&buf->lock);
trace_ubwcp_set_buf_attrs_end(dmabuf);
return 0;
err:
reset_buf_attrs(buf);
if (is_non_lin_buf) {
/*
* Changing buffer from ubwc to linear so decrement
* number of ubwc buffers
*/
dec_num_non_lin_buffers(ubwcp);
}
unlock:
mutex_unlock(&buf->lock);
err_validation:
if (!ret)
ret = -1;
trace_ubwcp_set_buf_attrs_end(dmabuf);
return ret;
}
EXPORT_SYMBOL(ubwcp_set_buf_attrs);
/* Free up the buffer descriptor */
static void ubwcp_buf_desc_free(struct ubwcp_driver *ubwcp, struct ubwcp_desc *desc)
{
int idx = desc->idx;
struct ubwcp_desc *desc_list = ubwcp->desc_list;
mutex_lock(&ubwcp->desc_lock);
desc_list[idx].idx = -1;
desc_list[idx].ptr = NULL;
DBG("freed descriptor_id: %d", idx);
mutex_unlock(&ubwcp->desc_lock);
}
/* Allocate next available buffer descriptor. */
static struct ubwcp_desc *ubwcp_buf_desc_allocate(struct ubwcp_driver *ubwcp)
{
int idx;
struct ubwcp_desc *desc_list = ubwcp->desc_list;
mutex_lock(&ubwcp->desc_lock);
for (idx = 0; idx < UBWCP_BUFFER_DESC_COUNT; idx++) {
if (desc_list[idx].idx == -1) {
desc_list[idx].idx = idx;
desc_list[idx].ptr = ubwcp->buffer_desc_base +
idx*UBWCP_BUFFER_DESC_OFFSET;
DBG("allocated descriptor_id: %d", idx);
mutex_unlock(&ubwcp->desc_lock);
return &desc_list[idx];
}
}
mutex_unlock(&ubwcp->desc_lock);
return NULL;
}
static int ubwcp_flush(struct ubwcp_driver *ubwcp)
{
int ret = 0;
mutex_lock(&ubwcp->ubwcp_flush_lock);
trace_ubwcp_hw_flush_start(0);
ret = ubwcp_hw_flush(ubwcp->base);
trace_ubwcp_hw_flush_end(0);
if (ret)
ERR("ubwcp_hw_flush() failed, ret = %d", ret);
mutex_unlock(&ubwcp->ubwcp_flush_lock);
return ret;
}
static int range_check_disable(struct ubwcp_driver *ubwcp, int idx)
{
int ret;
mutex_lock(&ubwcp->ubwcp_flush_lock);
mutex_lock(&ubwcp->hw_range_ck_lock);
trace_ubwcp_hw_flush_start(0);
ret = ubwcp_hw_disable_range_check_with_flush(ubwcp->base, idx);
trace_ubwcp_hw_flush_end(0);
mutex_unlock(&ubwcp->hw_range_ck_lock);
mutex_unlock(&ubwcp->ubwcp_flush_lock);
return ret;
}
static void range_check_enable(struct ubwcp_driver *ubwcp, int idx)
{
mutex_lock(&ubwcp->hw_range_ck_lock);
ubwcp_hw_enable_range_check(ubwcp->base, idx);
mutex_unlock(&ubwcp->hw_range_ck_lock);
}
/**
* Lock buffer for CPU access. This prepares ubwcp hw to allow
* CPU access to the compressed buffer. It will perform
* necessary address translation configuration and cache maintenance ops
* so that CPU can safely access ubwcp buffer, if this call is
* successful.
* Allocate descriptor if not already,
* perform CMO and then enable range check
*
* @param dmabuf : ptr to the dma buf
* @param direction : direction of access
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_lock(struct dma_buf *dmabuf, enum dma_data_direction dir)
{
int ret = 0;
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp;
FENTRY();
trace_ubwcp_lock_start(dmabuf);
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
trace_ubwcp_lock_end(dmabuf);
return -EINVAL;
}
if (!valid_dma_direction(dir)) {
ERR("invalid direction: %d", dir);
trace_ubwcp_lock_end(dmabuf);
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf ptr not found");
trace_ubwcp_lock_end(dmabuf);
return -1;
}
ubwcp = buf->ubwcp;
if (ubwcp->state != UBWCP_STATE_READY) {
ERR("driver in invalid state: %d", ubwcp->state);
trace_ubwcp_lock_end(dmabuf);
return -EPERM;
}
mutex_lock(&buf->lock);
if (!buf->buf_attr_set) {
ERR("lock() called on buffer, but attr not set");
goto err;
}
if (buf->buf_attr.image_format == UBWCP_LINEAR) {
ERR("lock() called on linear buffer");
goto err;
}
if (!buf->lock_count) {
DBG("first lock on buffer");
/* buf->desc could already be allocated because of perm range xlation */
if (!buf->desc) {
/* allocate a buffer descriptor */
buf->desc = ubwcp_buf_desc_allocate(buf->ubwcp);
if (!buf->desc) {
ERR("ubwcp_allocate_buf_desc() failed");
goto err;
}
memcpy(buf->desc->ptr, &buf->mmdata, sizeof(buf->mmdata));
/* Flushing of updated mmdata:
* mmdata is iocoherent and ubwcp will get it from CPU cache -
* *as long as* it has not cached that itself during previous
* access to the same descriptor.
*
* During unlock of previous use of this descriptor,
* we do hw flush, which will get rid of this mmdata from
* ubwcp cache.
*
* In addition, we also do a hw flush after enable_range_ck().
* That will also get rid of any speculative fetch of mmdata
* by the ubwcp hw. At this time, the assumption is that ubwcp
* will cache mmdata only for active descriptor. But if ubwcp
* is speculatively fetching mmdata for all descriptors
* (irrespetive of enabled or not), the flush during lock
* will be necessary to make sure ubwcp sees updated mmdata
* that we just updated
*/
/* program ULA range for this buffer */
DBG("setting range check: descriptor_id: %d, addr: %p, size: %zx",
buf->desc->idx, buf->ula_pa, buf->ula_size);
ubwcp_hw_set_range_check(ubwcp->base, buf->desc->idx, buf->ula_pa,
buf->ula_size);
}
/* enable range check */
DBG("enabling range check, descriptor_id: %d", buf->desc->idx);
range_check_enable(ubwcp, buf->desc->idx);
/* Flush/invalidate UBWCP caches */
/* Why: cpu could have done a speculative fetch before
* enable_range_ck() and ubwcp in process of returning "default" data
* we don't want that stashing of default data pending.
* we force completion of that and then we also cpu invalidate which
* will get rid of that line.
*/
ret = ubwcp_flush(ubwcp);
if (ret) {
ubwcp->state = UBWCP_STATE_FAULT;
ERR("ubwcp_flush() failed: %d, driver state set to FAULT", ret);
goto err_flush_failed;
}
/* Flush/invalidate ULA PA from CPU caches
* Always invalidate cache, even when writing.
* Upgrade direction to force invalidate.
*/
if (dir == DMA_TO_DEVICE)
dir = DMA_BIDIRECTIONAL;
trace_ubwcp_dma_sync_single_for_cpu_start(buf->ula_size);
dma_sync_single_for_cpu(ubwcp->dev, buf->ula_pa, buf->ula_size, dir);
trace_ubwcp_dma_sync_single_for_cpu_end(buf->ula_size);
buf->dma_dir = dir;
} else {
DBG("buf already locked");
/* For write locks, always upgrade direction to bi_directional.
* A previous read lock will now become write lock.
* This will ensure a flush when the last unlock comes in.
*/
if ((dir == DMA_TO_DEVICE) || (dir == DMA_BIDIRECTIONAL))
buf->dma_dir = DMA_BIDIRECTIONAL;
}
buf->lock_count++;
DBG("new lock_count: %d", buf->lock_count);
mutex_unlock(&buf->lock);
trace_ubwcp_lock_end(dmabuf);
return ret;
err_flush_failed:
range_check_disable(ubwcp, buf->desc->idx);
ubwcp_buf_desc_free(ubwcp, buf->desc);
buf->desc = NULL;
err:
mutex_unlock(&buf->lock);
if (!ret)
ret = -1;
trace_ubwcp_lock_end(dmabuf);
return ret;
}
/* This can be called as a result of external unlock() call or
* internally if free() is called without unlock().
*/
static int unlock_internal(struct ubwcp_buf *buf, enum dma_data_direction dir, bool free_buffer)
{
int ret = 0;
struct ubwcp_driver *ubwcp;
DBG("current lock_count: %d", buf->lock_count);
if (free_buffer) {
buf->lock_count = 0;
DBG("Forced lock_count: %d", buf->lock_count);
} else {
/* for write unlocks, remember the direction so we flush on last unlock */
if ((dir == DMA_TO_DEVICE) || (dir == DMA_BIDIRECTIONAL))
buf->dma_dir = DMA_BIDIRECTIONAL;
buf->lock_count--;
DBG("new lock_count: %d", buf->lock_count);
if (buf->lock_count) {
DBG("more than 1 lock on buffer. waiting until last unlock");
return 0;
}
}
ubwcp = buf->ubwcp;
/* Flush/invalidate ULA PA from CPU caches */
trace_ubwcp_dma_sync_single_for_device_start(buf->ula_size);
dma_sync_single_for_device(ubwcp->dev, buf->ula_pa, buf->ula_size, buf->dma_dir);
trace_ubwcp_dma_sync_single_for_device_end(buf->ula_size);
/* disable range check */
DBG("disabling range check");
ret = range_check_disable(ubwcp, buf->desc->idx);
if (ret) {
ubwcp->state = UBWCP_STATE_FAULT;
ERR("disable_range_check_with_flush() failed: %d, driver state set to FAULT", ret);
}
/* release descriptor if perm range xlation is not set */
if (!buf->perm) {
ubwcp_buf_desc_free(buf->ubwcp, buf->desc);
buf->desc = NULL;
}
return ret;
}
/**
* Unlock buffer from CPU access. This prepares ubwcp hw to
* safely allow for device access to the compressed buffer including any
* necessary cache maintenance ops. It may also free up certain ubwcp
* resources that could result in error when accessed by CPU in
* unlocked state.
*
* @param dmabuf : ptr to the dma buf
* @param direction : direction of access
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_unlock(struct dma_buf *dmabuf, enum dma_data_direction dir)
{
struct ubwcp_buf *buf;
int ret;
FENTRY();
trace_ubwcp_unlock_start(dmabuf);
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
trace_ubwcp_unlock_end(dmabuf);
return -EINVAL;
}
if (!valid_dma_direction(dir)) {
ERR("invalid direction: %d", dir);
trace_ubwcp_unlock_end(dmabuf);
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf not found");
trace_ubwcp_unlock_end(dmabuf);
return -1;
}
if (buf->ubwcp->state != UBWCP_STATE_READY) {
ERR("driver in invalid state: %d", buf->ubwcp->state);
trace_ubwcp_unlock_end(dmabuf);
return -EPERM;
}
mutex_lock(&buf->lock);
if (!buf->lock_count) {
ERR("unlock() called on buffer which not in locked state");
trace_ubwcp_unlock_end(dmabuf);
mutex_unlock(&buf->lock);
return -1;
}
ret = unlock_internal(buf, dir, false);
mutex_unlock(&buf->lock);
trace_ubwcp_unlock_end(dmabuf);
return ret;
}
/* Return buffer attributes for the given buffer */
int ubwcp_get_buf_attrs(struct dma_buf *dmabuf, struct ubwcp_buffer_attrs *attr)
{
int ret = 0;
struct ubwcp_buf *buf;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
if (!attr) {
ERR("NULL attr ptr");
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf ptr not found");
return -1;
}
if (buf->ubwcp->state != UBWCP_STATE_READY) {
ERR("driver in invalid state: %d", buf->ubwcp->state);
return -EPERM;
}
mutex_lock(&buf->lock);
if (!buf->buf_attr_set) {
ERR("buffer attributes not set");
mutex_unlock(&buf->lock);
return -1;
}
*attr = buf->buf_attr;
mutex_unlock(&buf->lock);
return ret;
}
EXPORT_SYMBOL(ubwcp_get_buf_attrs);
/* Set permanent range translation.
* enable: Descriptor will be reserved for this buffer until disabled,
* making lock/unlock quicker.
* disable: Descriptor will not be reserved for this buffer. Instead,
* descriptor will be allocated and released for each lock/unlock.
* If currently allocated but not being used, descriptor will be
* released.
*/
int ubwcp_set_perm_range_translation(struct dma_buf *dmabuf, bool enable)
{
int ret = 0;
struct ubwcp_buf *buf;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf not found");
return -1;
}
if (buf->ubwcp->state != UBWCP_STATE_READY) {
ERR("driver in invalid state: %d", buf->ubwcp->state);
return -EPERM;
}
/* not implemented */
if (1) {
ERR("API not implemented yet");
return -1;
}
/* TBD: make sure we acquire buf lock while setting this so there is
* no race condition with attr_set/lock/unlock
*/
buf->perm = enable;
/* if "disable" and we have allocated a desc and it is not being
* used currently, release it
*/
if (!enable && buf->desc && !buf->lock_count) {
ubwcp_buf_desc_free(buf->ubwcp, buf->desc);
buf->desc = NULL;
/* Flush/invalidate UBWCP caches */
//TBD: need to do anything?
}
return ret;
}
EXPORT_SYMBOL(ubwcp_set_perm_range_translation);
/**
* Free up ubwcp resources for this buffer.
*
* @param dmabuf : ptr to the dma buf
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_free_buffer(struct dma_buf *dmabuf)
{
int ret = 0;
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp;
unsigned long flags;
bool is_non_lin_buf;
FENTRY();
trace_ubwcp_free_buffer_start(dmabuf);
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
trace_ubwcp_free_buffer_end(dmabuf);
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf ptr not found");
trace_ubwcp_free_buffer_end(dmabuf);
return -1;
}
ubwcp = buf->ubwcp;
if (ubwcp->state != UBWCP_STATE_READY) {
ERR("driver in invalid state: %d", ubwcp->state);
trace_ubwcp_free_buffer_end(dmabuf);
return -EPERM;
}
mutex_lock(&buf->lock);
is_non_lin_buf = (buf->buf_attr.image_format != UBWCP_LINEAR);
if (buf->lock_count) {
DBG("free before unlock (lock_count: %d). unlock()'ing first", buf->lock_count);
ret = unlock_internal(buf, buf->dma_dir, true);
if (ret)
ERR("unlock_internal(): failed : %d, but continuing free()", ret);
}
/* if we are still holding a desc, release it. this can happen only if perm == true */
if (buf->desc) {
if (!buf->perm) {
ubwcp->state = UBWCP_STATE_FAULT;
WARN_ON(true);
}
ubwcp_buf_desc_free(buf->ubwcp, buf->desc);
buf->desc = NULL;
}
if (buf->buf_attr_set)
reset_buf_attrs(buf);
spin_lock_irqsave(&ubwcp->buf_table_lock, flags);
hash_del(&buf->hnode);
spin_unlock_irqrestore(&ubwcp->buf_table_lock, flags);
mutex_unlock(&buf->lock);
kfree(buf);
if (is_non_lin_buf)
dec_num_non_lin_buffers(ubwcp);
trace_ubwcp_free_buffer_end(dmabuf);
return ret;
}
/* file open: TBD: increment ref count? */
static int ubwcp_open(struct inode *i, struct file *f)
{
return 0;
}
/* file open: TBD: decrement ref count? */
static int ubwcp_close(struct inode *i, struct file *f)
{
return 0;
}
static int ioctl_set_buf_attr(struct ubwcp_driver *ubwcp, unsigned long ioctl_param)
{
int ret;
struct dma_buf *dmabuf;
struct ubwcp_ioctl_buffer_attrs buf_attr_ioctl;
if (copy_from_user(&buf_attr_ioctl, (const void __user *) ioctl_param,
sizeof(buf_attr_ioctl))) {
ERR("copy_from_user() failed");
return -EFAULT;
}
DBG("IOCTL: SET_BUF_ATTR: fd = %d", buf_attr_ioctl.fd);
dmabuf = dma_buf_get(buf_attr_ioctl.fd);
if (IS_ERR(dmabuf)) {
ERR("dmabuf ptr not found for dma_buf_fd = %d", buf_attr_ioctl.fd);
return PTR_ERR(dmabuf);
}
ret = ubwcp_set_buf_attrs(dmabuf, &buf_attr_ioctl.attr);
dma_buf_put(dmabuf);
return ret;
}
static int ioctl_get_hw_ver(struct ubwcp_driver *ubwcp, unsigned long ioctl_param)
{
struct ubwcp_ioctl_hw_version hw_ver;
DBG("IOCTL: GET_HW_VER");
if (ubwcp_get_hw_version(&hw_ver))
return -EINVAL;
if (copy_to_user((void __user *)ioctl_param, &hw_ver, sizeof(hw_ver))) {
ERR("copy_to_user() failed");
return -EFAULT;
}
return 0;
}
static int ioctl_get_stride_align(struct ubwcp_driver *ubwcp, unsigned long ioctl_param)
{
struct ubwcp_ioctl_stride_align stride_align_ioctl;
enum ubwcp_std_image_format format;
DBG("IOCTL: GET_STRIDE_ALIGN");
if (copy_from_user(&stride_align_ioctl, (const void __user *) ioctl_param,
sizeof(stride_align_ioctl))) {
ERR("copy_from_user() failed");
return -EFAULT;
}
if (stride_align_ioctl.unused != 0) {
ERR("unused values must be set to 0");
return -EINVAL;
}
if (!ioctl_format_is_valid(stride_align_ioctl.image_format)) {
ERR("invalid image format: %d", stride_align_ioctl.image_format);
return -EINVAL;
}
if (stride_align_ioctl.image_format == UBWCP_LINEAR) {
ERR("not supported for LINEAR format");
return -EINVAL;
}
if (to_std_format(stride_align_ioctl.image_format, &format)) {
ERR("Unable to map ioctl image format to std image format");
return -EINVAL;
}
if (get_stride_alignment(format, &stride_align_ioctl.stride_align)) {
ERR("failed for format: %d", format);
return -EFAULT;
}
if (copy_to_user((void __user *)ioctl_param, &stride_align_ioctl,
sizeof(stride_align_ioctl))) {
ERR("copy_to_user() failed");
return -EFAULT;
}
return 0;
}
static int ioctl_validate_stride(struct ubwcp_driver *ubwcp, unsigned long ioctl_param)
{
struct ubwcp_ioctl_validate_stride validate_stride_ioctl;
enum ubwcp_std_image_format format;
DBG("IOCTL: VALIDATE_STRIDE");
if (copy_from_user(&validate_stride_ioctl, (const void __user *) ioctl_param,
sizeof(validate_stride_ioctl))) {
ERR("copy_from_user() failed");
return -EFAULT;
}
if (validate_stride_ioctl.unused1 || validate_stride_ioctl.unused2) {
ERR("unused values must be set to 0");
return -EINVAL;
}
if (!ioctl_format_is_valid(validate_stride_ioctl.image_format)) {
ERR("not supported for LINEAR format");
return -EINVAL;
}
if (validate_stride_ioctl.image_format == UBWCP_LINEAR) {
ERR("not supported for LINEAR format");
return -EINVAL;
}
if (to_std_format(validate_stride_ioctl.image_format, &format)) {
ERR("Unable to map ioctl image format to std image format");
return -EINVAL;
}
validate_stride_ioctl.valid = stride_is_valid(ubwcp, format, validate_stride_ioctl.width,
validate_stride_ioctl.stride);
if (copy_to_user((void __user *)ioctl_param, &validate_stride_ioctl,
sizeof(validate_stride_ioctl))) {
ERR("copy_to_user() failed");
return -EFAULT;
}
return 0;
}
/* handle IOCTLs */
static long ubwcp_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)
{
struct ubwcp_driver *ubwcp;
ubwcp = ubwcp_get_driver();
if (!ubwcp)
return -EINVAL;
if (ubwcp->state != UBWCP_STATE_READY) {
ERR("driver in invalid state: %d", ubwcp->state);
return -EPERM;
}
switch (ioctl_num) {
case UBWCP_IOCTL_SET_BUF_ATTR:
return ioctl_set_buf_attr(ubwcp, ioctl_param);
case UBWCP_IOCTL_GET_HW_VER:
return ioctl_get_hw_ver(ubwcp, ioctl_param);
case UBWCP_IOCTL_GET_STRIDE_ALIGN:
return ioctl_get_stride_align(ubwcp, ioctl_param);
case UBWCP_IOCTL_VALIDATE_STRIDE:
return ioctl_validate_stride(ubwcp, ioctl_param);
default:
ERR("Invalid ioctl_num = %d", ioctl_num);
return -EINVAL;
}
return 0;
}
static const struct file_operations ubwcp_fops = {
.owner = THIS_MODULE,
.open = ubwcp_open,
.release = ubwcp_close,
.unlocked_ioctl = ubwcp_ioctl,
};
static int read_err_r_op(void *data, u64 *value)
{
struct ubwcp_driver *ubwcp = data;
*value = ubwcp->read_err_irq_en;
return 0;
}
static int read_err_w_op(void *data, u64 value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
if (ubwcp_power(ubwcp, true))
goto err;
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, value);
ubwcp->read_err_irq_en = value;
if (ubwcp_power(ubwcp, false))
goto err;
return 0;
err:
ubwcp->state = UBWCP_STATE_FAULT;
return -1;
}
static int write_err_r_op(void *data, u64 *value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
*value = ubwcp->write_err_irq_en;
return 0;
}
static int write_err_w_op(void *data, u64 value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
if (ubwcp_power(ubwcp, true))
goto err;
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, value);
ubwcp->write_err_irq_en = value;
if (ubwcp_power(ubwcp, false))
goto err;
return 0;
err:
ubwcp->state = UBWCP_STATE_FAULT;
return -1;
}
static int decode_err_r_op(void *data, u64 *value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
*value = ubwcp->decode_err_irq_en;
return 0;
}
static int decode_err_w_op(void *data, u64 value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
if (ubwcp_power(ubwcp, true))
goto err;
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, value);
ubwcp->decode_err_irq_en = value;
if (ubwcp_power(ubwcp, false))
goto err;
return 0;
err:
ubwcp->state = UBWCP_STATE_FAULT;
return -1;
}
static int encode_err_r_op(void *data, u64 *value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
*value = ubwcp->encode_err_irq_en;
return 0;
}
static int encode_err_w_op(void *data, u64 value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
if (ubwcp_power(ubwcp, true))
goto err;
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, value);
ubwcp->encode_err_irq_en = value;
if (ubwcp_power(ubwcp, false))
goto err;
return 0;
err:
ubwcp->state = UBWCP_STATE_FAULT;
return -1;
}
static int reg_rw_trace_w_op(void *data, u64 value)
{
struct ubwcp_driver *ubwcp = data;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
ubwcp_hw_trace_set(value);
return 0;
}
static int reg_rw_trace_r_op(void *data, u64 *value)
{
struct ubwcp_driver *ubwcp = data;
bool trace_status;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
ubwcp_hw_trace_get(&trace_status);
*value = trace_status;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(read_err_fops, read_err_r_op, read_err_w_op, "%d\n");
DEFINE_DEBUGFS_ATTRIBUTE(decode_err_fops, decode_err_r_op, decode_err_w_op, "%d\n");
DEFINE_DEBUGFS_ATTRIBUTE(write_err_fops, write_err_r_op, write_err_w_op, "%d\n");
DEFINE_DEBUGFS_ATTRIBUTE(encode_err_fops, encode_err_r_op, encode_err_w_op, "%d\n");
DEFINE_DEBUGFS_ATTRIBUTE(reg_rw_trace_fops, reg_rw_trace_r_op, reg_rw_trace_w_op, "%d\n");
static void ubwcp_debugfs_init(struct ubwcp_driver *ubwcp)
{
struct dentry *debugfs_root;
struct dentry *dfile;
debugfs_root = debugfs_create_dir("ubwcp", NULL);
if (IS_ERR_OR_NULL(debugfs_root)) {
ERR("Failed to create debugfs for ubwcp\n");
return;
}
debugfs_create_u32("debug_trace_enable", 0644, debugfs_root, &ubwcp_debug_trace_enable);
dfile = debugfs_create_file("reg_rw_trace_en", 0644, debugfs_root, ubwcp, &reg_rw_trace_fops);
if (IS_ERR_OR_NULL(dfile)) {
ERR("failed to create reg_rw_trace_en debugfs file");
goto err;
}
dfile = debugfs_create_file("read_err_irq_en", 0644, debugfs_root, ubwcp, &read_err_fops);
if (IS_ERR_OR_NULL(dfile)) {
ERR("failed to create read_err_irq debugfs file");
goto err;
}
dfile = debugfs_create_file("write_err_irq_en", 0644, debugfs_root, ubwcp, &write_err_fops);
if (IS_ERR_OR_NULL(dfile)) {
ERR("failed to create write_err_irq debugfs file");
goto err;
}
dfile = debugfs_create_file("decode_err_irq_en", 0644, debugfs_root, ubwcp,
&decode_err_fops);
if (IS_ERR_OR_NULL(dfile)) {
ERR("failed to create decode_err_irq debugfs file");
goto err;
}
dfile = debugfs_create_file("encode_err_irq_en", 0644, debugfs_root, ubwcp,
&encode_err_fops);
if (IS_ERR_OR_NULL(dfile)) {
ERR("failed to create encode_err_irq debugfs file");
goto err;
}
ubwcp->debugfs_root = debugfs_root;
return;
err:
debugfs_remove_recursive(ubwcp->debugfs_root);
ubwcp->debugfs_root = NULL;
}
static void ubwcp_debugfs_deinit(struct ubwcp_driver *ubwcp)
{
debugfs_remove_recursive(ubwcp->debugfs_root);
}
/* ubwcp char device initialization */
static int ubwcp_cdev_init(struct ubwcp_driver *ubwcp)
{
int ret;
dev_t devt;
struct class *dev_class;
struct device *dev_sys;
/* allocate major device number (/proc/devices -> major_num ubwcp) */
ret = alloc_chrdev_region(&devt, 0, UBWCP_NUM_DEVICES, UBWCP_DEVICE_NAME);
if (ret) {
ERR("alloc_chrdev_region() failed: %d", ret);
return ret;
}
/* create device class (/sys/class/ubwcp_class) */
dev_class = class_create(THIS_MODULE, "ubwcp_class");
if (IS_ERR(dev_class)) {
ret = PTR_ERR(dev_class);
ERR("class_create() failed, ret: %d", ret);
goto err;
}
/* Create device and register with sysfs
* (/sys/class/ubwcp_class/ubwcp/... -> dev/power/subsystem/uevent)
*/
dev_sys = device_create(dev_class, NULL, devt, NULL,
UBWCP_DEVICE_NAME);
if (IS_ERR(dev_sys)) {
ret = PTR_ERR(dev_sys);
ERR("device_create() failed, ret: %d", ret);
goto err_device_create;
}
/* register file operations and get cdev */
cdev_init(&ubwcp->cdev, &ubwcp_fops);
/* associate cdev and device major/minor with file system
* can do file ops on /dev/ubwcp after this
*/
ret = cdev_add(&ubwcp->cdev, devt, 1);
if (ret) {
ERR("cdev_add() failed, ret: %d", ret);
goto err_cdev_add;
}
ubwcp->devt = devt;
ubwcp->dev_class = dev_class;
ubwcp->dev_sys = dev_sys;
return 0;
err_cdev_add:
device_destroy(dev_class, devt);
err_device_create:
class_destroy(dev_class);
err:
unregister_chrdev_region(devt, UBWCP_NUM_DEVICES);
return ret;
}
static void ubwcp_cdev_deinit(struct ubwcp_driver *ubwcp)
{
device_destroy(ubwcp->dev_class, ubwcp->devt);
class_destroy(ubwcp->dev_class);
cdev_del(&ubwcp->cdev);
unregister_chrdev_region(ubwcp->devt, UBWCP_NUM_DEVICES);
}
struct handler_node {
struct list_head list;
u32 client_id;
ubwcp_error_handler_t handler;
void *data;
};
int ubwcp_register_error_handler(u32 client_id, ubwcp_error_handler_t handler,
void *data)
{
struct handler_node *node;
unsigned long flags;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
if (!ubwcp)
return -EINVAL;
if (client_id != -1)
return -EINVAL;
if (!handler)
return -EINVAL;
if (ubwcp->state != UBWCP_STATE_READY)
return -EPERM;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
node->client_id = client_id;
node->handler = handler;
node->data = data;
spin_lock_irqsave(&ubwcp->err_handler_list_lock, flags);
list_add_tail(&node->list, &ubwcp->err_handler_list);
spin_unlock_irqrestore(&ubwcp->err_handler_list_lock, flags);
return 0;
}
EXPORT_SYMBOL(ubwcp_register_error_handler);
static void ubwcp_notify_error_handlers(struct ubwcp_err_info *err)
{
struct handler_node *node;
unsigned long flags;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
if (!ubwcp)
return;
spin_lock_irqsave(&ubwcp->err_handler_list_lock, flags);
list_for_each_entry(node, &ubwcp->err_handler_list, list)
node->handler(err, node->data);
spin_unlock_irqrestore(&ubwcp->err_handler_list_lock, flags);
}
int ubwcp_unregister_error_handler(u32 client_id)
{
int ret = -EINVAL;
struct handler_node *node;
unsigned long flags;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
if (!ubwcp)
return -EINVAL;
if (ubwcp->state != UBWCP_STATE_INVALID)
return -EPERM;
spin_lock_irqsave(&ubwcp->err_handler_list_lock, flags);
list_for_each_entry(node, &ubwcp->err_handler_list, list)
if (node->client_id == client_id) {
list_del(&node->list);
kfree(node);
ret = 0;
break;
}
spin_unlock_irqrestore(&ubwcp->err_handler_list_lock, flags);
return ret;
}
EXPORT_SYMBOL(ubwcp_unregister_error_handler);
/* get ubwcp_buf corresponding to the ULA PA*/
static struct dma_buf *get_dma_buf_from_ulapa(phys_addr_t addr)
{
struct ubwcp_buf *buf = NULL;
struct dma_buf *ret_buf = NULL;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
unsigned long flags;
u32 i;
if (!ubwcp)
return NULL;
spin_lock_irqsave(&ubwcp->buf_table_lock, flags);
hash_for_each(ubwcp->buf_table, i, buf, hnode) {
if (buf->ula_pa <= addr && addr < buf->ula_pa + buf->ula_size) {
ret_buf = buf->dma_buf;
break;
}
}
spin_unlock_irqrestore(&ubwcp->buf_table_lock, flags);
return ret_buf;
}
/* get ubwcp_buf corresponding to the IOVA*/
static struct dma_buf *get_dma_buf_from_iova(unsigned long addr)
{
struct ubwcp_buf *buf = NULL;
struct dma_buf *ret_buf = NULL;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
unsigned long flags;
u32 i;
if (!ubwcp)
return NULL;
spin_lock_irqsave(&ubwcp->buf_table_lock, flags);
hash_for_each(ubwcp->buf_table, i, buf, hnode) {
unsigned long iova_base;
unsigned int iova_size;
if (!buf->sgt)
continue;
iova_base = sg_dma_address(buf->sgt->sgl);
iova_size = sg_dma_len(buf->sgt->sgl);
if (iova_base <= addr && addr < iova_base + iova_size) {
ret_buf = buf->dma_buf;
break;
}
}
spin_unlock_irqrestore(&ubwcp->buf_table_lock, flags);
return ret_buf;
}
int ubwcp_iommu_fault_handler(struct iommu_domain *domain, struct device *dev,
unsigned long iova, int flags, void *data)
{
int ret = 0;
struct ubwcp_err_info err;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
struct device *cb_dev = (struct device *)data;
if (!ubwcp) {
ret = -EINVAL;
goto err;
}
err.err_code = UBWCP_SMMU_FAULT;
if (cb_dev == ubwcp->dev_desc_cb)
err.smmu_err.iommu_dev_id = UBWCP_DESC_CB_ID;
else if (cb_dev == ubwcp->dev_buf_cb)
err.smmu_err.iommu_dev_id = UBWCP_BUF_CB_ID;
else
err.smmu_err.iommu_dev_id = UBWCP_UNKNOWN_CB_ID;
err.smmu_err.dmabuf = get_dma_buf_from_iova(iova);
err.smmu_err.iova = iova;
err.smmu_err.iommu_fault_flags = flags;
ERR_RATE_LIMIT("ubwcp_err: err code: %d (smmu), iommu_dev_id: %d, iova: 0x%llx, flags: 0x%x",
err.err_code, err.smmu_err.iommu_dev_id, err.smmu_err.iova,
err.smmu_err.iommu_fault_flags);
ubwcp_notify_error_handlers(&err);
err:
return ret;
}
static irqreturn_t ubwcp_irq_handler(int irq, void *ptr)
{
struct ubwcp_driver *ubwcp;
void __iomem *base;
phys_addr_t addr;
struct ubwcp_err_info err;
ubwcp = (struct ubwcp_driver *) ptr;
base = ubwcp->base;
if (irq == ubwcp->irq_range_ck_rd) {
addr = ubwcp_hw_interrupt_src_address(base, 0) << 6;
err.err_code = UBWCP_RANGE_TRANSLATION_ERROR;
err.translation_err.dmabuf = get_dma_buf_from_ulapa(addr);
err.translation_err.ula_pa = addr;
err.translation_err.read = true;
ERR_RATE_LIMIT("ubwcp_err: err code: %d (range), dmabuf: 0x%llx, read: %d, addr: 0x%llx",
err.err_code, err.translation_err.dmabuf, err.translation_err.read, addr);
ubwcp_notify_error_handlers(&err);
ubwcp_hw_interrupt_clear(ubwcp->base, 0);
} else if (irq == ubwcp->irq_range_ck_wr) {
addr = ubwcp_hw_interrupt_src_address(base, 1) << 6;
err.err_code = UBWCP_RANGE_TRANSLATION_ERROR;
err.translation_err.dmabuf = get_dma_buf_from_ulapa(addr);
err.translation_err.ula_pa = addr;
err.translation_err.read = false;
ERR_RATE_LIMIT("ubwcp_err: err code: %d (range), dmabuf: 0x%llx, read: %d, addr: 0x%llx",
err.err_code, err.translation_err.dmabuf, err.translation_err.read, addr);
ubwcp_notify_error_handlers(&err);
ubwcp_hw_interrupt_clear(ubwcp->base, 1);
} else if (irq == ubwcp->irq_encode) {
addr = ubwcp_hw_interrupt_src_address(base, 3) << 6;
err.err_code = UBWCP_ENCODE_ERROR;
err.enc_err.dmabuf = get_dma_buf_from_ulapa(addr);
err.enc_err.ula_pa = addr;
ERR_RATE_LIMIT("ubwcp_err: err code: %d (encode), dmabuf: 0x%llx, addr: 0x%llx",
err.err_code, err.enc_err.dmabuf, addr);
ubwcp_notify_error_handlers(&err);
ubwcp_hw_interrupt_clear(ubwcp->base, 3);
} else if (irq == ubwcp->irq_decode) {
addr = ubwcp_hw_interrupt_src_address(base, 2) << 6;
err.err_code = UBWCP_DECODE_ERROR;
err.dec_err.dmabuf = get_dma_buf_from_ulapa(addr);
err.dec_err.ula_pa = addr;
ERR_RATE_LIMIT("ubwcp_err: err code: %d (decode), dmabuf: 0x%llx, addr: 0x%llx",
err.err_code, err.enc_err.dmabuf, addr);
ubwcp_notify_error_handlers(&err);
ubwcp_hw_interrupt_clear(ubwcp->base, 2);
} else {
ERR("unknown irq: %d", irq);
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static int ubwcp_interrupt_register(struct platform_device *pdev, struct ubwcp_driver *ubwcp)
{
int ret = 0;
struct device *dev = &pdev->dev;
FENTRY();
ubwcp->irq_range_ck_rd = platform_get_irq(pdev, 0);
if (ubwcp->irq_range_ck_rd < 0)
return ubwcp->irq_range_ck_rd;
ubwcp->irq_range_ck_wr = platform_get_irq(pdev, 1);
if (ubwcp->irq_range_ck_wr < 0)
return ubwcp->irq_range_ck_wr;
ubwcp->irq_encode = platform_get_irq(pdev, 2);
if (ubwcp->irq_encode < 0)
return ubwcp->irq_encode;
ubwcp->irq_decode = platform_get_irq(pdev, 3);
if (ubwcp->irq_decode < 0)
return ubwcp->irq_decode;
DBG("got irqs: %d %d %d %d", ubwcp->irq_range_ck_rd,
ubwcp->irq_range_ck_wr,
ubwcp->irq_encode,
ubwcp->irq_decode);
ret = devm_request_irq(dev, ubwcp->irq_range_ck_rd, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_range_ck_rd, ret);
return ret;
}
ret = devm_request_irq(dev, ubwcp->irq_range_ck_wr, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_range_ck_wr, ret);
return ret;
}
ret = devm_request_irq(dev, ubwcp->irq_encode, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_encode, ret);
return ret;
}
ret = devm_request_irq(dev, ubwcp->irq_decode, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_decode, ret);
return ret;
}
return ret;
}
/* ubwcp device probe */
static int qcom_ubwcp_probe(struct platform_device *pdev)
{
int ret = 0;
struct ubwcp_driver *ubwcp;
struct device *ubwcp_dev = &pdev->dev;
FENTRY();
ubwcp = devm_kzalloc(ubwcp_dev, sizeof(*ubwcp), GFP_KERNEL);
if (!ubwcp) {
ERR("devm_kzalloc() failed");
return -ENOMEM;
}
ubwcp->dev = &pdev->dev;
ret = dma_set_mask_and_coherent(ubwcp->dev, DMA_BIT_MASK(64));
ubwcp->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ubwcp->base)) {
ERR("devm ioremap() failed: %d", PTR_ERR(ubwcp->base));
return PTR_ERR(ubwcp->base);
}
DBG("ubwcp->base: %p", ubwcp->base);
ret = of_property_read_u64_index(ubwcp_dev->of_node, "ula_range", 0, &ubwcp->ula_pool_base);
if (ret) {
ERR("failed reading ula_range (base): %d", ret);
return ret;
}
DBG("ubwcp: ula_range: base = 0x%lx", ubwcp->ula_pool_base);
ret = of_property_read_u64_index(ubwcp_dev->of_node, "ula_range", 1, &ubwcp->ula_pool_size);
if (ret) {
ERR("failed reading ula_range (size): %d", ret);
return ret;
}
DBG("ubwcp: ula_range: size = 0x%lx", ubwcp->ula_pool_size);
INIT_LIST_HEAD(&ubwcp->err_handler_list);
/* driver initial state */
ubwcp->state = UBWCP_STATE_INVALID;
atomic_set(&ubwcp->num_non_lin_buffers, 0);
ubwcp->mem_online = false;
mutex_init(&ubwcp->desc_lock);
spin_lock_init(&ubwcp->buf_table_lock);
mutex_init(&ubwcp->mem_hotplug_lock);
mutex_init(&ubwcp->ula_lock);
mutex_init(&ubwcp->ubwcp_flush_lock);
mutex_init(&ubwcp->hw_range_ck_lock);
spin_lock_init(&ubwcp->err_handler_list_lock);
/* Regulator */
ubwcp->vdd = devm_regulator_get(ubwcp_dev, "vdd");
if (IS_ERR_OR_NULL(ubwcp->vdd)) {
ret = PTR_ERR(ubwcp->vdd);
ERR("devm_regulator_get() failed: %d", ret);
return ret;
}
ret = ubwcp_init_clocks(ubwcp, ubwcp_dev);
if (ret) {
ERR("failed to initialize ubwcp clocks err: %d", ret);
return ret;
}
if (ubwcp_power(ubwcp, true))
return -1;
if (ubwcp_cdev_init(ubwcp))
return -1;
/* disable all interrupts (reset value has some interrupts enabled by default) */
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, false);
if (ubwcp_interrupt_register(pdev, ubwcp))
return -1;
ubwcp_debugfs_init(ubwcp);
/* create ULA pool */
ubwcp->ula_pool = gen_pool_create(PAGE_SHIFT, -1);
if (!ubwcp->ula_pool) {
ERR("failed gen_pool_create()");
ret = -1;
goto err_pool_create;
}
ret = gen_pool_add(ubwcp->ula_pool, ubwcp->ula_pool_base, ubwcp->ula_pool_size, -1);
if (ret) {
ERR("failed gen_pool_add(): %d", ret);
ret = -1;
goto err_pool_add;
}
/* register the default config mmap function. */
ubwcp->mmap_config_fptr = msm_ubwcp_dma_buf_configure_mmap;
hash_init(ubwcp->buf_table);
ubwcp_buf_desc_list_init(ubwcp);
image_format_init(ubwcp);
/* one time hw init */
ubwcp_hw_one_time_init(ubwcp->base);
ubwcp_hw_version(ubwcp->base, &ubwcp->hw_ver_major, &ubwcp->hw_ver_minor);
pr_err("ubwcp: hw version: major %d, minor %d\n", ubwcp->hw_ver_major, ubwcp->hw_ver_minor);
if (ubwcp->hw_ver_major == 0) {
ERR("Failed to read HW version");
ret = -1;
goto err_pool_add;
}
/* set pdev->dev->driver_data = ubwcp */
platform_set_drvdata(pdev, ubwcp);
/* enable interrupts */
if (ubwcp->read_err_irq_en)
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, true);
if (ubwcp->write_err_irq_en)
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, true);
if (ubwcp->decode_err_irq_en)
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, true);
if (ubwcp->encode_err_irq_en)
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, true);
/* Turn OFF until buffers are allocated */
if (ubwcp_power(ubwcp, false)) {
ret = -1;
goto err_power_off;
}
ret = msm_ubwcp_set_ops(ubwcp_init_buffer, ubwcp_free_buffer, ubwcp_lock, ubwcp_unlock);
if (ret) {
ERR("msm_ubwcp_set_ops() failed: %d", ret);
goto err_power_off;
} else {
DBG("msm_ubwcp_set_ops(): success"); }
me = ubwcp;
return ret;
err_power_off:
if (!ubwcp_power(ubwcp, true)) {
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, false);
ubwcp_power(ubwcp, false);
}
err_pool_add:
gen_pool_destroy(ubwcp->ula_pool);
err_pool_create:
ubwcp_debugfs_deinit(ubwcp);
ubwcp_cdev_deinit(ubwcp);
return ret;
}
/* buffer context bank device probe */
static int ubwcp_probe_cb_buf(struct platform_device *pdev)
{
struct ubwcp_driver *ubwcp;
struct iommu_domain *domain = NULL;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
ubwcp->dev_buf_cb = &pdev->dev;
domain = iommu_get_domain_for_dev(ubwcp->dev_buf_cb);
if (domain)
iommu_set_fault_handler(domain, ubwcp_iommu_fault_handler, ubwcp->dev_buf_cb);
if (ubwcp->dev_desc_cb)
ubwcp->state = UBWCP_STATE_READY;
return 0;
}
/* descriptor context bank device probe */
static int ubwcp_probe_cb_desc(struct platform_device *pdev)
{
int ret = 0;
struct ubwcp_driver *ubwcp;
struct iommu_domain *domain = NULL;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
ubwcp->buffer_desc_size = UBWCP_BUFFER_DESC_OFFSET *
UBWCP_BUFFER_DESC_COUNT;
ubwcp->dev_desc_cb = &pdev->dev;
dma_set_max_seg_size(ubwcp->dev_desc_cb, DMA_BIT_MASK(32));
dma_set_seg_boundary(ubwcp->dev_desc_cb, (unsigned long)DMA_BIT_MASK(64));
/* Allocate buffer descriptors. UBWCP is iocoherent device.
* Thus we don't need to flush after updates to buffer descriptors.
*/
ubwcp->buffer_desc_base = dma_alloc_coherent(ubwcp->dev_desc_cb,
ubwcp->buffer_desc_size,
&ubwcp->buffer_desc_dma_handle,
GFP_KERNEL);
if (!ubwcp->buffer_desc_base) {
ERR("failed to allocate desc buffer");
return -ENOMEM;
}
DBG("desc_base = %p size = %zu", ubwcp->buffer_desc_base,
ubwcp->buffer_desc_size);
ret = ubwcp_power(ubwcp, true);
if (ret) {
ERR("failed to power on");
goto err;
}
ubwcp_hw_set_buf_desc(ubwcp->base, (u64) ubwcp->buffer_desc_dma_handle,
UBWCP_BUFFER_DESC_OFFSET);
ret = ubwcp_power(ubwcp, false);
if (ret) {
ERR("failed to power off");
goto err;
}
domain = iommu_get_domain_for_dev(ubwcp->dev_desc_cb);
if (domain)
iommu_set_fault_handler(domain, ubwcp_iommu_fault_handler, ubwcp->dev_desc_cb);
if (ubwcp->dev_buf_cb)
ubwcp->state = UBWCP_STATE_READY;
return ret;
err:
dma_free_coherent(ubwcp->dev_desc_cb,
ubwcp->buffer_desc_size,
ubwcp->buffer_desc_base,
ubwcp->buffer_desc_dma_handle);
ubwcp->buffer_desc_base = NULL;
ubwcp->buffer_desc_dma_handle = 0;
ubwcp->dev_desc_cb = NULL;
return -1;
}
/* buffer context bank device remove */
static int ubwcp_remove_cb_buf(struct platform_device *pdev)
{
struct ubwcp_driver *ubwcp;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
ubwcp->state = UBWCP_STATE_INVALID;
ubwcp->dev_buf_cb = NULL;
return 0;
}
/* descriptor context bank device remove */
static int ubwcp_remove_cb_desc(struct platform_device *pdev)
{
struct ubwcp_driver *ubwcp;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
if (!ubwcp->dev_desc_cb) {
ERR("ubwcp->dev_desc_cb == NULL");
return -1;
}
if (!ubwcp_power(ubwcp, true)) {
ubwcp_hw_set_buf_desc(ubwcp->base, 0x0, 0x0);
ubwcp_power(ubwcp, false);
}
ubwcp->state = UBWCP_STATE_INVALID;
dma_free_coherent(ubwcp->dev_desc_cb,
ubwcp->buffer_desc_size,
ubwcp->buffer_desc_base,
ubwcp->buffer_desc_dma_handle);
ubwcp->buffer_desc_base = NULL;
ubwcp->buffer_desc_dma_handle = 0;
return 0;
}
/* ubwcp device remove */
static int qcom_ubwcp_remove(struct platform_device *pdev)
{
size_t avail;
size_t psize;
struct ubwcp_driver *ubwcp;
FENTRY();
/* get pdev->dev->driver_data = ubwcp */
ubwcp = platform_get_drvdata(pdev);
if (!ubwcp) {
ERR("ubwcp == NULL");
return -1;
}
if (!ubwcp_power(ubwcp, true)) {
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, false);
ubwcp_power(ubwcp, false);
}
ubwcp->state = UBWCP_STATE_INVALID;
/* before destroying, make sure pool is empty. otherwise pool_destroy() panics. */
avail = gen_pool_avail(ubwcp->ula_pool);
psize = gen_pool_size(ubwcp->ula_pool);
if (psize != avail) {
ERR("gen_pool is not empty! avail: %zx size: %zx", avail, psize);
ERR("skipping pool destroy....cause it will PANIC. Fix this!!!!");
WARN(1, "Fix this!");
} else {
gen_pool_destroy(ubwcp->ula_pool);
}
ubwcp_debugfs_deinit(ubwcp);
ubwcp_cdev_deinit(ubwcp);
return 0;
}
/* top level ubwcp device probe function */
static int ubwcp_probe(struct platform_device *pdev)
{
const char *compatible = "";
FENTRY();
trace_ubwcp_probe(pdev);
if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp"))
return qcom_ubwcp_probe(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-desc"))
return ubwcp_probe_cb_desc(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-buf"))
return ubwcp_probe_cb_buf(pdev);
of_property_read_string(pdev->dev.of_node, "compatible", &compatible);
ERR("unknown device: %s", compatible);
WARN_ON(1);
return -EINVAL;
}
/* top level ubwcp device remove function */
static int ubwcp_remove(struct platform_device *pdev)
{
const char *compatible = "";
FENTRY();
trace_ubwcp_remove(pdev);
/* TBD: what if buffers are still allocated? locked? etc.
* also should turn off power?
*/
if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp"))
return qcom_ubwcp_remove(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-desc"))
return ubwcp_remove_cb_desc(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-buf"))
return ubwcp_remove_cb_buf(pdev);
of_property_read_string(pdev->dev.of_node, "compatible", &compatible);
ERR("unknown device: %s", compatible);
WARN_ON(1);
return -EINVAL;
}
static const struct of_device_id ubwcp_dt_match[] = {
{.compatible = "qcom,ubwcp"},
{.compatible = "qcom,ubwcp-context-bank-desc"},
{.compatible = "qcom,ubwcp-context-bank-buf"},
{}
};
struct platform_driver ubwcp_platform_driver = {
.probe = ubwcp_probe,
.remove = ubwcp_remove,
.driver = {
.name = "qcom,ubwcp",
.of_match_table = ubwcp_dt_match,
},
};
int ubwcp_init(void)
{
int ret = 0;
DBG("+++++++++++");
ret = platform_driver_register(&ubwcp_platform_driver);
if (ret)
ERR("platform_driver_register() failed: %d", ret);
return ret;
}
void ubwcp_exit(void)
{
platform_driver_unregister(&ubwcp_platform_driver);
DBG("-----------");
}
module_init(ubwcp_init);
module_exit(ubwcp_exit);
MODULE_LICENSE("GPL");