msm_cvp_buf.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #define CLEAR_USE_BITMAP(idx, inst) \
  18. do { \
  19. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  20. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  21. hash32_ptr(inst->session), smem->bitmap_index, \
  22. inst->dma_cache.usage_bitmap); \
  23. } while (0)
  24. #define SET_USE_BITMAP(idx, inst) \
  25. do { \
  26. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), idx, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  32. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  33. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
  34. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  35. struct msm_cvp_smem *smem)
  36. {
  37. int i;
  38. char name[PKT_NAME_LEN] = "Unknown";
  39. if (!(tag & msm_cvp_debug))
  40. return 0;
  41. if (!inst || !smem) {
  42. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  43. inst, smem);
  44. return -EINVAL;
  45. }
  46. if (smem->dma_buf) {
  47. if (!atomic_read(&smem->refcount))
  48. return 0;
  49. i = get_pkt_index_from_type(smem->pkt_type);
  50. if (i > 0)
  51. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  52. dprintk(tag,
  53. "%s: %x : %pK size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x chksum %#x",
  54. str, hash32_ptr(inst->session), smem->dma_buf,
  55. smem->size, smem->flags, smem->device_addr,
  56. smem->bitmap_index, atomic_read(&smem->refcount),
  57. name, smem->buf_idx, smem->checksum);
  58. }
  59. return 0;
  60. }
  61. static void print_internal_buffer(u32 tag, const char *str,
  62. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  63. {
  64. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  65. return;
  66. if (cbuf->smem->dma_buf) {
  67. dprintk(tag,
  68. "%s: %x : fd %d off %d %pK size %d iova %#x",
  69. str, hash32_ptr(inst->session), cbuf->fd,
  70. cbuf->offset, cbuf->smem->dma_buf, cbuf->size,
  71. cbuf->smem->device_addr);
  72. } else {
  73. dprintk(tag,
  74. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  75. str, hash32_ptr(inst->session), cbuf->fd,
  76. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  77. }
  78. }
  79. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  80. struct cvp_internal_buf *cbuf)
  81. {
  82. if (!inst || !cbuf)
  83. dprintk(CVP_ERR,
  84. "%s Invalid params inst %pK, cbuf %pK\n", inst, cbuf);
  85. print_smem(tag, str, inst, cbuf->smem);
  86. }
  87. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  88. struct msm_cvp_smem *smem, bool logging)
  89. {
  90. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  91. return;
  92. if (!logging || !snapshot)
  93. return;
  94. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  95. struct smem_data *s;
  96. s = &snapshot->smem_log[snapshot->smem_index];
  97. snapshot->smem_index++;
  98. s->size = smem->size;
  99. s->flags = smem->flags;
  100. s->device_addr = smem->device_addr;
  101. s->bitmap_index = smem->bitmap_index;
  102. s->refcount = atomic_read(&smem->refcount);
  103. s->pkt_type = smem->pkt_type;
  104. s->buf_idx = smem->buf_idx;
  105. }
  106. }
  107. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  108. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  109. bool logging)
  110. {
  111. struct cvp_buf_data *buf = NULL;
  112. u32 index;
  113. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  114. if (!logging)
  115. return;
  116. if (snapshot) {
  117. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  118. index = snapshot->dsp_index;
  119. buf = &snapshot->dsp_buf_log[index];
  120. snapshot->dsp_index++;
  121. } else if (prop == SMEM_PERSIST &&
  122. snapshot->persist_index < MAX_ENTRIES) {
  123. index = snapshot->persist_index;
  124. buf = &snapshot->persist_buf_log[index];
  125. snapshot->persist_index++;
  126. }
  127. if (buf) {
  128. buf->device_addr = cbuf->smem->device_addr;
  129. buf->size = cbuf->size;
  130. }
  131. }
  132. }
  133. void print_client_buffer(u32 tag, const char *str,
  134. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  135. {
  136. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  137. return;
  138. dprintk(tag,
  139. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  140. " reserved[0] %u\n",
  141. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  142. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  143. cbuf->reserved[0]);
  144. }
  145. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  146. struct eva_kmd_buffer *buf)
  147. {
  148. struct cvp_hal_session *session;
  149. struct cvp_internal_buf *cbuf = NULL;
  150. bool found = false;
  151. if (!inst || !inst->core || !buf) {
  152. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  153. return false;
  154. }
  155. if (buf->fd < 0) {
  156. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  157. return false;
  158. }
  159. if (buf->offset) {
  160. dprintk(CVP_ERR,
  161. "%s: offset is deprecated, set to 0.\n",
  162. __func__);
  163. return false;
  164. }
  165. session = (struct cvp_hal_session *)inst->session;
  166. mutex_lock(&inst->cvpdspbufs.lock);
  167. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  168. if (cbuf->fd == buf->fd) {
  169. if (cbuf->size != buf->size) {
  170. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  171. __func__);
  172. mutex_unlock(&inst->cvpdspbufs.lock);
  173. return false;
  174. }
  175. found = true;
  176. break;
  177. }
  178. }
  179. mutex_unlock(&inst->cvpdspbufs.lock);
  180. if (found) {
  181. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  182. return false;
  183. }
  184. return true;
  185. }
  186. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  187. fmode_t mask, unsigned int refs)
  188. {
  189. struct files_struct *files = task->files;
  190. struct file *file;
  191. if (!files)
  192. return NULL;
  193. rcu_read_lock();
  194. loop:
  195. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  196. file = fcheck_files(files, fd);
  197. #else
  198. file = files_lookup_fd_rcu(files, fd);
  199. #endif
  200. if (file) {
  201. /* File object ref couldn't be taken.
  202. * dup2() atomicity guarantee is the reason
  203. * we loop to catch the new file (or NULL pointer)
  204. */
  205. if (file->f_mode & mask)
  206. file = NULL;
  207. else if (!get_file_rcu_many(file, refs))
  208. goto loop;
  209. }
  210. rcu_read_unlock();
  211. return file;
  212. }
  213. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  214. struct task_struct *task)
  215. {
  216. if (file->f_op != gfa_cv.dmabuf_f_op) {
  217. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  218. return ERR_PTR(-EINVAL);
  219. }
  220. return file->private_data;
  221. }
  222. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  223. {
  224. int rc = 0;
  225. struct cvp_internal_buf *cbuf = NULL;
  226. struct msm_cvp_smem *smem = NULL;
  227. struct dma_buf *dma_buf = NULL;
  228. struct file *file;
  229. if (!__is_buf_valid(inst, buf))
  230. return -EINVAL;
  231. if (!inst->task)
  232. return -EINVAL;
  233. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  234. if (file == NULL) {
  235. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  236. return -EINVAL;
  237. }
  238. dma_buf = cvp_dma_buf_get(
  239. file,
  240. buf->fd,
  241. inst->task);
  242. if (dma_buf == ERR_PTR(-EINVAL)) {
  243. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  244. rc = -EINVAL;
  245. goto exit;
  246. }
  247. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  248. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  249. if (!cbuf) {
  250. rc = -ENOMEM;
  251. goto exit;
  252. }
  253. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  254. if (!smem) {
  255. rc = -ENOMEM;
  256. goto exit;
  257. }
  258. smem->dma_buf = dma_buf;
  259. smem->bitmap_index = MAX_DMABUF_NUMS;
  260. smem->pkt_type = 0;
  261. smem->buf_idx = 0;
  262. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  263. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  264. if (rc) {
  265. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  266. goto exit;
  267. }
  268. cbuf->smem = smem;
  269. cbuf->fd = buf->fd;
  270. cbuf->size = buf->size;
  271. cbuf->offset = buf->offset;
  272. cbuf->ownership = CLIENT;
  273. cbuf->index = buf->index;
  274. buf->reserved[0] = (uint32_t)smem->device_addr;
  275. mutex_lock(&inst->cvpdspbufs.lock);
  276. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  277. mutex_unlock(&inst->cvpdspbufs.lock);
  278. return rc;
  279. exit:
  280. fput(file);
  281. if (smem) {
  282. if (smem->device_addr)
  283. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  284. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  285. kmem_cache_free(cvp_driver->smem_cache, smem);
  286. }
  287. if (cbuf)
  288. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  289. return rc;
  290. }
  291. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  292. {
  293. int rc = 0;
  294. bool found;
  295. struct cvp_internal_buf *cbuf;
  296. struct cvp_hal_session *session;
  297. if (!inst || !inst->core || !buf) {
  298. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  299. return -EINVAL;
  300. }
  301. session = (struct cvp_hal_session *)inst->session;
  302. if (!session) {
  303. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  304. return -EINVAL;
  305. }
  306. mutex_lock(&inst->cvpdspbufs.lock);
  307. found = false;
  308. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  309. if (cbuf->fd == buf->fd) {
  310. found = true;
  311. break;
  312. }
  313. }
  314. mutex_unlock(&inst->cvpdspbufs.lock);
  315. if (!found) {
  316. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  317. return -EINVAL;
  318. }
  319. if (cbuf->smem->device_addr) {
  320. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  321. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  322. }
  323. mutex_lock(&inst->cvpdspbufs.lock);
  324. list_del(&cbuf->list);
  325. mutex_unlock(&inst->cvpdspbufs.lock);
  326. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  327. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  328. return rc;
  329. }
  330. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  331. struct eva_kmd_buffer *buf)
  332. {
  333. int rc = 0, i;
  334. bool found = false;
  335. struct cvp_internal_buf* cbuf;
  336. struct msm_cvp_smem* smem = NULL;
  337. struct dma_buf* dma_buf = NULL;
  338. if (!inst || !inst->core || !buf) {
  339. dprintk(CVP_ERR, "%s: invalid params", __func__);
  340. return -EINVAL;
  341. }
  342. if (!inst->session) {
  343. dprintk(CVP_ERR, "%s: invalid session", __func__);
  344. return -EINVAL;
  345. }
  346. if (buf->index) {
  347. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  348. __func__, buf->fd);
  349. return -EINVAL;
  350. }
  351. if (buf->fd < 0) {
  352. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  353. return -EINVAL;
  354. }
  355. if (buf->offset) {
  356. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  357. __func__);
  358. return -EINVAL;
  359. }
  360. mutex_lock(&inst->cvpwnccbufs.lock);
  361. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  362. if (cbuf->fd == buf->fd) {
  363. if (cbuf->size != buf->size) {
  364. dprintk(CVP_ERR, "%s: buf size mismatch",
  365. __func__);
  366. mutex_unlock(&inst->cvpwnccbufs.lock);
  367. return -EINVAL;
  368. }
  369. found = true;
  370. break;
  371. }
  372. }
  373. mutex_unlock(&inst->cvpwnccbufs.lock);
  374. if (found) {
  375. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  376. return -EINVAL;
  377. }
  378. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  379. if (!dma_buf) {
  380. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  381. return -EINVAL;
  382. }
  383. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  384. if (!cbuf) {
  385. msm_cvp_smem_put_dma_buf(dma_buf);
  386. return -ENOMEM;
  387. }
  388. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  389. if (!smem) {
  390. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  391. msm_cvp_smem_put_dma_buf(dma_buf);
  392. return -ENOMEM;
  393. }
  394. smem->dma_buf = dma_buf;
  395. smem->bitmap_index = MAX_DMABUF_NUMS;
  396. smem->pkt_type = 0;
  397. smem->buf_idx = 0;
  398. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  399. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  400. if (rc) {
  401. dprintk(CVP_ERR, "%s: map failed", __func__);
  402. print_client_buffer(CVP_ERR, __func__, inst, buf);
  403. goto exit;
  404. }
  405. cbuf->smem = smem;
  406. cbuf->fd = buf->fd;
  407. cbuf->size = buf->size;
  408. cbuf->offset = buf->offset;
  409. cbuf->ownership = CLIENT;
  410. cbuf->index = buf->index;
  411. /* Added for PreSil/RUMI testing */
  412. #ifdef USE_PRESIL
  413. dprintk(CVP_DBG,
  414. "wncc buffer is %x for cam_presil_send_buffer"
  415. " with MAP_ADDR_OFFSET %x",
  416. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  417. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  418. (u32)cbuf->offset, (u32)cbuf->size,
  419. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  420. #endif
  421. mutex_lock(&inst->cvpwnccbufs.lock);
  422. if (inst->cvpwnccbufs_table == NULL) {
  423. inst->cvpwnccbufs_table =
  424. (struct msm_cvp_wncc_buffer*) kzalloc(
  425. sizeof(struct msm_cvp_wncc_buffer) *
  426. EVA_KMD_WNCC_MAX_SRC_BUFS,
  427. GFP_KERNEL);
  428. if (!inst->cvpwnccbufs_table) {
  429. mutex_unlock(&inst->cvpwnccbufs.lock);
  430. goto exit;
  431. }
  432. }
  433. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  434. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  435. {
  436. if (inst->cvpwnccbufs_table[i].iova == 0)
  437. {
  438. inst->cvpwnccbufs_num++;
  439. inst->cvpwnccbufs_table[i].fd = buf->fd;
  440. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  441. inst->cvpwnccbufs_table[i].size = smem->size;
  442. /* buf reserved[0] used to store wncc src buf id */
  443. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  444. /* cbuf ktid used to store wncc src buf id */
  445. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  446. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  447. __func__, inst->cvpwnccbufs_table[i].iova);
  448. break;
  449. }
  450. }
  451. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  452. dprintk(CVP_ERR,
  453. "%s: wncc buf table full - max (%u) already registered",
  454. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  455. /* _wncc_print_cvpwnccbufs_table(inst); */
  456. mutex_unlock(&inst->cvpwnccbufs.lock);
  457. rc = -EDQUOT;
  458. goto exit;
  459. }
  460. mutex_unlock(&inst->cvpwnccbufs.lock);
  461. return rc;
  462. exit:
  463. if (smem->device_addr)
  464. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  465. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  466. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  467. cbuf = NULL;
  468. kmem_cache_free(cvp_driver->smem_cache, smem);
  469. smem = NULL;
  470. return rc;
  471. }
  472. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  473. struct eva_kmd_buffer *buf)
  474. {
  475. int rc = 0;
  476. bool found;
  477. struct cvp_internal_buf *cbuf;
  478. uint32_t buf_id, buf_idx;
  479. if (!inst || !inst->core || !buf) {
  480. dprintk(CVP_ERR, "%s: invalid params", __func__);
  481. return -EINVAL;
  482. }
  483. if (!inst->session) {
  484. dprintk(CVP_ERR, "%s: invalid session", __func__);
  485. return -EINVAL;
  486. }
  487. if (buf->index) {
  488. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  489. __func__, buf->fd);
  490. return -EINVAL;
  491. }
  492. buf_id = buf->reserved[0];
  493. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  494. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  495. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  496. __func__, buf->reserved[0]);
  497. return -EINVAL;
  498. }
  499. mutex_lock(&inst->cvpwnccbufs.lock);
  500. if (inst->cvpwnccbufs_num == 0) {
  501. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  502. mutex_unlock(&inst->cvpwnccbufs.lock);
  503. return -EINVAL;
  504. }
  505. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  506. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  507. dprintk(CVP_ERR, "%s: buffer id %d not found",
  508. __func__, buf_id);
  509. mutex_unlock(&inst->cvpwnccbufs.lock);
  510. return -EINVAL;
  511. }
  512. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  513. found = false;
  514. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  515. if (cbuf->fd == buf->fd) {
  516. found = true;
  517. break;
  518. }
  519. }
  520. if (!found) {
  521. dprintk(CVP_ERR, "%s: buffer id %d not found",
  522. __func__, buf_id);
  523. print_client_buffer(CVP_ERR, __func__, inst, buf);
  524. _wncc_print_cvpwnccbufs_table(inst);
  525. mutex_unlock(&inst->cvpwnccbufs.lock);
  526. return -EINVAL;
  527. }
  528. mutex_unlock(&inst->cvpwnccbufs.lock);
  529. if (cbuf->smem->device_addr) {
  530. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  531. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  532. }
  533. mutex_lock(&inst->cvpwnccbufs.lock);
  534. list_del(&cbuf->list);
  535. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  536. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  537. inst->cvpwnccbufs_table[buf_idx].size = 0;
  538. inst->cvpwnccbufs_num--;
  539. if (inst->cvpwnccbufs_num == 0) {
  540. kfree(inst->cvpwnccbufs_table);
  541. inst->cvpwnccbufs_table = NULL;
  542. }
  543. mutex_unlock(&inst->cvpwnccbufs.lock);
  544. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  545. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  546. return rc;
  547. }
  548. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  549. {
  550. u32 i, j;
  551. if (!wncc_oob) {
  552. dprintk(CVP_ERR, "%s: invalid params", __func__);
  553. return;
  554. }
  555. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  556. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  557. for (i = 0; i < wncc_oob->num_layers; i++) {
  558. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  559. __func__, i, wncc_oob->layers[i].num_addrs);
  560. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  561. dprintk(CVP_DBG,
  562. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  563. __func__, i, j,
  564. wncc_oob->layers[i].addrs[j].buffer_id,
  565. wncc_oob->layers[i].addrs[j].offset);
  566. }
  567. }
  568. }
  569. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  570. {
  571. u32 i, entries = 0;
  572. if (!inst) {
  573. dprintk(CVP_ERR, "%s: invalid params", __func__);
  574. return;
  575. }
  576. if (inst->cvpwnccbufs_num == 0) {
  577. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  578. __func__);
  579. return;
  580. }
  581. if (!inst->cvpwnccbufs_table) {
  582. dprintk(CVP_ERR, "%s: invalid params", __func__);
  583. return;
  584. }
  585. dprintk(CVP_DBG, "%s: wncc buffer table:");
  586. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  587. entries < inst->cvpwnccbufs_num; i++) {
  588. if (inst->cvpwnccbufs_table[i].iova != 0) {
  589. dprintk(CVP_DBG,
  590. "%s: buf_idx=%04d --> "
  591. "fd=%03d, iova=0x%08x, size=%d",
  592. __func__, i,
  593. inst->cvpwnccbufs_table[i].fd,
  594. inst->cvpwnccbufs_table[i].iova,
  595. inst->cvpwnccbufs_table[i].size);
  596. entries++;
  597. }
  598. }
  599. }
  600. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  601. struct eva_kmd_wncc_metadata** wncc_metadata)
  602. {
  603. u32 i, j, iova;
  604. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  605. !wncc_metadata) {
  606. dprintk(CVP_ERR, "%s: invalid params", __func__);
  607. return;
  608. }
  609. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  610. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  611. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  612. for (i = 0; i < num_layers; i++) {
  613. for (j = 0; j < num_addrs; j++) {
  614. iova = (wncc_metadata[i][j].iova_msb << 22) |
  615. wncc_metadata[i][j].iova_lsb;
  616. dprintk(CVP_DBG,
  617. "%s: wncc_metadata[%u][%u]: "
  618. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  619. __func__, i, j,
  620. wncc_metadata[i][j].loc_x_dec,
  621. wncc_metadata[i][j].loc_x_frac,
  622. wncc_metadata[i][j].loc_y_dec,
  623. wncc_metadata[i][j].loc_y_frac,
  624. iova,
  625. wncc_metadata[i][j].scale_idx,
  626. wncc_metadata[i][j].aff_coeff_3,
  627. wncc_metadata[i][j].aff_coeff_2,
  628. wncc_metadata[i][j].aff_coeff_1,
  629. wncc_metadata[i][j].aff_coeff_0);
  630. }
  631. }
  632. }
  633. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  634. struct eva_kmd_oob_wncc* wncc_oob)
  635. {
  636. int rc = 0;
  637. u32 oob_type;
  638. struct eva_kmd_oob_wncc* wncc_oob_u;
  639. struct eva_kmd_oob_wncc* wncc_oob_k;
  640. unsigned int i;
  641. u32 num_addrs;
  642. if (!in_pkt || !wncc_oob) {
  643. dprintk(CVP_ERR, "%s: invalid params", __func__);
  644. return -EINVAL;
  645. }
  646. if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
  647. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  648. return -EINVAL;
  649. }
  650. rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
  651. if (rc)
  652. return rc;
  653. if (oob_type != EVA_KMD_OOB_WNCC) {
  654. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  655. __func__, oob_type);
  656. return -EINVAL;
  657. }
  658. wncc_oob_u = &in_pkt->oob_buf->wncc;
  659. wncc_oob_k = wncc_oob;
  660. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  661. if (rc)
  662. return rc;
  663. if (wncc_oob_k->num_layers < 1 ||
  664. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  665. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  666. return -EINVAL;
  667. }
  668. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  669. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  670. &wncc_oob_u->layers[i].num_addrs);
  671. if (rc)
  672. break;
  673. num_addrs = wncc_oob_k->layers[i].num_addrs;
  674. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  675. dprintk(CVP_ERR,
  676. "%s: invalid wncc num addrs for layer %u",
  677. __func__, i);
  678. rc = -EINVAL;
  679. break;
  680. }
  681. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  682. wncc_oob_u->layers[i].addrs,
  683. wncc_oob_k->layers[i].num_addrs *
  684. sizeof(struct eva_kmd_wncc_addr));
  685. if (rc)
  686. break;
  687. }
  688. if (false)
  689. _wncc_print_oob(wncc_oob);
  690. return rc;
  691. }
  692. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  693. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  694. {
  695. int rc = 0, i;
  696. struct cvp_buf_type* wncc_metadata_bufs;
  697. struct dma_buf* dmabuf;
  698. struct dma_buf_map map;
  699. if (!in_pkt || !wncc_metadata ||
  700. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  701. dprintk(CVP_ERR, "%s: invalid params", __func__);
  702. return -EINVAL;
  703. }
  704. wncc_metadata_bufs = (struct cvp_buf_type*)
  705. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  706. for (i = 0; i < num_layers; i++) {
  707. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  708. if (IS_ERR(dmabuf)) {
  709. rc = PTR_ERR(dmabuf);
  710. dprintk(CVP_ERR,
  711. "%s: dma_buf_get() failed for "
  712. "wncc_metadata_bufs[%d], rc %d",
  713. __func__, i, rc);
  714. break;
  715. }
  716. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  717. if (rc) {
  718. dprintk(CVP_ERR,
  719. "%s: dma_buf_begin_cpu_access() failed "
  720. "for wncc_metadata_bufs[%d], rc %d",
  721. __func__, i, rc);
  722. dma_buf_put(dmabuf);
  723. break;
  724. }
  725. rc = dma_buf_vmap(dmabuf, &map);
  726. if (rc) {
  727. dprintk(CVP_ERR,
  728. "%s: dma_buf_vmap() failed for "
  729. "wncc_metadata_bufs[%d]",
  730. __func__, i);
  731. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  732. dma_buf_put(dmabuf);
  733. break;
  734. }
  735. dprintk(CVP_DBG,
  736. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  737. __func__, i, map.is_iomem);
  738. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  739. dma_buf_put(dmabuf);
  740. }
  741. if (rc)
  742. _wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
  743. return rc;
  744. }
  745. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  746. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  747. {
  748. int rc = 0, i;
  749. struct cvp_buf_type* wncc_metadata_bufs;
  750. struct dma_buf* dmabuf;
  751. struct dma_buf_map map;
  752. if (!in_pkt || !wncc_metadata ||
  753. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  754. dprintk(CVP_ERR, "%s: invalid params", __func__);
  755. return -EINVAL;
  756. }
  757. wncc_metadata_bufs = (struct cvp_buf_type*)
  758. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  759. for (i = 0; i < num_layers; i++) {
  760. if (!wncc_metadata[i]) {
  761. rc = -EINVAL;
  762. break;
  763. }
  764. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  765. if (IS_ERR(dmabuf)) {
  766. rc = -PTR_ERR(dmabuf);
  767. dprintk(CVP_ERR,
  768. "%s: dma_buf_get() failed for "
  769. "wncc_metadata_bufs[%d], rc %d",
  770. __func__, i, rc);
  771. break;
  772. }
  773. dma_buf_map_set_vaddr(&map, wncc_metadata[i]);
  774. dma_buf_vunmap(dmabuf, &map);
  775. wncc_metadata[i] = NULL;
  776. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  777. dma_buf_put(dmabuf);
  778. if (rc) {
  779. dprintk(CVP_ERR,
  780. "%s: dma_buf_end_cpu_access() failed "
  781. "for wncc_metadata_bufs[%d], rc %d",
  782. __func__, i, rc);
  783. break;
  784. }
  785. }
  786. return rc;
  787. }
  788. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  789. struct eva_kmd_hfi_packet* in_pkt)
  790. {
  791. int rc = 0;
  792. struct eva_kmd_oob_wncc* wncc_oob;
  793. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  794. unsigned int i, j;
  795. bool empty = false;
  796. u32 buf_id, buf_idx, buf_offset, iova;
  797. if (!inst || !inst->core || !in_pkt) {
  798. dprintk(CVP_ERR, "%s: invalid params", __func__);
  799. return -EINVAL;
  800. }
  801. wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
  802. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  803. if (!wncc_oob)
  804. return -ENOMEM;
  805. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  806. if (rc) {
  807. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  808. goto exit;
  809. }
  810. rc = _wncc_map_metadata_bufs(in_pkt,
  811. wncc_oob->num_layers, wncc_metadata);
  812. if (rc) {
  813. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  814. __func__);
  815. goto exit;
  816. }
  817. mutex_lock(&inst->cvpwnccbufs.lock);
  818. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  819. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  820. empty = true;
  821. rc = -EINVAL;
  822. }
  823. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  824. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  825. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  826. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  827. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  828. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  829. dprintk(CVP_ERR,
  830. "%s: invalid wncc buf id %u "
  831. "in layer #%u address #%u",
  832. __func__, buf_id, i, j);
  833. rc = -EINVAL;
  834. break;
  835. }
  836. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  837. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  838. dprintk(CVP_ERR,
  839. "%s: unmapped wncc buf id %u "
  840. "in layer #%u address #%u",
  841. __func__, buf_id, i, j);
  842. /* _wncc_print_cvpwnccbufs_table(inst); */
  843. rc = -EINVAL;
  844. break;
  845. }
  846. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  847. if (buf_offset >=
  848. inst->cvpwnccbufs_table[buf_idx].size) {
  849. /* NOTE: This buffer offset validation is
  850. * not comprehensive since wncc src image
  851. * resolution information is not known to
  852. * KMD. UMD is responsible for comprehensive
  853. * validation.
  854. */
  855. dprintk(CVP_ERR,
  856. "%s: invalid wncc buf offset %u "
  857. "in layer #%u address #%u",
  858. __func__, buf_offset, i, j);
  859. rc = -EINVAL;
  860. break;
  861. }
  862. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  863. buf_offset;
  864. wncc_metadata[i][j].iova_lsb = iova;
  865. wncc_metadata[i][j].iova_msb = iova >> 22;
  866. }
  867. }
  868. mutex_unlock(&inst->cvpwnccbufs.lock);
  869. if (false)
  870. _wncc_print_metadata_buf(wncc_oob->num_layers,
  871. wncc_oob->layers[0].num_addrs, wncc_metadata);
  872. if (_wncc_unmap_metadata_bufs(in_pkt,
  873. wncc_oob->num_layers, wncc_metadata)) {
  874. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  875. __func__);
  876. }
  877. exit:
  878. kfree(wncc_oob);
  879. return rc;
  880. }
  881. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  882. struct eva_kmd_hfi_packet* in_pkt)
  883. {
  884. int rc = 0;
  885. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  886. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  887. if (!inst || !inst->core || !in_pkt) {
  888. dprintk(CVP_ERR, "%s: invalid params", __func__);
  889. return -EINVAL;
  890. }
  891. switch (cmd_hdr->packet_type) {
  892. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  893. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  894. break;
  895. default:
  896. break;
  897. }
  898. return rc;
  899. }
  900. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  901. u32 offset, u32 size)
  902. {
  903. enum smem_cache_ops cache_op;
  904. if (msm_cvp_cacheop_disabled)
  905. return;
  906. if (!smem) {
  907. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  908. return;
  909. }
  910. switch (type) {
  911. case EVA_KMD_BUFTYPE_INPUT:
  912. cache_op = SMEM_CACHE_CLEAN;
  913. break;
  914. case EVA_KMD_BUFTYPE_OUTPUT:
  915. cache_op = SMEM_CACHE_INVALIDATE;
  916. break;
  917. default:
  918. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  919. }
  920. dprintk(CVP_MEM,
  921. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  922. __func__, smem->dma_buf, cache_op, offset, size);
  923. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  924. }
  925. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  926. struct dma_buf *dma_buf,
  927. u32 pkt_type)
  928. {
  929. struct msm_cvp_smem *smem;
  930. int i;
  931. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  932. return NULL;
  933. mutex_lock(&inst->dma_cache.lock);
  934. for (i = 0; i < inst->dma_cache.nr; i++)
  935. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  936. SET_USE_BITMAP(i, inst);
  937. smem = inst->dma_cache.entries[i];
  938. smem->bitmap_index = i;
  939. smem->pkt_type = pkt_type;
  940. atomic_inc(&smem->refcount);
  941. /*
  942. * If we find it, it means we already increased
  943. * refcount before, so we put it to avoid double
  944. * incremental.
  945. */
  946. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  947. mutex_unlock(&inst->dma_cache.lock);
  948. print_smem(CVP_MEM, "found", inst, smem);
  949. return smem;
  950. }
  951. mutex_unlock(&inst->dma_cache.lock);
  952. return NULL;
  953. }
  954. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  955. struct msm_cvp_smem *smem)
  956. {
  957. unsigned int i;
  958. struct msm_cvp_smem *smem2;
  959. mutex_lock(&inst->dma_cache.lock);
  960. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  961. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  962. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  963. smem->bitmap_index = inst->dma_cache.nr;
  964. inst->dma_cache.nr++;
  965. i = smem->bitmap_index;
  966. } else {
  967. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  968. MAX_DMABUF_NUMS);
  969. if (i < MAX_DMABUF_NUMS) {
  970. smem2 = inst->dma_cache.entries[i];
  971. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  972. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  973. kmem_cache_free(cvp_driver->smem_cache, smem2);
  974. inst->dma_cache.entries[i] = smem;
  975. smem->bitmap_index = i;
  976. SET_USE_BITMAP(i, inst);
  977. } else {
  978. dprintk(CVP_WARN,
  979. "%s: reached limit, fallback to frame mapping list\n"
  980. , __func__);
  981. mutex_unlock(&inst->dma_cache.lock);
  982. return -ENOMEM;
  983. }
  984. }
  985. atomic_inc(&smem->refcount);
  986. mutex_unlock(&inst->dma_cache.lock);
  987. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  988. return 0;
  989. }
  990. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  991. struct cvp_buf_type *buf,
  992. bool is_persist,
  993. u32 pkt_type)
  994. {
  995. int rc = 0, found = 1;
  996. struct msm_cvp_smem *smem = NULL;
  997. struct dma_buf *dma_buf = NULL;
  998. if (buf->fd < 0) {
  999. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1000. return NULL;
  1001. }
  1002. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1003. if (!dma_buf) {
  1004. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1005. return NULL;
  1006. }
  1007. if (is_persist) {
  1008. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1009. if (!smem)
  1010. return NULL;
  1011. smem->dma_buf = dma_buf;
  1012. smem->bitmap_index = MAX_DMABUF_NUMS;
  1013. smem->pkt_type = pkt_type;
  1014. smem->flags |= SMEM_PERSIST;
  1015. atomic_inc(&smem->refcount);
  1016. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1017. if (rc)
  1018. goto exit;
  1019. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1020. dprintk(CVP_ERR,
  1021. "%s: invalid offset %d or size %d persist\n",
  1022. __func__, buf->offset, buf->size);
  1023. goto exit2;
  1024. }
  1025. return smem;
  1026. }
  1027. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1028. if (!smem) {
  1029. found = 0;
  1030. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1031. if (!smem)
  1032. return NULL;
  1033. smem->dma_buf = dma_buf;
  1034. smem->bitmap_index = MAX_DMABUF_NUMS;
  1035. smem->pkt_type = pkt_type;
  1036. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1037. if (rc)
  1038. goto exit;
  1039. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1040. dprintk(CVP_ERR,
  1041. "%s: invalid offset %d or size %d new entry\n",
  1042. __func__, buf->offset, buf->size);
  1043. goto exit2;
  1044. }
  1045. rc = msm_cvp_session_add_smem(inst, smem);
  1046. if (rc && rc != -ENOMEM)
  1047. goto exit2;
  1048. return smem;
  1049. }
  1050. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1051. dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
  1052. __func__, buf->offset, buf->size);
  1053. if (found) {
  1054. mutex_lock(&inst->dma_cache.lock);
  1055. atomic_dec(&smem->refcount);
  1056. mutex_unlock(&inst->dma_cache.lock);
  1057. return NULL;
  1058. }
  1059. goto exit2;
  1060. }
  1061. return smem;
  1062. exit2:
  1063. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1064. exit:
  1065. msm_cvp_smem_put_dma_buf(dma_buf);
  1066. kmem_cache_free(cvp_driver->smem_cache, smem);
  1067. smem = NULL;
  1068. return smem;
  1069. }
  1070. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1071. struct cvp_buf_type *buf,
  1072. u32 pkt_type, u32 buf_idx)
  1073. {
  1074. u32 iova = 0;
  1075. struct msm_cvp_smem *smem = NULL;
  1076. struct list_head *ptr, *next;
  1077. struct cvp_internal_buf *pbuf;
  1078. struct dma_buf *dma_buf;
  1079. if (!inst) {
  1080. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1081. return -EINVAL;
  1082. }
  1083. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1084. if (!dma_buf)
  1085. return -EINVAL;
  1086. mutex_lock(&inst->persistbufs.lock);
  1087. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1088. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1089. if (dma_buf == pbuf->smem->dma_buf) {
  1090. pbuf->size =
  1091. (pbuf->size >= buf->size) ?
  1092. pbuf->size : buf->size;
  1093. iova = pbuf->smem->device_addr + buf->offset;
  1094. mutex_unlock(&inst->persistbufs.lock);
  1095. atomic_inc(&pbuf->smem->refcount);
  1096. dma_buf_put(dma_buf);
  1097. dprintk(CVP_MEM,
  1098. "map persist Reuse fd %d, dma_buf %#llx\n",
  1099. pbuf->fd, pbuf->smem->dma_buf);
  1100. return iova;
  1101. }
  1102. }
  1103. mutex_unlock(&inst->persistbufs.lock);
  1104. dma_buf_put(dma_buf);
  1105. pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1106. if (!pbuf) {
  1107. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1108. __func__);
  1109. return 0;
  1110. }
  1111. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1112. if (!smem)
  1113. goto exit;
  1114. smem->pkt_type = pkt_type;
  1115. smem->buf_idx = buf_idx;
  1116. pbuf->smem = smem;
  1117. pbuf->fd = buf->fd;
  1118. pbuf->size = buf->size;
  1119. pbuf->offset = buf->offset;
  1120. pbuf->ownership = CLIENT;
  1121. mutex_lock(&inst->persistbufs.lock);
  1122. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1123. mutex_unlock(&inst->persistbufs.lock);
  1124. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1125. iova = smem->device_addr + buf->offset;
  1126. return iova;
  1127. exit:
  1128. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  1129. return 0;
  1130. }
  1131. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1132. struct cvp_buf_type *buf,
  1133. struct msm_cvp_frame *frame,
  1134. u32 pkt_type, u32 buf_idx)
  1135. {
  1136. u32 iova = 0;
  1137. struct msm_cvp_smem *smem = NULL;
  1138. u32 nr;
  1139. u32 type;
  1140. if (!inst || !frame) {
  1141. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1142. return 0;
  1143. }
  1144. nr = frame->nr;
  1145. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1146. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1147. return 0;
  1148. }
  1149. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1150. if (!smem)
  1151. return 0;
  1152. smem->buf_idx = buf_idx;
  1153. frame->bufs[nr].fd = buf->fd;
  1154. frame->bufs[nr].smem = smem;
  1155. frame->bufs[nr].size = buf->size;
  1156. frame->bufs[nr].offset = buf->offset;
  1157. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1158. frame->nr++;
  1159. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1160. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1161. iova = smem->device_addr + buf->offset;
  1162. return iova;
  1163. }
  1164. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1165. struct msm_cvp_frame *frame)
  1166. {
  1167. u32 i;
  1168. u32 type;
  1169. struct msm_cvp_smem *smem = NULL;
  1170. struct cvp_internal_buf *buf;
  1171. type = EVA_KMD_BUFTYPE_OUTPUT;
  1172. for (i = 0; i < frame->nr; ++i) {
  1173. buf = &frame->bufs[i];
  1174. smem = buf->smem;
  1175. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1176. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1177. /* smem not in dmamap cache */
  1178. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1179. dma_heap_buffer_free(smem->dma_buf);
  1180. smem->pkt_type = smem->buf_idx = 0;
  1181. kmem_cache_free(cvp_driver->smem_cache, smem);
  1182. buf->smem = NULL;
  1183. } else {
  1184. mutex_lock(&inst->dma_cache.lock);
  1185. if (atomic_dec_and_test(&smem->refcount)) {
  1186. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1187. print_smem(CVP_MEM, "Map dereference",
  1188. inst, smem);
  1189. smem->pkt_type = smem->buf_idx = 0;
  1190. }
  1191. mutex_unlock(&inst->dma_cache.lock);
  1192. }
  1193. }
  1194. kmem_cache_free(cvp_driver->frame_cache, frame);
  1195. }
  1196. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1197. {
  1198. struct msm_cvp_frame *frame, *dummy1;
  1199. bool found;
  1200. if (!inst) {
  1201. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1202. return;
  1203. }
  1204. ktid &= (FENCE_BIT - 1);
  1205. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1206. __func__, hash32_ptr(inst->session), ktid);
  1207. found = false;
  1208. mutex_lock(&inst->frames.lock);
  1209. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1210. if (frame->ktid == ktid) {
  1211. found = true;
  1212. list_del(&frame->list);
  1213. break;
  1214. }
  1215. }
  1216. mutex_unlock(&inst->frames.lock);
  1217. if (found)
  1218. msm_cvp_unmap_frame_buf(inst, frame);
  1219. else
  1220. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1221. }
  1222. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1223. struct eva_kmd_hfi_packet *in_pkt,
  1224. unsigned int offset, unsigned int buf_num)
  1225. {
  1226. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1227. return 0;
  1228. }
  1229. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1230. struct eva_kmd_hfi_packet *in_pkt,
  1231. unsigned int offset, unsigned int buf_num)
  1232. {
  1233. struct cvp_buf_type *buf;
  1234. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1235. int i;
  1236. u32 iova;
  1237. if (!offset || !buf_num)
  1238. return 0;
  1239. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1240. for (i = 0; i < buf_num; i++) {
  1241. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1242. offset += sizeof(*buf) >> 2;
  1243. if (buf->fd < 0 || !buf->size)
  1244. continue;
  1245. iova = msm_cvp_map_user_persist_buf(inst, buf,
  1246. cmd_hdr->packet_type, i);
  1247. if (!iova) {
  1248. dprintk(CVP_ERR,
  1249. "%s: buf %d register failed.\n",
  1250. __func__, i);
  1251. return -EINVAL;
  1252. }
  1253. buf->fd = iova;
  1254. }
  1255. return 0;
  1256. }
  1257. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1258. struct eva_kmd_hfi_packet *in_pkt,
  1259. unsigned int offset, unsigned int buf_num)
  1260. {
  1261. struct cvp_buf_type *buf;
  1262. int i;
  1263. u32 iova;
  1264. u64 ktid;
  1265. struct msm_cvp_frame *frame;
  1266. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1267. if (!offset || !buf_num)
  1268. return 0;
  1269. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1270. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1271. ktid &= (FENCE_BIT - 1);
  1272. cmd_hdr->client_data.kdata = ktid;
  1273. frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
  1274. if (!frame)
  1275. return -ENOMEM;
  1276. frame->ktid = ktid;
  1277. frame->nr = 0;
  1278. frame->pkt_type = cmd_hdr->packet_type;
  1279. for (i = 0; i < buf_num; i++) {
  1280. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1281. offset += sizeof(*buf) >> 2;
  1282. if (buf->fd < 0 || !buf->size)
  1283. continue;
  1284. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1285. if (!iova) {
  1286. dprintk(CVP_ERR,
  1287. "%s: buf %d register failed.\n",
  1288. __func__, i);
  1289. msm_cvp_unmap_frame_buf(inst, frame);
  1290. return -EINVAL;
  1291. }
  1292. buf->fd = iova;
  1293. }
  1294. mutex_lock(&inst->frames.lock);
  1295. list_add_tail(&frame->list, &inst->frames.list);
  1296. mutex_unlock(&inst->frames.lock);
  1297. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1298. return 0;
  1299. }
  1300. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1301. {
  1302. int rc = 0, i;
  1303. struct cvp_internal_buf *cbuf, *dummy;
  1304. struct msm_cvp_frame *frame, *dummy1;
  1305. struct msm_cvp_smem *smem;
  1306. struct cvp_hal_session *session;
  1307. struct eva_kmd_buffer buf;
  1308. session = (struct cvp_hal_session *)inst->session;
  1309. mutex_lock(&inst->frames.lock);
  1310. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1311. list_del(&frame->list);
  1312. msm_cvp_unmap_frame_buf(inst, frame);
  1313. }
  1314. mutex_unlock(&inst->frames.lock);
  1315. mutex_lock(&inst->dma_cache.lock);
  1316. for (i = 0; i < inst->dma_cache.nr; i++) {
  1317. smem = inst->dma_cache.entries[i];
  1318. if (atomic_read(&smem->refcount) == 0) {
  1319. print_smem(CVP_MEM, "free", inst, smem);
  1320. } else if (!(smem->flags & SMEM_PERSIST)) {
  1321. print_smem(CVP_WARN, "in use", inst, smem);
  1322. }
  1323. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1324. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1325. kmem_cache_free(cvp_driver->smem_cache, smem);
  1326. inst->dma_cache.entries[i] = NULL;
  1327. }
  1328. mutex_unlock(&inst->dma_cache.lock);
  1329. mutex_lock(&inst->cvpdspbufs.lock);
  1330. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1331. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1332. if (cbuf->ownership == CLIENT) {
  1333. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1334. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1335. cbuf->offset, cbuf->index,
  1336. (uint32_t)cbuf->smem->device_addr);
  1337. if (rc)
  1338. dprintk(CVP_ERR,
  1339. "%s: failed dsp deregistration fd=%d rc=%d",
  1340. __func__, cbuf->fd, rc);
  1341. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1342. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1343. } else if (cbuf->ownership == DSP) {
  1344. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1345. if (rc)
  1346. dprintk(CVP_ERR,
  1347. "%s: failed to unmap buf from DSP\n",
  1348. __func__);
  1349. rc = cvp_release_dsp_buffers(inst, cbuf);
  1350. if (rc)
  1351. dprintk(CVP_ERR,
  1352. "%s Fail to free buffer 0x%x\n",
  1353. __func__, rc);
  1354. }
  1355. list_del(&cbuf->list);
  1356. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  1357. }
  1358. mutex_unlock(&inst->cvpdspbufs.lock);
  1359. mutex_lock(&inst->cvpwnccbufs.lock);
  1360. if (inst->cvpwnccbufs_num != 0)
  1361. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1362. __func__, inst->cvpwnccbufs_num);
  1363. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1364. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1365. buf.fd = cbuf->fd;
  1366. buf.reserved[0] = cbuf->ktid;
  1367. mutex_unlock(&inst->cvpwnccbufs.lock);
  1368. msm_cvp_unmap_buf_wncc(inst, &buf);
  1369. mutex_lock(&inst->cvpwnccbufs.lock);
  1370. }
  1371. mutex_unlock(&inst->cvpwnccbufs.lock);
  1372. return rc;
  1373. }
  1374. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1375. {
  1376. struct cvp_internal_buf *buf;
  1377. struct msm_cvp_core *core;
  1378. struct inst_snapshot *snap = NULL;
  1379. int i;
  1380. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1381. if (log && core->log.snapshot_index < 16) {
  1382. snap = &core->log.snapshot[core->log.snapshot_index];
  1383. snap->session = inst->session;
  1384. core->log.snapshot_index++;
  1385. }
  1386. if (!inst) {
  1387. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1388. __func__, inst);
  1389. return;
  1390. }
  1391. dprintk(CVP_ERR,
  1392. "---Buffer details for inst: %pK of type: %d---\n",
  1393. inst, inst->session_type);
  1394. mutex_lock(&inst->dma_cache.lock);
  1395. dprintk(CVP_ERR, "dma cache: %d\n", inst->dma_cache.nr);
  1396. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1397. for (i = 0; i < inst->dma_cache.nr; i++)
  1398. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1399. mutex_unlock(&inst->dma_cache.lock);
  1400. mutex_lock(&inst->cvpdspbufs.lock);
  1401. dprintk(CVP_ERR, "dsp buffer list:\n");
  1402. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1403. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1404. mutex_unlock(&inst->cvpdspbufs.lock);
  1405. mutex_lock(&inst->cvpwnccbufs.lock);
  1406. dprintk(CVP_ERR, "wncc buffer list:\n");
  1407. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1408. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1409. mutex_unlock(&inst->cvpwnccbufs.lock);
  1410. mutex_lock(&inst->persistbufs.lock);
  1411. dprintk(CVP_ERR, "persist buffer list:\n");
  1412. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1413. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1414. mutex_unlock(&inst->persistbufs.lock);
  1415. }
  1416. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1417. u32 buffer_size)
  1418. {
  1419. struct cvp_internal_buf *buf;
  1420. struct msm_cvp_list *buf_list;
  1421. u32 smem_flags = SMEM_UNCACHED;
  1422. int rc = 0;
  1423. if (!inst) {
  1424. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1425. return NULL;
  1426. }
  1427. buf_list = &inst->persistbufs;
  1428. if (!buffer_size)
  1429. return NULL;
  1430. /* PERSIST buffer requires secure mapping
  1431. * Disable and wait for hyp_assign available
  1432. */
  1433. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1434. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1435. if (!buf) {
  1436. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1437. goto fail_kzalloc;
  1438. }
  1439. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1440. if (!buf->smem) {
  1441. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1442. goto fail_kzalloc;
  1443. }
  1444. buf->smem->flags = smem_flags;
  1445. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1446. &(inst->core->resources), buf->smem);
  1447. if (rc) {
  1448. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1449. goto err_no_mem;
  1450. }
  1451. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1452. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1453. atomic_inc(&buf->smem->refcount);
  1454. buf->size = buf->smem->size;
  1455. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1456. buf->ownership = DRIVER;
  1457. mutex_lock(&buf_list->lock);
  1458. list_add_tail(&buf->list, &buf_list->list);
  1459. mutex_unlock(&buf_list->lock);
  1460. return buf;
  1461. err_no_mem:
  1462. kmem_cache_free(cvp_driver->buf_cache, buf);
  1463. fail_kzalloc:
  1464. return NULL;
  1465. }
  1466. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1467. {
  1468. struct msm_cvp_smem *smem;
  1469. struct list_head *ptr, *next;
  1470. struct cvp_internal_buf *buf;
  1471. int rc = 0;
  1472. struct msm_cvp_core *core;
  1473. struct cvp_hfi_device *hdev;
  1474. if (!inst) {
  1475. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1476. return -EINVAL;
  1477. }
  1478. core = inst->core;
  1479. if (!core) {
  1480. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1481. return -EINVAL;
  1482. }
  1483. hdev = core->device;
  1484. if (!hdev) {
  1485. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1486. return -EINVAL;
  1487. }
  1488. dprintk(CVP_MEM, "release persist buffer!\n");
  1489. mutex_lock(&inst->persistbufs.lock);
  1490. /* Workaround for FW: release buffer means release all */
  1491. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1492. rc = call_hfi_op(hdev, session_release_buffers,
  1493. (void *)inst->session);
  1494. if (!rc) {
  1495. mutex_unlock(&inst->persistbufs.lock);
  1496. rc = wait_for_sess_signal_receipt(inst,
  1497. HAL_SESSION_RELEASE_BUFFER_DONE);
  1498. if (rc)
  1499. dprintk(CVP_WARN,
  1500. "%s: wait for signal failed, rc %d\n",
  1501. __func__, rc);
  1502. mutex_lock(&inst->persistbufs.lock);
  1503. } else {
  1504. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  1505. }
  1506. }
  1507. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1508. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1509. smem = buf->smem;
  1510. if (!smem) {
  1511. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1512. mutex_unlock(&inst->persistbufs.lock);
  1513. return -EINVAL;
  1514. }
  1515. list_del(&buf->list);
  1516. if (buf->ownership == DRIVER)
  1517. dprintk(CVP_MEM,
  1518. "%s: %x : fd %d %pK size %d",
  1519. "free arp", hash32_ptr(inst->session), buf->fd,
  1520. smem->dma_buf, buf->size);
  1521. else
  1522. dprintk(CVP_MEM,
  1523. "%s: %x : fd %d %pK size %d",
  1524. "free user persistent", hash32_ptr(inst->session), buf->fd,
  1525. smem->dma_buf, buf->size);
  1526. atomic_dec(&smem->refcount);
  1527. msm_cvp_smem_free(smem);
  1528. kmem_cache_free(cvp_driver->smem_cache, smem);
  1529. buf->smem = NULL;
  1530. kmem_cache_free(cvp_driver->buf_cache, buf);
  1531. }
  1532. mutex_unlock(&inst->persistbufs.lock);
  1533. return rc;
  1534. }
  1535. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1536. struct cvp_internal_buf *buf,
  1537. u32 buffer_size,
  1538. u32 secure_type)
  1539. {
  1540. u32 smem_flags = SMEM_UNCACHED;
  1541. int rc = 0;
  1542. if (!inst) {
  1543. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1544. return -EINVAL;
  1545. }
  1546. if (!buf)
  1547. return -EINVAL;
  1548. if (!buffer_size)
  1549. return -EINVAL;
  1550. switch (secure_type) {
  1551. case 0:
  1552. break;
  1553. case 1:
  1554. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1555. break;
  1556. case 2:
  1557. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1558. break;
  1559. default:
  1560. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1561. __func__, secure_type);
  1562. return -EINVAL;
  1563. }
  1564. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1565. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1566. if (!buf->smem) {
  1567. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1568. goto fail_kzalloc_smem_cache;
  1569. }
  1570. buf->smem->flags = smem_flags;
  1571. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1572. &(inst->core->resources), buf->smem);
  1573. if (rc) {
  1574. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1575. goto err_no_mem;
  1576. }
  1577. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1578. atomic_inc(&buf->smem->refcount);
  1579. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1580. buf->size = buf->smem->size;
  1581. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1582. buf->ownership = DSP;
  1583. return rc;
  1584. err_no_mem:
  1585. kmem_cache_free(cvp_driver->smem_cache, buf->smem);
  1586. fail_kzalloc_smem_cache:
  1587. return rc;
  1588. }
  1589. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1590. struct cvp_internal_buf *buf)
  1591. {
  1592. struct msm_cvp_smem *smem;
  1593. int rc = 0;
  1594. if (!inst) {
  1595. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1596. return -EINVAL;
  1597. }
  1598. if (!buf) {
  1599. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1600. return -EINVAL;
  1601. }
  1602. smem = buf->smem;
  1603. if (!smem) {
  1604. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1605. return -EINVAL;
  1606. }
  1607. if (buf->ownership == DSP) {
  1608. dprintk(CVP_MEM,
  1609. "%s: %x : fd %x %s size %d",
  1610. __func__, hash32_ptr(inst->session), buf->fd,
  1611. smem->dma_buf->name, buf->size);
  1612. atomic_dec(&smem->refcount);
  1613. msm_cvp_smem_free(smem);
  1614. kmem_cache_free(cvp_driver->smem_cache, smem);
  1615. } else {
  1616. dprintk(CVP_ERR,
  1617. "%s: wrong owner %d %x : fd %x %s size %d",
  1618. __func__, buf->ownership, hash32_ptr(inst->session),
  1619. buf->fd, smem->dma_buf->name, buf->size);
  1620. }
  1621. return rc;
  1622. }
  1623. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1624. struct eva_kmd_buffer *buf)
  1625. {
  1626. struct cvp_hfi_device *hdev;
  1627. struct cvp_hal_session *session;
  1628. struct msm_cvp_inst *s;
  1629. int rc = 0;
  1630. if (!inst || !inst->core || !buf) {
  1631. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1632. return -EINVAL;
  1633. }
  1634. s = cvp_get_inst_validate(inst->core, inst);
  1635. if (!s)
  1636. return -ECONNRESET;
  1637. session = (struct cvp_hal_session *)inst->session;
  1638. if (!session) {
  1639. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1640. rc = -EINVAL;
  1641. goto exit;
  1642. }
  1643. hdev = inst->core->device;
  1644. print_client_buffer(CVP_HFI, "register", inst, buf);
  1645. if (buf->index)
  1646. rc = msm_cvp_map_buf_dsp(inst, buf);
  1647. else
  1648. rc = msm_cvp_map_buf_wncc(inst, buf);
  1649. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1650. buf->fd, buf->reserved[0]);
  1651. exit:
  1652. cvp_put_inst(s);
  1653. return rc;
  1654. }
  1655. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1656. struct eva_kmd_buffer *buf)
  1657. {
  1658. struct msm_cvp_inst *s;
  1659. int rc = 0;
  1660. if (!inst || !inst->core || !buf) {
  1661. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1662. return -EINVAL;
  1663. }
  1664. s = cvp_get_inst_validate(inst->core, inst);
  1665. if (!s)
  1666. return -ECONNRESET;
  1667. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1668. if (buf->index)
  1669. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1670. else
  1671. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1672. cvp_put_inst(s);
  1673. return rc;
  1674. }