dp_rx.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DP_RATETABLE_SUPPORT
  42. #include "dp_ratetable.h"
  43. #endif
  44. #ifdef DUP_RX_DESC_WAR
  45. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  46. hal_ring_handle_t hal_ring,
  47. hal_ring_desc_t ring_desc,
  48. struct dp_rx_desc *rx_desc)
  49. {
  50. void *hal_soc = soc->hal_soc;
  51. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  52. dp_rx_desc_dump(rx_desc);
  53. }
  54. #else
  55. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  56. hal_ring_handle_t hal_ring_hdl,
  57. hal_ring_desc_t ring_desc,
  58. struct dp_rx_desc *rx_desc)
  59. {
  60. hal_soc_handle_t hal_soc = soc->hal_soc;
  61. dp_rx_desc_dump(rx_desc);
  62. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  63. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  64. qdf_assert_always(0);
  65. }
  66. #endif
  67. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  68. #ifdef RX_DESC_SANITY_WAR
  69. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  70. hal_ring_handle_t hal_ring_hdl,
  71. hal_ring_desc_t ring_desc,
  72. struct dp_rx_desc *rx_desc)
  73. {
  74. uint8_t return_buffer_manager;
  75. if (qdf_unlikely(!rx_desc)) {
  76. /*
  77. * This is an unlikely case where the cookie obtained
  78. * from the ring_desc is invalid and hence we are not
  79. * able to find the corresponding rx_desc
  80. */
  81. goto fail;
  82. }
  83. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  84. if (qdf_unlikely(!(return_buffer_manager ==
  85. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  86. return_buffer_manager ==
  87. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  88. goto fail;
  89. }
  90. return QDF_STATUS_SUCCESS;
  91. fail:
  92. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  93. dp_err("Ring Desc:");
  94. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  95. ring_desc);
  96. return QDF_STATUS_E_NULL_VALUE;
  97. }
  98. #endif
  99. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  100. /**
  101. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  102. *
  103. * @dp_soc: struct dp_soc *
  104. * @nbuf_frag_info_t: nbuf frag info
  105. * @dp_pdev: struct dp_pdev *
  106. * @rx_desc_pool: Rx desc pool
  107. *
  108. * Return: QDF_STATUS
  109. */
  110. #ifdef DP_RX_MON_MEM_FRAG
  111. static inline QDF_STATUS
  112. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  113. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  114. struct dp_pdev *dp_pdev,
  115. struct rx_desc_pool *rx_desc_pool)
  116. {
  117. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  118. (nbuf_frag_info_t->virt_addr).vaddr =
  119. qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
  120. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  121. dp_err("Frag alloc failed");
  122. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  123. return QDF_STATUS_E_NOMEM;
  124. }
  125. ret = qdf_mem_map_page(dp_soc->osdev,
  126. (nbuf_frag_info_t->virt_addr).vaddr,
  127. QDF_DMA_FROM_DEVICE,
  128. rx_desc_pool->buf_size,
  129. &nbuf_frag_info_t->paddr);
  130. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  131. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  132. dp_err("Frag map failed");
  133. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  134. return QDF_STATUS_E_FAULT;
  135. }
  136. return QDF_STATUS_SUCCESS;
  137. }
  138. #else
  139. static inline QDF_STATUS
  140. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  141. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  142. struct dp_pdev *dp_pdev,
  143. struct rx_desc_pool *rx_desc_pool)
  144. {
  145. return QDF_STATUS_SUCCESS;
  146. }
  147. #endif /* DP_RX_MON_MEM_FRAG */
  148. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  149. /**
  150. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  151. * @soc: Datapath soc structure
  152. * @ring_num: Refill ring number
  153. * @num_req: number of buffers requested for refill
  154. * @num_refill: number of buffers refilled
  155. *
  156. * Returns: None
  157. */
  158. static inline void
  159. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  160. hal_ring_handle_t hal_ring_hdl,
  161. uint32_t num_req, uint32_t num_refill)
  162. {
  163. struct dp_refill_info_record *record;
  164. uint32_t idx;
  165. uint32_t tp;
  166. uint32_t hp;
  167. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  168. !soc->rx_refill_ring_history[ring_num]))
  169. return;
  170. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  171. DP_RX_REFILL_HIST_MAX);
  172. /* No NULL check needed for record since its an array */
  173. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  174. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  175. record->timestamp = qdf_get_log_timestamp();
  176. record->num_req = num_req;
  177. record->num_refill = num_refill;
  178. record->hp = hp;
  179. record->tp = tp;
  180. }
  181. #else
  182. static inline void
  183. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  184. hal_ring_handle_t hal_ring_hdl,
  185. uint32_t num_req, uint32_t num_refill)
  186. {
  187. }
  188. #endif
  189. /**
  190. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  191. *
  192. * @dp_soc: struct dp_soc *
  193. * @mac_id: Mac id
  194. * @num_entries_avail: num_entries_avail
  195. * @nbuf_frag_info_t: nbuf frag info
  196. * @dp_pdev: struct dp_pdev *
  197. * @rx_desc_pool: Rx desc pool
  198. *
  199. * Return: QDF_STATUS
  200. */
  201. static inline QDF_STATUS
  202. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  203. uint32_t mac_id,
  204. uint32_t num_entries_avail,
  205. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  206. struct dp_pdev *dp_pdev,
  207. struct rx_desc_pool *rx_desc_pool)
  208. {
  209. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  210. (nbuf_frag_info_t->virt_addr).nbuf =
  211. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  212. mac_id,
  213. rx_desc_pool,
  214. num_entries_avail);
  215. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  216. dp_err("nbuf alloc failed");
  217. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  218. return QDF_STATUS_E_NOMEM;
  219. }
  220. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  221. nbuf_frag_info_t);
  222. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  223. dp_rx_buffer_pool_nbuf_free(dp_soc,
  224. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  225. dp_err("nbuf map failed");
  226. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  227. return QDF_STATUS_E_FAULT;
  228. }
  229. nbuf_frag_info_t->paddr =
  230. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  231. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  232. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  233. rx_desc_pool->buf_size,
  234. true);
  235. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  236. &nbuf_frag_info_t->paddr,
  237. rx_desc_pool);
  238. if (ret == QDF_STATUS_E_FAILURE) {
  239. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  240. return QDF_STATUS_E_ADDRNOTAVAIL;
  241. }
  242. return QDF_STATUS_SUCCESS;
  243. }
  244. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  245. QDF_STATUS
  246. __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
  247. struct dp_srng *dp_rxdma_srng,
  248. struct rx_desc_pool *rx_desc_pool)
  249. {
  250. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  251. uint32_t count;
  252. void *rxdma_ring_entry;
  253. union dp_rx_desc_list_elem_t *next = NULL;
  254. void *rxdma_srng;
  255. qdf_nbuf_t nbuf;
  256. qdf_dma_addr_t paddr;
  257. uint16_t num_entries_avail = 0;
  258. uint16_t num_alloc_desc = 0;
  259. union dp_rx_desc_list_elem_t *desc_list = NULL;
  260. union dp_rx_desc_list_elem_t *tail = NULL;
  261. int sync_hw_ptr = 0;
  262. rxdma_srng = dp_rxdma_srng->hal_srng;
  263. if (qdf_unlikely(!dp_pdev)) {
  264. dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
  265. return QDF_STATUS_E_FAILURE;
  266. }
  267. if (qdf_unlikely(!rxdma_srng)) {
  268. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  269. return QDF_STATUS_E_FAILURE;
  270. }
  271. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  272. num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
  273. rxdma_srng,
  274. sync_hw_ptr);
  275. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  276. soc, num_entries_avail);
  277. if (qdf_unlikely(num_entries_avail <
  278. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  279. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  280. return QDF_STATUS_E_FAILURE;
  281. }
  282. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  283. num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
  284. rx_desc_pool,
  285. num_entries_avail,
  286. &desc_list,
  287. &tail);
  288. if (!num_alloc_desc) {
  289. dp_rx_err("%pK: no free rx_descs in freelist", soc);
  290. DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
  291. num_entries_avail);
  292. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  293. return QDF_STATUS_E_NOMEM;
  294. }
  295. for (count = 0; count < num_alloc_desc; count++) {
  296. next = desc_list->next;
  297. qdf_prefetch(next);
  298. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  299. if (qdf_unlikely(!nbuf)) {
  300. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  301. break;
  302. }
  303. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  304. rx_desc_pool->buf_size);
  305. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
  306. rxdma_srng);
  307. qdf_assert_always(rxdma_ring_entry);
  308. desc_list->rx_desc.nbuf = nbuf;
  309. desc_list->rx_desc.rx_buf_start = nbuf->data;
  310. desc_list->rx_desc.unmapped = 0;
  311. /* rx_desc.in_use should be zero at this time*/
  312. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  313. desc_list->rx_desc.in_use = 1;
  314. desc_list->rx_desc.in_err_state = 0;
  315. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  316. paddr,
  317. desc_list->rx_desc.cookie,
  318. rx_desc_pool->owner);
  319. desc_list = next;
  320. }
  321. qdf_dsb();
  322. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  323. /* No need to count the number of bytes received during replenish.
  324. * Therefore set replenish.pkts.bytes as 0.
  325. */
  326. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  327. DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
  328. /*
  329. * add any available free desc back to the free list
  330. */
  331. if (desc_list)
  332. dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
  333. mac_id, rx_desc_pool);
  334. return QDF_STATUS_SUCCESS;
  335. }
  336. QDF_STATUS
  337. __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
  338. struct dp_srng *dp_rxdma_srng,
  339. struct rx_desc_pool *rx_desc_pool,
  340. uint32_t num_req_buffers,
  341. union dp_rx_desc_list_elem_t **desc_list,
  342. union dp_rx_desc_list_elem_t **tail)
  343. {
  344. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  345. uint32_t count;
  346. void *rxdma_ring_entry;
  347. union dp_rx_desc_list_elem_t *next;
  348. void *rxdma_srng;
  349. qdf_nbuf_t nbuf;
  350. qdf_dma_addr_t paddr;
  351. rxdma_srng = dp_rxdma_srng->hal_srng;
  352. if (qdf_unlikely(!dp_pdev)) {
  353. dp_rx_err("%pK: pdev is null for mac_id = %d",
  354. soc, mac_id);
  355. return QDF_STATUS_E_FAILURE;
  356. }
  357. if (qdf_unlikely(!rxdma_srng)) {
  358. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  359. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  360. return QDF_STATUS_E_FAILURE;
  361. }
  362. dp_rx_debug("%pK: requested %d buffers for replenish",
  363. soc, num_req_buffers);
  364. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  365. for (count = 0; count < num_req_buffers; count++) {
  366. next = (*desc_list)->next;
  367. qdf_prefetch(next);
  368. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  369. if (qdf_unlikely(!nbuf)) {
  370. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  371. break;
  372. }
  373. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  374. rx_desc_pool->buf_size);
  375. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  376. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  377. if (!rxdma_ring_entry)
  378. break;
  379. qdf_assert_always(rxdma_ring_entry);
  380. (*desc_list)->rx_desc.nbuf = nbuf;
  381. (*desc_list)->rx_desc.rx_buf_start = nbuf->data;
  382. (*desc_list)->rx_desc.unmapped = 0;
  383. /* rx_desc.in_use should be zero at this time*/
  384. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  385. (*desc_list)->rx_desc.in_use = 1;
  386. (*desc_list)->rx_desc.in_err_state = 0;
  387. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  388. paddr,
  389. (*desc_list)->rx_desc.cookie,
  390. rx_desc_pool->owner);
  391. *desc_list = next;
  392. }
  393. qdf_dsb();
  394. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  395. /* No need to count the number of bytes received during replenish.
  396. * Therefore set replenish.pkts.bytes as 0.
  397. */
  398. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  399. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  400. /*
  401. * add any available free desc back to the free list
  402. */
  403. if (*desc_list)
  404. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  405. mac_id, rx_desc_pool);
  406. return QDF_STATUS_SUCCESS;
  407. }
  408. QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
  409. uint32_t mac_id,
  410. struct dp_srng *dp_rxdma_srng,
  411. struct rx_desc_pool *rx_desc_pool,
  412. uint32_t num_req_buffers)
  413. {
  414. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  415. uint32_t count;
  416. uint32_t nr_descs = 0;
  417. void *rxdma_ring_entry;
  418. union dp_rx_desc_list_elem_t *next;
  419. void *rxdma_srng;
  420. qdf_nbuf_t nbuf;
  421. qdf_dma_addr_t paddr;
  422. union dp_rx_desc_list_elem_t *desc_list = NULL;
  423. union dp_rx_desc_list_elem_t *tail = NULL;
  424. rxdma_srng = dp_rxdma_srng->hal_srng;
  425. if (qdf_unlikely(!dp_pdev)) {
  426. dp_rx_err("%pK: pdev is null for mac_id = %d",
  427. soc, mac_id);
  428. return QDF_STATUS_E_FAILURE;
  429. }
  430. if (qdf_unlikely(!rxdma_srng)) {
  431. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  432. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  433. return QDF_STATUS_E_FAILURE;
  434. }
  435. dp_rx_debug("%pK: requested %d buffers for replenish",
  436. soc, num_req_buffers);
  437. nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
  438. num_req_buffers, &desc_list, &tail);
  439. if (!nr_descs) {
  440. dp_err("no free rx_descs in freelist");
  441. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  442. return QDF_STATUS_E_NOMEM;
  443. }
  444. dp_debug("got %u RX descs for driver attach", nr_descs);
  445. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  446. for (count = 0; count < nr_descs; count++) {
  447. next = desc_list->next;
  448. qdf_prefetch(next);
  449. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  450. if (qdf_unlikely(!nbuf)) {
  451. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  452. break;
  453. }
  454. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  455. rx_desc_pool->buf_size);
  456. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  457. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  458. if (!rxdma_ring_entry)
  459. break;
  460. qdf_assert_always(rxdma_ring_entry);
  461. desc_list->rx_desc.nbuf = nbuf;
  462. desc_list->rx_desc.rx_buf_start = nbuf->data;
  463. desc_list->rx_desc.unmapped = 0;
  464. /* rx_desc.in_use should be zero at this time*/
  465. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  466. desc_list->rx_desc.in_use = 1;
  467. desc_list->rx_desc.in_err_state = 0;
  468. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  469. paddr,
  470. desc_list->rx_desc.cookie,
  471. rx_desc_pool->owner);
  472. desc_list = next;
  473. }
  474. qdf_dsb();
  475. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  476. /* No need to count the number of bytes received during replenish.
  477. * Therefore set replenish.pkts.bytes as 0.
  478. */
  479. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  480. return QDF_STATUS_SUCCESS;
  481. }
  482. #endif
  483. /*
  484. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  485. * called during dp rx initialization
  486. * and at the end of dp_rx_process.
  487. *
  488. * @soc: core txrx main context
  489. * @mac_id: mac_id which is one of 3 mac_ids
  490. * @dp_rxdma_srng: dp rxdma circular ring
  491. * @rx_desc_pool: Pointer to free Rx descriptor pool
  492. * @num_req_buffers: number of buffer to be replenished
  493. * @desc_list: list of descs if called from dp_rx_process
  494. * or NULL during dp rx initialization or out of buffer
  495. * interrupt.
  496. * @tail: tail of descs list
  497. * @func_name: name of the caller function
  498. * Return: return success or failure
  499. */
  500. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  501. struct dp_srng *dp_rxdma_srng,
  502. struct rx_desc_pool *rx_desc_pool,
  503. uint32_t num_req_buffers,
  504. union dp_rx_desc_list_elem_t **desc_list,
  505. union dp_rx_desc_list_elem_t **tail,
  506. const char *func_name)
  507. {
  508. uint32_t num_alloc_desc;
  509. uint16_t num_desc_to_free = 0;
  510. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  511. uint32_t num_entries_avail;
  512. uint32_t count;
  513. int sync_hw_ptr = 1;
  514. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  515. void *rxdma_ring_entry;
  516. union dp_rx_desc_list_elem_t *next;
  517. QDF_STATUS ret;
  518. void *rxdma_srng;
  519. rxdma_srng = dp_rxdma_srng->hal_srng;
  520. if (qdf_unlikely(!dp_pdev)) {
  521. dp_rx_err("%pK: pdev is null for mac_id = %d",
  522. dp_soc, mac_id);
  523. return QDF_STATUS_E_FAILURE;
  524. }
  525. if (qdf_unlikely(!rxdma_srng)) {
  526. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  527. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  528. return QDF_STATUS_E_FAILURE;
  529. }
  530. dp_rx_debug("%pK: requested %d buffers for replenish",
  531. dp_soc, num_req_buffers);
  532. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  533. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  534. rxdma_srng,
  535. sync_hw_ptr);
  536. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  537. dp_soc, num_entries_avail);
  538. if (!(*desc_list) && (num_entries_avail >
  539. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  540. num_req_buffers = num_entries_avail;
  541. } else if (num_entries_avail < num_req_buffers) {
  542. num_desc_to_free = num_req_buffers - num_entries_avail;
  543. num_req_buffers = num_entries_avail;
  544. }
  545. if (qdf_unlikely(!num_req_buffers)) {
  546. num_desc_to_free = num_req_buffers;
  547. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  548. goto free_descs;
  549. }
  550. /*
  551. * if desc_list is NULL, allocate the descs from freelist
  552. */
  553. if (!(*desc_list)) {
  554. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  555. rx_desc_pool,
  556. num_req_buffers,
  557. desc_list,
  558. tail);
  559. if (!num_alloc_desc) {
  560. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  561. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  562. num_req_buffers);
  563. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  564. return QDF_STATUS_E_NOMEM;
  565. }
  566. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  567. num_req_buffers = num_alloc_desc;
  568. }
  569. count = 0;
  570. while (count < num_req_buffers) {
  571. /* Flag is set while pdev rx_desc_pool initialization */
  572. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  573. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  574. &nbuf_frag_info,
  575. dp_pdev,
  576. rx_desc_pool);
  577. else
  578. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  579. mac_id,
  580. num_entries_avail, &nbuf_frag_info,
  581. dp_pdev, rx_desc_pool);
  582. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  583. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  584. continue;
  585. break;
  586. }
  587. count++;
  588. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  589. rxdma_srng);
  590. qdf_assert_always(rxdma_ring_entry);
  591. next = (*desc_list)->next;
  592. /* Flag is set while pdev rx_desc_pool initialization */
  593. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  594. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  595. &nbuf_frag_info);
  596. else
  597. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  598. &nbuf_frag_info);
  599. /* rx_desc.in_use should be zero at this time*/
  600. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  601. (*desc_list)->rx_desc.in_use = 1;
  602. (*desc_list)->rx_desc.in_err_state = 0;
  603. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  604. func_name, RX_DESC_REPLENISHED);
  605. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  606. nbuf_frag_info.virt_addr.nbuf,
  607. (unsigned long long)(nbuf_frag_info.paddr),
  608. (*desc_list)->rx_desc.cookie);
  609. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  610. nbuf_frag_info.paddr,
  611. (*desc_list)->rx_desc.cookie,
  612. rx_desc_pool->owner);
  613. *desc_list = next;
  614. }
  615. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  616. num_req_buffers, count);
  617. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  618. dp_rx_schedule_refill_thread(dp_soc);
  619. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  620. count, num_desc_to_free);
  621. /* No need to count the number of bytes received during replenish.
  622. * Therefore set replenish.pkts.bytes as 0.
  623. */
  624. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  625. free_descs:
  626. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  627. /*
  628. * add any available free desc back to the free list
  629. */
  630. if (*desc_list)
  631. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  632. mac_id, rx_desc_pool);
  633. return QDF_STATUS_SUCCESS;
  634. }
  635. qdf_export_symbol(__dp_rx_buffers_replenish);
  636. /*
  637. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  638. * pkts to RAW mode simulation to
  639. * decapsulate the pkt.
  640. *
  641. * @vdev: vdev on which RAW mode is enabled
  642. * @nbuf_list: list of RAW pkts to process
  643. * @txrx_peer: peer object from which the pkt is rx
  644. *
  645. * Return: void
  646. */
  647. void
  648. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  649. struct dp_txrx_peer *txrx_peer)
  650. {
  651. qdf_nbuf_t deliver_list_head = NULL;
  652. qdf_nbuf_t deliver_list_tail = NULL;
  653. qdf_nbuf_t nbuf;
  654. nbuf = nbuf_list;
  655. while (nbuf) {
  656. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  657. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  658. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  659. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
  660. qdf_nbuf_len(nbuf));
  661. /*
  662. * reset the chfrag_start and chfrag_end bits in nbuf cb
  663. * as this is a non-amsdu pkt and RAW mode simulation expects
  664. * these bit s to be 0 for non-amsdu pkt.
  665. */
  666. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  667. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  668. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  669. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  670. }
  671. nbuf = next;
  672. }
  673. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  674. &deliver_list_tail);
  675. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  676. }
  677. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  678. #ifndef FEATURE_WDS
  679. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  680. struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
  681. {
  682. }
  683. #endif
  684. #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
  685. /*
  686. * dp_classify_critical_pkts() - API for marking critical packets
  687. * @soc: dp_soc context
  688. * @vdev: vdev on which packet is to be sent
  689. * @nbuf: nbuf that has to be classified
  690. *
  691. * The function parses the packet, identifies whether its a critical frame and
  692. * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
  693. * Code for marking which frames are CRITICAL is accessed via callback.
  694. * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
  695. *
  696. * Return: None
  697. */
  698. static
  699. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  700. qdf_nbuf_t nbuf)
  701. {
  702. if (vdev->tx_classify_critical_pkt_cb)
  703. vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
  704. }
  705. #else
  706. static inline
  707. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  708. qdf_nbuf_t nbuf)
  709. {
  710. }
  711. #endif
  712. #ifdef QCA_OL_TX_MULTIQ_SUPPORT
  713. static inline
  714. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  715. {
  716. qdf_nbuf_set_queue_mapping(nbuf, ring_id);
  717. }
  718. #else
  719. static inline
  720. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  721. {
  722. }
  723. #endif
  724. /*
  725. * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
  726. *
  727. * @soc: core txrx main context
  728. * @ta_peer : source peer entry
  729. * @rx_tlv_hdr : start address of rx tlvs
  730. * @nbuf : nbuf that has to be intrabss forwarded
  731. * @tid_stats : tid stats pointer
  732. *
  733. * Return: bool: true if it is forwarded else false
  734. */
  735. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  736. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  737. struct cdp_tid_rx_stats *tid_stats)
  738. {
  739. uint16_t len;
  740. qdf_nbuf_t nbuf_copy;
  741. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  742. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  743. nbuf))
  744. return true;
  745. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  746. return false;
  747. /* If the source peer in the isolation list
  748. * then dont forward instead push to bridge stack
  749. */
  750. if (dp_get_peer_isolation(ta_peer))
  751. return false;
  752. nbuf_copy = qdf_nbuf_copy(nbuf);
  753. if (!nbuf_copy)
  754. return false;
  755. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  756. qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  757. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
  758. dp_rx_nbuf_queue_mapping_set(nbuf_copy, ring_id);
  759. if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy,
  760. tid_stats))
  761. return false;
  762. if (dp_tx_send((struct cdp_soc_t *)soc,
  763. ta_peer->vdev->vdev_id, nbuf_copy)) {
  764. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  765. len);
  766. tid_stats->fail_cnt[INTRABSS_DROP]++;
  767. dp_rx_nbuf_free(nbuf_copy);
  768. } else {
  769. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  770. len);
  771. tid_stats->intrabss_cnt++;
  772. }
  773. return false;
  774. }
  775. /*
  776. * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
  777. *
  778. * @soc: core txrx main context
  779. * @ta_peer: source peer entry
  780. * @tx_vdev_id: VDEV ID for Intra-BSS TX
  781. * @rx_tlv_hdr: start address of rx tlvs
  782. * @nbuf: nbuf that has to be intrabss forwarded
  783. * @tid_stats: tid stats pointer
  784. *
  785. * Return: bool: true if it is forwarded else false
  786. */
  787. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  788. uint8_t tx_vdev_id,
  789. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  790. struct cdp_tid_rx_stats *tid_stats)
  791. {
  792. uint16_t len;
  793. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  794. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  795. /* linearize the nbuf just before we send to
  796. * dp_tx_send()
  797. */
  798. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  799. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  800. return false;
  801. nbuf = qdf_nbuf_unshare(nbuf);
  802. if (!nbuf) {
  803. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
  804. rx.intra_bss.fail,
  805. 1, len);
  806. /* return true even though the pkt is
  807. * not forwarded. Basically skb_unshare
  808. * failed and we want to continue with
  809. * next nbuf.
  810. */
  811. tid_stats->fail_cnt[INTRABSS_DROP]++;
  812. return false;
  813. }
  814. }
  815. qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
  816. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
  817. dp_rx_nbuf_queue_mapping_set(nbuf, ring_id);
  818. if (!dp_tx_send((struct cdp_soc_t *)soc,
  819. tx_vdev_id, nbuf)) {
  820. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  821. len);
  822. } else {
  823. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  824. len);
  825. tid_stats->fail_cnt[INTRABSS_DROP]++;
  826. return false;
  827. }
  828. return true;
  829. }
  830. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  831. #ifdef MESH_MODE_SUPPORT
  832. /**
  833. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  834. *
  835. * @vdev: DP Virtual device handle
  836. * @nbuf: Buffer pointer
  837. * @rx_tlv_hdr: start of rx tlv header
  838. * @txrx_peer: pointer to peer
  839. *
  840. * This function allocated memory for mesh receive stats and fill the
  841. * required stats. Stores the memory address in skb cb.
  842. *
  843. * Return: void
  844. */
  845. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  846. uint8_t *rx_tlv_hdr,
  847. struct dp_txrx_peer *txrx_peer)
  848. {
  849. struct mesh_recv_hdr_s *rx_info = NULL;
  850. uint32_t pkt_type;
  851. uint32_t nss;
  852. uint32_t rate_mcs;
  853. uint32_t bw;
  854. uint8_t primary_chan_num;
  855. uint32_t center_chan_freq;
  856. struct dp_soc *soc = vdev->pdev->soc;
  857. struct dp_peer *peer;
  858. struct dp_peer *primary_link_peer;
  859. struct dp_soc *link_peer_soc;
  860. cdp_peer_stats_param_t buf = {0};
  861. /* fill recv mesh stats */
  862. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  863. /* upper layers are resposible to free this memory */
  864. if (!rx_info) {
  865. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  866. vdev->pdev->soc);
  867. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  868. return;
  869. }
  870. rx_info->rs_flags = MESH_RXHDR_VER1;
  871. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  872. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  873. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  874. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  875. peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
  876. if (peer) {
  877. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  878. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  879. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  880. rx_tlv_hdr);
  881. if (vdev->osif_get_key)
  882. vdev->osif_get_key(vdev->osif_vdev,
  883. &rx_info->rs_decryptkey[0],
  884. &peer->mac_addr.raw[0],
  885. rx_info->rs_keyix);
  886. }
  887. dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
  888. }
  889. primary_link_peer = dp_get_primary_link_peer_by_id(soc,
  890. txrx_peer->peer_id,
  891. DP_MOD_ID_MESH);
  892. if (qdf_likely(primary_link_peer)) {
  893. link_peer_soc = primary_link_peer->vdev->pdev->soc;
  894. dp_monitor_peer_get_stats_param(link_peer_soc,
  895. primary_link_peer,
  896. cdp_peer_rx_snr, &buf);
  897. rx_info->rs_snr = buf.rx_snr;
  898. dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
  899. }
  900. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  901. soc = vdev->pdev->soc;
  902. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  903. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  904. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  905. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  906. soc->ctrl_psoc,
  907. vdev->pdev->pdev_id,
  908. center_chan_freq);
  909. }
  910. rx_info->rs_channel = primary_chan_num;
  911. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  912. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  913. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  914. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  915. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  916. (bw << 24);
  917. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  918. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  919. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  920. rx_info->rs_flags,
  921. rx_info->rs_rssi,
  922. rx_info->rs_channel,
  923. rx_info->rs_ratephy1,
  924. rx_info->rs_keyix,
  925. rx_info->rs_snr);
  926. }
  927. /**
  928. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  929. *
  930. * @vdev: DP Virtual device handle
  931. * @nbuf: Buffer pointer
  932. * @rx_tlv_hdr: start of rx tlv header
  933. *
  934. * This checks if the received packet is matching any filter out
  935. * catogery and and drop the packet if it matches.
  936. *
  937. * Return: status(0 indicates drop, 1 indicate to no drop)
  938. */
  939. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  940. uint8_t *rx_tlv_hdr)
  941. {
  942. union dp_align_mac_addr mac_addr;
  943. struct dp_soc *soc = vdev->pdev->soc;
  944. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  945. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  946. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  947. rx_tlv_hdr))
  948. return QDF_STATUS_SUCCESS;
  949. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  950. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  951. rx_tlv_hdr))
  952. return QDF_STATUS_SUCCESS;
  953. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  954. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  955. rx_tlv_hdr) &&
  956. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  957. rx_tlv_hdr))
  958. return QDF_STATUS_SUCCESS;
  959. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  960. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  961. rx_tlv_hdr,
  962. &mac_addr.raw[0]))
  963. return QDF_STATUS_E_FAILURE;
  964. if (!qdf_mem_cmp(&mac_addr.raw[0],
  965. &vdev->mac_addr.raw[0],
  966. QDF_MAC_ADDR_SIZE))
  967. return QDF_STATUS_SUCCESS;
  968. }
  969. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  970. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  971. rx_tlv_hdr,
  972. &mac_addr.raw[0]))
  973. return QDF_STATUS_E_FAILURE;
  974. if (!qdf_mem_cmp(&mac_addr.raw[0],
  975. &vdev->mac_addr.raw[0],
  976. QDF_MAC_ADDR_SIZE))
  977. return QDF_STATUS_SUCCESS;
  978. }
  979. }
  980. return QDF_STATUS_E_FAILURE;
  981. }
  982. #else
  983. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  984. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
  985. {
  986. }
  987. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  988. uint8_t *rx_tlv_hdr)
  989. {
  990. return QDF_STATUS_E_FAILURE;
  991. }
  992. #endif
  993. #ifdef FEATURE_NAC_RSSI
  994. /**
  995. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  996. * @soc: DP SOC handle
  997. * @mpdu: mpdu for which peer is invalid
  998. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  999. * pool_id has same mapping)
  1000. *
  1001. * return: integer type
  1002. */
  1003. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1004. uint8_t mac_id)
  1005. {
  1006. struct dp_invalid_peer_msg msg;
  1007. struct dp_vdev *vdev = NULL;
  1008. struct dp_pdev *pdev = NULL;
  1009. struct ieee80211_frame *wh;
  1010. qdf_nbuf_t curr_nbuf, next_nbuf;
  1011. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1012. uint8_t *rx_pkt_hdr = NULL;
  1013. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  1014. dp_rx_debug("%pK: Drop decapped frames", soc);
  1015. goto free;
  1016. }
  1017. /* In RAW packet, packet header will be part of data */
  1018. rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
  1019. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1020. if (!DP_FRAME_IS_DATA(wh)) {
  1021. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  1022. goto free;
  1023. }
  1024. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1025. dp_rx_err("%pK: Invalid nbuf length", soc);
  1026. goto free;
  1027. }
  1028. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1029. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  1030. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  1031. goto free;
  1032. }
  1033. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  1034. QDF_STATUS_SUCCESS)
  1035. return 0;
  1036. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1037. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1038. QDF_MAC_ADDR_SIZE) == 0) {
  1039. goto out;
  1040. }
  1041. }
  1042. if (!vdev) {
  1043. dp_rx_err("%pK: VDEV not found", soc);
  1044. goto free;
  1045. }
  1046. out:
  1047. msg.wh = wh;
  1048. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  1049. msg.nbuf = mpdu;
  1050. msg.vdev_id = vdev->vdev_id;
  1051. /*
  1052. * NOTE: Only valid for HKv1.
  1053. * If smart monitor mode is enabled on RE, we are getting invalid
  1054. * peer frames with RA as STA mac of RE and the TA not matching
  1055. * with any NAC list or the the BSSID.Such frames need to dropped
  1056. * in order to avoid HM_WDS false addition.
  1057. */
  1058. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  1059. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  1060. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  1061. soc, wh->i_addr1);
  1062. goto free;
  1063. }
  1064. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  1065. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  1066. pdev->pdev_id, &msg);
  1067. }
  1068. free:
  1069. /* Drop and free packet */
  1070. curr_nbuf = mpdu;
  1071. while (curr_nbuf) {
  1072. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1073. dp_rx_nbuf_free(curr_nbuf);
  1074. curr_nbuf = next_nbuf;
  1075. }
  1076. return 0;
  1077. }
  1078. /**
  1079. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  1080. * @soc: DP SOC handle
  1081. * @mpdu: mpdu for which peer is invalid
  1082. * @mpdu_done: if an mpdu is completed
  1083. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  1084. * pool_id has same mapping)
  1085. *
  1086. * return: integer type
  1087. */
  1088. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1089. qdf_nbuf_t mpdu, bool mpdu_done,
  1090. uint8_t mac_id)
  1091. {
  1092. /* Only trigger the process when mpdu is completed */
  1093. if (mpdu_done)
  1094. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1095. }
  1096. #else
  1097. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1098. uint8_t mac_id)
  1099. {
  1100. qdf_nbuf_t curr_nbuf, next_nbuf;
  1101. struct dp_pdev *pdev;
  1102. struct dp_vdev *vdev = NULL;
  1103. struct ieee80211_frame *wh;
  1104. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1105. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  1106. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1107. if (!DP_FRAME_IS_DATA(wh)) {
  1108. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  1109. "only for data frames");
  1110. goto free;
  1111. }
  1112. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1113. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  1114. goto free;
  1115. }
  1116. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1117. if (!pdev) {
  1118. dp_rx_info_rl("%pK: PDEV not found", soc);
  1119. goto free;
  1120. }
  1121. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  1122. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  1123. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1124. QDF_MAC_ADDR_SIZE) == 0) {
  1125. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1126. goto out;
  1127. }
  1128. }
  1129. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1130. if (!vdev) {
  1131. dp_rx_info_rl("%pK: VDEV not found", soc);
  1132. goto free;
  1133. }
  1134. out:
  1135. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  1136. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  1137. free:
  1138. /* reset the head and tail pointers */
  1139. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1140. if (pdev) {
  1141. pdev->invalid_peer_head_msdu = NULL;
  1142. pdev->invalid_peer_tail_msdu = NULL;
  1143. }
  1144. /* Drop and free packet */
  1145. curr_nbuf = mpdu;
  1146. while (curr_nbuf) {
  1147. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1148. dp_rx_nbuf_free(curr_nbuf);
  1149. curr_nbuf = next_nbuf;
  1150. }
  1151. /* Reset the head and tail pointers */
  1152. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1153. if (pdev) {
  1154. pdev->invalid_peer_head_msdu = NULL;
  1155. pdev->invalid_peer_tail_msdu = NULL;
  1156. }
  1157. return 0;
  1158. }
  1159. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1160. qdf_nbuf_t mpdu, bool mpdu_done,
  1161. uint8_t mac_id)
  1162. {
  1163. /* Process the nbuf */
  1164. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1165. }
  1166. #endif
  1167. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1168. #ifdef RECEIVE_OFFLOAD
  1169. /**
  1170. * dp_rx_print_offload_info() - Print offload info from RX TLV
  1171. * @soc: dp soc handle
  1172. * @msdu: MSDU for which the offload info is to be printed
  1173. *
  1174. * Return: None
  1175. */
  1176. static void dp_rx_print_offload_info(struct dp_soc *soc,
  1177. qdf_nbuf_t msdu)
  1178. {
  1179. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  1180. dp_verbose_debug("lro_eligible 0x%x",
  1181. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  1182. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  1183. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  1184. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  1185. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  1186. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  1187. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  1188. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  1189. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  1190. dp_verbose_debug("---------------------------------------------------------");
  1191. }
  1192. /**
  1193. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  1194. * @soc: DP SOC handle
  1195. * @rx_tlv: RX TLV received for the msdu
  1196. * @msdu: msdu for which GRO info needs to be filled
  1197. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  1198. *
  1199. * Return: None
  1200. */
  1201. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1202. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1203. {
  1204. struct hal_offload_info offload_info;
  1205. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1206. return;
  1207. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  1208. return;
  1209. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1210. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  1211. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  1212. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1213. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1214. rx_tlv);
  1215. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  1216. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  1217. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  1218. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  1219. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  1220. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  1221. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  1222. dp_rx_print_offload_info(soc, msdu);
  1223. }
  1224. #endif /* RECEIVE_OFFLOAD */
  1225. /**
  1226. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1227. *
  1228. * @soc: DP soc handle
  1229. * @nbuf: pointer to msdu.
  1230. * @mpdu_len: mpdu length
  1231. * @l3_pad_len: L3 padding length by HW
  1232. *
  1233. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1234. */
  1235. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  1236. qdf_nbuf_t nbuf,
  1237. uint16_t *mpdu_len,
  1238. uint32_t l3_pad_len)
  1239. {
  1240. bool last_nbuf;
  1241. uint32_t pkt_hdr_size;
  1242. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  1243. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  1244. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1245. last_nbuf = false;
  1246. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  1247. } else {
  1248. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  1249. last_nbuf = true;
  1250. *mpdu_len = 0;
  1251. }
  1252. return last_nbuf;
  1253. }
  1254. /**
  1255. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  1256. *
  1257. * @soc: DP soc handle
  1258. * @nbuf: pointer to msdu.
  1259. *
  1260. * Return: returns padding length in bytes.
  1261. */
  1262. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  1263. qdf_nbuf_t nbuf)
  1264. {
  1265. uint32_t l3_hdr_pad = 0;
  1266. uint8_t *rx_tlv_hdr;
  1267. struct hal_rx_msdu_metadata msdu_metadata;
  1268. while (nbuf) {
  1269. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1270. /* scattered msdu end with continuation is 0 */
  1271. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1272. hal_rx_msdu_metadata_get(soc->hal_soc,
  1273. rx_tlv_hdr,
  1274. &msdu_metadata);
  1275. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  1276. break;
  1277. }
  1278. nbuf = nbuf->next;
  1279. }
  1280. return l3_hdr_pad;
  1281. }
  1282. /**
  1283. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1284. * multiple nbufs.
  1285. * @soc: DP SOC handle
  1286. * @nbuf: pointer to the first msdu of an amsdu.
  1287. *
  1288. * This function implements the creation of RX frag_list for cases
  1289. * where an MSDU is spread across multiple nbufs.
  1290. *
  1291. * Return: returns the head nbuf which contains complete frag_list.
  1292. */
  1293. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1294. {
  1295. qdf_nbuf_t parent, frag_list, next = NULL;
  1296. uint16_t frag_list_len = 0;
  1297. uint16_t mpdu_len;
  1298. bool last_nbuf;
  1299. uint32_t l3_hdr_pad_offset = 0;
  1300. /*
  1301. * Use msdu len got from REO entry descriptor instead since
  1302. * there is case the RX PKT TLV is corrupted while msdu_len
  1303. * from REO descriptor is right for non-raw RX scatter msdu.
  1304. */
  1305. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1306. /*
  1307. * this is a case where the complete msdu fits in one single nbuf.
  1308. * in this case HW sets both start and end bit and we only need to
  1309. * reset these bits for RAW mode simulator to decap the pkt
  1310. */
  1311. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1312. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1313. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  1314. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1315. return nbuf;
  1316. }
  1317. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1318. /*
  1319. * This is a case where we have multiple msdus (A-MSDU) spread across
  1320. * multiple nbufs. here we create a fraglist out of these nbufs.
  1321. *
  1322. * the moment we encounter a nbuf with continuation bit set we
  1323. * know for sure we have an MSDU which is spread across multiple
  1324. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1325. */
  1326. parent = nbuf;
  1327. frag_list = nbuf->next;
  1328. nbuf = nbuf->next;
  1329. /*
  1330. * set the start bit in the first nbuf we encounter with continuation
  1331. * bit set. This has the proper mpdu length set as it is the first
  1332. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1333. * nbufs will form the frag_list of the parent nbuf.
  1334. */
  1335. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1336. /*
  1337. * L3 header padding is only needed for the 1st buffer
  1338. * in a scattered msdu
  1339. */
  1340. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1341. l3_hdr_pad_offset);
  1342. /*
  1343. * MSDU cont bit is set but reported MPDU length can fit
  1344. * in to single buffer
  1345. *
  1346. * Increment error stats and avoid SG list creation
  1347. */
  1348. if (last_nbuf) {
  1349. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1350. qdf_nbuf_pull_head(parent,
  1351. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1352. return parent;
  1353. }
  1354. /*
  1355. * this is where we set the length of the fragments which are
  1356. * associated to the parent nbuf. We iterate through the frag_list
  1357. * till we hit the last_nbuf of the list.
  1358. */
  1359. do {
  1360. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1361. qdf_nbuf_pull_head(nbuf,
  1362. soc->rx_pkt_tlv_size);
  1363. frag_list_len += qdf_nbuf_len(nbuf);
  1364. if (last_nbuf) {
  1365. next = nbuf->next;
  1366. nbuf->next = NULL;
  1367. break;
  1368. } else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1369. dp_err("Invalid packet length\n");
  1370. qdf_assert_always(0);
  1371. }
  1372. nbuf = nbuf->next;
  1373. } while (!last_nbuf);
  1374. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1375. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1376. parent->next = next;
  1377. qdf_nbuf_pull_head(parent,
  1378. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1379. return parent;
  1380. }
  1381. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1382. #ifdef QCA_PEER_EXT_STATS
  1383. /*
  1384. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1385. * @peer: DP soc context
  1386. * @nbuf: NBuffer
  1387. *
  1388. * Return: Void
  1389. */
  1390. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1391. qdf_nbuf_t nbuf)
  1392. {
  1393. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1394. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1395. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1396. }
  1397. #endif /* QCA_PEER_EXT_STATS */
  1398. /**
  1399. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1400. * to pass in correct fields
  1401. *
  1402. * @vdev: pdev handle
  1403. * @tx_desc: tx descriptor
  1404. * @tid: tid value
  1405. * Return: none
  1406. */
  1407. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1408. {
  1409. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1410. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1411. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1412. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1413. uint32_t interframe_delay =
  1414. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1415. struct cdp_tid_rx_stats *rstats =
  1416. &vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1417. dp_update_delay_stats(NULL, rstats, to_stack, tid,
  1418. CDP_DELAY_STATS_REAP_STACK, ring_id, false);
  1419. /*
  1420. * Update interframe delay stats calculated at deliver_data_ol point.
  1421. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1422. * interframe delay will not be calculate correctly for 1st frame.
  1423. * On the other side, this will help in avoiding extra per packet check
  1424. * of vdev->prev_rx_deliver_tstamp.
  1425. */
  1426. dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
  1427. CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
  1428. vdev->prev_rx_deliver_tstamp = current_ts;
  1429. }
  1430. /**
  1431. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1432. * @pdev: dp pdev reference
  1433. * @buf_list: buffer list to be dropepd
  1434. *
  1435. * Return: int (number of bufs dropped)
  1436. */
  1437. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1438. qdf_nbuf_t buf_list)
  1439. {
  1440. struct cdp_tid_rx_stats *stats = NULL;
  1441. uint8_t tid = 0, ring_id = 0;
  1442. int num_dropped = 0;
  1443. qdf_nbuf_t buf, next_buf;
  1444. buf = buf_list;
  1445. while (buf) {
  1446. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1447. next_buf = qdf_nbuf_queue_next(buf);
  1448. tid = qdf_nbuf_get_tid_val(buf);
  1449. if (qdf_likely(pdev)) {
  1450. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1451. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1452. stats->delivered_to_stack--;
  1453. }
  1454. dp_rx_nbuf_free(buf);
  1455. buf = next_buf;
  1456. num_dropped++;
  1457. }
  1458. return num_dropped;
  1459. }
  1460. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1461. /**
  1462. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1463. * @soc: core txrx main context
  1464. * @vdev: vdev
  1465. * @txrx_peer: txrx peer
  1466. * @nbuf_head: skb list head
  1467. *
  1468. * Return: true if packet is delivered to netdev per STA.
  1469. */
  1470. static inline bool
  1471. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1472. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1473. {
  1474. /*
  1475. * When extended WDS is disabled, frames are sent to AP netdevice.
  1476. */
  1477. if (qdf_likely(!vdev->wds_ext_enabled))
  1478. return false;
  1479. /*
  1480. * There can be 2 cases:
  1481. * 1. Send frame to parent netdev if its not for netdev per STA
  1482. * 2. If frame is meant for netdev per STA:
  1483. * a. Send frame to appropriate netdev using registered fp.
  1484. * b. If fp is NULL, drop the frames.
  1485. */
  1486. if (!txrx_peer->wds_ext.init)
  1487. return false;
  1488. if (txrx_peer->osif_rx)
  1489. txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
  1490. else
  1491. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1492. return true;
  1493. }
  1494. #else
  1495. static inline bool
  1496. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1497. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1498. {
  1499. return false;
  1500. }
  1501. #endif
  1502. #ifdef PEER_CACHE_RX_PKTS
  1503. /**
  1504. * dp_rx_flush_rx_cached() - flush cached rx frames
  1505. * @peer: peer
  1506. * @drop: flag to drop frames or forward to net stack
  1507. *
  1508. * Return: None
  1509. */
  1510. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1511. {
  1512. struct dp_peer_cached_bufq *bufqi;
  1513. struct dp_rx_cached_buf *cache_buf = NULL;
  1514. ol_txrx_rx_fp data_rx = NULL;
  1515. int num_buff_elem;
  1516. QDF_STATUS status;
  1517. /*
  1518. * Flush dp cached frames only for mld peers and legacy peers, as
  1519. * link peers don't store cached frames
  1520. */
  1521. if (IS_MLO_DP_LINK_PEER(peer))
  1522. return;
  1523. if (!peer->txrx_peer) {
  1524. dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
  1525. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1526. return;
  1527. }
  1528. if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
  1529. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1530. return;
  1531. }
  1532. qdf_spin_lock_bh(&peer->peer_info_lock);
  1533. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1534. data_rx = peer->vdev->osif_rx;
  1535. else
  1536. drop = true;
  1537. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1538. bufqi = &peer->txrx_peer->bufq_info;
  1539. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1540. qdf_list_remove_front(&bufqi->cached_bufq,
  1541. (qdf_list_node_t **)&cache_buf);
  1542. while (cache_buf) {
  1543. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1544. cache_buf->buf);
  1545. bufqi->entries -= num_buff_elem;
  1546. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1547. if (drop) {
  1548. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1549. cache_buf->buf);
  1550. } else {
  1551. /* Flush the cached frames to OSIF DEV */
  1552. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1553. if (status != QDF_STATUS_SUCCESS)
  1554. bufqi->dropped = dp_rx_drop_nbuf_list(
  1555. peer->vdev->pdev,
  1556. cache_buf->buf);
  1557. }
  1558. qdf_mem_free(cache_buf);
  1559. cache_buf = NULL;
  1560. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1561. qdf_list_remove_front(&bufqi->cached_bufq,
  1562. (qdf_list_node_t **)&cache_buf);
  1563. }
  1564. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1565. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1566. }
  1567. /**
  1568. * dp_rx_enqueue_rx() - cache rx frames
  1569. * @peer: peer
  1570. * @rx_buf_list: cache buffer list
  1571. *
  1572. * Return: None
  1573. */
  1574. static QDF_STATUS
  1575. dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
  1576. {
  1577. struct dp_rx_cached_buf *cache_buf;
  1578. struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
  1579. int num_buff_elem;
  1580. QDF_STATUS ret = QDF_STATUS_SUCCESS;
  1581. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  1582. struct dp_peer *peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  1583. DP_MOD_ID_RX);
  1584. if (!peer) {
  1585. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1586. rx_buf_list);
  1587. return QDF_STATUS_E_INVAL;
  1588. }
  1589. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1590. bufqi->dropped);
  1591. if (!peer->valid) {
  1592. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1593. rx_buf_list);
  1594. ret = QDF_STATUS_E_INVAL;
  1595. goto fail;
  1596. }
  1597. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1598. if (bufqi->entries >= bufqi->thresh) {
  1599. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1600. rx_buf_list);
  1601. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1602. ret = QDF_STATUS_E_RESOURCES;
  1603. goto fail;
  1604. }
  1605. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1606. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1607. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1608. if (!cache_buf) {
  1609. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1610. "Failed to allocate buf to cache rx frames");
  1611. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1612. rx_buf_list);
  1613. ret = QDF_STATUS_E_NOMEM;
  1614. goto fail;
  1615. }
  1616. cache_buf->buf = rx_buf_list;
  1617. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1618. qdf_list_insert_back(&bufqi->cached_bufq,
  1619. &cache_buf->node);
  1620. bufqi->entries += num_buff_elem;
  1621. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1622. fail:
  1623. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  1624. return ret;
  1625. }
  1626. static inline
  1627. bool dp_rx_is_peer_cache_bufq_supported(void)
  1628. {
  1629. return true;
  1630. }
  1631. #else
  1632. static inline
  1633. bool dp_rx_is_peer_cache_bufq_supported(void)
  1634. {
  1635. return false;
  1636. }
  1637. static inline QDF_STATUS
  1638. dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
  1639. {
  1640. return QDF_STATUS_SUCCESS;
  1641. }
  1642. #endif
  1643. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1644. /**
  1645. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1646. * using the appropriate call back functions.
  1647. * @soc: soc
  1648. * @vdev: vdev
  1649. * @peer: peer
  1650. * @nbuf_head: skb list head
  1651. * @nbuf_tail: skb list tail
  1652. *
  1653. * Return: None
  1654. */
  1655. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1656. struct dp_vdev *vdev,
  1657. struct dp_txrx_peer *txrx_peer,
  1658. qdf_nbuf_t nbuf_head)
  1659. {
  1660. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1661. txrx_peer, nbuf_head)))
  1662. return;
  1663. /* Function pointer initialized only when FISA is enabled */
  1664. if (vdev->osif_fisa_rx)
  1665. /* on failure send it via regular path */
  1666. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1667. else
  1668. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1669. }
  1670. #else
  1671. /**
  1672. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1673. * using the appropriate call back functions.
  1674. * @soc: soc
  1675. * @vdev: vdev
  1676. * @txrx_peer: txrx peer
  1677. * @nbuf_head: skb list head
  1678. * @nbuf_tail: skb list tail
  1679. *
  1680. * Check the return status of the call back function and drop
  1681. * the packets if the return status indicates a failure.
  1682. *
  1683. * Return: None
  1684. */
  1685. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1686. struct dp_vdev *vdev,
  1687. struct dp_txrx_peer *txrx_peer,
  1688. qdf_nbuf_t nbuf_head)
  1689. {
  1690. int num_nbuf = 0;
  1691. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1692. /* Function pointer initialized only when FISA is enabled */
  1693. if (vdev->osif_fisa_rx)
  1694. /* on failure send it via regular path */
  1695. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1696. else if (vdev->osif_rx)
  1697. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1698. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1699. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1700. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1701. if (txrx_peer)
  1702. DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
  1703. num_nbuf);
  1704. }
  1705. }
  1706. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1707. /*
  1708. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1709. * @soc DP soc
  1710. * @vdev: DP vdev handle
  1711. * @txrx_peer: pointer to the txrx peer object
  1712. * nbuf_head: skb list head
  1713. *
  1714. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1715. * QDF_STATUS_E_FAILURE
  1716. */
  1717. static inline QDF_STATUS
  1718. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1719. struct dp_vdev *vdev,
  1720. struct dp_txrx_peer *txrx_peer,
  1721. qdf_nbuf_t nbuf_head)
  1722. {
  1723. int num_nbuf;
  1724. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1725. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1726. /*
  1727. * This is a special case where vdev is invalid,
  1728. * so we cannot know the pdev to which this packet
  1729. * belonged. Hence we update the soc rx error stats.
  1730. */
  1731. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1732. return QDF_STATUS_E_FAILURE;
  1733. }
  1734. /*
  1735. * highly unlikely to have a vdev without a registered rx
  1736. * callback function. if so let us free the nbuf_list.
  1737. */
  1738. if (qdf_unlikely(!vdev->osif_rx)) {
  1739. if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
  1740. dp_rx_enqueue_rx(txrx_peer, nbuf_head);
  1741. } else {
  1742. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1743. nbuf_head);
  1744. DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
  1745. vdev->pdev->enhanced_stats_en);
  1746. }
  1747. return QDF_STATUS_E_FAILURE;
  1748. }
  1749. return QDF_STATUS_SUCCESS;
  1750. }
  1751. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  1752. struct dp_vdev *vdev,
  1753. struct dp_txrx_peer *txrx_peer,
  1754. qdf_nbuf_t nbuf_head,
  1755. qdf_nbuf_t nbuf_tail)
  1756. {
  1757. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  1758. QDF_STATUS_SUCCESS)
  1759. return QDF_STATUS_E_FAILURE;
  1760. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1761. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1762. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1763. &nbuf_tail);
  1764. }
  1765. dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
  1766. return QDF_STATUS_SUCCESS;
  1767. }
  1768. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  1769. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  1770. struct dp_vdev *vdev,
  1771. struct dp_txrx_peer *txrx_peer,
  1772. qdf_nbuf_t nbuf_head,
  1773. qdf_nbuf_t nbuf_tail)
  1774. {
  1775. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  1776. QDF_STATUS_SUCCESS)
  1777. return QDF_STATUS_E_FAILURE;
  1778. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  1779. return QDF_STATUS_SUCCESS;
  1780. }
  1781. #endif
  1782. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1783. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1784. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
  1785. { \
  1786. qdf_nbuf_t nbuf_local; \
  1787. struct dp_txrx_peer *txrx_peer_local; \
  1788. struct dp_vdev *vdev_local = vdev_hdl; \
  1789. do { \
  1790. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1791. break; \
  1792. nbuf_local = nbuf; \
  1793. txrx_peer_local = txrx_peer; \
  1794. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1795. break; \
  1796. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1797. break; \
  1798. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1799. (nbuf_local), \
  1800. (txrx_peer_local), 0, 1); \
  1801. } while (0); \
  1802. }
  1803. #else
  1804. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
  1805. #endif
  1806. #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
  1807. /**
  1808. * dp_rx_rates_stats_update() - update rate stats
  1809. * from rx msdu.
  1810. * @soc: datapath soc handle
  1811. * @nbuf: received msdu buffer
  1812. * @rx_tlv_hdr: rx tlv header
  1813. * @txrx_peer: datapath txrx_peer handle
  1814. * @sgi: Short Guard Interval
  1815. * @mcs: Modulation and Coding Set
  1816. * @nss: Number of Spatial Streams
  1817. * @bw: BandWidth
  1818. * @pkt_type: Corresponds to preamble
  1819. *
  1820. * To be precisely record rates, following factors are considered:
  1821. * Exclude specific frames, ARP, DHCP, ssdp, etc.
  1822. * Make sure to affect rx throughput as least as possible.
  1823. *
  1824. * Return: void
  1825. */
  1826. static void
  1827. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1828. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  1829. uint32_t sgi, uint32_t mcs,
  1830. uint32_t nss, uint32_t bw, uint32_t pkt_type)
  1831. {
  1832. uint32_t rix;
  1833. uint16_t ratecode;
  1834. uint32_t avg_rx_rate;
  1835. uint32_t ratekbps;
  1836. enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
  1837. if (soc->high_throughput ||
  1838. dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
  1839. return;
  1840. }
  1841. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs);
  1842. /* here pkt_type corresponds to preamble */
  1843. ratekbps = dp_getrateindex(sgi,
  1844. mcs,
  1845. nss,
  1846. pkt_type,
  1847. bw,
  1848. punc_mode,
  1849. &rix,
  1850. &ratecode);
  1851. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps);
  1852. avg_rx_rate =
  1853. dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate,
  1854. ratekbps);
  1855. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate);
  1856. }
  1857. #else
  1858. static void
  1859. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1860. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  1861. uint32_t sgi, uint32_t mcs,
  1862. uint32_t nss, uint32_t bw, uint32_t pkt_type)
  1863. {
  1864. }
  1865. #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
  1866. #ifndef QCA_ENHANCED_STATS_SUPPORT
  1867. /**
  1868. * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
  1869. *
  1870. * @soc: datapath soc handle
  1871. * @nbuf: received msdu buffer
  1872. * @rx_tlv_hdr: rx tlv header
  1873. * @txrx_peer: datapath txrx_peer handle
  1874. *
  1875. * Return: void
  1876. */
  1877. static inline
  1878. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1879. uint8_t *rx_tlv_hdr,
  1880. struct dp_txrx_peer *txrx_peer)
  1881. {
  1882. bool is_ampdu;
  1883. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1884. uint8_t dst_mcs_idx;
  1885. /*
  1886. * TODO - For KIWI this field is present in ring_desc
  1887. * Try to use ring desc instead of tlv.
  1888. */
  1889. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  1890. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
  1891. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1892. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  1893. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1894. tid = qdf_nbuf_get_tid_val(nbuf);
  1895. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1896. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1897. rx_tlv_hdr);
  1898. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1899. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1900. /* do HW to SW pkt type conversion */
  1901. pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
  1902. hal_2_dp_pkt_type_map[pkt_type]);
  1903. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
  1904. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1905. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1906. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1907. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
  1908. /*
  1909. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1910. * then increase index [nss - 1] in array counter.
  1911. */
  1912. if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
  1913. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
  1914. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
  1915. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
  1916. hal_rx_tlv_mic_err_get(soc->hal_soc,
  1917. rx_tlv_hdr));
  1918. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
  1919. hal_rx_tlv_decrypt_err_get(soc->hal_soc,
  1920. rx_tlv_hdr));
  1921. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1922. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
  1923. dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
  1924. if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
  1925. DP_PEER_EXTD_STATS_INC(txrx_peer,
  1926. rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
  1927. 1);
  1928. dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
  1929. sgi, mcs, nss, bw, pkt_type);
  1930. }
  1931. #else
  1932. static inline
  1933. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1934. uint8_t *rx_tlv_hdr,
  1935. struct dp_txrx_peer *txrx_peer)
  1936. {
  1937. }
  1938. #endif
  1939. /**
  1940. * dp_rx_msdu_stats_update() - update per msdu stats.
  1941. * @soc: core txrx main context
  1942. * @nbuf: pointer to the first msdu of an amsdu.
  1943. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1944. * @txrx_peer: pointer to the txrx peer object.
  1945. * @ring_id: reo dest ring number on which pkt is reaped.
  1946. * @tid_stats: per tid rx stats.
  1947. *
  1948. * update all the per msdu stats for that nbuf.
  1949. * Return: void
  1950. */
  1951. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1952. uint8_t *rx_tlv_hdr,
  1953. struct dp_txrx_peer *txrx_peer,
  1954. uint8_t ring_id,
  1955. struct cdp_tid_rx_stats *tid_stats)
  1956. {
  1957. bool is_not_amsdu;
  1958. struct dp_vdev *vdev = txrx_peer->vdev;
  1959. bool enh_flag;
  1960. qdf_ether_header_t *eh;
  1961. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1962. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
  1963. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1964. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1965. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
  1966. msdu_len);
  1967. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
  1968. is_not_amsdu);
  1969. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1970. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
  1971. qdf_nbuf_is_rx_retry_flag(nbuf));
  1972. tid_stats->msdu_cnt++;
  1973. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1974. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1975. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1976. enh_flag = vdev->pdev->enhanced_stats_en;
  1977. DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
  1978. tid_stats->mcast_msdu_cnt++;
  1979. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1980. DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
  1981. tid_stats->bcast_msdu_cnt++;
  1982. }
  1983. }
  1984. txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
  1985. dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
  1986. }
  1987. #ifndef WDS_VENDOR_EXTENSION
  1988. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1989. struct dp_vdev *vdev,
  1990. struct dp_txrx_peer *txrx_peer)
  1991. {
  1992. return 1;
  1993. }
  1994. #endif
  1995. #ifdef RX_DESC_DEBUG_CHECK
  1996. /**
  1997. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1998. * corruption
  1999. *
  2000. * @ring_desc: REO ring descriptor
  2001. * @rx_desc: Rx descriptor
  2002. *
  2003. * Return: NONE
  2004. */
  2005. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  2006. hal_ring_desc_t ring_desc,
  2007. struct dp_rx_desc *rx_desc)
  2008. {
  2009. struct hal_buf_info hbi;
  2010. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  2011. /* Sanity check for possible buffer paddr corruption */
  2012. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  2013. return QDF_STATUS_SUCCESS;
  2014. return QDF_STATUS_E_FAILURE;
  2015. }
  2016. /**
  2017. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  2018. * out of bound access from H.W
  2019. *
  2020. * @soc: DP soc
  2021. * @pkt_len: Packet length received from H.W
  2022. *
  2023. * Return: NONE
  2024. */
  2025. static inline void
  2026. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  2027. uint32_t pkt_len)
  2028. {
  2029. struct rx_desc_pool *rx_desc_pool;
  2030. rx_desc_pool = &soc->rx_desc_buf[0];
  2031. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  2032. }
  2033. #else
  2034. static inline void
  2035. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  2036. #endif
  2037. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  2038. #ifdef DP_RX_UDP_OVER_PEER_ROAM
  2039. /**
  2040. * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
  2041. * during roaming
  2042. * @vdev: dp_vdev pointer
  2043. * @rx_tlv_hdr: rx tlv header
  2044. * @nbuf: pkt skb pointer
  2045. *
  2046. * This function will check if rx udp data is received from authorised
  2047. * roamed peer before peer map indication is received from FW after
  2048. * roaming. This is needed for VoIP scenarios in which packet loss
  2049. * expected during roaming is minimal.
  2050. *
  2051. * Return: bool
  2052. */
  2053. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2054. uint8_t *rx_tlv_hdr,
  2055. qdf_nbuf_t nbuf)
  2056. {
  2057. char *hdr_desc;
  2058. struct ieee80211_frame *wh = NULL;
  2059. hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
  2060. rx_tlv_hdr);
  2061. wh = (struct ieee80211_frame *)hdr_desc;
  2062. if (vdev->roaming_peer_status ==
  2063. WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
  2064. !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
  2065. QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
  2066. qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
  2067. return true;
  2068. return false;
  2069. }
  2070. #else
  2071. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2072. uint8_t *rx_tlv_hdr,
  2073. qdf_nbuf_t nbuf)
  2074. {
  2075. return false;
  2076. }
  2077. #endif
  2078. /**
  2079. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  2080. * no corresbonding peer found
  2081. * @soc: core txrx main context
  2082. * @nbuf: pkt skb pointer
  2083. *
  2084. * This function will try to deliver some RX special frames to stack
  2085. * even there is no peer matched found. for instance, LFR case, some
  2086. * eapol data will be sent to host before peer_map done.
  2087. *
  2088. * Return: None
  2089. */
  2090. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2091. {
  2092. uint16_t peer_id;
  2093. uint8_t vdev_id;
  2094. struct dp_vdev *vdev = NULL;
  2095. uint32_t l2_hdr_offset = 0;
  2096. uint16_t msdu_len = 0;
  2097. uint32_t pkt_len = 0;
  2098. uint8_t *rx_tlv_hdr;
  2099. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  2100. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  2101. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2102. if (peer_id > soc->max_peer_id)
  2103. goto deliver_fail;
  2104. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2105. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  2106. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  2107. goto deliver_fail;
  2108. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  2109. goto deliver_fail;
  2110. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2111. l2_hdr_offset =
  2112. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2113. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2114. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  2115. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2116. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2117. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  2118. if (dp_rx_is_special_frame(nbuf, frame_mask) ||
  2119. dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr, nbuf)) {
  2120. qdf_nbuf_set_exc_frame(nbuf, 1);
  2121. if (QDF_STATUS_SUCCESS !=
  2122. vdev->osif_rx(vdev->osif_vdev, nbuf))
  2123. goto deliver_fail;
  2124. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  2125. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2126. return;
  2127. }
  2128. deliver_fail:
  2129. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2130. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2131. dp_rx_nbuf_free(nbuf);
  2132. if (vdev)
  2133. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2134. }
  2135. #else
  2136. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2137. {
  2138. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2139. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2140. dp_rx_nbuf_free(nbuf);
  2141. }
  2142. #endif
  2143. /**
  2144. * dp_rx_srng_get_num_pending() - get number of pending entries
  2145. * @hal_soc: hal soc opaque pointer
  2146. * @hal_ring: opaque pointer to the HAL Rx Ring
  2147. * @num_entries: number of entries in the hal_ring.
  2148. * @near_full: pointer to a boolean. This is set if ring is near full.
  2149. *
  2150. * The function returns the number of entries in a destination ring which are
  2151. * yet to be reaped. The function also checks if the ring is near full.
  2152. * If more than half of the ring needs to be reaped, the ring is considered
  2153. * approaching full.
  2154. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  2155. * entries. It should not be called within a SRNG lock. HW pointer value is
  2156. * synced into cached_hp.
  2157. *
  2158. * Return: Number of pending entries if any
  2159. */
  2160. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  2161. hal_ring_handle_t hal_ring_hdl,
  2162. uint32_t num_entries,
  2163. bool *near_full)
  2164. {
  2165. uint32_t num_pending = 0;
  2166. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  2167. hal_ring_hdl,
  2168. true);
  2169. if (num_entries && (num_pending >= num_entries >> 1))
  2170. *near_full = true;
  2171. else
  2172. *near_full = false;
  2173. return num_pending;
  2174. }
  2175. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2176. #ifdef WLAN_SUPPORT_RX_FISA
  2177. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2178. {
  2179. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  2180. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2181. }
  2182. #else
  2183. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2184. {
  2185. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2186. }
  2187. #endif
  2188. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  2189. #ifdef DP_RX_DROP_RAW_FRM
  2190. /**
  2191. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  2192. * @nbuf: pkt skb pointer
  2193. *
  2194. * Return: true - raw frame, dropped
  2195. * false - not raw frame, do nothing
  2196. */
  2197. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  2198. {
  2199. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2200. dp_rx_nbuf_free(nbuf);
  2201. return true;
  2202. }
  2203. return false;
  2204. }
  2205. #endif
  2206. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  2207. /**
  2208. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  2209. * @soc: Datapath soc structure
  2210. * @ring_num: REO ring number
  2211. * @ring_desc: REO ring descriptor
  2212. *
  2213. * Returns: None
  2214. */
  2215. void
  2216. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  2217. hal_ring_desc_t ring_desc)
  2218. {
  2219. struct dp_buf_info_record *record;
  2220. struct hal_buf_info hbi;
  2221. uint32_t idx;
  2222. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  2223. return;
  2224. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  2225. /* buffer_addr_info is the first element of ring_desc */
  2226. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  2227. &hbi);
  2228. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  2229. DP_RX_HIST_MAX);
  2230. /* No NULL check needed for record since its an array */
  2231. record = &soc->rx_ring_history[ring_num]->entry[idx];
  2232. record->timestamp = qdf_get_log_timestamp();
  2233. record->hbi.paddr = hbi.paddr;
  2234. record->hbi.sw_cookie = hbi.sw_cookie;
  2235. record->hbi.rbm = hbi.rbm;
  2236. }
  2237. #endif
  2238. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  2239. /**
  2240. * dp_rx_update_stats() - Update soc level rx packet count
  2241. * @soc: DP soc handle
  2242. * @nbuf: nbuf received
  2243. *
  2244. * Returns: none
  2245. */
  2246. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2247. {
  2248. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  2249. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2250. }
  2251. #endif
  2252. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  2253. /**
  2254. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  2255. * @soc : dp_soc handle
  2256. * @pdev: dp_pdev handle
  2257. * @peer_id: peer_id of the peer for which completion came
  2258. * @ppdu_id: ppdu_id
  2259. * @netbuf: Buffer pointer
  2260. *
  2261. * This function is used to deliver rx packet to packet capture
  2262. */
  2263. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  2264. uint16_t peer_id, uint32_t is_offload,
  2265. qdf_nbuf_t netbuf)
  2266. {
  2267. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2268. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  2269. peer_id, is_offload, pdev->pdev_id);
  2270. }
  2271. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2272. uint32_t is_offload)
  2273. {
  2274. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2275. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  2276. soc, nbuf, HTT_INVALID_VDEV,
  2277. is_offload, 0);
  2278. }
  2279. #endif
  2280. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2281. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2282. {
  2283. QDF_STATUS ret;
  2284. if (vdev->osif_rx_flush) {
  2285. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2286. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2287. dp_err("Failed to flush rx pkts for vdev %d\n",
  2288. vdev->vdev_id);
  2289. return ret;
  2290. }
  2291. }
  2292. return QDF_STATUS_SUCCESS;
  2293. }
  2294. static QDF_STATUS
  2295. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2296. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2297. struct dp_pdev *dp_pdev,
  2298. struct rx_desc_pool *rx_desc_pool)
  2299. {
  2300. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2301. (nbuf_frag_info_t->virt_addr).nbuf =
  2302. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2303. RX_BUFFER_RESERVATION,
  2304. rx_desc_pool->buf_alignment, FALSE);
  2305. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2306. dp_err("nbuf alloc failed");
  2307. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2308. return ret;
  2309. }
  2310. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2311. (nbuf_frag_info_t->virt_addr).nbuf,
  2312. QDF_DMA_FROM_DEVICE,
  2313. rx_desc_pool->buf_size);
  2314. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2315. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2316. dp_err("nbuf map failed");
  2317. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2318. return ret;
  2319. }
  2320. nbuf_frag_info_t->paddr =
  2321. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2322. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2323. &nbuf_frag_info_t->paddr,
  2324. rx_desc_pool);
  2325. if (ret == QDF_STATUS_E_FAILURE) {
  2326. dp_err("nbuf check x86 failed");
  2327. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2328. return ret;
  2329. }
  2330. return QDF_STATUS_SUCCESS;
  2331. }
  2332. QDF_STATUS
  2333. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2334. struct dp_srng *dp_rxdma_srng,
  2335. struct rx_desc_pool *rx_desc_pool,
  2336. uint32_t num_req_buffers)
  2337. {
  2338. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2339. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2340. union dp_rx_desc_list_elem_t *next;
  2341. void *rxdma_ring_entry;
  2342. qdf_dma_addr_t paddr;
  2343. struct dp_rx_nbuf_frag_info *nf_info;
  2344. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2345. uint32_t buffer_index, nbuf_ptrs_per_page;
  2346. qdf_nbuf_t nbuf;
  2347. QDF_STATUS ret;
  2348. int page_idx, total_pages;
  2349. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2350. union dp_rx_desc_list_elem_t *tail = NULL;
  2351. int sync_hw_ptr = 1;
  2352. uint32_t num_entries_avail;
  2353. if (qdf_unlikely(!dp_pdev)) {
  2354. dp_rx_err("%pK: pdev is null for mac_id = %d",
  2355. dp_soc, mac_id);
  2356. return QDF_STATUS_E_FAILURE;
  2357. }
  2358. if (qdf_unlikely(!rxdma_srng)) {
  2359. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2360. return QDF_STATUS_E_FAILURE;
  2361. }
  2362. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2363. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2364. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2365. rxdma_srng,
  2366. sync_hw_ptr);
  2367. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2368. if (!num_entries_avail) {
  2369. dp_err("Num of available entries is zero, nothing to do");
  2370. return QDF_STATUS_E_NOMEM;
  2371. }
  2372. if (num_entries_avail < num_req_buffers)
  2373. num_req_buffers = num_entries_avail;
  2374. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2375. num_req_buffers, &desc_list, &tail);
  2376. if (!nr_descs) {
  2377. dp_err("no free rx_descs in freelist");
  2378. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2379. return QDF_STATUS_E_NOMEM;
  2380. }
  2381. dp_debug("got %u RX descs for driver attach", nr_descs);
  2382. /*
  2383. * Try to allocate pointers to the nbuf one page at a time.
  2384. * Take pointers that can fit in one page of memory and
  2385. * iterate through the total descriptors that need to be
  2386. * allocated in order of pages. Reuse the pointers that
  2387. * have been allocated to fit in one page across each
  2388. * iteration to index into the nbuf.
  2389. */
  2390. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2391. /*
  2392. * Add an extra page to store the remainder if any
  2393. */
  2394. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2395. total_pages++;
  2396. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2397. if (!nf_info) {
  2398. dp_err("failed to allocate nbuf array");
  2399. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2400. QDF_BUG(0);
  2401. return QDF_STATUS_E_NOMEM;
  2402. }
  2403. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2404. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2405. qdf_mem_zero(nf_info, PAGE_SIZE);
  2406. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2407. /*
  2408. * The last page of buffer pointers may not be required
  2409. * completely based on the number of descriptors. Below
  2410. * check will ensure we are allocating only the
  2411. * required number of descriptors.
  2412. */
  2413. if (nr_nbuf_total >= nr_descs)
  2414. break;
  2415. /* Flag is set while pdev rx_desc_pool initialization */
  2416. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2417. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2418. &nf_info[nr_nbuf], dp_pdev,
  2419. rx_desc_pool);
  2420. else
  2421. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2422. &nf_info[nr_nbuf], dp_pdev,
  2423. rx_desc_pool);
  2424. if (QDF_IS_STATUS_ERROR(ret))
  2425. break;
  2426. nr_nbuf_total++;
  2427. }
  2428. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2429. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2430. rxdma_ring_entry =
  2431. hal_srng_src_get_next(dp_soc->hal_soc,
  2432. rxdma_srng);
  2433. qdf_assert_always(rxdma_ring_entry);
  2434. next = desc_list->next;
  2435. paddr = nf_info[buffer_index].paddr;
  2436. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2437. /* Flag is set while pdev rx_desc_pool initialization */
  2438. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2439. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2440. &nf_info[buffer_index]);
  2441. else
  2442. dp_rx_desc_prep(&desc_list->rx_desc,
  2443. &nf_info[buffer_index]);
  2444. desc_list->rx_desc.in_use = 1;
  2445. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2446. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2447. __func__,
  2448. RX_DESC_REPLENISHED);
  2449. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2450. desc_list->rx_desc.cookie,
  2451. rx_desc_pool->owner);
  2452. dp_ipa_handle_rx_buf_smmu_mapping(
  2453. dp_soc, nbuf,
  2454. rx_desc_pool->buf_size,
  2455. true);
  2456. desc_list = next;
  2457. }
  2458. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2459. rxdma_srng, nr_nbuf, nr_nbuf);
  2460. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2461. }
  2462. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2463. qdf_mem_free(nf_info);
  2464. if (!nr_nbuf_total) {
  2465. dp_err("No nbuf's allocated");
  2466. QDF_BUG(0);
  2467. return QDF_STATUS_E_RESOURCES;
  2468. }
  2469. /* No need to count the number of bytes received during replenish.
  2470. * Therefore set replenish.pkts.bytes as 0.
  2471. */
  2472. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2473. return QDF_STATUS_SUCCESS;
  2474. }
  2475. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2476. /**
  2477. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2478. * monitor destination ring via frag.
  2479. *
  2480. * Enable this flag only for monitor destination buffer processing
  2481. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2482. * If flag is set then frag based function will be called for alloc,
  2483. * map, prep desc and free ops for desc buffer else normal nbuf based
  2484. * function will be called.
  2485. *
  2486. * @rx_desc_pool: Rx desc pool
  2487. * @is_mon_dest_desc: Is it for monitor dest buffer
  2488. *
  2489. * Return: None
  2490. */
  2491. #ifdef DP_RX_MON_MEM_FRAG
  2492. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2493. bool is_mon_dest_desc)
  2494. {
  2495. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2496. if (is_mon_dest_desc)
  2497. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2498. }
  2499. #else
  2500. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2501. bool is_mon_dest_desc)
  2502. {
  2503. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2504. if (is_mon_dest_desc)
  2505. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2506. }
  2507. #endif
  2508. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2509. /*
  2510. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2511. * pool
  2512. *
  2513. * @pdev: core txrx pdev context
  2514. *
  2515. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2516. * QDF_STATUS_E_NOMEM
  2517. */
  2518. QDF_STATUS
  2519. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2520. {
  2521. struct dp_soc *soc = pdev->soc;
  2522. uint32_t rxdma_entries;
  2523. uint32_t rx_sw_desc_num;
  2524. struct dp_srng *dp_rxdma_srng;
  2525. struct rx_desc_pool *rx_desc_pool;
  2526. uint32_t status = QDF_STATUS_SUCCESS;
  2527. int mac_for_pdev;
  2528. mac_for_pdev = pdev->lmac_id;
  2529. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2530. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2531. soc, mac_for_pdev);
  2532. return status;
  2533. }
  2534. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2535. rxdma_entries = dp_rxdma_srng->num_entries;
  2536. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2537. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2538. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2539. status = dp_rx_desc_pool_alloc(soc,
  2540. rx_sw_desc_num,
  2541. rx_desc_pool);
  2542. if (status != QDF_STATUS_SUCCESS)
  2543. return status;
  2544. return status;
  2545. }
  2546. /*
  2547. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2548. *
  2549. * @pdev: core txrx pdev context
  2550. */
  2551. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2552. {
  2553. int mac_for_pdev = pdev->lmac_id;
  2554. struct dp_soc *soc = pdev->soc;
  2555. struct rx_desc_pool *rx_desc_pool;
  2556. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2557. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2558. }
  2559. /*
  2560. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2561. *
  2562. * @pdev: core txrx pdev context
  2563. *
  2564. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2565. * QDF_STATUS_E_NOMEM
  2566. */
  2567. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2568. {
  2569. int mac_for_pdev = pdev->lmac_id;
  2570. struct dp_soc *soc = pdev->soc;
  2571. uint32_t rxdma_entries;
  2572. uint32_t rx_sw_desc_num;
  2573. struct dp_srng *dp_rxdma_srng;
  2574. struct rx_desc_pool *rx_desc_pool;
  2575. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2576. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2577. /**
  2578. * If NSS is enabled, rx_desc_pool is already filled.
  2579. * Hence, just disable desc_pool frag flag.
  2580. */
  2581. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2582. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2583. soc, mac_for_pdev);
  2584. return QDF_STATUS_SUCCESS;
  2585. }
  2586. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2587. return QDF_STATUS_E_NOMEM;
  2588. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2589. rxdma_entries = dp_rxdma_srng->num_entries;
  2590. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2591. rx_sw_desc_num =
  2592. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2593. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2594. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2595. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2596. /* Disable monitor dest processing via frag */
  2597. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2598. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2599. rx_sw_desc_num, rx_desc_pool);
  2600. return QDF_STATUS_SUCCESS;
  2601. }
  2602. /*
  2603. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2604. * @pdev: core txrx pdev context
  2605. *
  2606. * This function resets the freelist of rx descriptors and destroys locks
  2607. * associated with this list of descriptors.
  2608. */
  2609. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2610. {
  2611. int mac_for_pdev = pdev->lmac_id;
  2612. struct dp_soc *soc = pdev->soc;
  2613. struct rx_desc_pool *rx_desc_pool;
  2614. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2615. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2616. }
  2617. /*
  2618. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2619. *
  2620. * @pdev: core txrx pdev context
  2621. *
  2622. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2623. * QDF_STATUS_E_NOMEM
  2624. */
  2625. QDF_STATUS
  2626. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2627. {
  2628. int mac_for_pdev = pdev->lmac_id;
  2629. struct dp_soc *soc = pdev->soc;
  2630. struct dp_srng *dp_rxdma_srng;
  2631. struct rx_desc_pool *rx_desc_pool;
  2632. uint32_t rxdma_entries;
  2633. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2634. rxdma_entries = dp_rxdma_srng->num_entries;
  2635. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2636. /* Initialize RX buffer pool which will be
  2637. * used during low memory conditions
  2638. */
  2639. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2640. return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
  2641. dp_rxdma_srng,
  2642. rx_desc_pool,
  2643. rxdma_entries - 1);
  2644. }
  2645. /*
  2646. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2647. *
  2648. * @pdev: core txrx pdev context
  2649. */
  2650. void
  2651. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2652. {
  2653. int mac_for_pdev = pdev->lmac_id;
  2654. struct dp_soc *soc = pdev->soc;
  2655. struct rx_desc_pool *rx_desc_pool;
  2656. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2657. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2658. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2659. }
  2660. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2661. bool dp_rx_deliver_special_frame(struct dp_soc *soc,
  2662. struct dp_txrx_peer *txrx_peer,
  2663. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2664. uint8_t *rx_tlv_hdr)
  2665. {
  2666. uint32_t l2_hdr_offset = 0;
  2667. uint16_t msdu_len = 0;
  2668. uint32_t skip_len;
  2669. l2_hdr_offset =
  2670. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2671. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2672. skip_len = l2_hdr_offset;
  2673. } else {
  2674. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2675. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2676. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2677. }
  2678. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2679. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2680. qdf_nbuf_pull_head(nbuf, skip_len);
  2681. if (txrx_peer->vdev) {
  2682. dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
  2683. QDF_TX_RX_STATUS_OK);
  2684. }
  2685. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2686. dp_info("special frame, mpdu sn 0x%x",
  2687. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2688. qdf_nbuf_set_exc_frame(nbuf, 1);
  2689. dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
  2690. nbuf, NULL);
  2691. return true;
  2692. }
  2693. return false;
  2694. }
  2695. #endif
  2696. #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
  2697. void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
  2698. uint8_t *rx_tlv,
  2699. qdf_nbuf_t nbuf)
  2700. {
  2701. struct dp_soc *soc;
  2702. if (!pdev->is_first_wakeup_packet)
  2703. return;
  2704. soc = pdev->soc;
  2705. if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
  2706. qdf_nbuf_mark_wakeup_frame(nbuf);
  2707. dp_info("First packet after WOW Wakeup rcvd");
  2708. }
  2709. }
  2710. #endif