sde_hw_ctl.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/delay.h>
  6. #include "sde_hwio.h"
  7. #include "sde_hw_ctl.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #include "sde_reg_dma.h"
  11. #define CTL_LAYER(lm) \
  12. (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
  13. #define CTL_LAYER_EXT(lm) \
  14. (0x40 + (((lm) - LM_0) * 0x004))
  15. #define CTL_LAYER_EXT2(lm) \
  16. (0x70 + (((lm) - LM_0) * 0x004))
  17. #define CTL_LAYER_EXT3(lm) \
  18. (0xA0 + (((lm) - LM_0) * 0x004))
  19. #define CTL_TOP 0x014
  20. #define CTL_FLUSH 0x018
  21. #define CTL_START 0x01C
  22. #define CTL_PREPARE 0x0d0
  23. #define CTL_SW_RESET 0x030
  24. #define CTL_SW_RESET_OVERRIDE 0x060
  25. #define CTL_STATUS 0x064
  26. #define CTL_LAYER_EXTN_OFFSET 0x40
  27. #define CTL_ROT_TOP 0x0C0
  28. #define CTL_ROT_FLUSH 0x0C4
  29. #define CTL_ROT_START 0x0CC
  30. #define CTL_MERGE_3D_ACTIVE 0x0E4
  31. #define CTL_DSC_ACTIVE 0x0E8
  32. #define CTL_WB_ACTIVE 0x0EC
  33. #define CTL_CWB_ACTIVE 0x0F0
  34. #define CTL_INTF_ACTIVE 0x0F4
  35. #define CTL_CDM_ACTIVE 0x0F8
  36. #define CTL_FETCH_PIPE_ACTIVE 0x0FC
  37. #define CTL_MERGE_3D_FLUSH 0x100
  38. #define CTL_DSC_FLUSH 0x104
  39. #define CTL_WB_FLUSH 0x108
  40. #define CTL_CWB_FLUSH 0x10C
  41. #define CTL_INTF_FLUSH 0x110
  42. #define CTL_CDM_FLUSH 0x114
  43. #define CTL_PERIPH_FLUSH 0x128
  44. #define CTL_DSPP_0_FLUSH 0x13c
  45. #define CTL_INTF_MASTER 0x134
  46. #define CTL_UIDLE_ACTIVE 0x138
  47. #define CTL_MIXER_BORDER_OUT BIT(24)
  48. #define CTL_FLUSH_MASK_ROT BIT(27)
  49. #define CTL_FLUSH_MASK_CTL BIT(17)
  50. #define CTL_NUM_EXT 4
  51. #define CTL_SSPP_MAX_RECTS 2
  52. #define SDE_REG_RESET_TIMEOUT_US 2000
  53. #define SDE_REG_WAIT_RESET_TIMEOUT_US 100000
  54. #define UPDATE_MASK(m, idx, en) \
  55. ((m) = (en) ? ((m) | BIT((idx))) : ((m) & ~BIT((idx))))
  56. #define CTL_INVALID_BIT 0xffff
  57. #define VDC_IDX(i) ((i) + 16)
  58. #define UPDATE_ACTIVE(r, idx, en) UPDATE_MASK((r), (idx), (en))
  59. /**
  60. * List of SSPP bits in CTL_FLUSH
  61. */
  62. static const u32 sspp_tbl[SSPP_MAX] = { SDE_NONE, 0, 1, 2, 18, 3, 4, 5,
  63. 19, 11, 12, 24, 25, SDE_NONE, SDE_NONE};
  64. /**
  65. * List of layer mixer bits in CTL_FLUSH
  66. */
  67. static const u32 mixer_tbl[LM_MAX] = {SDE_NONE, 6, 7, 8, 9, 10, 20,
  68. SDE_NONE};
  69. /**
  70. * List of DSPP bits in CTL_FLUSH
  71. */
  72. static const u32 dspp_tbl[DSPP_MAX] = {SDE_NONE, 13, 14, 15, 21};
  73. /**
  74. * List of DSPP PA LUT bits in CTL_FLUSH
  75. */
  76. static const u32 dspp_pav_tbl[DSPP_MAX] = {SDE_NONE, 3, 4, 5, 19};
  77. /**
  78. * List of CDM LUT bits in CTL_FLUSH
  79. */
  80. static const u32 cdm_tbl[CDM_MAX] = {SDE_NONE, 26};
  81. /**
  82. * List of WB bits in CTL_FLUSH
  83. */
  84. static const u32 wb_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 16};
  85. /**
  86. * List of ROT bits in CTL_FLUSH
  87. */
  88. static const u32 rot_tbl[ROT_MAX] = {SDE_NONE, 27};
  89. /**
  90. * List of INTF bits in CTL_FLUSH
  91. */
  92. static const u32 intf_tbl[INTF_MAX] = {SDE_NONE, 31, 30, 29, 28};
  93. /**
  94. * Below definitions are for CTL supporting SDE_CTL_ACTIVE_CFG,
  95. * certain blocks have the individual flush control as well,
  96. * for such blocks flush is done by flushing individual control and
  97. * top level control.
  98. */
  99. /**
  100. * List of SSPP bits in CTL_FETCH_PIPE_ACTIVE
  101. */
  102. static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
  103. CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
  104. 1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
  105. /**
  106. * list of WB bits in CTL_WB_FLUSH
  107. */
  108. static const u32 wb_flush_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 2};
  109. /**
  110. * list of INTF bits in CTL_INTF_FLUSH
  111. */
  112. static const u32 intf_flush_tbl[INTF_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  113. /**
  114. * list of DSC bits in CTL_DSC_FLUSH
  115. */
  116. static const u32 dsc_flush_tbl[DSC_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  117. /**
  118. * list of VDC bits in CTL_DSC_FLUSH
  119. */
  120. static const u32 vdc_flush_tbl[DSC_MAX] = {SDE_NONE, 16, 17};
  121. /**
  122. * list of MERGE_3D bits in CTL_MERGE_3D_FLUSH
  123. */
  124. static const u32 merge_3d_tbl[MERGE_3D_MAX] = {SDE_NONE, 0, 1, 2};
  125. /**
  126. * list of CDM bits in CTL_CDM_FLUSH
  127. */
  128. static const u32 cdm_flush_tbl[CDM_MAX] = {SDE_NONE, 0};
  129. /**
  130. * list of CWB bits in CTL_CWB_FLUSH
  131. */
  132. static const u32 cwb_flush_tbl[CWB_MAX] = {SDE_NONE, SDE_NONE, 1, 2, 3,
  133. 4, 5};
  134. /**
  135. * list of DSPP sub-blk flush bits in CTL_DSPP_x_FLUSH
  136. */
  137. static const u32 dspp_sub_blk_flush_tbl[SDE_DSPP_MAX] = {
  138. [SDE_DSPP_IGC] = 2,
  139. [SDE_DSPP_PCC] = 4,
  140. [SDE_DSPP_GC] = 5,
  141. [SDE_DSPP_HSIC] = 0,
  142. [SDE_DSPP_MEMCOLOR] = 0,
  143. [SDE_DSPP_SIXZONE] = 0,
  144. [SDE_DSPP_GAMUT] = 3,
  145. [SDE_DSPP_DITHER] = 0,
  146. [SDE_DSPP_HIST] = 0,
  147. [SDE_DSPP_VLUT] = 1,
  148. [SDE_DSPP_AD] = 0,
  149. [SDE_DSPP_LTM] = 7,
  150. [SDE_DSPP_SPR] = 8,
  151. [SDE_DSPP_DEMURA] = 9,
  152. [SDE_DSPP_RC] = 10,
  153. [SDE_DSPP_SB] = 31,
  154. };
  155. /**
  156. * struct ctl_sspp_stage_reg_map: Describes bit layout for a sspp stage cfg
  157. * @ext: Index to indicate LAYER_x_EXT id for given sspp
  158. * @start: Start position of blend stage bits for given sspp
  159. * @bits: Number of bits from @start assigned for given sspp
  160. * @sec_bit_mask: Bitmask to add to LAYER_x_EXT1 for missing bit of sspp
  161. */
  162. struct ctl_sspp_stage_reg_map {
  163. u32 ext;
  164. u32 start;
  165. u32 bits;
  166. u32 sec_bit_mask;
  167. };
  168. /* list of ctl_sspp_stage_reg_map for all the sppp */
  169. static const struct ctl_sspp_stage_reg_map
  170. sspp_reg_cfg_tbl[SSPP_MAX][CTL_SSPP_MAX_RECTS] = {
  171. /* SSPP_NONE */{ {0, 0, 0, 0}, {0, 0, 0, 0} },
  172. /* SSPP_VIG0 */{ {0, 0, 3, BIT(0)}, {3, 0, 4, 0} },
  173. /* SSPP_VIG1 */{ {0, 3, 3, BIT(2)}, {3, 4, 4, 0} },
  174. /* SSPP_VIG2 */{ {0, 6, 3, BIT(4)}, {3, 8, 4, 0} },
  175. /* SSPP_VIG3 */{ {0, 26, 3, BIT(6)}, {3, 12, 4, 0} },
  176. /* SSPP_RGB0 */{ {0, 9, 3, BIT(8)}, {0, 0, 0, 0} },
  177. /* SSPP_RGB1 */{ {0, 12, 3, BIT(10)}, {0, 0, 0, 0} },
  178. /* SSPP_RGB2 */{ {0, 15, 3, BIT(12)}, {0, 0, 0, 0} },
  179. /* SSPP_RGB3 */{ {0, 29, 3, BIT(14)}, {0, 0, 0, 0} },
  180. /* SSPP_DMA0 */{ {0, 18, 3, BIT(16)}, {2, 8, 4, 0} },
  181. /* SSPP_DMA1 */{ {0, 21, 3, BIT(18)}, {2, 12, 4, 0} },
  182. /* SSPP_DMA2 */{ {2, 0, 4, 0}, {2, 16, 4, 0} },
  183. /* SSPP_DMA3 */{ {2, 4, 4, 0}, {2, 20, 4, 0} },
  184. /* SSPP_CURSOR0 */{ {1, 20, 4, 0}, {0, 0, 0, 0} },
  185. /* SSPP_CURSOR1 */{ {1, 26, 4, 0}, {0, 0, 0, 0} }
  186. };
  187. /**
  188. * Individual flush bit in CTL_FLUSH
  189. */
  190. #define WB_IDX 16
  191. #define DSC_IDX 22
  192. #define MERGE_3D_IDX 23
  193. #define CDM_IDX 26
  194. #define CWB_IDX 28
  195. #define DSPP_IDX 29
  196. #define PERIPH_IDX 30
  197. #define INTF_IDX 31
  198. /* struct ctl_hw_flush_cfg: Defines the active ctl hw flush config,
  199. * See enum ctl_hw_flush_type for types
  200. * @blk_max: Maximum hw idx
  201. * @flush_reg: Register with corresponding active ctl hw
  202. * @flush_idx: Corresponding index in ctl flush
  203. * @flush_mask_idx: Index of hw flush mask to use
  204. * @flush_tbl: Pointer to flush table
  205. */
  206. struct ctl_hw_flush_cfg {
  207. u32 blk_max;
  208. u32 flush_reg;
  209. u32 flush_idx;
  210. u32 flush_mask_idx;
  211. const u32 *flush_tbl;
  212. };
  213. static const struct ctl_hw_flush_cfg
  214. ctl_hw_flush_cfg_tbl_v1[SDE_HW_FLUSH_MAX] = {
  215. {WB_MAX, CTL_WB_FLUSH, WB_IDX, SDE_HW_FLUSH_WB,
  216. wb_flush_tbl}, /* SDE_HW_FLUSH_WB */
  217. {DSC_MAX, CTL_DSC_FLUSH, DSC_IDX, SDE_HW_FLUSH_DSC,
  218. dsc_flush_tbl}, /* SDE_HW_FLUSH_DSC */
  219. /* VDC is flushed to dsc, flush_reg = 0 so flush is done only once */
  220. {VDC_MAX, 0, DSC_IDX, SDE_HW_FLUSH_DSC,
  221. vdc_flush_tbl}, /* SDE_HW_FLUSH_VDC */
  222. {MERGE_3D_MAX, CTL_MERGE_3D_FLUSH, MERGE_3D_IDX, SDE_HW_FLUSH_MERGE_3D,
  223. merge_3d_tbl}, /* SDE_HW_FLUSH_MERGE_3D */
  224. {CDM_MAX, CTL_CDM_FLUSH, CDM_IDX, SDE_HW_FLUSH_CDM,
  225. cdm_flush_tbl}, /* SDE_HW_FLUSH_CDM */
  226. {CWB_MAX, CTL_CWB_FLUSH, CWB_IDX, SDE_HW_FLUSH_CWB,
  227. cwb_flush_tbl}, /* SDE_HW_FLUSH_CWB */
  228. {INTF_MAX, CTL_PERIPH_FLUSH, PERIPH_IDX, SDE_HW_FLUSH_PERIPH,
  229. intf_flush_tbl }, /* SDE_HW_FLUSH_PERIPH */
  230. {INTF_MAX, CTL_INTF_FLUSH, INTF_IDX, SDE_HW_FLUSH_INTF,
  231. intf_flush_tbl } /* SDE_HW_FLUSH_INTF */
  232. };
  233. static struct sde_ctl_cfg *_ctl_offset(enum sde_ctl ctl,
  234. struct sde_mdss_cfg *m,
  235. void __iomem *addr,
  236. struct sde_hw_blk_reg_map *b)
  237. {
  238. int i;
  239. for (i = 0; i < m->ctl_count; i++) {
  240. if (ctl == m->ctl[i].id) {
  241. b->base_off = addr;
  242. b->blk_off = m->ctl[i].base;
  243. b->length = m->ctl[i].len;
  244. b->hwversion = m->hwversion;
  245. b->log_mask = SDE_DBG_MASK_CTL;
  246. return &m->ctl[i];
  247. }
  248. }
  249. return ERR_PTR(-ENOMEM);
  250. }
  251. static int _mixer_stages(const struct sde_lm_cfg *mixer, int count,
  252. enum sde_lm lm)
  253. {
  254. int i;
  255. int stages = -EINVAL;
  256. for (i = 0; i < count; i++) {
  257. if (lm == mixer[i].id) {
  258. stages = mixer[i].sblk->maxblendstages;
  259. break;
  260. }
  261. }
  262. return stages;
  263. }
  264. static inline bool _is_dspp_flush_pending(struct sde_hw_ctl *ctx)
  265. {
  266. int i;
  267. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  268. if (ctx->flush.pending_dspp_flush_masks[i])
  269. return true;
  270. }
  271. return false;
  272. }
  273. static inline int sde_hw_ctl_trigger_start(struct sde_hw_ctl *ctx)
  274. {
  275. if (!ctx)
  276. return -EINVAL;
  277. SDE_REG_WRITE(&ctx->hw, CTL_START, 0x1);
  278. return 0;
  279. }
  280. static inline int sde_hw_ctl_get_start_state(struct sde_hw_ctl *ctx)
  281. {
  282. if (!ctx)
  283. return -EINVAL;
  284. return SDE_REG_READ(&ctx->hw, CTL_START);
  285. }
  286. static inline int sde_hw_ctl_trigger_pending(struct sde_hw_ctl *ctx)
  287. {
  288. if (!ctx)
  289. return -EINVAL;
  290. SDE_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
  291. return 0;
  292. }
  293. static inline int sde_hw_ctl_clear_pending_flush(struct sde_hw_ctl *ctx)
  294. {
  295. if (!ctx)
  296. return -EINVAL;
  297. memset(&ctx->flush, 0, sizeof(ctx->flush));
  298. return 0;
  299. }
  300. static inline int sde_hw_ctl_update_pending_flush(struct sde_hw_ctl *ctx,
  301. struct sde_ctl_flush_cfg *cfg)
  302. {
  303. if (!ctx || !cfg)
  304. return -EINVAL;
  305. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  306. return 0;
  307. }
  308. static int sde_hw_ctl_get_pending_flush(struct sde_hw_ctl *ctx,
  309. struct sde_ctl_flush_cfg *cfg)
  310. {
  311. if (!ctx || !cfg)
  312. return -EINVAL;
  313. memcpy(cfg, &ctx->flush, sizeof(*cfg));
  314. return 0;
  315. }
  316. static inline int sde_hw_ctl_trigger_flush(struct sde_hw_ctl *ctx)
  317. {
  318. if (!ctx)
  319. return -EINVAL;
  320. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  321. return 0;
  322. }
  323. static inline u32 sde_hw_ctl_get_flush_register(struct sde_hw_ctl *ctx)
  324. {
  325. struct sde_hw_blk_reg_map *c;
  326. u32 rot_op_mode;
  327. if (!ctx)
  328. return 0;
  329. c = &ctx->hw;
  330. rot_op_mode = SDE_REG_READ(c, CTL_ROT_TOP) & 0x3;
  331. /* rotate flush bit is undefined if offline mode, so ignore it */
  332. if (rot_op_mode == SDE_CTL_ROT_OP_MODE_OFFLINE)
  333. return SDE_REG_READ(c, CTL_FLUSH) & ~CTL_FLUSH_MASK_ROT;
  334. return SDE_REG_READ(c, CTL_FLUSH);
  335. }
  336. static inline void sde_hw_ctl_uidle_enable(struct sde_hw_ctl *ctx, bool enable)
  337. {
  338. u32 val;
  339. if (!ctx)
  340. return;
  341. val = SDE_REG_READ(&ctx->hw, CTL_UIDLE_ACTIVE);
  342. val = (val & ~BIT(0)) | (enable ? BIT(0) : 0);
  343. SDE_REG_WRITE(&ctx->hw, CTL_UIDLE_ACTIVE, val);
  344. }
  345. static inline int sde_hw_ctl_update_bitmask_sspp(struct sde_hw_ctl *ctx,
  346. enum sde_sspp sspp,
  347. bool enable)
  348. {
  349. if (!ctx)
  350. return -EINVAL;
  351. if (!(sspp > SSPP_NONE) || !(sspp < SSPP_MAX)) {
  352. SDE_ERROR("Unsupported pipe %d\n", sspp);
  353. return -EINVAL;
  354. }
  355. UPDATE_MASK(ctx->flush.pending_flush_mask, sspp_tbl[sspp], enable);
  356. return 0;
  357. }
  358. static inline int sde_hw_ctl_update_bitmask_mixer(struct sde_hw_ctl *ctx,
  359. enum sde_lm lm,
  360. bool enable)
  361. {
  362. if (!ctx)
  363. return -EINVAL;
  364. if (!(lm > SDE_NONE) || !(lm < LM_MAX)) {
  365. SDE_ERROR("Unsupported mixer %d\n", lm);
  366. return -EINVAL;
  367. }
  368. UPDATE_MASK(ctx->flush.pending_flush_mask, mixer_tbl[lm], enable);
  369. ctx->flush.pending_flush_mask |= CTL_FLUSH_MASK_CTL;
  370. return 0;
  371. }
  372. static inline int sde_hw_ctl_update_bitmask_dspp(struct sde_hw_ctl *ctx,
  373. enum sde_dspp dspp,
  374. bool enable)
  375. {
  376. if (!ctx)
  377. return -EINVAL;
  378. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  379. SDE_ERROR("Unsupported dspp %d\n", dspp);
  380. return -EINVAL;
  381. }
  382. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_tbl[dspp], enable);
  383. return 0;
  384. }
  385. static inline int sde_hw_ctl_update_bitmask_dspp_pavlut(struct sde_hw_ctl *ctx,
  386. enum sde_dspp dspp, bool enable)
  387. {
  388. if (!ctx)
  389. return -EINVAL;
  390. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  391. SDE_ERROR("Unsupported dspp %d\n", dspp);
  392. return -EINVAL;
  393. }
  394. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_pav_tbl[dspp], enable);
  395. return 0;
  396. }
  397. static inline int sde_hw_ctl_update_bitmask_cdm(struct sde_hw_ctl *ctx,
  398. enum sde_cdm cdm,
  399. bool enable)
  400. {
  401. if (!ctx)
  402. return -EINVAL;
  403. if (!(cdm > SDE_NONE) || !(cdm < CDM_MAX) || (cdm == CDM_1)) {
  404. SDE_ERROR("Unsupported cdm %d\n", cdm);
  405. return -EINVAL;
  406. }
  407. UPDATE_MASK(ctx->flush.pending_flush_mask, cdm_tbl[cdm], enable);
  408. return 0;
  409. }
  410. static inline int sde_hw_ctl_update_bitmask_wb(struct sde_hw_ctl *ctx,
  411. enum sde_wb wb, bool enable)
  412. {
  413. if (!ctx)
  414. return -EINVAL;
  415. if (!(wb > SDE_NONE) || !(wb < WB_MAX) ||
  416. (wb == WB_0) || (wb == WB_1)) {
  417. SDE_ERROR("Unsupported wb %d\n", wb);
  418. return -EINVAL;
  419. }
  420. UPDATE_MASK(ctx->flush.pending_flush_mask, wb_tbl[wb], enable);
  421. return 0;
  422. }
  423. static inline int sde_hw_ctl_update_bitmask_intf(struct sde_hw_ctl *ctx,
  424. enum sde_intf intf, bool enable)
  425. {
  426. if (!ctx)
  427. return -EINVAL;
  428. if (!(intf > SDE_NONE) || !(intf < INTF_MAX) || (intf > INTF_4)) {
  429. SDE_ERROR("Unsupported intf %d\n", intf);
  430. return -EINVAL;
  431. }
  432. UPDATE_MASK(ctx->flush.pending_flush_mask, intf_tbl[intf], enable);
  433. return 0;
  434. }
  435. static inline int sde_hw_ctl_update_bitmask(struct sde_hw_ctl *ctx,
  436. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  437. {
  438. int ret = 0;
  439. if (!ctx)
  440. return -EINVAL;
  441. switch (type) {
  442. case SDE_HW_FLUSH_CDM:
  443. ret = sde_hw_ctl_update_bitmask_cdm(ctx, blk_idx, enable);
  444. break;
  445. case SDE_HW_FLUSH_WB:
  446. ret = sde_hw_ctl_update_bitmask_wb(ctx, blk_idx, enable);
  447. break;
  448. case SDE_HW_FLUSH_INTF:
  449. ret = sde_hw_ctl_update_bitmask_intf(ctx, blk_idx, enable);
  450. break;
  451. default:
  452. break;
  453. }
  454. return ret;
  455. }
  456. static inline int sde_hw_ctl_update_bitmask_v1(struct sde_hw_ctl *ctx,
  457. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  458. {
  459. const struct ctl_hw_flush_cfg *cfg;
  460. if (!ctx || !(type < SDE_HW_FLUSH_MAX))
  461. return -EINVAL;
  462. cfg = &ctl_hw_flush_cfg_tbl_v1[type];
  463. if ((blk_idx <= SDE_NONE) || (blk_idx >= cfg->blk_max)) {
  464. SDE_ERROR("Unsupported hw idx, type:%d, blk_idx:%d, blk_max:%d",
  465. type, blk_idx, cfg->blk_max);
  466. return -EINVAL;
  467. }
  468. UPDATE_MASK(ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx],
  469. cfg->flush_tbl[blk_idx], enable);
  470. if (ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx])
  471. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 1);
  472. else
  473. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 0);
  474. return 0;
  475. }
  476. static inline int sde_hw_ctl_update_pending_flush_v1(
  477. struct sde_hw_ctl *ctx,
  478. struct sde_ctl_flush_cfg *cfg)
  479. {
  480. int i = 0;
  481. if (!ctx || !cfg)
  482. return -EINVAL;
  483. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  484. ctx->flush.pending_hw_flush_mask[i] |=
  485. cfg->pending_hw_flush_mask[i];
  486. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++)
  487. ctx->flush.pending_dspp_flush_masks[i] |=
  488. cfg->pending_dspp_flush_masks[i];
  489. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  490. return 0;
  491. }
  492. static inline int sde_hw_ctl_update_bitmask_dspp_subblk(struct sde_hw_ctl *ctx,
  493. enum sde_dspp dspp, u32 sub_blk, bool enable)
  494. {
  495. if (!ctx || dspp < DSPP_0 || dspp >= DSPP_MAX ||
  496. sub_blk < SDE_DSPP_IGC || sub_blk >= SDE_DSPP_MAX) {
  497. SDE_ERROR("invalid args - ctx %s, dspp %d sub_block %d\n",
  498. ctx ? "valid" : "invalid", dspp, sub_blk);
  499. return -EINVAL;
  500. }
  501. UPDATE_MASK(ctx->flush.pending_dspp_flush_masks[dspp - DSPP_0],
  502. dspp_sub_blk_flush_tbl[sub_blk], enable);
  503. if (_is_dspp_flush_pending(ctx))
  504. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 1);
  505. else
  506. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 0);
  507. return 0;
  508. }
  509. static void sde_hw_ctl_set_fetch_pipe_active(struct sde_hw_ctl *ctx,
  510. unsigned long *fetch_active)
  511. {
  512. int i;
  513. u32 val = 0;
  514. if (fetch_active) {
  515. for (i = 0; i < SSPP_MAX; i++) {
  516. if (test_bit(i, fetch_active) &&
  517. fetch_tbl[i] != CTL_INVALID_BIT)
  518. val |= BIT(fetch_tbl[i]);
  519. }
  520. }
  521. SDE_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val);
  522. }
  523. static inline void _sde_hw_ctl_write_dspp_flushes(struct sde_hw_ctl *ctx) {
  524. int i;
  525. bool has_dspp_flushes = ctx->caps->features &
  526. BIT(SDE_CTL_UNIFIED_DSPP_FLUSH);
  527. if (!has_dspp_flushes)
  528. return;
  529. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  530. u32 pending = ctx->flush.pending_dspp_flush_masks[i];
  531. if (pending)
  532. SDE_REG_WRITE(&ctx->hw, CTL_DSPP_0_FLUSH + (i * 4),
  533. pending);
  534. }
  535. }
  536. static inline int sde_hw_ctl_trigger_flush_v1(struct sde_hw_ctl *ctx)
  537. {
  538. int i = 0;
  539. const struct ctl_hw_flush_cfg *cfg = &ctl_hw_flush_cfg_tbl_v1[0];
  540. if (!ctx)
  541. return -EINVAL;
  542. if (ctx->flush.pending_flush_mask & BIT(DSPP_IDX))
  543. _sde_hw_ctl_write_dspp_flushes(ctx);
  544. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  545. if (cfg[i].flush_reg &&
  546. ctx->flush.pending_flush_mask &
  547. BIT(cfg[i].flush_idx))
  548. SDE_REG_WRITE(&ctx->hw,
  549. cfg[i].flush_reg,
  550. ctx->flush.pending_hw_flush_mask[i]);
  551. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  552. return 0;
  553. }
  554. static inline u32 sde_hw_ctl_get_intf_v1(struct sde_hw_ctl *ctx)
  555. {
  556. struct sde_hw_blk_reg_map *c;
  557. u32 intf_active;
  558. if (!ctx) {
  559. pr_err("Invalid input argument\n");
  560. return 0;
  561. }
  562. c = &ctx->hw;
  563. intf_active = SDE_REG_READ(c, CTL_INTF_ACTIVE);
  564. return intf_active;
  565. }
  566. static inline u32 sde_hw_ctl_get_intf(struct sde_hw_ctl *ctx)
  567. {
  568. struct sde_hw_blk_reg_map *c;
  569. u32 ctl_top;
  570. u32 intf_active = 0;
  571. if (!ctx) {
  572. pr_err("Invalid input argument\n");
  573. return 0;
  574. }
  575. c = &ctx->hw;
  576. ctl_top = SDE_REG_READ(c, CTL_TOP);
  577. intf_active = (ctl_top > 0) ?
  578. BIT(ctl_top - 1) : 0;
  579. return intf_active;
  580. }
  581. static u32 sde_hw_ctl_poll_reset_status(struct sde_hw_ctl *ctx, u32 timeout_us)
  582. {
  583. struct sde_hw_blk_reg_map *c;
  584. ktime_t timeout;
  585. u32 status;
  586. if (!ctx)
  587. return 0;
  588. c = &ctx->hw;
  589. timeout = ktime_add_us(ktime_get(), timeout_us);
  590. /*
  591. * it takes around 30us to have mdp finish resetting its ctl path
  592. * poll every 50us so that reset should be completed at 1st poll
  593. */
  594. do {
  595. status = SDE_REG_READ(c, CTL_SW_RESET);
  596. status &= 0x1;
  597. if (status)
  598. usleep_range(20, 50);
  599. } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
  600. return status;
  601. }
  602. static u32 sde_hw_ctl_get_reset_status(struct sde_hw_ctl *ctx)
  603. {
  604. if (!ctx)
  605. return 0;
  606. return (u32)SDE_REG_READ(&ctx->hw, CTL_SW_RESET);
  607. }
  608. static u32 sde_hw_ctl_get_scheduler_status(struct sde_hw_ctl *ctx)
  609. {
  610. if (!ctx)
  611. return INVALID_CTL_STATUS;
  612. return (u32)SDE_REG_READ(&ctx->hw, CTL_STATUS);
  613. }
  614. static int sde_hw_ctl_reset_control(struct sde_hw_ctl *ctx)
  615. {
  616. struct sde_hw_blk_reg_map *c;
  617. if (!ctx)
  618. return 0;
  619. c = &ctx->hw;
  620. pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
  621. SDE_REG_WRITE(c, CTL_SW_RESET, 0x1);
  622. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_RESET_TIMEOUT_US))
  623. return -EINVAL;
  624. return 0;
  625. }
  626. static void sde_hw_ctl_hard_reset(struct sde_hw_ctl *ctx, bool enable)
  627. {
  628. struct sde_hw_blk_reg_map *c;
  629. if (!ctx)
  630. return;
  631. c = &ctx->hw;
  632. pr_debug("hw ctl hard reset for ctl:%d, %d\n",
  633. ctx->idx - CTL_0, enable);
  634. SDE_REG_WRITE(c, CTL_SW_RESET_OVERRIDE, enable);
  635. }
  636. static int sde_hw_ctl_wait_reset_status(struct sde_hw_ctl *ctx)
  637. {
  638. struct sde_hw_blk_reg_map *c;
  639. u32 status;
  640. if (!ctx)
  641. return 0;
  642. c = &ctx->hw;
  643. status = SDE_REG_READ(c, CTL_SW_RESET);
  644. status &= 0x01;
  645. if (!status)
  646. return 0;
  647. pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
  648. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_WAIT_RESET_TIMEOUT_US)) {
  649. pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
  650. return -EINVAL;
  651. }
  652. return 0;
  653. }
  654. static void sde_hw_ctl_clear_all_blendstages(struct sde_hw_ctl *ctx)
  655. {
  656. struct sde_hw_blk_reg_map *c;
  657. int i;
  658. if (!ctx)
  659. return;
  660. c = &ctx->hw;
  661. for (i = 0; i < ctx->mixer_count; i++) {
  662. int mixer_id = ctx->mixer_hw_caps[i].id;
  663. SDE_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
  664. SDE_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
  665. SDE_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
  666. SDE_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
  667. }
  668. SDE_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
  669. }
  670. static void _sde_hw_ctl_get_mixer_cfg(struct sde_hw_ctl *ctx,
  671. struct sde_hw_stage_cfg *stage_cfg, int stages, u32 *cfg)
  672. {
  673. int i, j, pipes_per_stage;
  674. const struct ctl_sspp_stage_reg_map *reg_map;
  675. if (test_bit(SDE_MIXER_SOURCESPLIT, &ctx->mixer_hw_caps->features))
  676. pipes_per_stage = PIPES_PER_STAGE;
  677. else
  678. pipes_per_stage = 1;
  679. for (i = 0; i <= stages; i++) {
  680. /* overflow to ext register if 'i + 1 > 7' */
  681. for (j = 0 ; j < pipes_per_stage; j++) {
  682. enum sde_sspp pipe = stage_cfg->stage[i][j];
  683. enum sde_sspp_multirect_index rect_index =
  684. stage_cfg->multirect_index[i][j];
  685. u32 mixer_value;
  686. if (!pipe || pipe >= SSPP_MAX || rect_index >= SDE_SSPP_RECT_MAX)
  687. continue;
  688. /* Handle multi rect enums */
  689. if (rect_index == SDE_SSPP_RECT_SOLO)
  690. rect_index = SDE_SSPP_RECT_0;
  691. reg_map = &sspp_reg_cfg_tbl[pipe][rect_index-1];
  692. if (!reg_map->bits)
  693. continue;
  694. mixer_value = (i + 1) & (BIT(reg_map->bits) - 1);
  695. cfg[reg_map->ext] |= (mixer_value << reg_map->start);
  696. if ((i + 1) > mixer_value)
  697. cfg[1] |= reg_map->sec_bit_mask;
  698. }
  699. }
  700. }
  701. static void sde_hw_ctl_setup_blendstage(struct sde_hw_ctl *ctx,
  702. enum sde_lm lm, struct sde_hw_stage_cfg *stage_cfg,
  703. bool disable_border)
  704. {
  705. struct sde_hw_blk_reg_map *c;
  706. u32 cfg[CTL_NUM_EXT] = { 0 };
  707. int stages;
  708. if (!ctx)
  709. return;
  710. stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
  711. if (stages < 0)
  712. return;
  713. c = &ctx->hw;
  714. if (stage_cfg)
  715. _sde_hw_ctl_get_mixer_cfg(ctx, stage_cfg, stages, cfg);
  716. if (!disable_border &&
  717. ((!cfg[0] && !cfg[1] && !cfg[2] && !cfg[3]) ||
  718. (stage_cfg && !stage_cfg->stage[0][0])))
  719. cfg[0] |= CTL_MIXER_BORDER_OUT;
  720. SDE_REG_WRITE(c, CTL_LAYER(lm), cfg[0]);
  721. SDE_REG_WRITE(c, CTL_LAYER_EXT(lm), cfg[1]);
  722. SDE_REG_WRITE(c, CTL_LAYER_EXT2(lm), cfg[2]);
  723. SDE_REG_WRITE(c, CTL_LAYER_EXT3(lm), cfg[3]);
  724. }
  725. static u32 sde_hw_ctl_get_staged_sspp(struct sde_hw_ctl *ctx, enum sde_lm lm,
  726. struct sde_sspp_index_info *info, u32 info_max_cnt)
  727. {
  728. int i, j;
  729. u32 count = 0;
  730. u32 mask = 0;
  731. bool staged;
  732. u32 mixercfg[CTL_NUM_EXT];
  733. struct sde_hw_blk_reg_map *c;
  734. const struct ctl_sspp_stage_reg_map *sspp_cfg;
  735. if (!ctx || (lm >= LM_MAX) || !info)
  736. return count;
  737. c = &ctx->hw;
  738. mixercfg[0] = SDE_REG_READ(c, CTL_LAYER(lm));
  739. mixercfg[1] = SDE_REG_READ(c, CTL_LAYER_EXT(lm));
  740. mixercfg[2] = SDE_REG_READ(c, CTL_LAYER_EXT2(lm));
  741. mixercfg[3] = SDE_REG_READ(c, CTL_LAYER_EXT3(lm));
  742. for (i = SSPP_VIG0; i < SSPP_MAX; i++) {
  743. for (j = 0; j < CTL_SSPP_MAX_RECTS; j++) {
  744. if (count >= info_max_cnt)
  745. goto end;
  746. sspp_cfg = &sspp_reg_cfg_tbl[i][j];
  747. if (!sspp_cfg->bits || sspp_cfg->ext >= CTL_NUM_EXT)
  748. continue;
  749. mask = ((0x1 << sspp_cfg->bits) - 1) << sspp_cfg->start;
  750. staged = mixercfg[sspp_cfg->ext] & mask;
  751. if (!staged)
  752. staged = mixercfg[1] & sspp_cfg->sec_bit_mask;
  753. if (staged) {
  754. info[count].sspp = i;
  755. info[count].is_virtual = j;
  756. count++;
  757. }
  758. }
  759. }
  760. end:
  761. return count;
  762. }
  763. static int sde_hw_ctl_intf_cfg_v1(struct sde_hw_ctl *ctx,
  764. struct sde_hw_intf_cfg_v1 *cfg)
  765. {
  766. struct sde_hw_blk_reg_map *c;
  767. u32 intf_active = 0;
  768. u32 wb_active = 0;
  769. u32 merge_3d_active = 0;
  770. u32 cwb_active = 0;
  771. u32 mode_sel = 0xf0000000;
  772. u32 cdm_active = 0;
  773. u32 intf_master = 0;
  774. u32 i;
  775. if (!ctx)
  776. return -EINVAL;
  777. c = &ctx->hw;
  778. for (i = 0; i < cfg->intf_count; i++) {
  779. if (cfg->intf[i])
  780. intf_active |= BIT(cfg->intf[i] - INTF_0);
  781. }
  782. if (cfg->intf_count > 1)
  783. intf_master = BIT(cfg->intf_master - INTF_0);
  784. for (i = 0; i < cfg->wb_count; i++) {
  785. if (cfg->wb[i])
  786. wb_active |= BIT(cfg->wb[i] - WB_0);
  787. }
  788. for (i = 0; i < cfg->merge_3d_count; i++) {
  789. if (cfg->merge_3d[i])
  790. merge_3d_active |= BIT(cfg->merge_3d[i] - MERGE_3D_0);
  791. }
  792. for (i = 0; i < cfg->cwb_count; i++) {
  793. if (cfg->cwb[i])
  794. cwb_active |= BIT(cfg->cwb[i] - CWB_0);
  795. }
  796. for (i = 0; i < cfg->cdm_count; i++) {
  797. if (cfg->cdm[i])
  798. cdm_active |= BIT(cfg->cdm[i] - CDM_0);
  799. }
  800. if (cfg->intf_mode_sel == SDE_CTL_MODE_SEL_CMD)
  801. mode_sel |= BIT(17);
  802. SDE_REG_WRITE(c, CTL_TOP, mode_sel);
  803. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  804. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  805. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  806. SDE_REG_WRITE(c, CTL_CDM_ACTIVE, cdm_active);
  807. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  808. SDE_REG_WRITE(c, CTL_INTF_MASTER, intf_master);
  809. return 0;
  810. }
  811. static int sde_hw_ctl_reset_post_disable(struct sde_hw_ctl *ctx,
  812. struct sde_hw_intf_cfg_v1 *cfg, u32 merge_3d_idx)
  813. {
  814. struct sde_hw_blk_reg_map *c;
  815. u32 intf_active = 0, wb_active = 0, merge_3d_active = 0;
  816. u32 intf_flush = 0, wb_flush = 0;
  817. u32 i;
  818. if (!ctx || !cfg) {
  819. SDE_ERROR("invalid hw_ctl or hw_intf blk\n");
  820. return -EINVAL;
  821. }
  822. c = &ctx->hw;
  823. for (i = 0; i < cfg->intf_count; i++) {
  824. if (cfg->intf[i]) {
  825. intf_active &= ~BIT(cfg->intf[i] - INTF_0);
  826. intf_flush |= BIT(cfg->intf[i] - INTF_0);
  827. }
  828. }
  829. for (i = 0; i < cfg->wb_count; i++) {
  830. if (cfg->wb[i]) {
  831. wb_active &= ~BIT(cfg->wb[i] - WB_0);
  832. wb_flush |= BIT(cfg->wb[i] - WB_0);
  833. }
  834. }
  835. if (merge_3d_idx) {
  836. /* disable and flush merge3d_blk */
  837. merge_3d_active &= ~BIT(merge_3d_idx - MERGE_3D_0);
  838. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_MERGE_3D] =
  839. BIT(merge_3d_idx - MERGE_3D_0);
  840. UPDATE_MASK(ctx->flush.pending_flush_mask, MERGE_3D_IDX, 1);
  841. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  842. }
  843. sde_hw_ctl_clear_all_blendstages(ctx);
  844. if (cfg->intf_count) {
  845. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_INTF] =
  846. intf_flush;
  847. UPDATE_MASK(ctx->flush.pending_flush_mask, INTF_IDX, 1);
  848. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  849. }
  850. if (cfg->wb_count) {
  851. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_WB] = wb_flush;
  852. UPDATE_MASK(ctx->flush.pending_flush_mask, WB_IDX, 1);
  853. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  854. }
  855. return 0;
  856. }
  857. static int sde_hw_ctl_update_intf_cfg(struct sde_hw_ctl *ctx,
  858. struct sde_hw_intf_cfg_v1 *cfg, bool enable)
  859. {
  860. int i;
  861. u32 cwb_active = 0;
  862. u32 merge_3d_active = 0;
  863. u32 wb_active = 0;
  864. u32 dsc_active = 0;
  865. u32 vdc_active = 0;
  866. struct sde_hw_blk_reg_map *c;
  867. if (!ctx)
  868. return -EINVAL;
  869. c = &ctx->hw;
  870. if (cfg->cwb_count) {
  871. cwb_active = SDE_REG_READ(c, CTL_CWB_ACTIVE);
  872. for (i = 0; i < cfg->cwb_count; i++) {
  873. if (cfg->cwb[i])
  874. UPDATE_ACTIVE(cwb_active,
  875. (cfg->cwb[i] - CWB_0),
  876. enable);
  877. }
  878. wb_active = enable ? BIT(2) : 0;
  879. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  880. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  881. }
  882. if (cfg->merge_3d_count) {
  883. merge_3d_active = SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE);
  884. for (i = 0; i < cfg->merge_3d_count; i++) {
  885. if (cfg->merge_3d[i])
  886. UPDATE_ACTIVE(merge_3d_active,
  887. (cfg->merge_3d[i] - MERGE_3D_0),
  888. enable);
  889. }
  890. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  891. }
  892. if (cfg->dsc_count) {
  893. dsc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  894. for (i = 0; i < cfg->dsc_count; i++) {
  895. if (cfg->dsc[i])
  896. UPDATE_ACTIVE(dsc_active,
  897. (cfg->dsc[i] - DSC_0), enable);
  898. }
  899. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active);
  900. }
  901. if (cfg->vdc_count) {
  902. vdc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  903. for (i = 0; i < cfg->vdc_count; i++) {
  904. if (cfg->vdc[i])
  905. UPDATE_ACTIVE(vdc_active,
  906. VDC_IDX(cfg->vdc[i] - VDC_0), enable);
  907. }
  908. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, vdc_active);
  909. }
  910. return 0;
  911. }
  912. static int sde_hw_ctl_intf_cfg(struct sde_hw_ctl *ctx,
  913. struct sde_hw_intf_cfg *cfg)
  914. {
  915. struct sde_hw_blk_reg_map *c;
  916. u32 intf_cfg = 0;
  917. if (!ctx)
  918. return -EINVAL;
  919. c = &ctx->hw;
  920. intf_cfg |= (cfg->intf & 0xF) << 4;
  921. if (cfg->wb)
  922. intf_cfg |= (cfg->wb & 0x3) + 2;
  923. if (cfg->mode_3d) {
  924. intf_cfg |= BIT(19);
  925. intf_cfg |= (cfg->mode_3d - 0x1) << 20;
  926. }
  927. switch (cfg->intf_mode_sel) {
  928. case SDE_CTL_MODE_SEL_VID:
  929. intf_cfg &= ~BIT(17);
  930. intf_cfg &= ~(0x3 << 15);
  931. break;
  932. case SDE_CTL_MODE_SEL_CMD:
  933. intf_cfg |= BIT(17);
  934. intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
  935. break;
  936. default:
  937. pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
  938. return -EINVAL;
  939. }
  940. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  941. return 0;
  942. }
  943. static void sde_hw_ctl_update_wb_cfg(struct sde_hw_ctl *ctx,
  944. struct sde_hw_intf_cfg *cfg, bool enable)
  945. {
  946. struct sde_hw_blk_reg_map *c = &ctx->hw;
  947. u32 intf_cfg = 0;
  948. if (!cfg->wb)
  949. return;
  950. intf_cfg = SDE_REG_READ(c, CTL_TOP);
  951. if (enable)
  952. intf_cfg |= (cfg->wb & 0x3) + 2;
  953. else
  954. intf_cfg &= ~((cfg->wb & 0x3) + 2);
  955. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  956. }
  957. static inline u32 sde_hw_ctl_read_ctl_top(struct sde_hw_ctl *ctx)
  958. {
  959. struct sde_hw_blk_reg_map *c;
  960. u32 ctl_top;
  961. if (!ctx) {
  962. pr_err("Invalid input argument\n");
  963. return 0;
  964. }
  965. c = &ctx->hw;
  966. ctl_top = SDE_REG_READ(c, CTL_TOP);
  967. return ctl_top;
  968. }
  969. static inline u32 sde_hw_ctl_read_ctl_layers(struct sde_hw_ctl *ctx, int index)
  970. {
  971. struct sde_hw_blk_reg_map *c;
  972. u32 ctl_top;
  973. if (!ctx) {
  974. pr_err("Invalid input argument\n");
  975. return 0;
  976. }
  977. c = &ctx->hw;
  978. ctl_top = SDE_REG_READ(c, CTL_LAYER(index));
  979. pr_debug("Ctl_layer value = 0x%x\n", ctl_top);
  980. return ctl_top;
  981. }
  982. static inline bool sde_hw_ctl_read_active_status(struct sde_hw_ctl *ctx,
  983. enum sde_hw_blk_type blk, int index)
  984. {
  985. struct sde_hw_blk_reg_map *c;
  986. if (!ctx) {
  987. pr_err("Invalid input argument\n");
  988. return 0;
  989. }
  990. c = &ctx->hw;
  991. switch (blk) {
  992. case SDE_HW_BLK_MERGE_3D:
  993. return (SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE) &
  994. BIT(index - MERGE_3D_0)) ? true : false;
  995. case SDE_HW_BLK_DSC:
  996. return (SDE_REG_READ(c, CTL_DSC_ACTIVE) &
  997. BIT(index - DSC_0)) ? true : false;
  998. case SDE_HW_BLK_WB:
  999. return (SDE_REG_READ(c, CTL_WB_ACTIVE) &
  1000. BIT(index - WB_0)) ? true : false;
  1001. case SDE_HW_BLK_CDM:
  1002. return (SDE_REG_READ(c, CTL_CDM_ACTIVE) &
  1003. BIT(index - CDM_0)) ? true : false;
  1004. case SDE_HW_BLK_INTF:
  1005. return (SDE_REG_READ(c, CTL_INTF_ACTIVE) &
  1006. BIT(index - INTF_0)) ? true : false;
  1007. default:
  1008. pr_err("unsupported blk %d\n", blk);
  1009. return false;
  1010. };
  1011. return false;
  1012. }
  1013. static int sde_hw_reg_dma_flush(struct sde_hw_ctl *ctx, bool blocking)
  1014. {
  1015. struct sde_hw_reg_dma_ops *ops = sde_reg_dma_get_ops();
  1016. if (!ctx)
  1017. return -EINVAL;
  1018. if (ops && ops->last_command)
  1019. return ops->last_command(ctx, DMA_CTL_QUEUE0,
  1020. (blocking ? REG_DMA_WAIT4_COMP : REG_DMA_NOWAIT));
  1021. return 0;
  1022. }
  1023. static void _setup_ctl_ops(struct sde_hw_ctl_ops *ops,
  1024. unsigned long cap)
  1025. {
  1026. if (cap & BIT(SDE_CTL_ACTIVE_CFG)) {
  1027. ops->update_pending_flush =
  1028. sde_hw_ctl_update_pending_flush_v1;
  1029. ops->trigger_flush = sde_hw_ctl_trigger_flush_v1;
  1030. ops->setup_intf_cfg_v1 = sde_hw_ctl_intf_cfg_v1;
  1031. ops->update_intf_cfg = sde_hw_ctl_update_intf_cfg;
  1032. ops->update_bitmask = sde_hw_ctl_update_bitmask_v1;
  1033. ops->get_ctl_intf = sde_hw_ctl_get_intf_v1;
  1034. ops->reset_post_disable = sde_hw_ctl_reset_post_disable;
  1035. ops->get_scheduler_status = sde_hw_ctl_get_scheduler_status;
  1036. ops->read_active_status = sde_hw_ctl_read_active_status;
  1037. ops->set_active_pipes = sde_hw_ctl_set_fetch_pipe_active;
  1038. } else {
  1039. ops->update_pending_flush = sde_hw_ctl_update_pending_flush;
  1040. ops->trigger_flush = sde_hw_ctl_trigger_flush;
  1041. ops->setup_intf_cfg = sde_hw_ctl_intf_cfg;
  1042. ops->update_bitmask = sde_hw_ctl_update_bitmask;
  1043. ops->get_ctl_intf = sde_hw_ctl_get_intf;
  1044. }
  1045. ops->clear_pending_flush = sde_hw_ctl_clear_pending_flush;
  1046. ops->get_pending_flush = sde_hw_ctl_get_pending_flush;
  1047. ops->get_flush_register = sde_hw_ctl_get_flush_register;
  1048. ops->trigger_start = sde_hw_ctl_trigger_start;
  1049. ops->trigger_pending = sde_hw_ctl_trigger_pending;
  1050. ops->read_ctl_top = sde_hw_ctl_read_ctl_top;
  1051. ops->read_ctl_layers = sde_hw_ctl_read_ctl_layers;
  1052. ops->update_wb_cfg = sde_hw_ctl_update_wb_cfg;
  1053. ops->reset = sde_hw_ctl_reset_control;
  1054. ops->get_reset = sde_hw_ctl_get_reset_status;
  1055. ops->hard_reset = sde_hw_ctl_hard_reset;
  1056. ops->wait_reset_status = sde_hw_ctl_wait_reset_status;
  1057. ops->clear_all_blendstages = sde_hw_ctl_clear_all_blendstages;
  1058. ops->setup_blendstage = sde_hw_ctl_setup_blendstage;
  1059. ops->get_staged_sspp = sde_hw_ctl_get_staged_sspp;
  1060. ops->update_bitmask_sspp = sde_hw_ctl_update_bitmask_sspp;
  1061. ops->update_bitmask_mixer = sde_hw_ctl_update_bitmask_mixer;
  1062. ops->reg_dma_flush = sde_hw_reg_dma_flush;
  1063. ops->get_start_state = sde_hw_ctl_get_start_state;
  1064. if (cap & BIT(SDE_CTL_UNIFIED_DSPP_FLUSH)) {
  1065. ops->update_bitmask_dspp_subblk =
  1066. sde_hw_ctl_update_bitmask_dspp_subblk;
  1067. } else {
  1068. ops->update_bitmask_dspp = sde_hw_ctl_update_bitmask_dspp;
  1069. ops->update_bitmask_dspp_pavlut =
  1070. sde_hw_ctl_update_bitmask_dspp_pavlut;
  1071. }
  1072. if (cap & BIT(SDE_CTL_UIDLE))
  1073. ops->uidle_enable = sde_hw_ctl_uidle_enable;
  1074. };
  1075. static struct sde_hw_blk_ops sde_hw_ops = {
  1076. .start = NULL,
  1077. .stop = NULL,
  1078. };
  1079. struct sde_hw_ctl *sde_hw_ctl_init(enum sde_ctl idx,
  1080. void __iomem *addr,
  1081. struct sde_mdss_cfg *m)
  1082. {
  1083. struct sde_hw_ctl *c;
  1084. struct sde_ctl_cfg *cfg;
  1085. int rc;
  1086. c = kzalloc(sizeof(*c), GFP_KERNEL);
  1087. if (!c)
  1088. return ERR_PTR(-ENOMEM);
  1089. cfg = _ctl_offset(idx, m, addr, &c->hw);
  1090. if (IS_ERR_OR_NULL(cfg)) {
  1091. kfree(c);
  1092. pr_err("failed to create sde_hw_ctl %d\n", idx);
  1093. return ERR_PTR(-EINVAL);
  1094. }
  1095. c->caps = cfg;
  1096. _setup_ctl_ops(&c->ops, c->caps->features);
  1097. c->idx = idx;
  1098. c->mixer_count = m->mixer_count;
  1099. c->mixer_hw_caps = m->mixer;
  1100. rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_CTL, idx, &sde_hw_ops);
  1101. if (rc) {
  1102. SDE_ERROR("failed to init hw blk %d\n", rc);
  1103. goto blk_init_error;
  1104. }
  1105. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
  1106. c->hw.blk_off + c->hw.length, c->hw.xin_id);
  1107. return c;
  1108. blk_init_error:
  1109. kfree(c);
  1110. return ERR_PTR(rc);
  1111. }
  1112. void sde_hw_ctl_destroy(struct sde_hw_ctl *ctx)
  1113. {
  1114. if (ctx)
  1115. sde_hw_blk_destroy(&ctx->base);
  1116. kfree(ctx);
  1117. }