Fichiers
android_kernel_samsung_sm86…/hal/wifi3.0/hal_api_mon.h
Amir Patel 0fe7f4446b qcacmn: Optimize monitor mode memory utilization
a. Optimize ppdu_info memory
b. Use kmem cache for ppdu info allocation

CRs-Fixed: 3265620
Change-Id: Ieee040aa703aef8c5eee5e5a34a52ef18300b696
2022-09-06 10:23:43 -07:00

1370 lignes
40 KiB
C

/*
* Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _HAL_API_MON_H_
#define _HAL_API_MON_H_
#include "qdf_types.h"
#include "hal_internal.h"
#include "hal_rx.h"
#include "hal_hw_headers.h"
#include <target_type.h>
#define HAL_RX_PHY_DATA_RADAR 0x01
#define HAL_SU_MU_CODING_LDPC 0x01
#define HAL_RX_FCS_LEN (4)
#define KEY_EXTIV 0x20
#define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
#define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
#define HAL_RX_TLV32_HDR_SIZE 4
#define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
((*((uint32_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV32_TYPE_MASK) >> \
HAL_RX_USER_TLV32_TYPE_LSB)
#define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
((*((uint32_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV32_LEN_MASK) >> \
HAL_RX_USER_TLV32_LEN_LSB)
#define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
((*((uint32_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV32_USERID_MASK) >> \
HAL_RX_USER_TLV32_USERID_LSB)
#define HAL_RX_TLV64_HDR_SIZE 8
#define HAL_RX_GET_USER_TLV64_TYPE(rx_status_tlv_ptr) \
((*((uint64_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV64_TYPE_MASK) >> \
HAL_RX_USER_TLV64_TYPE_LSB)
#define HAL_RX_GET_USER_TLV64_LEN(rx_status_tlv_ptr) \
((*((uint64_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV64_LEN_MASK) >> \
HAL_RX_USER_TLV64_LEN_LSB)
#define HAL_RX_GET_USER_TLV64_USERID(rx_status_tlv_ptr) \
((*((uint64_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV64_USERID_MASK) >> \
HAL_RX_USER_TLV64_USERID_LSB)
#define HAL_TLV_STATUS_PPDU_NOT_DONE 0
#define HAL_TLV_STATUS_PPDU_DONE 1
#define HAL_TLV_STATUS_BUF_DONE 2
#define HAL_TLV_STATUS_PPDU_NON_STD_DONE 3
#define HAL_TLV_STATUS_PPDU_START 4
#define HAL_TLV_STATUS_HEADER 5
#define HAL_TLV_STATUS_MPDU_END 6
#define HAL_TLV_STATUS_MSDU_START 7
#define HAL_TLV_STATUS_MSDU_END 8
#define HAL_TLV_STATUS_MON_BUF_ADDR 9
#define HAL_TLV_STATUS_MPDU_START 10
#define HAL_MAX_UL_MU_USERS 37
#define HAL_RX_PKT_TYPE_11A 0
#define HAL_RX_PKT_TYPE_11B 1
#define HAL_RX_PKT_TYPE_11N 2
#define HAL_RX_PKT_TYPE_11AC 3
#define HAL_RX_PKT_TYPE_11AX 4
#ifdef WLAN_FEATURE_11BE
#define HAL_RX_PKT_TYPE_11BE 6
#endif
#define HAL_RX_RECEPTION_TYPE_SU 0
#define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
#define HAL_RX_RECEPTION_TYPE_OFDMA 2
#define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
/* Multiply rate by 2 to avoid float point
* and get rate in units of 500kbps
*/
#define HAL_11B_RATE_0MCS 11*2
#define HAL_11B_RATE_1MCS 5.5*2
#define HAL_11B_RATE_2MCS 2*2
#define HAL_11B_RATE_3MCS 1*2
#define HAL_11B_RATE_4MCS 11*2
#define HAL_11B_RATE_5MCS 5.5*2
#define HAL_11B_RATE_6MCS 2*2
#define HAL_11A_RATE_0MCS 48*2
#define HAL_11A_RATE_1MCS 24*2
#define HAL_11A_RATE_2MCS 12*2
#define HAL_11A_RATE_3MCS 6*2
#define HAL_11A_RATE_4MCS 54*2
#define HAL_11A_RATE_5MCS 36*2
#define HAL_11A_RATE_6MCS 18*2
#define HAL_11A_RATE_7MCS 9*2
#define HAL_LEGACY_MCS0 0
#define HAL_LEGACY_MCS1 1
#define HAL_LEGACY_MCS2 2
#define HAL_LEGACY_MCS3 3
#define HAL_LEGACY_MCS4 4
#define HAL_LEGACY_MCS5 5
#define HAL_LEGACY_MCS6 6
#define HAL_LEGACY_MCS7 7
#define HE_GI_0_8 0
#define HE_GI_0_4 1
#define HE_GI_1_6 2
#define HE_GI_3_2 3
#define HE_GI_RADIOTAP_0_8 0
#define HE_GI_RADIOTAP_1_6 1
#define HE_GI_RADIOTAP_3_2 2
#define HE_GI_RADIOTAP_RESERVED 3
#define HE_LTF_RADIOTAP_UNKNOWN 0
#define HE_LTF_RADIOTAP_1_X 1
#define HE_LTF_RADIOTAP_2_X 2
#define HE_LTF_RADIOTAP_4_X 3
#define HT_SGI_PRESENT 0x80
#define HE_LTF_1_X 0
#define HE_LTF_2_X 1
#define HE_LTF_4_X 2
#define HE_LTF_UNKNOWN 3
#define VHT_SIG_SU_NSS_MASK 0x7
#define HT_SIG_SU_NSS_SHIFT 0x3
#define HAL_TID_INVALID 31
#define HAL_AST_IDX_INVALID 0xFFFF
#ifdef GET_MSDU_AGGREGATION
#define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)\
{\
struct rx_msdu_end *rx_msdu_end;\
bool first_msdu, last_msdu; \
rx_msdu_end = &rx_desc->msdu_end_tlv.rx_msdu_end;\
first_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, FIRST_MSDU);\
last_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, LAST_MSDU);\
if (first_msdu && last_msdu)\
rs->rs_flags &= (~IEEE80211_AMSDU_FLAG);\
else\
rs->rs_flags |= (IEEE80211_AMSDU_FLAG); \
} \
#define HAL_RX_SET_MSDU_AGGREGATION((rs_mpdu), (rs_ppdu))\
{\
if (rs_mpdu->rs_flags & IEEE80211_AMSDU_FLAG)\
rs_ppdu->rs_flags |= IEEE80211_AMSDU_FLAG;\
} \
#else
#define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)
#define HAL_RX_SET_MSDU_AGGREGATION(rs_mpdu, rs_ppdu)
#endif
/* Max MPDUs per status buffer */
#define HAL_RX_MAX_MPDU 256
#define HAL_RX_NUM_WORDS_PER_PPDU_BITMAP (HAL_RX_MAX_MPDU >> 5)
#define HAL_RX_MAX_MPDU_H_PER_STATUS_BUFFER 16
/* Max pilot count */
#define HAL_RX_MAX_SU_EVM_COUNT 32
#define HAL_RX_FRAMECTRL_TYPE_MASK 0x0C
#define HAL_RX_GET_FRAME_CTRL_TYPE(fc)\
(((fc) & HAL_RX_FRAMECTRL_TYPE_MASK) >> 2)
#define HAL_RX_FRAME_CTRL_TYPE_MGMT 0x0
#define HAL_RX_FRAME_CTRL_TYPE_CTRL 0x1
#define HAL_RX_FRAME_CTRL_TYPE_DATA 0x2
/**
* hal_dl_ul_flag - flag to indicate UL/DL
* @dl_ul_flag_is_dl_or_tdls: DL
* @dl_ul_flag_is_ul: UL
*/
enum hal_dl_ul_flag {
dl_ul_flag_is_dl_or_tdls,
dl_ul_flag_is_ul,
};
/*
* hal_eht_ppdu_sig_cmn_type - PPDU type
* @eht_ppdu_sig_tb_or_dl_ofdma: TB/DL_OFDMA PPDU
* @eht_ppdu_sig_su: SU PPDU
* @eht_ppdu_sig_dl_mu_mimo: DL_MU_MIMO PPDU
*/
enum hal_eht_ppdu_sig_cmn_type {
eht_ppdu_sig_tb_or_dl_ofdma,
eht_ppdu_sig_su,
eht_ppdu_sig_dl_mu_mimo,
};
/*
* hal_mon_packet_info - packet info
* @sw_cookie: 64-bit SW desc virtual address
* @dma_length: packet DMA length
* @msdu_continuation: msdu continulation in next buffer
* @truncated: packet is truncated
*/
struct hal_mon_packet_info {
uint64_t sw_cookie;
uint32_t dma_length : 16,
msdu_continuation : 1,
truncated : 1;
};
/*
* hal_rx_mon_msdu_info - msdu info
* @first_buffer: first buffer of msdu
* @last_buffer: last buffer of msdu
* @first_mpdu: first MPDU
* @mpdu_length_err: MPDU length error
* @fcs_err: FCS error
* @first_msdu: first msdu
* @decap_type: decap type
* @last_msdu: last msdu
* @l3_header_padding: L3 padding header
* @stbc: stbc enabled
* @sgi: SGI value
* @reception_type: reception type
* @msdu_index: msdu index
* @buffer_len: buffer len
* @frag_len: frag len
* @msdu_len: msdu len
* @user_rssi: user rssi
*/
struct hal_rx_mon_msdu_info {
uint32_t first_buffer : 1,
last_buffer : 1,
first_mpdu : 1,
mpdu_length_err : 1,
fcs_err : 1,
first_msdu : 1,
decap_type : 3,
last_msdu : 1,
l3_header_padding : 3,
stbc : 1,
sgi : 2,
reception_type : 3,
msdu_index : 4;
uint16_t buffer_len : 12;
uint16_t frag_len : 12;
uint16_t msdu_len;
int16_t user_rssi;
};
/*
* hal_rx_mon_mpdu_info - MPDU info
* @decap_type: decap_type
* @mpdu_length_err: MPDU length error
* @fcs_err: FCS error
* @overflow_err: overflow error
* @decrypt_err: decrypt error
* @mpdu_start_received: MPDU start received
* @full_pkt: Full MPDU received
* @first_rx_hdr_rcvd: First rx_hdr received
* @truncated: truncated MPDU
*/
struct hal_rx_mon_mpdu_info {
uint32_t decap_type : 8,
mpdu_length_err : 1,
fcs_err : 1,
overflow_err : 1,
decrypt_err : 1,
mpdu_start_received : 1,
full_pkt : 1,
first_rx_hdr_rcvd : 1,
truncated : 1;
};
/**
* struct hal_rx_mon_desc_info () - HAL Rx Monitor descriptor info
*
* @ppdu_id: PHY ppdu id
* @status_ppdu_id: status PHY ppdu id
* @status_buf_count: number of status buffer count
* @rxdma_push_reason: rxdma push reason
* @rxdma_error_code: rxdma error code
* @msdu_cnt: msdu count
* @end_of_ppdu: end of ppdu
* @link_desc: msdu link descriptor address
* @status_buf: for a PPDU, status buffers can span acrosss
* multiple buffers, status_buf points to first
* status buffer address of PPDU
* @drop_ppdu: flag to indicate current destination
* ring ppdu drop
*/
struct hal_rx_mon_desc_info {
uint16_t ppdu_id;
uint16_t status_ppdu_id;
uint8_t status_buf_count;
uint8_t rxdma_push_reason;
uint8_t rxdma_error_code;
uint8_t msdu_count;
uint8_t end_of_ppdu;
struct hal_buf_info link_desc;
struct hal_buf_info status_buf;
bool drop_ppdu;
};
/*
* Struct hal_rx_su_evm_info - SU evm info
* @number_of_symbols: number of symbols
* @nss_count: nss count
* @pilot_count: pilot count
* @pilot_evm: Array of pilot evm values
*/
struct hal_rx_su_evm_info {
uint32_t number_of_symbols;
uint8_t nss_count;
uint8_t pilot_count;
uint32_t pilot_evm[HAL_RX_MAX_SU_EVM_COUNT];
};
enum {
DP_PPDU_STATUS_START,
DP_PPDU_STATUS_DONE,
};
/**
* hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
* cookie from the REO entrance ring element
* @hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
* the current descriptor
* @ buf_info: structure to return the buffer information
* @ msdu_cnt: pointer to msdu count in MPDU
*
* CAUTION: This API calls a hal_soc ops, so be careful before calling this in
* per packet path
*
* Return: void
*/
static inline
void hal_rx_reo_ent_buf_paddr_get(hal_soc_handle_t hal_soc_hdl,
hal_rxdma_desc_t rx_desc,
struct hal_buf_info *buf_info,
uint32_t *msdu_cnt)
{
struct reo_entrance_ring *reo_ent_ring =
(struct reo_entrance_ring *)rx_desc;
struct buffer_addr_info *buf_addr_info;
struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
uint32_t loop_cnt;
rx_mpdu_desc_info_details =
&reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
*msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
HAL_RX_MPDU_DESC_INFO, MSDU_COUNT);
loop_cnt = HAL_RX_GET(reo_ent_ring, HAL_REO_ENTRANCE_RING,
LOOPING_COUNT);
buf_addr_info =
&reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
hal_rx_buf_cookie_rbm_get(hal_soc_hdl, (uint32_t *)buf_addr_info,
buf_info);
buf_info->paddr =
(HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
((uint64_t)
(HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
dp_nofl_debug("[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d",
__func__, __LINE__, reo_ent_ring, buf_addr_info,
(unsigned long long)buf_info->paddr, loop_cnt);
}
static inline
void hal_rx_mon_next_link_desc_get(hal_soc_handle_t hal_soc_hdl,
void *rx_msdu_link_desc,
struct hal_buf_info *buf_info)
{
struct rx_msdu_link *msdu_link =
(struct rx_msdu_link *)rx_msdu_link_desc;
struct buffer_addr_info *buf_addr_info;
buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
hal_rx_buf_cookie_rbm_get(hal_soc_hdl, (uint32_t *)buf_addr_info,
buf_info);
buf_info->paddr =
(HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
((uint64_t)
(HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
}
static inline
uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
{
return data;
}
static inline uint32_t
hal_rx_tlv_mpdu_len_err_get(hal_soc_handle_t hal_soc_hdl, void *hw_desc_addr)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
if (!hal_soc || !hal_soc->ops) {
hal_err("hal handle is NULL");
QDF_BUG(0);
return 0;
}
if (hal_soc->ops->hal_rx_tlv_mpdu_len_err_get)
return hal_soc->ops->hal_rx_tlv_mpdu_len_err_get(hw_desc_addr);
return 0;
}
static inline uint32_t
hal_rx_tlv_mpdu_fcs_err_get(hal_soc_handle_t hal_soc_hdl, void *hw_desc_addr)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
if (!hal_soc || !hal_soc->ops) {
hal_err("hal handle is NULL");
QDF_BUG(0);
return 0;
}
if (hal_soc->ops->hal_rx_tlv_mpdu_fcs_err_get)
return hal_soc->ops->hal_rx_tlv_mpdu_fcs_err_get(hw_desc_addr);
return 0;
}
#ifdef notyet
/*
* HAL_RX_HW_DESC_MPDU_VALID() - check MPDU start TLV tag in MPDU
* start TLV of Hardware TLV descriptor
* @hw_desc_addr: Hardware descriptor address
*
* Return: bool: if TLV tag match
*/
static inline
bool HAL_RX_HW_DESC_MPDU_VALID(void *hw_desc_addr)
{
struct rx_mon_pkt_tlvs *rx_desc =
(struct rx_mon_pkt_tlvs *)hw_desc_addr;
uint32_t tlv_tag;
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(&rx_desc->mpdu_start_tlv);
return tlv_tag == WIFIRX_MPDU_START_E ? true : false;
}
#endif
/*
* HAL_RX_HW_DESC_MPDU_VALID() - check MPDU start TLV user id in MPDU
* start TLV of Hardware TLV descriptor
* @hw_desc_addr: Hardware descriptor address
*
* Return: unit32_t: user id
*/
static inline uint32_t
hal_rx_hw_desc_mpdu_user_id(hal_soc_handle_t hal_soc_hdl,
void *hw_desc_addr)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
if (!hal_soc || !hal_soc->ops) {
hal_err("hal handle is NULL");
QDF_BUG(0);
return 0;
}
if (hal_soc->ops->hal_rx_hw_desc_mpdu_user_id)
return hal_soc->ops->hal_rx_hw_desc_mpdu_user_id(hw_desc_addr);
return 0;
}
/* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
/**
* hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
*
* @ soc : HAL version of the SOC pointer
* @ src_srng_desc : void pointer to the WBM Release Ring descriptor
* @ buf_addr_info : void pointer to the buffer_addr_info
*
* Return: void
*/
static inline
void hal_rx_mon_msdu_link_desc_set(hal_soc_handle_t hal_soc_hdl,
void *src_srng_desc,
hal_buff_addrinfo_t buf_addr_info)
{
struct buffer_addr_info *wbm_srng_buffer_addr_info =
(struct buffer_addr_info *)src_srng_desc;
uint64_t paddr;
struct buffer_addr_info *p_buffer_addr_info =
(struct buffer_addr_info *)buf_addr_info;
paddr =
(HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
((uint64_t)
(HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
dp_nofl_debug("[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx",
__func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
(unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
/* Structure copy !!! */
*wbm_srng_buffer_addr_info =
*((struct buffer_addr_info *)buf_addr_info);
}
/**
* hal_get_rx_msdu_link_desc_size() - Get msdu link descriptor size
*
* Return: size of rx_msdu_link
*/
static inline
uint32_t hal_get_rx_msdu_link_desc_size(void)
{
return sizeof(struct rx_msdu_link);
}
enum {
HAL_PKT_TYPE_OFDM = 0,
HAL_PKT_TYPE_CCK,
HAL_PKT_TYPE_HT,
HAL_PKT_TYPE_VHT,
HAL_PKT_TYPE_HE,
};
enum {
HAL_SGI_0_8_US,
HAL_SGI_0_4_US,
HAL_SGI_1_6_US,
HAL_SGI_3_2_US,
};
#ifdef WLAN_FEATURE_11BE
enum {
HAL_FULL_RX_BW_20,
HAL_FULL_RX_BW_40,
HAL_FULL_RX_BW_80,
HAL_FULL_RX_BW_160,
HAL_FULL_RX_BW_320,
};
#else
enum {
HAL_FULL_RX_BW_20,
HAL_FULL_RX_BW_40,
HAL_FULL_RX_BW_80,
HAL_FULL_RX_BW_160,
};
#endif
enum {
HAL_RX_TYPE_SU,
HAL_RX_TYPE_MU_MIMO,
HAL_RX_TYPE_MU_OFDMA,
HAL_RX_TYPE_MU_OFDMA_MIMO,
};
/*
* enum
* @HAL_RECEPTION_TYPE_SU: Basic SU reception
* @HAL_RECEPTION_TYPE_DL_MU_MIMO: DL MU_MIMO reception
* @HAL_RECEPTION_TYPE_DL_MU_OFMA: DL MU_OFMA reception
* @HAL_RECEPTION_TYPE_DL_MU_OFDMA_MIMO: DL MU_OFDMA_MIMO reception
* @HAL_RECEPTION_TYPE_UL_MU_MIMO: UL MU_MIMO reception
* @HAL_RECEPTION_TYPE_UL_MU_OFDMA: UL MU_OFMA reception
* @HAL_RECEPTION_TYPE_UL_MU_OFDMA_MIMO: UL MU_OFDMA_MIMO reception
*/
enum {
HAL_RECEPTION_TYPE_SU,
HAL_RECEPTION_TYPE_DL_MU_MIMO,
HAL_RECEPTION_TYPE_DL_MU_OFMA,
HAL_RECEPTION_TYPE_DL_MU_OFDMA_MIMO,
HAL_RECEPTION_TYPE_UL_MU_MIMO,
HAL_RECEPTION_TYPE_UL_MU_OFDMA,
HAL_RECEPTION_TYPE_UL_MU_OFDMA_MIMO
};
/**
* enum
* @HAL_RX_MON_PPDU_START: PPDU start TLV is decoded in HAL
* @HAL_RX_MON_PPDU_END: PPDU end TLV is decoded in HAL
* @HAL_RX_MON_PPDU_RESET: Not PPDU start and end TLV
*/
enum {
HAL_RX_MON_PPDU_START = 0,
HAL_RX_MON_PPDU_END,
HAL_RX_MON_PPDU_RESET,
};
/* struct hal_rx_ppdu_common_info - common ppdu info
* @ppdu_id - ppdu id number
* @ppdu_timestamp - timestamp at ppdu received
* @mpdu_cnt_fcs_ok - mpdu count in ppdu with fcs ok
* @mpdu_cnt_fcs_err - mpdu count in ppdu with fcs err
* @mpdu_fcs_ok_bitmap - fcs ok mpdu count in ppdu bitmap
* @last_ppdu_id - last received ppdu id
* @mpdu_cnt - total mpdu count
* @num_users - num users
*/
struct hal_rx_ppdu_common_info {
uint32_t ppdu_id;
uint64_t ppdu_timestamp;
uint16_t mpdu_cnt_fcs_ok;
uint8_t mpdu_cnt_fcs_err;
uint8_t num_users;
uint32_t mpdu_fcs_ok_bitmap[HAL_RX_NUM_WORDS_PER_PPDU_BITMAP];
uint32_t last_ppdu_id;
uint16_t mpdu_cnt;
};
/**
* struct hal_rx_msdu_payload_info - msdu payload info
* @first_msdu_payload: pointer to first msdu payload
* @payload_len: payload len
*/
struct hal_rx_msdu_payload_info {
uint8_t *first_msdu_payload;
uint8_t payload_len;
};
/**
* struct hal_rx_nac_info - struct for neighbour info
* @fc_valid: flag indicate if it has valid frame control information
* @frame_control: frame control from each MPDU
* @to_ds_flag: flag indicate to_ds bit
* @mac_addr2_valid: flag indicate if mac_addr2 is valid
* @mcast_bcast: multicast/broadcast
* @mac_addr2: mac address2 in wh
*/
struct hal_rx_nac_info {
uint32_t fc_valid : 1,
frame_control : 16,
to_ds_flag : 1,
mac_addr2_valid : 1,
mcast_bcast : 1;
uint8_t mac_addr2[QDF_MAC_ADDR_SIZE];
};
/**
* struct hal_rx_ppdu_msdu_info - struct for msdu info from HW TLVs
* @fse_metadata: cached FSE metadata value received in the MSDU END TLV
* @cce_metadata: cached CCE metadata value received in the MSDU_END TLV
* @is_flow_idx_timeout: flag to indicate if flow search timeout occurred
* @is_flow_idx_invalid: flag to indicate if flow idx is valid or not
* @flow_idx: flow idx matched in FSE received in the MSDU END TLV
*/
struct hal_rx_ppdu_msdu_info {
uint32_t fse_metadata;
uint32_t cce_metadata : 16,
is_flow_idx_timeout : 1,
is_flow_idx_invalid : 1;
uint32_t flow_idx : 20;
};
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
/**
* struct hal_rx_ppdu_cfr_user_info - struct for storing peer info extracted
* from HW TLVs, this will be used for correlating CFR data with multiple peers
* in MU PPDUs
*
* @peer_macaddr: macaddr of the peer
* @ast_index: AST index of the peer
*/
struct hal_rx_ppdu_cfr_user_info {
uint8_t peer_macaddr[QDF_MAC_ADDR_SIZE];
uint16_t ast_index;
};
/**
* struct hal_rx_ppdu_cfr_info - struct for storing ppdu info extracted from HW
* TLVs, this will be used for CFR correlation
*
* @bb_captured_channel : Set by RXPCU when MACRX_FREEZE_CAPTURE_CHANNEL TLV is
* sent to PHY, SW checks it to correlate current PPDU TLVs with uploaded
* channel information.
*
* @bb_captured_timeout : Set by RxPCU to indicate channel capture condition is
* met, but MACRX_FREEZE_CAPTURE_CHANNEL is not sent to PHY due to AST delay,
* which means the rx_frame_falling edge to FREEZE TLV ready time exceeds
* the threshold time defined by RXPCU register FREEZE_TLV_DELAY_CNT_THRESH.
* Bb_captured_reason is still valid in this case.
*
* @rx_location_info_valid: Indicates whether CFR DMA address in the PPDU TLV
* is valid
* <enum 0 rx_location_info_is_not_valid>
* <enum 1 rx_location_info_is_valid>
* <legal all>
*
* @bb_captured_reason : Copy capture_reason of MACRX_FREEZE_CAPTURE_CHANNEL
* TLV to here for FW usage. Valid when bb_captured_channel or
* bb_captured_timeout is set.
* <enum 0 freeze_reason_TM>
* <enum 1 freeze_reason_FTM>
* <enum 2 freeze_reason_ACK_resp_to_TM_FTM>
* <enum 3 freeze_reason_TA_RA_TYPE_FILTER>
* <enum 4 freeze_reason_NDPA_NDP>
* <enum 5 freeze_reason_ALL_PACKET>
* <legal 0-5>
*
* @rtt_che_buffer_pointer_low32 : The low 32 bits of the 40 bits pointer to
* external RTT channel information buffer
*
* @rtt_che_buffer_pointer_high8 : The high 8 bits of the 40 bits pointer to
* external RTT channel information buffer
*
* @chan_capture_status : capture status reported by ucode
* a. CAPTURE_IDLE: FW has disabled "REPETITIVE_CHE_CAPTURE_CTRL"
* b. CAPTURE_BUSY: previous PPDU’s channel capture upload DMA ongoing. (Note
* that this upload is triggered after receiving freeze_channel_capture TLV
* after last PPDU is rx)
* c. CAPTURE_ACTIVE: channel capture is enabled and no previous channel
* capture ongoing
* d. CAPTURE_NO_BUFFER: next buffer in IPC ring not available
*
* @cfr_user_info: Peer mac for upto 4 MU users
*
* @rtt_cfo_measurement : raw cfo data extracted from hardware, which is 14 bit
* signed number. The first bit used for sign representation and 13 bits for
* fractional part.
*
* @agc_gain_info0: Chain 0 & chain 1 agc gain information reported by PHY
*
* @agc_gain_info1: Chain 2 & chain 3 agc gain information reported by PHY
*
* @agc_gain_info2: Chain 4 & chain 5 agc gain information reported by PHY
*
* @agc_gain_info3: Chain 6 & chain 7 agc gain information reported by PHY
*
* @rx_start_ts: Rx packet timestamp, the time the first L-STF ADC sample
* arrived at Rx antenna.
*
* @mcs_rate: Indicates the mcs/rate in which packet is received.
* If HT,
* 0-7: MCS0-MCS7
* If VHT,
* 0-9: MCS0 to MCS9
* If HE,
* 0-11: MCS0 to MCS11,
* 12-13: 4096QAM,
* 14-15: reserved
* If Legacy,
* 0: 48 Mbps
* 1: 24 Mbps
* 2: 12 Mbps
* 3: 6 Mbps
* 4: 54 Mbps
* 5: 36 Mbps
* 6: 18 Mbps
* 7: 9 Mbps
*
* @gi_type: Indicates the gaurd interval.
* 0: 0.8 us
* 1: 0.4 us
* 2: 1.6 us
* 3: 3.2 us
*/
struct hal_rx_ppdu_cfr_info {
bool bb_captured_channel;
bool bb_captured_timeout;
uint8_t bb_captured_reason;
bool rx_location_info_valid;
uint8_t chan_capture_status;
uint8_t rtt_che_buffer_pointer_high8;
uint32_t rtt_che_buffer_pointer_low32;
int16_t rtt_cfo_measurement;
uint32_t agc_gain_info0;
uint32_t agc_gain_info1;
uint32_t agc_gain_info2;
uint32_t agc_gain_info3;
uint32_t rx_start_ts;
uint32_t mcs_rate;
uint32_t gi_type;
};
#else
struct hal_rx_ppdu_cfr_info {};
#endif
struct mon_rx_info {
uint8_t qos_control_info_valid;
uint16_t qos_control;
uint8_t mac_addr1_valid;
uint8_t mac_addr1[QDF_MAC_ADDR_SIZE];
uint16_t user_id;
};
struct mon_rx_user_info {
uint16_t qos_control;
uint8_t qos_control_info_valid;
};
#ifdef QCA_SUPPORT_SCAN_SPCL_VAP_STATS
struct hal_rx_frm_type_info {
uint8_t rx_mgmt_cnt;
uint8_t rx_ctrl_cnt;
uint8_t rx_data_cnt;
};
#else
struct hal_rx_frm_type_info {};
#endif
struct hal_mon_usig_cmn {
uint32_t phy_version : 3,
bw : 3,
ul_dl : 1,
bss_color : 6,
txop : 7,
disregard : 5,
validate_0 : 1,
reserved : 6;
};
struct hal_mon_usig_tb {
uint32_t ppdu_type_comp_mode : 2,
validate_1 : 1,
spatial_reuse_1 : 4,
spatial_reuse_2 : 4,
disregard_1 : 5,
crc : 4,
tail : 6,
reserved : 5,
rx_integrity_check_passed : 1;
};
struct hal_mon_usig_mu {
uint32_t ppdu_type_comp_mode : 2,
validate_1 : 1,
punc_ch_info : 5,
validate_2 : 1,
eht_sig_mcs : 2,
num_eht_sig_sym : 5,
crc : 4,
tail : 6,
reserved : 5,
rx_integrity_check_passed : 1;
};
/**
* union hal_mon_usig_non_cmn: Version dependent USIG fields
* @tb: trigger based frame USIG header
* @mu: MU frame USIG header
*/
union hal_mon_usig_non_cmn {
struct hal_mon_usig_tb tb;
struct hal_mon_usig_mu mu;
};
/**
* struct hal_mon_usig_hdr: U-SIG header for EHT (and subsequent) frames
* @usig_1: USIG common header fields
* @usig_2: USIG version dependent fields
*/
struct hal_mon_usig_hdr {
struct hal_mon_usig_cmn usig_1;
union hal_mon_usig_non_cmn usig_2;
};
#define HAL_RX_MON_USIG_PPDU_TYPE_N_COMP_MODE_MASK 0x0000000300000000
#define HAL_RX_MON_USIG_PPDU_TYPE_N_COMP_MODE_LSB 32
#define HAL_RX_MON_USIG_GET_PPDU_TYPE_N_COMP_MODE(usig_tlv_ptr) \
((*((uint64_t *)(usig_tlv_ptr)) & \
HAL_RX_MON_USIG_PPDU_TYPE_N_COMP_MODE_MASK) >> \
HAL_RX_MON_USIG_PPDU_TYPE_N_COMP_MODE_LSB)
#define HAL_RX_MON_USIG_RX_INTEGRITY_CHECK_PASSED_MASK 0x8000000000000000
#define HAL_RX_MON_USIG_RX_INTEGRITY_CHECK_PASSED_LSB 63
#define HAL_RX_MON_USIG_GET_RX_INTEGRITY_CHECK_PASSED(usig_tlv_ptr) \
((*((uint64_t *)(usig_tlv_ptr)) & \
HAL_RX_MON_USIG_RX_INTEGRITY_CHECK_PASSED_MASK) >> \
HAL_RX_MON_USIG_RX_INTEGRITY_CHECK_PASSED_LSB)
/**
* enum hal_eht_bw: Reception bandwidth
* @HAL_EHT_BW_20: 20Mhz
* @HAL_EHT_BW_40: 40Mhz
* @HAL_EHT_BW_80: 80Mhz
* @HAL_EHT_BW_160: 160Mhz
* @HAL_EHT_BW_320_1: 320_1 band
* @HAL_EHT_BW_320_2: 320_2 band
*/
enum hal_eht_bw {
HAL_EHT_BW_20 = 0,
HAL_EHT_BW_40,
HAL_EHT_BW_80,
HAL_EHT_BW_160,
HAL_EHT_BW_320_1,
HAL_EHT_BW_320_2,
};
struct hal_eht_sig_mu_mimo_user_info {
uint32_t sta_id : 11,
mcs : 4,
coding : 1,
spatial_coding : 6,
crc : 4;
};
struct hal_eht_sig_non_mu_mimo_user_info {
uint32_t sta_id : 11,
mcs : 4,
validate : 1,
nss : 4,
beamformed : 1,
coding : 1,
crc : 4;
};
/**
* union hal_eht_sig_user_field: User field in EHTSIG
* @mu_mimo_usr: MU-MIMO user field information in EHTSIG
* @non_mu_mimo_usr: Non MU-MIMO user field information in EHTSIG
*/
union hal_eht_sig_user_field {
struct hal_eht_sig_mu_mimo_user_info mu_mimo_usr;
struct hal_eht_sig_non_mu_mimo_user_info non_mu_mimo_usr;
};
struct hal_eht_sig_ofdma_cmn_eb1 {
uint64_t spatial_reuse : 4,
gi_ltf : 2,
num_ltf_sym : 3,
ldpc_extra_sym : 1,
pre_fec_pad_factor : 2,
pe_disambiguity : 1,
disregard : 4,
ru_allocation1_1 : 9,
ru_allocation1_2 : 9,
crc : 4;
};
struct hal_eht_sig_ofdma_cmn_eb2 {
uint64_t ru_allocation2_1 : 9,
ru_allocation2_2 : 9,
ru_allocation2_3 : 9,
ru_allocation2_4 : 9,
ru_allocation2_5 : 9,
ru_allocation2_6 : 9,
crc : 4;
};
struct hal_eht_sig_cc_usig_overflow {
uint32_t spatial_reuse : 4,
gi_ltf : 2,
num_ltf_sym : 3,
ldpc_extra_sym : 1,
pre_fec_pad_factor : 2,
pe_disambiguity : 1,
disregard : 4;
};
struct hal_eht_sig_non_ofdma_cmn_eb {
uint32_t spatial_reuse : 4,
gi_ltf : 2,
num_ltf_sym : 3,
ldpc_extra_sym : 1,
pre_fec_pad_factor : 2,
pe_disambiguity : 1,
disregard : 4,
num_users : 3;
union hal_eht_sig_user_field user_field;
};
struct hal_eht_sig_ndp_cmn_eb {
uint32_t spatial_reuse : 4,
gi_ltf : 2,
num_ltf_sym : 3,
nss : 4,
beamformed : 1,
disregard : 2,
crc : 4;
};
/* Different allowed RU in 11BE */
#define HAL_EHT_RU_26 0ULL
#define HAL_EHT_RU_52 1ULL
#define HAL_EHT_RU_78 2ULL
#define HAL_EHT_RU_106 3ULL
#define HAL_EHT_RU_132 4ULL
#define HAL_EHT_RU_242 5ULL
#define HAL_EHT_RU_484 6ULL
#define HAL_EHT_RU_726 7ULL
#define HAL_EHT_RU_996 8ULL
#define HAL_EHT_RU_996x2 9ULL
#define HAL_EHT_RU_996x3 10ULL
#define HAL_EHT_RU_996x4 11ULL
#define HAL_EHT_RU_NONE 15ULL
#define HAL_EHT_RU_INVALID 31ULL
/*
* MRUs spanning above 80Mhz
* HAL_EHT_RU_996_484 = HAL_EHT_RU_484 + HAL_EHT_RU_996 + 4 (reserved)
*/
#define HAL_EHT_RU_996_484 18ULL
#define HAL_EHT_RU_996x2_484 28ULL
#define HAL_EHT_RU_996x3_484 40ULL
#define HAL_EHT_RU_996_484_242 23ULL
/**
* enum ieee80211_eht_ru_size: RU type id in EHTSIG radiotap header
* @IEEE80211_EHT_RU_26: RU26
* @IEEE80211_EHT_RU_52: RU52
* @IEEE80211_EHT_RU_106: RU106
* @IEEE80211_EHT_RU_242: RU242
* @IEEE80211_EHT_RU_484: RU484
* @IEEE80211_EHT_RU_996: RU996
* @IEEE80211_EHT_RU_996x2: RU996x2
* @IEEE80211_EHT_RU_996x4: RU996x4
* @IEEE80211_EHT_RU_52_26: RU52+RU26
* @IEEE80211_EHT_RU_106_26: RU106+RU26
* @IEEE80211_EHT_RU_484_242: RU484+RU242
* @IEEE80211_EHT_RU_996_484: RU996+RU484
* @IEEE80211_EHT_RU_996_484_242: RU996+RU484+RU242
* @IEEE80211_EHT_RU_996x2_484: RU996x2 + RU484
* @IEEE80211_EHT_RU_996x3: RU996x3
* @IEEE80211_EHT_RU_996x3_484: RU996x3 + RU484
* @IEEE80211_EHT_RU_INVALID: Invalid/Max RU
*/
enum ieee80211_eht_ru_size {
IEEE80211_EHT_RU_26,
IEEE80211_EHT_RU_52,
IEEE80211_EHT_RU_106,
IEEE80211_EHT_RU_242,
IEEE80211_EHT_RU_484,
IEEE80211_EHT_RU_996,
IEEE80211_EHT_RU_996x2,
IEEE80211_EHT_RU_996x4,
IEEE80211_EHT_RU_52_26,
IEEE80211_EHT_RU_106_26,
IEEE80211_EHT_RU_484_242,
IEEE80211_EHT_RU_996_484,
IEEE80211_EHT_RU_996_484_242,
IEEE80211_EHT_RU_996x2_484,
IEEE80211_EHT_RU_996x3,
IEEE80211_EHT_RU_996x3_484,
IEEE80211_EHT_RU_INVALID,
};
#define NUM_RU_BITS_PER80 16
#define NUM_RU_BITS_PER20 4
/* Different per_80Mhz band in 320Mhz bandwidth */
#define HAL_80_0 0
#define HAL_80_1 1
#define HAL_80_2 2
#define HAL_80_3 3
#define HAL_RU_SHIFT(num_80mhz_band, ru_index_per_80) \
((NUM_RU_BITS_PER80 * (num_80mhz_band)) + \
(NUM_RU_BITS_PER20 * (ru_index_per_80)))
/* MRU-996+484 */
#define HAL_EHT_RU_996_484_0 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_0, 1)) | \
(HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_1, 0)))
#define HAL_EHT_RU_996_484_1 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_1, 0)))
#define HAL_EHT_RU_996_484_2 ((HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 1)))
#define HAL_EHT_RU_996_484_3 ((HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 0)))
#define HAL_EHT_RU_996_484_4 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 1)) | \
(HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996_484_5 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996_484_6 ((HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_3, 1)))
#define HAL_EHT_RU_996_484_7 ((HAL_EHT_RU_996 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_3, 0)))
/* MRU-996x2+484 */
#define HAL_EHT_RU_996x2_484_0 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_0, 1)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)))
#define HAL_EHT_RU_996x2_484_1 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)))
#define HAL_EHT_RU_996x2_484_2 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 1)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)))
#define HAL_EHT_RU_996x2_484_3 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)))
#define HAL_EHT_RU_996x2_484_4 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 1)))
#define HAL_EHT_RU_996x2_484_5 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 0)))
#define HAL_EHT_RU_996x2_484_6 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 1)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x2_484_7 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x2_484_8 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 1)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x2_484_9 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x2_484_10 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_3, 1)))
#define HAL_EHT_RU_996x2_484_11 ((HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x2 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_3, 0)))
/* MRU-996x3+484 */
#define HAL_EHT_RU_996x3_484_0 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_0, 1)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x3_484_1 ((HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x3_484_2 ((HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 1)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x3_484_3 ((HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x3_484_4 ((HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 1)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x3_484_5 ((HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_EHT_RU_996x3_484_6 ((HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_3, 1)))
#define HAL_EHT_RU_996x3_484_7 ((HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_0, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_1, 0)) | \
(HAL_EHT_RU_996x3 << HAL_RU_SHIFT(HAL_80_2, 0)) | \
(HAL_EHT_RU_484 << HAL_RU_SHIFT(HAL_80_3, 0)))
#define HAL_RX_MON_MAX_AGGR_SIZE 128
/**
* struct hal_rx_tlv_aggr_info - Data structure to hold
* metadata for aggregatng repeated TLVs
* @in_progress: Flag to indicate if TLV aggregation is in progress
* @cur_len: Total length of currently aggregated TLV
* @tlv_tag: TLV tag which is currently being aggregated
* @buf: Buffer containing aggregated TLV data
*/
struct hal_rx_tlv_aggr_info {
uint8_t in_progress;
uint16_t cur_len;
uint32_t tlv_tag;
uint8_t buf[HAL_RX_MON_MAX_AGGR_SIZE];
};
/* struct hal_rx_u_sig_info - Certain fields from U-SIG header which are used
* for other header field parsing.
* @ul_dl: UL or DL
* @bw: EHT BW
* @ppdu_type_comp_mode: PPDU TYPE
* @eht_sig_mcs: EHT SIG MCS
* @num_eht_sig_sym: Number of EHT SIG symbols
*/
struct hal_rx_u_sig_info {
uint32_t ul_dl : 1,
bw : 3,
ppdu_type_comp_mode : 2,
eht_sig_mcs : 2,
num_eht_sig_sym : 5;
};
struct hal_rx_ppdu_info {
struct hal_rx_ppdu_common_info com_info;
struct hal_rx_u_sig_info u_sig_info;
struct mon_rx_status rx_status;
struct mon_rx_user_status rx_user_status[HAL_MAX_UL_MU_USERS];
struct mon_rx_info rx_info;
struct mon_rx_user_info rx_user_info[HAL_MAX_UL_MU_USERS];
struct hal_rx_msdu_payload_info msdu_info;
struct hal_rx_msdu_payload_info fcs_ok_msdu_info;
struct hal_rx_nac_info nac_info;
/* status ring PPDU start and end state */
uint8_t rx_state;
/* MU user id for status ring TLV */
uint8_t user_id;
/* MPDU/MSDU truncated to 128 bytes header start addr in status skb */
unsigned char *data;
/* MPDU/MSDU truncated to 128 bytes header real length */
uint32_t hdr_len;
/* MPDU FCS error */
bool fcs_err;
/* Id to indicate how to process mpdu */
uint8_t sw_frame_group_id;
struct hal_rx_ppdu_msdu_info rx_msdu_info[HAL_MAX_UL_MU_USERS];
/* fcs passed mpdu count in rx monitor status buffer */
uint8_t fcs_ok_cnt;
/* fcs error mpdu count in rx monitor status buffer */
uint8_t fcs_err_cnt;
/* MPDU FCS passed */
bool is_fcs_passed;
/* first msdu payload for all mpdus in rx monitor status buffer */
struct hal_rx_msdu_payload_info ppdu_msdu_info[HAL_RX_MAX_MPDU_H_PER_STATUS_BUFFER];
/* evm info */
struct hal_rx_su_evm_info evm_info;
/**
* Will be used to store ppdu info extracted from HW TLVs,
* and for CFR correlation as well
*/
struct hal_rx_ppdu_cfr_info cfr_info;
/* per frame type counts */
struct hal_rx_frm_type_info frm_type_info;
/* TLV aggregation metadata context */
struct hal_rx_tlv_aggr_info tlv_aggr;
/* EHT SIG user info */
uint32_t eht_sig_user_info;
/*per user mpdu count */
uint8_t mpdu_count[HAL_MAX_UL_MU_USERS];
/*per user msdu count */
uint8_t msdu_count[HAL_MAX_UL_MU_USERS];
/* Placeholder to update per user last processed msdu’s info */
struct hal_rx_mon_msdu_info msdu[HAL_MAX_UL_MU_USERS];
/* Placeholder to update per user last processed mpdu’s info */
struct hal_rx_mon_mpdu_info mpdu_info[HAL_MAX_UL_MU_USERS];
/* placeholder to hold packet buffer info */
struct hal_mon_packet_info packet_info;
#ifdef QCA_MONITOR_2_0_SUPPORT
/* per user per MPDU queue */
qdf_nbuf_queue_t mpdu_q[HAL_MAX_UL_MU_USERS];
#endif
/* ppdu info list element */
TAILQ_ENTRY(hal_rx_ppdu_info) ppdu_list_elem;
/* ppdu info free list element */
TAILQ_ENTRY(hal_rx_ppdu_info) ppdu_free_list_elem;
/* placeholder to track if RX_HDR is received */
uint8_t rx_hdr_rcvd[HAL_MAX_UL_MU_USERS];
};
static inline uint32_t
hal_get_rx_status_buf_size(void) {
/* RX status buffer size is hard coded for now */
return 2048;
}
static inline uint8_t*
hal_rx_status_get_next_tlv(uint8_t *rx_tlv, bool is_tlv_hdr_64_bit) {
uint32_t tlv_len, tlv_tag, tlv_hdr_size;
if (is_tlv_hdr_64_bit) {
tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
tlv_hdr_size = HAL_RX_TLV64_HDR_SIZE;
} else {
tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
tlv_hdr_size = HAL_RX_TLV32_HDR_SIZE;
}
/* The actual length of PPDU_END is the combined length of many PHY
* TLVs that follow. Skip the TLV header and
* rx_rxpcu_classification_overview that follows the header to get to
* next TLV.
*/
if (tlv_tag == WIFIRX_PPDU_END_E)
tlv_len = sizeof(struct rx_rxpcu_classification_overview);
return (uint8_t *)(uintptr_t)qdf_align((uint64_t)((uintptr_t)rx_tlv +
tlv_len +
tlv_hdr_size),
tlv_hdr_size);
}
/**
* hal_rx_proc_phyrx_other_receive_info_tlv()
* - process other receive info TLV
* @rx_tlv_hdr: pointer to TLV header
* @ppdu_info: pointer to ppdu_info
*
* Return: None
*/
static inline void hal_rx_proc_phyrx_other_receive_info_tlv(struct hal_soc *hal_soc,
void *rx_tlv_hdr,
struct hal_rx_ppdu_info
*ppdu_info)
{
hal_soc->ops->hal_rx_proc_phyrx_other_receive_info_tlv(rx_tlv_hdr,
(void *)ppdu_info);
}
/**
* hal_rx_status_get_tlv_info() - process receive info TLV
* @rx_tlv_hdr: pointer to TLV header
* @ppdu_info: pointer to ppdu_info
* @hal_soc: HAL soc handle
* @nbuf: PPDU status netowrk buffer
*
* Return: HAL_TLV_STATUS_PPDU_NOT_DONE or HAL_TLV_STATUS_PPDU_DONE from tlv
*/
static inline uint32_t
hal_rx_status_get_tlv_info(void *rx_tlv_hdr, void *ppdu_info,
hal_soc_handle_t hal_soc_hdl,
qdf_nbuf_t nbuf)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
return hal_soc->ops->hal_rx_status_get_tlv_info(
rx_tlv_hdr,
ppdu_info,
hal_soc_hdl,
nbuf);
}
static inline
uint32_t hal_get_rx_status_done_tlv_size(hal_soc_handle_t hal_soc_hdl)
{
return HAL_RX_TLV32_HDR_SIZE;
}
static inline QDF_STATUS
hal_get_rx_status_done(uint8_t *rx_tlv)
{
uint32_t tlv_tag;
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
return QDF_STATUS_SUCCESS;
else
return QDF_STATUS_E_EMPTY;
}
static inline QDF_STATUS
hal_clear_rx_status_done(uint8_t *rx_tlv)
{
*(uint32_t *)rx_tlv = 0;
return QDF_STATUS_SUCCESS;
}
#endif