hal_api_mon.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. /* Multiply rate by 2 to avoid float point
  71. * and get rate in units of 500kbps
  72. */
  73. #define HAL_11B_RATE_0MCS 11*2
  74. #define HAL_11B_RATE_1MCS 5.5*2
  75. #define HAL_11B_RATE_2MCS 2*2
  76. #define HAL_11B_RATE_3MCS 1*2
  77. #define HAL_11B_RATE_4MCS 11*2
  78. #define HAL_11B_RATE_5MCS 5.5*2
  79. #define HAL_11B_RATE_6MCS 2*2
  80. #define HAL_11A_RATE_0MCS 48*2
  81. #define HAL_11A_RATE_1MCS 24*2
  82. #define HAL_11A_RATE_2MCS 12*2
  83. #define HAL_11A_RATE_3MCS 6*2
  84. #define HAL_11A_RATE_4MCS 54*2
  85. #define HAL_11A_RATE_5MCS 36*2
  86. #define HAL_11A_RATE_6MCS 18*2
  87. #define HAL_11A_RATE_7MCS 9*2
  88. #define HE_GI_0_8 0
  89. #define HE_GI_1_6 1
  90. #define HE_GI_3_2 2
  91. #define HE_LTF_1_X 0
  92. #define HE_LTF_2_X 1
  93. #define HE_LTF_4_X 2
  94. #define VHT_SIG_SU_NSS_MASK 0x7
  95. enum {
  96. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  97. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  98. HAL_HW_RX_DECAP_FORMAT_ETH2,
  99. HAL_HW_RX_DECAP_FORMAT_8023,
  100. };
  101. enum {
  102. DP_PPDU_STATUS_START,
  103. DP_PPDU_STATUS_DONE,
  104. };
  105. static inline
  106. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  107. {
  108. /* return the HW_RX_DESC size */
  109. return sizeof(struct rx_pkt_tlvs);
  110. }
  111. static inline
  112. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  113. {
  114. return data;
  115. }
  116. static inline
  117. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  118. {
  119. struct rx_attention *rx_attn;
  120. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  121. rx_attn = &rx_desc->attn_tlv.rx_attn;
  122. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  123. }
  124. static inline
  125. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  126. {
  127. struct rx_attention *rx_attn;
  128. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  129. rx_attn = &rx_desc->attn_tlv.rx_attn;
  130. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  131. }
  132. static inline
  133. uint32_t
  134. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  135. struct rx_msdu_start *rx_msdu_start;
  136. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  137. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  138. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  139. }
  140. static inline
  141. uint8_t *
  142. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  143. uint8_t *rx_pkt_hdr;
  144. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  145. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  146. return rx_pkt_hdr;
  147. }
  148. static inline
  149. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  150. {
  151. struct rx_mpdu_info *rx_mpdu_info;
  152. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  153. rx_mpdu_info =
  154. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  155. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  156. }
  157. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  158. static inline
  159. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  160. {
  161. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  162. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  163. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  164. }
  165. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  166. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  167. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  168. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  169. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  170. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  171. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  172. (((struct reo_entrance_ring *)reo_ent_desc) \
  173. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  174. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  175. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  176. (((struct reo_entrance_ring *)reo_ent_desc) \
  177. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  178. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  179. (HAL_RX_BUF_COOKIE_GET(& \
  180. (((struct reo_entrance_ring *)reo_ent_desc) \
  181. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  182. /**
  183. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  184. * cookie from the REO entrance ring element
  185. *
  186. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  187. * the current descriptor
  188. * @ buf_info: structure to return the buffer information
  189. * @ msdu_cnt: pointer to msdu count in MPDU
  190. * Return: void
  191. */
  192. static inline
  193. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  194. struct hal_buf_info *buf_info,
  195. void **pp_buf_addr_info,
  196. uint32_t *msdu_cnt
  197. )
  198. {
  199. struct reo_entrance_ring *reo_ent_ring =
  200. (struct reo_entrance_ring *)rx_desc;
  201. struct buffer_addr_info *buf_addr_info;
  202. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  203. uint32_t loop_cnt;
  204. rx_mpdu_desc_info_details =
  205. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  206. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  207. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  208. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  209. buf_addr_info =
  210. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  211. buf_info->paddr =
  212. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  213. ((uint64_t)
  214. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  215. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  216. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  217. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  218. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  219. (unsigned long long)buf_info->paddr, loop_cnt);
  220. *pp_buf_addr_info = (void *)buf_addr_info;
  221. }
  222. static inline
  223. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  224. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  225. {
  226. struct rx_msdu_link *msdu_link =
  227. (struct rx_msdu_link *)rx_msdu_link_desc;
  228. struct buffer_addr_info *buf_addr_info;
  229. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  230. buf_info->paddr =
  231. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  232. ((uint64_t)
  233. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  234. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  235. *pp_buf_addr_info = (void *)buf_addr_info;
  236. }
  237. /**
  238. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  239. *
  240. * @ soc : HAL version of the SOC pointer
  241. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  242. * @ buf_addr_info : void pointer to the buffer_addr_info
  243. *
  244. * Return: void
  245. */
  246. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  247. void *src_srng_desc, void *buf_addr_info)
  248. {
  249. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  250. (struct buffer_addr_info *)src_srng_desc;
  251. uint64_t paddr;
  252. struct buffer_addr_info *p_buffer_addr_info =
  253. (struct buffer_addr_info *)buf_addr_info;
  254. paddr =
  255. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  256. ((uint64_t)
  257. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  258. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  259. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  260. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  261. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  262. /* Structure copy !!! */
  263. *wbm_srng_buffer_addr_info =
  264. *((struct buffer_addr_info *)buf_addr_info);
  265. }
  266. static inline
  267. uint32 hal_get_rx_msdu_link_desc_size(void)
  268. {
  269. return sizeof(struct rx_msdu_link);
  270. }
  271. enum {
  272. HAL_PKT_TYPE_OFDM = 0,
  273. HAL_PKT_TYPE_CCK,
  274. HAL_PKT_TYPE_HT,
  275. HAL_PKT_TYPE_VHT,
  276. HAL_PKT_TYPE_HE,
  277. };
  278. enum {
  279. HAL_SGI_0_8_US,
  280. HAL_SGI_0_4_US,
  281. HAL_SGI_1_6_US,
  282. HAL_SGI_3_2_US,
  283. };
  284. enum {
  285. HAL_FULL_RX_BW_20,
  286. HAL_FULL_RX_BW_40,
  287. HAL_FULL_RX_BW_80,
  288. HAL_FULL_RX_BW_160,
  289. };
  290. enum {
  291. HAL_RX_TYPE_SU,
  292. HAL_RX_TYPE_MU_MIMO,
  293. HAL_RX_TYPE_MU_OFDMA,
  294. HAL_RX_TYPE_MU_OFDMA_MIMO,
  295. };
  296. /**
  297. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  298. *
  299. * @ hw_desc_addr: Start address of Rx HW TLVs
  300. * @ rs: Status for monitor mode
  301. *
  302. * Return: void
  303. */
  304. static inline
  305. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  306. struct mon_rx_status *rs)
  307. {
  308. struct rx_msdu_start *rx_msdu_start;
  309. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  310. uint32_t reg_value;
  311. static uint32_t sgi_hw_to_cdp[] = {
  312. CDP_SGI_0_8_US,
  313. CDP_SGI_0_4_US,
  314. CDP_SGI_1_6_US,
  315. CDP_SGI_3_2_US,
  316. };
  317. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  318. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  319. RX_MSDU_START_5, USER_RSSI);
  320. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  321. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  322. rs->sgi = sgi_hw_to_cdp[reg_value];
  323. #if !defined(QCA_WIFI_QCA6290_11AX)
  324. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  325. #endif
  326. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, PKT_TYPE);
  327. switch (reg_value) {
  328. case HAL_RX_PKT_TYPE_11N:
  329. rs->ht_flags = 1;
  330. break;
  331. case HAL_RX_PKT_TYPE_11AC:
  332. rs->vht_flags = 1;
  333. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
  334. RECEIVE_BANDWIDTH);
  335. rs->vht_flag_values2 = reg_value;
  336. break;
  337. case HAL_RX_PKT_TYPE_11AX:
  338. rs->he_flags = 1;
  339. break;
  340. default:
  341. break;
  342. }
  343. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  344. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  345. /* TODO: rs->beamformed should be set for SU beamforming also */
  346. }
  347. struct hal_rx_ppdu_user_info {
  348. };
  349. struct hal_rx_ppdu_common_info {
  350. uint32_t ppdu_id;
  351. uint32_t last_ppdu_id;
  352. uint32_t ppdu_timestamp;
  353. uint32_t mpdu_cnt_fcs_ok;
  354. uint32_t mpdu_cnt_fcs_err;
  355. };
  356. struct hal_rx_ppdu_info {
  357. struct hal_rx_ppdu_common_info com_info;
  358. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  359. struct mon_rx_status rx_status;
  360. uint8_t *first_msdu_payload;
  361. };
  362. static inline uint32_t
  363. hal_get_rx_status_buf_size(void) {
  364. /* RX status buffer size is hard coded for now */
  365. return 2048;
  366. }
  367. static inline uint8_t*
  368. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  369. uint32_t tlv_len, tlv_tag;
  370. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  371. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  372. /* The actual length of PPDU_END is the combined lenght of many PHY
  373. * TLVs that follow. Skip the TLV header and
  374. * rx_rxpcu_classification_overview that follows the header to get to
  375. * next TLV.
  376. */
  377. if (tlv_tag == WIFIRX_PPDU_END_E)
  378. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  379. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  380. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  381. }
  382. static inline uint32_t
  383. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  384. {
  385. uint32_t tlv_tag, user_id, tlv_len, value;
  386. uint8_t group_id = 0;
  387. uint16_t he_gi = 0;
  388. uint16_t he_ltf = 0;
  389. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  390. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  391. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  392. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  393. switch (tlv_tag) {
  394. case WIFIRX_PPDU_START_E:
  395. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  396. "[%s][%d] ppdu_start_e len=%d\n",
  397. __func__, __LINE__, tlv_len);
  398. ppdu_info->com_info.ppdu_id =
  399. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  400. PHY_PPDU_ID);
  401. /* TODO: Ensure channel number is set in PHY meta data */
  402. ppdu_info->rx_status.chan_freq =
  403. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  404. SW_PHY_META_DATA);
  405. ppdu_info->com_info.ppdu_timestamp =
  406. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  407. PPDU_START_TIMESTAMP);
  408. break;
  409. case WIFIRX_PPDU_START_USER_INFO_E:
  410. break;
  411. case WIFIRX_PPDU_END_E:
  412. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  413. "[%s][%d] ppdu_end_e len=%d\n",
  414. __func__, __LINE__, tlv_len);
  415. /* This is followed by sub-TLVs of PPDU_END */
  416. ppdu_info->rx_status.duration =
  417. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  418. RX_PPDU_DURATION);
  419. break;
  420. case WIFIRXPCU_PPDU_END_INFO_E:
  421. ppdu_info->rx_status.tsft =
  422. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  423. WB_TIMESTAMP_UPPER_32);
  424. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  425. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  426. WB_TIMESTAMP_LOWER_32);
  427. break;
  428. case WIFIRX_PPDU_END_USER_STATS_E:
  429. {
  430. unsigned long tid = 0;
  431. ppdu_info->rx_status.ast_index =
  432. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  433. AST_INDEX);
  434. ppdu_info->rx_status.mcs =
  435. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, MCS);
  436. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  437. RECEIVED_QOS_DATA_TID_BITMAP);
  438. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  439. ppdu_info->rx_status.tcp_msdu_count =
  440. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  441. TCP_MSDU_COUNT) +
  442. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  443. TCP_ACK_MSDU_COUNT);
  444. ppdu_info->rx_status.udp_msdu_count =
  445. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  446. UDP_MSDU_COUNT);
  447. ppdu_info->rx_status.other_msdu_count =
  448. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  449. OTHER_MSDU_COUNT);
  450. ppdu_info->rx_status.nss =
  451. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, NSS);
  452. ppdu_info->rx_status.first_data_seq_ctrl =
  453. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  454. DATA_SEQUENCE_CONTROL_INFO_VALID);
  455. ppdu_info->rx_status.preamble_type =
  456. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  457. HT_CONTROL_FIELD_PKT_TYPE);
  458. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  459. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  460. MPDU_CNT_FCS_OK);
  461. ppdu_info->com_info.mpdu_cnt_fcs_err =
  462. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  463. MPDU_CNT_FCS_ERR);
  464. break;
  465. }
  466. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  467. break;
  468. case WIFIRX_PPDU_END_STATUS_DONE_E:
  469. return HAL_TLV_STATUS_PPDU_DONE;
  470. case WIFIDUMMY_E:
  471. return HAL_TLV_STATUS_BUF_DONE;
  472. case WIFIPHYRX_HT_SIG_E:
  473. {
  474. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  475. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  476. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  477. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  478. FEC_CODING);
  479. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  480. 1 : 0;
  481. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  482. HT_SIG_INFO_0, MCS);
  483. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  484. HT_SIG_INFO_0, CBW);
  485. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  486. HT_SIG_INFO_1, SHORT_GI);
  487. break;
  488. }
  489. case WIFIPHYRX_L_SIG_B_E:
  490. {
  491. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  492. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  493. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  494. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  495. switch (value) {
  496. case 1:
  497. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  498. break;
  499. case 2:
  500. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  501. break;
  502. case 3:
  503. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  504. break;
  505. case 4:
  506. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  507. break;
  508. case 5:
  509. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  510. break;
  511. case 6:
  512. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  513. break;
  514. case 7:
  515. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  516. break;
  517. default:
  518. break;
  519. }
  520. break;
  521. }
  522. case WIFIPHYRX_L_SIG_A_E:
  523. {
  524. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  525. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  526. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  527. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  528. switch (value) {
  529. case 8:
  530. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  531. break;
  532. case 9:
  533. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  534. break;
  535. case 10:
  536. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  537. break;
  538. case 11:
  539. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  540. break;
  541. case 12:
  542. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  543. break;
  544. case 13:
  545. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  546. break;
  547. case 14:
  548. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  549. break;
  550. case 15:
  551. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  552. break;
  553. default:
  554. break;
  555. }
  556. break;
  557. }
  558. case WIFIPHYRX_VHT_SIG_A_E:
  559. {
  560. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  561. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  562. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  563. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  564. SU_MU_CODING);
  565. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  566. 1 : 0;
  567. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  568. ppdu_info->rx_status.vht_flag_values5 = group_id;
  569. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  570. VHT_SIG_A_INFO_1, MCS);
  571. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  572. VHT_SIG_A_INFO_1, GI_SETTING);
  573. #if !defined(QCA_WIFI_QCA6290_11AX)
  574. value = HAL_RX_GET(vht_sig_a_info,
  575. VHT_SIG_A_INFO_0, N_STS);
  576. ppdu_info->rx_status.nss = ((value & VHT_SIG_SU_NSS_MASK) + 1);
  577. #else
  578. ppdu_info->rx_status.nss = 0;
  579. #endif
  580. ppdu_info->rx_status.vht_flag_values3[0] =
  581. (((ppdu_info->rx_status.mcs) << 4)
  582. | ppdu_info->rx_status.nss);
  583. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  584. VHT_SIG_A_INFO_0, BANDWIDTH);
  585. break;
  586. }
  587. case WIFIPHYRX_HE_SIG_A_SU_E:
  588. {
  589. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  590. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  591. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  592. ppdu_info->rx_status.he_flags = 1;
  593. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  594. FORMAT_INDICATION);
  595. if (value == 0) {
  596. ppdu_info->rx_status.he_data1 =
  597. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  598. } else {
  599. ppdu_info->rx_status.he_data1 =
  600. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  601. }
  602. /*data1*/
  603. ppdu_info->rx_status.he_data1 |=
  604. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  605. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  606. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  607. QDF_MON_STATUS_HE_MCS_KNOWN |
  608. QDF_MON_STATUS_HE_DCM_KNOWN |
  609. QDF_MON_STATUS_HE_CODING_KNOWN |
  610. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  611. QDF_MON_STATUS_HE_STBC_KNOWN |
  612. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  613. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  614. /*data2*/
  615. ppdu_info->rx_status.he_data2 =
  616. QDF_MON_STATUS_HE_GI_KNOWN;
  617. ppdu_info->rx_status.he_data2 |=
  618. QDF_MON_STATUS_TXBF_KNOWN |
  619. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  620. QDF_MON_STATUS_TXOP_KNOWN |
  621. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  622. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  623. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  624. /*data3*/
  625. value = HAL_RX_GET(he_sig_a_su_info,
  626. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  627. ppdu_info->rx_status.he_data3 = value;
  628. value = HAL_RX_GET(he_sig_a_su_info,
  629. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  630. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  631. ppdu_info->rx_status.he_data3 |= value;
  632. value = HAL_RX_GET(he_sig_a_su_info,
  633. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  634. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  635. ppdu_info->rx_status.he_data3 |= value;
  636. value = HAL_RX_GET(he_sig_a_su_info,
  637. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  638. ppdu_info->rx_status.mcs = value;
  639. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  640. ppdu_info->rx_status.he_data3 |= value;
  641. value = HAL_RX_GET(he_sig_a_su_info,
  642. HE_SIG_A_SU_INFO_0, DCM);
  643. value = value << QDF_MON_STATUS_DCM_SHIFT;
  644. ppdu_info->rx_status.he_data3 |= value;
  645. value = HAL_RX_GET(he_sig_a_su_info,
  646. HE_SIG_A_SU_INFO_1, CODING);
  647. value = value << QDF_MON_STATUS_CODING_SHIFT;
  648. ppdu_info->rx_status.he_data3 |= value;
  649. value = HAL_RX_GET(he_sig_a_su_info,
  650. HE_SIG_A_SU_INFO_1,
  651. LDPC_EXTRA_SYMBOL);
  652. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  653. ppdu_info->rx_status.he_data3 |= value;
  654. value = HAL_RX_GET(he_sig_a_su_info,
  655. HE_SIG_A_SU_INFO_1, STBC);
  656. value = value << QDF_MON_STATUS_STBC_SHIFT;
  657. ppdu_info->rx_status.he_data3 |= value;
  658. /*data4*/
  659. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  660. SPATIAL_REUSE);
  661. ppdu_info->rx_status.he_data4 = value;
  662. /*data5*/
  663. value = HAL_RX_GET(he_sig_a_su_info,
  664. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  665. ppdu_info->rx_status.he_data5 = value;
  666. ppdu_info->rx_status.bw = value;
  667. value = HAL_RX_GET(he_sig_a_su_info,
  668. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  669. switch (value) {
  670. case 0:
  671. he_gi = HE_GI_0_8;
  672. he_ltf = HE_LTF_1_X;
  673. break;
  674. case 1:
  675. he_gi = HE_GI_0_8;
  676. he_ltf = HE_LTF_2_X;
  677. break;
  678. case 2:
  679. he_gi = HE_GI_1_6;
  680. he_ltf = HE_LTF_2_X;
  681. break;
  682. case 3:
  683. he_gi = HE_GI_3_2;
  684. he_ltf = HE_LTF_4_X;
  685. break;
  686. }
  687. ppdu_info->rx_status.sgi = he_gi;
  688. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  689. ppdu_info->rx_status.he_data5 |= value;
  690. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  691. ppdu_info->rx_status.he_data5 |= value;
  692. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  693. PACKET_EXTENSION_A_FACTOR);
  694. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  695. ppdu_info->rx_status.he_data5 |= value;
  696. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  697. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  698. ppdu_info->rx_status.he_data5 |= value;
  699. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  700. PACKET_EXTENSION_PE_DISAMBIGUITY);
  701. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  702. ppdu_info->rx_status.he_data5 |= value;
  703. /*data6*/
  704. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  705. value++;
  706. ppdu_info->rx_status.nss = value;
  707. ppdu_info->rx_status.he_data6 = value;
  708. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  709. DOPPLER_INDICATION);
  710. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  711. ppdu_info->rx_status.he_data6 |= value;
  712. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  713. TXOP_DURATION);
  714. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  715. ppdu_info->rx_status.he_data6 |= value;
  716. break;
  717. }
  718. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  719. ppdu_info->rx_status.he_sig_A1 =
  720. *((uint32_t *)((uint8_t *)rx_tlv +
  721. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  722. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  723. ppdu_info->rx_status.he_sig_A1 |=
  724. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  725. ppdu_info->rx_status.he_sig_A1_known =
  726. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  727. ppdu_info->rx_status.he_sig_A2 =
  728. *((uint32_t *)((uint8_t *)rx_tlv +
  729. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  730. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  731. ppdu_info->rx_status.he_sig_A2_known =
  732. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  733. break;
  734. case WIFIPHYRX_HE_SIG_B1_MU_E:
  735. {
  736. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  737. *((uint32_t *)((uint8_t *)rx_tlv +
  738. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  739. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  740. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  741. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  742. RU_ALLOCATION);
  743. ppdu_info->rx_status.he_sig_b_common_known =
  744. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  745. /* TODO: Check on the availability of other fields in
  746. * sig_b_common
  747. */
  748. break;
  749. }
  750. case WIFIPHYRX_HE_SIG_B2_MU_E:
  751. ppdu_info->rx_status.he_sig_b_user =
  752. *((uint32_t *)((uint8_t *)rx_tlv +
  753. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  754. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  755. ppdu_info->rx_status.he_sig_b_user_known =
  756. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  757. break;
  758. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  759. ppdu_info->rx_status.he_sig_b_user =
  760. *((uint32_t *)((uint8_t *)rx_tlv +
  761. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  762. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  763. ppdu_info->rx_status.he_sig_b_user_known =
  764. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  765. break;
  766. case WIFIPHYRX_RSSI_LEGACY_E:
  767. {
  768. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  769. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  770. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  771. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  772. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  773. ppdu_info->rx_status.bw = HAL_RX_GET(rx_tlv,
  774. #if !defined(QCA_WIFI_QCA6290_11AX)
  775. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  776. #else
  777. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  778. #endif
  779. ppdu_info->rx_status.he_re = 0;
  780. value = HAL_RX_GET(rssi_info_tlv,
  781. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  782. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  783. "RSSI_PRI20_CHAIN0: %d\n", value);
  784. value = HAL_RX_GET(rssi_info_tlv,
  785. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  786. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  787. "RSSI_EXT20_CHAIN0: %d\n", value);
  788. value = HAL_RX_GET(rssi_info_tlv,
  789. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  790. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  791. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  792. value = HAL_RX_GET(rssi_info_tlv,
  793. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  794. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  795. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  796. value = HAL_RX_GET(rssi_info_tlv,
  797. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  798. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  799. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  800. value = HAL_RX_GET(rssi_info_tlv,
  801. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  802. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  803. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  804. value = HAL_RX_GET(rssi_info_tlv,
  805. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  806. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  807. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  808. value = HAL_RX_GET(rssi_info_tlv,
  809. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  810. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  811. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  812. break;
  813. }
  814. case WIFIRX_HEADER_E:
  815. ppdu_info->first_msdu_payload = rx_tlv;
  816. break;
  817. case 0:
  818. return HAL_TLV_STATUS_PPDU_DONE;
  819. default:
  820. break;
  821. }
  822. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  823. "%s TLV type: %d, TLV len:%d\n",
  824. __func__, tlv_tag, tlv_len);
  825. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  826. }
  827. static inline
  828. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  829. {
  830. return HAL_RX_TLV32_HDR_SIZE;
  831. }
  832. static inline QDF_STATUS
  833. hal_get_rx_status_done(uint8_t *rx_tlv)
  834. {
  835. uint32_t tlv_tag;
  836. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  837. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  838. return QDF_STATUS_SUCCESS;
  839. else
  840. return QDF_STATUS_E_EMPTY;
  841. }
  842. static inline QDF_STATUS
  843. hal_clear_rx_status_done(uint8_t *rx_tlv)
  844. {
  845. *(uint32_t *)rx_tlv = 0;
  846. return QDF_STATUS_SUCCESS;
  847. }
  848. #endif